Neuron

Distinct neural codes in primate hippocampus and
lateral prefrontal cortex during associative learning
in virtual environments

Highlights

We trained monkeys to use a joystick to navigate in a VR
learning task

The hippocampus and lateral prefrontal cortex both encode
information about the task

Hippocampal neurons frequently fire in bursts with interspike
intervals of <7 ms

Information encoded in hippocampal burst rates is almost as
high as that in firing rates

Corrigan et al., 2022, Neuron 110, 2155-2169
July 6, 2022 © 2022 Elsevier Inc.
https://doi.org/10.1016/j.neuron.2022.04.016

Authors

Benjamin W. Corrigan, Roberto A. Gulli,
Guillaume Doucet, ...,

Kartik S. Pradeepan, Adam J. Sachs,
Julio C. Martinez-Truijillo

Correspondence
julio.martinez@robarts.ca

In brief

In this issue of Neuron, Corrigan et al.
(2022) show that in monkeys carrying out
a learning task in VR, neurons in the
hippocampus and lateral prefrontal
cortex use neural codes that are likely
specialized for their respective long- and
short-term memory functions.

¢? CellP’ress


https://doi.org/10.1016/j.neuron.2022.04.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2022.04.016&domain=pdf

Neuron

¢? CellPress

Distinct neural codes in primate hippocampus
and lateral prefrontal cortex during associative
learning in virtual environments

Benjamin W. Corrigan,’->® Roberto A. Gulli,**> Guillaume Doucet,® Megan Roussy,’->-°* Rogelio Luna,"-?
Kartik S. Pradeepan,’-22 Adam J. Sachs,® and Julio C. Martinez-Trujillo-2:3.7,8.*

Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada

2Robarts Research Institute, University of Western Ontario, London, ON, Canada

3Brain and Mind Institute, University of Western Ontario, London, ON, Canada

4Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA

5Center for Theoretical Neuroscience, Columbia University, New York, NY, USA

6The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
7Lawson Health Research Institute, London, ON, Canada

8Lead contact

*Correspondence: julio.martinez@robarts.ca
https://doi.org/10.1016/j.neuron.2022.04.016

SUMMARY

The hippocampus (HPC) and the lateral prefrontal cortex (LPFC) are two cortical areas of the primate brain
deemed essential to cognition. Here, we hypothesized that the codes mediating neuronal communication
in the HPC and LPFC microcircuits have distinctively evolved to serve plasticity and memory function at
different spatiotemporal scales. We used a virtual reality task in which animals selected one of the two targets
in the arms of the maze, according to a learned context-color rule. Our results show that during associative
learning, HPC principal cells concentrate spikes in bursts, enabling temporal summation and fast synaptic
plasticity in small populations of neurons and ultimately facilitating rapid encoding of associative memories.
On the other hand, layer II/1ll LPFC pyramidal cells fire spikes more sparsely distributed over time. The latter
would facilitate broadcasting of signals loaded in short-term memory across neuronal populations without

necessarily triggering fast synaptic plasticity.

INTRODUCTION

The primate lateral prefrontal cortex (LPFC) and hippocampus
(HPC) are two brain regions that integrate high-level sensory infor-
mation and play an important role in memory function. Lesion
studies have shown that the HPC plays a fundamental role in
long-term memory formation, for which HPC microcircuits
possess enhanced synaptic plasticity (Bittner et al., 2017).
On the other hand, the LPFC (areas 9/46) is known to play a
fundamental role in short-term memory encoding, specifically
layer II/1ll (Arnsten, 2013; Spaak et al., 2017). Short-term memories
(e.g., briefly being able to remember a telephone number) are en-
coded in patterns of neural activity across populations of neurons
that vanish after afew seconds (Leavitt et al., 2017). Itisreasonable
to assume that short-term memories do not necessarily trigger
long-term synaptic plasticity. We hypothesize that the neural co-
des underlying neuronal communication and information process-
ing in the primate HPC and layer II/lll LPFC microcircuits are
spatiotemporally tailored to service the corresponding memory
functions of the two structures.

A mechanism that links trains of action potentials to synaptic
plasticity is temporal summation: a compression of synaptic
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events over time that produces coincidence of postsynaptic po-
tentials and triggers plastic changes in individual synapses (Kan-
del et al., 2012). Neuronal firing patterns that cluster spikes over
short time intervals such as bursts can produce temporal sum-
mation and therefore induce synaptic plasticity (Thomas et al.,
1998; Remy and Spruston, 2007). Burst firing in individual neu-
rons is often found in brain areas associated with long-term
memory formation, such as the HPC (Bliss and Collingridge,
1993; Lisman, 1997). However, burst firing has also been re-
ported in the prefrontal cortex, classically associated with en-
coding short-term memories (Womelsdorf et al., 2014). An issue
that has not been thoroughly studied in primates is how the abil-
ity to fire bursts of action potentials compares between HPC and
LPFC neurons during behavior.

In the monkey prefrontal cortex, spike bursts in layer V neu-
rons are associated with the onset of selective attention and
are synchronized with the phase of beta and gamma frequencies
in anterior cingulate cortex (Womelsdorf et al., 2014). However,
during working memory (WM) tasks, most studies in the primate
LPFC have computed spike rates over a second or more and
documented the existence of persistent firing in layer II/11l (Leavitt
et al., 2017). Using linear classifiers, some studies have shown
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that spike rates computed over at least 400- to 500-ms intervals
maximize decoded information (Leavitt et al., 2017; Roussy
et al., 2021), suggesting that LPFC neurons fire spikes sparsely
over such intervals.

One possibility is that the time structure of the spike train in the
HPC and the LPFC is “tailored” to perform different functions. In
the HPC, spikes may be concentrated in bursts to maximize the
probability of plastic changes in individual synapses via temporal
summation. This would be in line with the primary role of the HPC
in long-term memory formation (Eichenbaum et al., 2016). In the
LPFC, spikes may be more sparsely distributed over time, which
may favor information encoded over a larger population of neu-
rons that can temporarily maintain and broadcast short-term
memory signals locally and to other brain areas without neces-
sarily triggering synaptic plasticity. The latter would be compat-
ible with the role of neurons in LPFC layer II/1ll encoding short-
term memory (Fuster and Alexander, 1971; Constantinidis and
Goldman-Rakic, 2002).

Here, we compare the prevalence of spike train bursts and
their relationship to task performance in the HPC and LPFC of
macaque monkeys performing a spatial navigation associative
memory task in a virtual environment. We found that neurons
in both structures encode information about task variables
(e.g., task periods and memory associations). However, HPC
neurons more often compress spikes into bursts relative to
LPFC layer II/lll neurons. In the HPC, but not in the LPFC, bursts
increase in frequency as performance improves as animals learn
the task. We demonstrate that it is possible to decode task-
related information from burst rates in the HPC with similar accu-
racy to decoders using spike rates. On the other hand, in the
LPFC, burst-rate decoders performed substantially worse than
spike-rate decoders. Additionally, we demonstrate that HPC
neurons encode task-related information over shorter time win-
dows and with fewer neurons relative to the LPFC.

RESULTS

We trained 4 monkeys (Macaca mulatta) on a context-object as-
sociation task and recorded the responses of neurons from area
CAB3 of the HPC of two animals and from layer II/Ill of LPFC area
9/46 in the other two animals. During the task, animals navigated
through a virtual X maze using a joystick (Figures 1A and 1B).
Upon arriving at a decision point, where the maze branched
out into two arms, two objects appeared at the arms’ ends.
The animal had to navigate toward one of the objects to obtain
a reward. The target object was defined by the contingency of
two features, the object’s color and the walls’ texture; e.g., for
objects cyan and green: when the texture of the maze walls
was wood, the target was cyan, whereas for a steel wall texture
the target was green (see Figure 1D; STAR Methods; Gulli et al.,
2020). Monkeys learned new associations every day until they
became proficient at the task (see example in Figure 1C).
Different color-wall texture associations were achieved by
changing the target colors while leaving the wall (contexts) the
same across sessions. In a 50-trial performance assessment
window (see STAR Methods), they achieved average perfor-
mances of 75.8% (monkey W, HPC), 61.3% (monkey R, HPC),
74.5% (monkey T, LPFC), and 84.3% (monkey B, LPFC) correct
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trials. The theoretical chance performance in this two-alternative
forced-choice task was 50%. We also trained the LPFC mon-
keys on a WM task where they were cued to one of 9 locations
in a virtual arena, and after a 3-s memory delay, they had to navi-
gate to the cued position (Figures 1E and 1F; see Roussy
et al., 2021).

Prevalence of burst firing in HPC and LPFC single
neurons

We recorded the responses of neurons in the HPC using single
electrodes (Figure 1G) and in the LPFC using microelectrode ar-
rays (Utah arrays, 10 x 10 electrodes, 1.5-mm electrode length)
implanted in area 9/46, ventral and dorsal to the principal sulcus
targeting layer lI/11l (Figure 1H). Data were spike sorted and single
action potential times were extracted and synchronized to task
events. We classified neurons in each area into narrow and
broad spiking (Figures S1A and S1B). This method shows
some inaccuracies at separating putative interneurons from py-
ramidal cells (Torres-Gomez et al., 2020). However, considering
that the majority of the neurons in the cortex are pyramidal cells
(DeFelipe, 2012; DeFelipe et al., 2013; Yuste et al., 2020), we
restricted our analyses to broad-spiking neurons and assumed
that they were in their majority pyramidal cells. Pyramidal cells
broadcast information between brain regions, and in structures
such as the HPC and the LPFC, they play a fundamental role in
memory coding. We recorded from putative pyramidal cells,
205 in the HPC over 37 sessions and 333 in the LPFC over 2 ses-
sions (see STAR Methods). We quantified the firing rates of these
neurons in both areas during the different task periods. Spikes of
HPC neurons frequently occurred within 7 ms intervals (example
in Figure 2A and blue spikes in Figure 2C). This was not the case
for LPFC neurons, which fired more sparsely (example in
Figures 2B and 2D). Indeed, when comparing the interspike in-
terval (ISI) distributions of the two example units per trial period,
the HPC unit shows a bias to short ISIs (Figure 2E) compared
with the LPFC unit (Figure 2F).

We examined the probability density function for ISls across all
broad-spiking neurons during the period between the start and
the end of the task, including the inter-trial intervals, in the two
regions (Figures 3A and 3B). HPC neurons had a large peak
below a bursting threshold of 7 ms ISIs compared with the
LPFC. Additionally, we calculated the rate of change for ISI
values, and in the HPC distribution it approaches 0 at around
7 ms (Figure 3A, inset) but remains close to 0 after a brief onset
transient in LPFC. This suggests that HPC neurons frequently fire
bursts with ISIs at around 7 ms. We further measured a burst
fraction which quantifies the proportion of ISIs at or below
7 ms (Figures 3C and 3D). HPC neurons had a significantly higher
burst fraction (median = 0.092) than LPFC neurons (median =
0.027) (rank-sum test, Z(216,367) = 10.45, p < 0.05) (Figure 3D).
We noticed that as the firing rate increases, the probability of ISIs
being below 7 ms increases in the LPFC (Pearson correlation co-
efficient r = 0.67, p < 0.05). This was not the case in the HPC,
where the correlation was not statistically significant (r =
—0.06, p > 0.05). The positive correlation between burst fraction
and firing rate in LPFC neurons may suggest that their IS distri-
bution is approximated by a Poisson distribution (with some
deviance as it approaches 0).
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Figure 1. Recording from monkeys during virtual navigation learning task

(A) Experimental setup where monkeys were seated in front of a monitor and used a joystick to navigate the virtual environment. Eye position was monitored, and
juice used as reward.

(B) Top-down view of maze with example trajectory split into four different task periods: post reward, context, decision, and goal (approach).

(C) Example sessions from monkeys and from each area showing all trajectories separated into north and south trials.

(D) The rule example defined cyan as the higher value object in context one (wood), and lower in context two (steel), and the inverse for the green object.

(E) Setup for virtual spatial working memory control task. Monkeys were again seated in front of a monitor and used a joystick to navigate. Image of arena has
potential target locations indicated in red.

(F) Still images of the screen during an example trial.

(G) MRI-based reconstruction of recording positions in the right HPC of monkeys W and R.

(H) Array locations on area 9/46 for monkeys B and T.
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Figure 2. Differences in firing patterns between two example units in HPC and LPFC
(A and B) Session rasters showing example unit activity for 30 min, with background indicating the different trial periods.
(C and D) Trial rasters for the post-reward period with ISls <7 indicated, occurring more frequently in the HPC. The example unit’s waveform is superimposed,

comprising broad-spiking neurons with a similar task firing rate of 1.8 Hz.

(E and F) ISl rate distributions for the different periods. Note that the HPC unit has much more activity below 20 ms than in the following 20 ms, whereas the LPFC

unit has a more uniform distribution.

We used a method from Livingstone et al. (1996) to
compute a probability distribution for ISIs as a function of
firing rate relative to that predicted by Poisson firing neurons.
For each neuron, we computed a burst index (Bl, see STAR
Methods), a bounded ratio of the measured ISls, and the Pois-
son-predicted ISIs below a threshold of 7 ms. A positive value
means shorter ISIs than predicted by a Poisson distribution
and suggests that the cell often fire bursts, while a value at
or below 0 indicates the opposite. The Bl of HPC cells (me-
dian = 0.14) was significantly higher than the BI of LPFC cells

2158 Neuron 770, 2155-2169, July 6, 2022

(median = —0.11, Z(216,367) = 8.60, p < 0.05) (Figure 3E). The
Bl for LPFC cells did not correlate with firing rate (r = —0.007,
p > 0.05). The BI for HPC cells was negatively correlated with
the firing rate (r = —0.42, p < 0.05), indicating that as the firing
rate increases, the Bl decreases. This result seems counterin-
tuitive. One likely explanation is that at low firing rates, many
spikes in HPC neurons are concentrated within bursts, while
at high firing rates, neurons fire spikes “outside” bursts. The
latter leads to the same number of bursts, with increases in
the number of spikes and consequently in the firing rate.
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Figure 3. HPC cells are more prone to
bursting, and the LPFC burst fraction is
correlated with firing rate

(A) The probability density distribution of all ISIs for
broad-spiking neurons in the HPC, normalized to
the value at 60 ms. The HPC ISIs have a pro-
nounced peak below the 7-ms burst threshold.
The inset demonstrates the relationship between
the distribution and its first derivative, which stabi-
lizes after 7 ms.

(B) Same as (A), except for broad LPFC neurons.
(C) Burst fraction plotted against firing rate, where
HPC cells have a high burst fraction at low firing
rates.

(D) Population density of burst fractions.

(E) Same as (C), but with burst index (BIl), where
LPFC Bl is no longer correlated with firing rate,
and there is a slight negative correlation for the
HPC.

(F) Population density of BI.

(G) GCV for ISIs between 0 and 40 ms plotted
against Bl. HPC GCV values decrease at high burst
index values.
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fying multiple units as a single unit, we
calculated a signal-to-noise ratio mea-
sure (d’) (Leavitt et al.,, 20183;
Figures S1C and S1D). We did not find
a significant correlation between BI
and d’ for HPC (r = -0.01, p >0.05),
and a small negative correlation for
LPFC (r = —0.037, p < 0.05). These re-
sults suggest that any over estimation
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of burst occurrence may have
happened in the LPFC; yet, bursts
were more often found in
HPC neurons, which argues against
this variable acting as a confound to
our main results. We also measured fo-
veation durations to ensure that more
frequent saccades were not generating
more presaccadic bursts (Figure S7).
Finally, we calculated the geometric
coefficient of variability (GCV, see
STAR Methods; Equation 4) for ISls
between 0 and 40 ms. The GCV
quantifies the variability of the ISls.
If spikes are generated within bursts
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Burst Index

Distributions of Bls for different thresholds can be found in
Figure S2. However, we carried out the rest of the analyses
using the burst threshold of 7 ms because of the similar
ranges found for other thresholds and the stabilization of the
differential values at 7 ms (inset in Figure 3A). Some analyses
may include other thresholds when required.

To rule out the possibility that increased HPC bursting was
due to spike sorting issues that may have resulted in classi-

Proportion

0.4 0.6 0.8

with regular ISls (see HPC example
unit, Figure 2E), then the GCV will
be low. If spikes are more sparsely
distributed, with variable ISIs as in the LPFC example
unit (Figure 2F), then the GCV will be high. We found
that in both areas, GCV increases with Bl for Bl values
below zero (Figure 3G). LPFC neurons continue this trend
at Bl > 0 (Figure 3G, red circles); however, HPC neurons
with positive Bl values do not: high Bl HPC neurons show
the lowest GCV values, indicating that bursts show highly
regular ISIs and that they may be at least in part
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Figure 4. HPC bursting increases with performance, while LPFC bursting does not

(A) Performance defined by a hit rate for 20 trial blocks evenly spaced throughout each session for both the HPC and LPFC monkeys.

(B) Normalized burst and spike rates for blocks of 20 correct trials during the post-reward period. HPC bursts have a significant positive slope, as do HPC spikes,
while LPFC bursts are stable and LPFC spikes have a slight significant negative slope. A comparison of burst rate and firing rate can be seen in Figure S3

(C and D) Same as (A and B), but for the working memory task in LPFC. Figure S3Boxes represent quartiles and error bars extend to the maximum value within 1.5
times the inter-quartile range, and numbers above distributions represent the number of outliers above the limit of the y-axis.

influenced by the intrinsic properties of these HPC neurons
(blue circles in Figure 3G).

HPC bursting increases with task performance in post-
reward period

We hypothesized that if bursting plays a role in learning and en-
coding of long-term memory, we should find a correlation be-
tween burst rates and task performance. To ascertain whether
animals learned the association between the context and object
color over the session, we binned the data in epochs of 20 trials,
evenly distributed through the session (beginning, ¥4, Y2, 3/, and
end) and calculated the mean performance rate for each epoch
and for each session. There is a positive correlation between per-
formance rate and time epoch for the 37 sessions with the HPC
monkeys and the 17 sessions with the LPFC monkeys. The slope
for the HPC sessions was 0.06 (95% CI = 0.04-0.08, Figure 4A),
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and the slope for the LPFC sessions was also 0.06 (95% CI =
0.04-0.08), indicating that animals learned the task at similar
rates across all sessions. On the other hand, for the control
WM task across 3 sessions, the slope was not significant
(—0.06, 95% CIl = —0.16-0.04, Figure 4C). These results suggest
that improvement in performance across a session during the
associative learning task was due to the animals learning
the task.

We next measured the burst rate (number of bursts) and spike
rate during five epochs of 20 correct trials evenly spaced
throughout each session (Figure 4B). For HPC neurons that
had bursts in at least two epochs, bursting increased (slope =
0.020, 95% CI = 0.007-0.033). The number of spikes also
increased (slope = 0.012, 95% CI| = 0.005-0.020). For the
LPFC, bursting did not significantly increase (slope = —0.001,
95% Cl = —0.013-0.012); however, the firing rate slightly
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decreased (slope = -0.002, 95% Cl = -—0.004--0.001).
During the WM task, bursting in the LPFC did not change
(slope = —0.003, 95% Cl = —0.014-0.008, Figure 4D), and the
spike rate slightly decreased (slope = —0.002, 95% CI =
—0.004——2e-5). The latter effect may be related to previous re-
ports of decreases in spike rates in LPFC neurons when stimuli
lose novelty (Wilson and Rolls, 1993; Miller and Desimone,
1994; Asaad et al., 1998). Changes during the associative
learning task were not due to changes in burst rate over the
time course of the session, since the results hold when corre-
lating performance and burst rates independently of time during
the session. We found a significant correlation between HPC
bursts and hit rate (r=0.13, p < 0.05), indicating that the previous
result was not solely due to time during the session. On the other
hand, HPC spike rates were not significantly correlated with per-
formance (r=0.11, p > 0.05). In the LPFC, both correlations were
negative but not significant (LPFC bursts r= —0.4, p > 0.05, LPFC
spikes r = —0.07, p > 0.05) (Figure S3). This result demonstrates
that in the HPC, but not in the LPFC, bursting was positively
correlated with improvements in performance as the animal
learned the task.

Information about task periods encoded in burst and
spike rates in HPC and LPFC

Beside the associative learning component, our task had
different periods corresponding to different segments of the
maze (post-reward, context, decision, goal approach, and
reward). We examined whether neuronal spikes and/or bursts
encoded information about the different task periods in the
HPC and LPFC. For example, a neuron might respond to right
turns during the goal approach period. An alternative might be
a neuron that, during the post-reward period, integrates the
reward feedback with the conjunction of the context and the
chosen target in the previous trial. A deeper analysis of neuronal
selectivities can be found in Gulli et al. (2020). Here, we will
concentrate on task periods since our goal is to compare the in-
formation contained in burst and spike rates.

For each neuron, we computed mutual information during the
first four task periods (post-reward, context, decision, and goal
approach) for spike and burst rates, using a permutation test
for significance. The spike rate was defined as the number of
spikes that occurred during the entire task period divided by
the period’s duration. The burst rate was defined as the number
of bursts (at least 3 spikes with ISIs <7 ms) during a task period,
divided by the duration of the period. We also calculated burst
rates with thresholds at 10, 15, and 20 ms (Figure S4), but
most of our analyses focus on the 7-ms threshold. To ensure a
reasonable sample size, we only used neurons with at least 60
completed trials. Additionally, we split cells based on Bl values,
with high bursting neurons (HBNs) having a Bl > 0 and low
bursting neurons (LBNs) having a Bl < 0. The proportions of cells
that were classified as HBN or LBN were different between
areas. Of 192 HPC neurons, 131 (68%) were HBNs, whereas of
333 LPFC neurons, 69 (19%) were HBNs (rank-sum z =
10.8, p < 0.05).

From the 131 HBNs in the HPC, 71 (54%) encoded significant
information about task periods; from those, 67 (94%) had signif-
icant spike-rate information and 43 (61%) had significant burst-
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rate information (Figure 5A). From the 69 HBNs in the LPFC, 52
(68%) encoded significant information about task periods; from
those, 50 (96%) had significant spike-rate information, and 15
(29%) had significant burst-rate information (Figure 5A). The pro-
portion of neurons with significant burst-rate information was
significantly higher in the HPC (61%) than in the LPFC (29%,
rank-sum z = 3.48, p < 0.05). From the 61 LBNs in the HPC,
70% encoded significant information about task periods; from
those, 43 (100%) had spiking information and 5 (12%) had
burst-rate information. These populations completely overlap-
ped (Figure 5B). From the 264 LBNs in the LPFC, 200 (76%) en-
coded significant information about task periods; from those,
198 (99%) had spiking information and 25 (13%) had significant
burst-rate information (Figure 5B). Unlike for HBNs, the propor-
tions of neurons with significant burst-rate information for
LBNs were similar (rank-sum z = 0.16, p > 0.05).

There were not only more cells with significant information in
the spike rates, but the spike rates also had more information,
on average, in the HBNs in both the HPC (burst median = 0.10,
spike median = 0.14, rank-sum, z = 2.48, p < 0.05) and the
LPFC (burst median = 0.08, spike median = 0.14, z = 2.35,
p < 0.05) (Figure 5C). This was also the case for the LBNs in
both the HPC (burst median = 0.10, spike median = 0.14, z =
2.73, p < 0.05) and the LPFC (burst median = 0.08, spike me-
dian = 0.15, z = 2.23, p < 0.05). When comparing information in
HBNs, there was a significant difference between the HPC (me-
dian = 0.10) and the LPFC (median = 0.08), using a rank-sum
test (z = 2.04, p < 0.05). In terms of the information available
in the spikes, the HPC (median = 0.14) was not significantly
different than the LPFC (median = 0.14, z = 0.30, p > 0.05).
For the LBNs, there was no significant difference between the
information available in the two areas in the bursts (HPC me-
dian = 0.10, LPFC median = 0.08, z = 0.17, p > 0.05) or in
the spikes (HPC median = 0.14, LPFC median = 0.15, z =
0.06, p > 0.05). Thus, the HPC had a higher proportion of
HBNs with significant information than the LPFC, and there
was more information in the burst rates of HBNs in the HPC
relative to the LPFC.

To further explore the effect that the burst threshold may
have on mutual information, we calculated mutual information
for thresholds at 10, 15, and 20 ms. Remarkably, for the
HBNs in the HPC, the proportion of neurons with significant in-
formation was stable across the different thresholds (slope =
0.005, 95% CI = —0.007-0.018). In contrast, there were signif-
icant increases in the three other sub-populations: LPFC HBNs
(slope = 0.010, 95% CI = 0.001-0.020), LPFC LBNs (slope =
0.020, 95% Cl = 0.014-0.027), and HPC LBNs (slope
0.038, 95% CI = 0.011-0.065, Figure 5D). One may consider
that more neurons become significant as the threshold is
increased, resulting in cells with significant spike-rate informa-
tion, which have a more Poisson-like ISI distribution. The fact
that the proportion of HBNs with significant information in the
HPC is relatively stable across thresholds, suggests that
bursting in these cells is tightly constrained and likely influ-
enced by the neurons’ intrinsic properties (Zeldenrust et al.,
2018). These results show that for HBNs, burst rates in the
HPC carry more information about task periods than in the
LPFC. An analysis including a 4-ms bin is included in Figure S4.
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Figure 5. HPC high bursting neurons have more neurons with significant information, and these neurons have more bits of information than

LPFC neurons

(A) Proportions of HBNs that have significant information in either the burst rate, the spike rate, or more often, both rates.

(B) Same as (A) but for LBNs.

(C) Amounts of information in bits for each significant neuron in HBN (above) and LBN (below) populations. Spikes have more information than bursts in all sub-
populations. HPC HBNs have more information in the burst rate than LPFC neurons. Boxes represent quartiles and error bars extend to the maximum value within

1.5 times the inter-quartile range. * represent significant difference at p < 0.05.

(D) Proportion of cells that have significant information for different burst thresholds. Proportions significantly increase for every group except high bursting HPC.

Fitted lines with significant slopes (p < 0.05) are represented as solid lines.

Decoding task-period information from bursts and spike
rates in HPC and LPFC populations

To determine how results at the level of individual neurons gener-
alize to populations, we conducted population-level analyses us-
ing linear classifiers. For the HPC, recordings were done over
many days, so we constructed a pseudo-population of neurons
by pooling neurons and drawing the same numbers of each trial
period for each neuron (Mendoza-Halliday and Martinez-Truijillo,
2017). To compare LPFC data with HPC data, we shuffled the
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LPFC trial order, destroying simultaneity and the correlation struc-
ture of the population. Thus, the analyses use pseudo-populations
of HBNs in both the HPC and the LPFC. We trained a support vec-
tor machine (SVM) to decode the trial period based on the spike
rate or the burst rate from 60 trials of a subsampled pseudo-pop-
ulation of 60 cells from each area. We ran 5-fold cross-validation,
getting one average performance, and then ran 50 subsamples to
get 50 average performances. We also shuffled trial labels for
each population to compute chance performances.



Neuron

A 100 SVM decoding accuracy B
—— _BUrSt
= —Spike ==
» 80 — + — Shuffle
g —
8 —‘ ko]
S 601 | - k]
2 S &
T 40t L <
3 — — 3 B
a e ==
20 + N T e 1
0 s s
HPC LPFC
c Spike vs burst
. decoding index
B 04
>3 —_—
2 1
8 ——
5 % | 3
= [ k5
2 N L &
3 02f T El
) | 3
-1 - <
2 gq -
k) 4
£
0 ‘ ‘
HPC LPFC

¢? CellPress

Burst decoding

HP
C LPFC 100
3.8 8 448 | 289 | 91 | 17.3
80
321 6.1 14.1 60
15.8 | 11.8 214 40
20
21.0 | 137 | 19.3 | 46.0
0
3 Vi
Spike decoding
HPC LPFC
100
01 | 13
80
60
40
20

Predicted Predicted

Figure 6. Population code for the HPC is similar between bursts and spikes, but not for the LPFC

(A) Average decoding accuracy for trial period in spike and burst codes in the two areas. All values are significantly different from the shuffles.

(B) Confusion matrices for burst and spike decoding in both areas. There is no distinct diagonal in LPFC burst decoding, but there is in the other three matrices.
(C) Spike-burst decoding index, where the difference between spike and burst decoding is significantly higher for the LPFC and close to 0 for the HPC. Decoding
of task parameters in the goal approach period can be found in Figure S5. Boxes represent quartiles and error bars extend to the maximum value within 1.5 times

the inter-quartile range.

All decoding performances were significantly different from
chance performances, with no overlap between the confidence
intervals for the actual values and the permutation values (Fig-
ure 6A). The HPC burst-rate decoding accuracy (median =
67.9%) was lower than the spike-rate decoding accuracy (me-
dian = 89.6%, permutation test, p < 0.05). In the LPFC, burst
decoding accuracy (median = 47.1%) was lower than spike-
rate decoding accuracy (median = 89.2%, p < 0.05). To contrast
burst- versus spike-rate decoding between the two areas, we
computed a spike-Bl index (see STAR Methods Equation 5) (Fig-
ure 6C). There was a significant difference between the HPC in-
dex (median = 0.12, 32% higher performance for spike rates than
burst rates) and the LPFC index (median = 0.31, 90% higher per-
formance for spike rates than for burst rates) (t test, t(98) = 23.8,
p < 0.05). Spike rates perform almost three times better than
burst rates in the LPFC than in the HPC. Thus, although in the
HBN spike rates were overall more informative than burst rates
in both areas, burst rates had a more similar performance
compared with spike rates in the HPC than in the LPFC.

One may argue that the lack of decoding in the LPFC from
bursts may have been due to a lack of engagement in the asso-
ciative learning task. This is unlikely since during the control WM
task bursting was similar to that during the associative learning

task (Figure S6A) and decoding of cued and memorized location
from burst rates also performed significantly lower than from
spike rates (Figures S6B). It could also be that the LPFC burst de-
coders performed worse than the burst decoders in the HPC
because of differences in the number of periods without any ac-
tivity (burst rates of 0 in the LPFC). To assess this, we calculated
the percentage of periods in each session during which a neuron
was silent, for both bursting and spiking activity (Figure S1E).
Most neurons had a large percentage of periods without bursting
activity, with the HPC having a similar median (97 %) to the LPFC
(98%) (rank-sum test, z = 1.31, p > 0.05). For spiking activity, the
HPC had a significantly higher proportion of silent periods (me-
dian = 55%) compared with the LPFC (median = 7%, z = 6.43,
p < 0.05). Importantly, for bursts there was not a significant dif-
ference in the proportion of “silent” periods between areas.

To explore how encoded information was distributed across
neurons, we examined how decoded information from both
burst and spike rates changes as a function of neuronal
ensemble size and composition. We used the HBNs that had sig-
nificant mutual information in their burst rates. We first estimated
decoded information in individual neurons, and then we paired
the most informative neurons with every other neuron to
find the best duo, grouping that duo with every other neuron to
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find the best trio, etc. (see Leavitt et al., 2017; Backen et al.,
2018). We ran this process 50 times. For both the HPC and the
LPFC, ensembles of a relatively small number of neurons satu-
rated the decoder’s performance (Figure 7A). We fit an exponen-
tial function to the data (Equation 6). All fits had an r? > 0.95. We
calculated the point at 95% of the maximum performance to
conduct comparisons between areas and burst- and spike-
rate decoders. The HPC reached the 95% rate for spike rates
at an average of 4.85 (SD = 1.30) neurons and for the burst
rate at a similar number of 4.74 (SD = 1.25) neurons (t(95) =
0.43, p > 0.05). For the LPFC, firing rate ensembles reached
the 95% point at an average of 4.50 (SD = 1.63) neurons and
burst rate ensembles at a similar number of 4.20 (SD = 1.72) neu-
rons (t(97) = 0.90, p > 0.05). The 95% point was not significantly
lower for the LPFC than the HPC for firing rate decoders (t(96) =
1.18, p > 0.05), and there was no significant difference between
the 95% points for the burst rates between areas (1(96) = 1.79,
p > 0.05). Thus, ensembles with small numbers of neurons (~5)
were sufficient to saturate the decoder’s performance for both
burst rates and spike rates.

To quantify the differences in performance between burst-
rate decoders and spike rate decoders in each area, we
computed a performance index. We used asymptotes of the
performance equation for the 50 optimized decoders. For
each decoder, we subtracted the burst-rate performance
from the spike-rate performance and divided by the sum of
the performances (Equation 5). The HPC performance index
was lower (mean = 0.16, SD = 0.09) than the LPFC index
(mean = 0.24, SD = 0.11; t(98) = 4.40, p < 0.05). These results
indicate that burst rate contributes significantly more to infor-
mation decoded in the HPC than in the LPFC and that in
both areas task-period information can be decoded from small
ensembles of neurons.

Effect of integration time windows in decoded
information
To study the timescales over which both areas integrate informa-
tion, we examined decoding performance as a function of inte-
gration time and window length for both areas. We used the
same ensemble-building technique as in the previous analyses.
However, instead of integrating over the entire task period, we
took differently sized time windows centered at the middle of
the period (i.e., 25, 50, 100, 150, 200, 300, 400, and 500 ms).
We repeated the same curve fitting procedure as in Figure 7A
and calculated the 95% point for all the curves (Figure 7B).
Curves were normalized to the maximum asymptotic perfor-
mance, which happened to be at the longest window (500 ms).
We found that the ensemble size at the 95% points was signif-
icantly lower for the HPC (mean = 7.0, SD = 0.45) than for the
LPFC (mean = 8.3, SD = 0.56; paired t test, t(7) = 8.82,
p < 0.05) (Figure 7B). We further calculated the performance of
each ensemble as a fraction of the curve maximum for the
average data in the 500-ms ensembles. The latter allows sub-
tracting LPFC fractions from the HPC fractions for every time
window and ensemble size to create an ensemble index (HPC-
LPFC) that controls for differences in maximum performance be-
tween areas. A positive index means the HPC achieves a higher
maximum decoding performance with the same ensemble size.
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A negative index means the opposite. A two-way ANOVA on the
ensemble index was significant for both factors, time window
size (F(7) = 65.8, p < 0.05) and ensemble size (F(19) = 17.6,
p < 0.05); the interaction was not significant (F(133) = 1.0,
p > 0.05). We further carried out two-sided t tests to determine
which area—at an ensemble of size n and at a particular time
point—performed better than the other. As demonstrated in Fig-
ure 7C, at lower ensemble sizes across all time windows, the
HPC ensembles outperform the LPFC ensembles (p < 0.05).
Remarkably, for the 25-ms time window, the HPC continues to
outperform the LPFC for all ensemble sizes. These results
demonstrate that HPC ensembles can “compress” more infor-
mation into smaller time windows (25 ms) and using fewer units
(up to 4) as compared with the LPFC.

DISCUSSION

Burst firing in HPC and LPFC neurons

Here we have used the definition of bursts as trains of action po-
tentials that occur with close temporal proximity (<7 ms) or are
more concentrated over time than predicted by a Poisson pro-
cess. We found that the HPC has a larger proportion of putative
principal neurons firing bursts than layer II/1ll of the LPFC. This
agrees with previous studies in the HPC that have reported an
abundance of burst firing in principal cells across species (Bliss
and Collingridge, 1993; Lisman, 1997; Skaggs et al., 2007; Xu
et al., 2012). It also agrees with studies in macaque LPFC layer
II/1l reporting that information decoded during WM and attention
tasks is maximized when using time windows of 400 ms or longer
(Backen et al., 2018; Leavitt et al., 2017; Tremblay et al., 2015).
We should make clear that in both structures, spike rates (count-
ing spikes inside and outside bursts) were more informative than
burst rates. The latter suggests that not all informative spikes,
even in the HPC, are compressed into bursts. Thus, the function
of bursts may be diverse and not only related to information (Zel-
denrustetal., 2018). Indeed, burst rates in the HPC, but not in the
LPFC, increase with performance during the post-reward period
of the associative memory task, suggesting that bursting may
trigger fast synaptic changes in the HPC during learning (Harris
etal., 2001). Such changes may occur to a lesser degree, slower,
or more distributed in the LPFC.

Our results are unlikely due to differences in the type of infor-
mation encoded by the HPC and LPFC neurons. Both the HPC
(Doucet et al., 2020; Gulli et al., 2020) and the LPFC (Roussy et
al., 2021) encode spatial information during virtual navigation.
Additionally, both areas encode information about stimuli during
associative learning tasks (Brincat and Miller, 2016; Gulli et al.,
2020). Indeed, we show that neuronal populations in both areas
encode task-period information; e.g., learning associations,
spatial position in the virtual environment, or both (Figure S5).
One may argue that the differences in the number of neurons
firing bursts between the two areas is due to differences in the
pattern of eye movements. Because saccades may be preceded
by a burst, different numbers of saccades may lead to differ-
ences in bursting. In our task, animals could freely make sac-
cades. Arguing against this explanation, we found that the dura-
tions of intersaccadic intervals, or foveations, are similar across
HPC and LPFC animals (Figure S7). It is also unlikely that neurons
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in the different areas encode saccade parameters linked to burst
firing distinctively. A recent study has reported that during a
naturalistic task only 2%-3% of LPFC neurons are tuned for
saccade parameters (Roussy et al., 2021). In the HPC, neurons
are generally not tuned for saccade parameters (Doucet et al.,
2020; Gulli et al., 2020).

It has been reported that a feature of HPC principal cells is
rapid burst firing, measured by ISIs below 20 ms (Lisman,
1997; Skaggs et al.,, 2007), or shorter, at 6-8 ms (Ranck,
19783; Buzsaki, 2015). Bursts can contain a significant propor-
tion of all spikes, and a high burst fraction (fraction of all ISls
that are below 20 ms) is a distinguishing feature of HPC cells
in primates (Skaggs et al., 2007) as well as rodents (Lisman,
1997). The HPC spike burst has consistently proven intriguing
to scientists (Kepecs et al., 2002; Lisman, 1997; Zeldenrust et
al., 2018). For example, bursts with short ISIs <6-8 ms are quite
common along the perforant pathway, from the dentate gyrus
to the subiculum regions (Mizuseki et al., 2012; Pernia-Andrade
and Jonas, 2014; Simonnet and Brecht, 2019). It has been
debated whether bursts can be the units of information coding
in the HPC (Harris et al., 2001). Our results indicate that
although there are also informative spikes outside the bursts,
we could decode task-period information from burst rates
with an accuracy close to that of spikes rates. This was not
the case in the LPFC, where burst-rate decoding was close
to chance and significantly lower than rate decoding. The latter
suggests that LPFC spikes outside a burst play a larger role in
information coding relative to the HPC.

In the macaque LPFC, few studies have examined the role of
burst firing in the coding of WM signals (Constantinidis and Gold-
man-Rakic, 2002; Womelsdorf et al., 2014; Voloh and Womels-
dorf, 2018). Constantinidis and Goldman-Rakic used an un-
bounded BI (comparing ISIs with predictions from a Poisson
process) in LPFC neurons and found the median to be 0.9, just
below 1, which would match the Poisson prediction. They calcu-
lated their index during the fixation period of an oculomotor de-
layed response task, where visual stimulation and dynamics
were different from our virtual task. This may explain why they
found 10% of cells with an index value >4, approximately 0.6
in our BI, but we found no LPFC neurons above 0.5. We also
used a slightly larger window of ISls, so this may have affected
our results if ISI peaks drastically dropped off before 7 ms. Addi-
tionally, we were restricted to layer II/lll of the LPFC, and their
study may have included neurons in deeper layers that can be
more prone to bursting (Womelsdorf et al., 2014). We did find
bursting neurons in the LPFC. However, most of the informative
spikes occurred outside the burst. Indeed, bursts rates in the
LPFC performed poorly when used to decode information during
the associative learning and WM tasks.

Memory functions of HPC and LPFC and relationship to
bursts

A main hypothesis in our study was that neural codes in the HPC
and LPFC have evolved to serve different memory functions.
Bursting is more prevalent in the HPC and correlates with task
performance when the trial information needs to be consolidated
(Gulli et al., 2020). Given the relationship between burst firing,
temporal summation, and synaptic plasticity, our results indicate
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that the prevalence of burst firing in the HPC serves long-term
memory formation. Indeed, bursting has been shown to be
more reliable than single spikes at producing postsynaptic po-
tentials (Thomas et al., 1998; Remy and Spruston, 2007). A study
(Xu et al., 2012) ablated excitatory postsynaptic potentials trig-
gered by single spikes outside bursts by decreasing
synaptotagmin-1 in rodent HPC CA1, but preserved the poten-
tials triggered by burst spikes. Under these circumstances,
learning was preserved. However, when they repeated the
manipulation in the medial prefrontal cortex, learning was
impaired. These results suggest that in the HPC, burst spikes
play a fundamental role in memory formation, while spikes
outside the burst play a lesser role. The inverse is true for the pre-
frontal cortex.

In the LPFC, spike rates integrated over long time intervals
(>400 ms) provide the most information about items held in
short-term memory (Leavitt et al., 2017; Roussy et al., 2021).
Indeed, when we used the 2-s delay period, our decoders
achieved high accuracy with spike rates, but when we used burst
rates, accuracy dropped to chance (Figure S6C). This LPFC
sparser code relative to the HPC may avoid triggering rapid syn-
aptic plasticity and consolidation of all short-term memories,
which would be counterproductive. Miller and colleagues have
proposed that WM information can be stored in changes in syn-
aptic weights that last hundreds of milliseconds (Miller et al.,
2018). This is different from the plasticity that enables long-
term memories to form and at the very least does not appear
to be caused by bursts with ISIs below 7 ms across all neurons
in the LPFC. Nevertheless, we did find bursting neurons in the
LPFC during both tasks. These neurons may serve functions
such as broadcasting and communication with other brain areas
(Womelsdorf et al., 2014).

Two distinct architectures for two different memory
functions

Differences in the neural codes employed by the HPC and LPFC
may be due to different cortical architectures that serve different
functions. The HPC contains three cortical layers (paleocortex)
and relatively well-defined input and output pathways (O’Keefe
and Nadel, 1978). The HPC cornu ammonis (CA) subfields
have limited connectivity with the neocortex. Output from the
HPC is almost exclusively through the subiculum and the ento-
rhinal cortex. On the other hand, The LPFC is extensively con-
nected to many other brain structures (Yeterian et al., 2012).
The LPFC is organized in 6 cortical layers with a major expansion
of layer II/lll where neurons encoding WM have been identified
(Constantinidis and Wang, 2004; Arnsten, 2013). Neurons in
this region have extensive functional connectivity with one
another that depends on their receptive and memory field loca-
tion (Leavitt et al., 2013) and such fields cover the entire visual
space (Bullock et al., 2017).

One interesting question would be whether in vivo burst-firing
regimes in the HPC are mainly due to intrinsic properties of the
principal cells or to network dynamics. Studies in rodents have
shown that CA3 neurons also fire bursts in vitro when isolated
from the rest of the brain (Ranck, 1973; Traub and Wong,
1981; Mizuseki et al., 2012). This bursting behavior may be
required to induce processes such as long-term potentiation
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(LTP) that enables coding of long-term memories (Bliss and Col-
lingridge, 1993). Burst firing may be “built up” into the intrinsic
machinery of the HPC principal cell rather than solely arising
from the HPC networks’ dynamics. Such intrinsic cellular ma-
chinery makes the HPC burst firing robust, enabling long-term
memory formation under a variety of network firing regimes.
However, one may also consider the role of network connectivity
and dynamics adding heterogeneity and efficiency to neural
communication and plasticity across the cortical mantle.

In the LPFC, a recent study has reported the existence of
pyramidal cells in layer II/lll that are intrinsically “bursty,” based
on their response profiles to square wave current pulses
(Gonzalez-Burgos et al., 2019). Interestingly, this study reported
that burst neurons were more abundant in the LPFC relative to
the lateral intraparietal area. Thus, it is possible that neocortical
areas also differ in the way they cluster spikes over time, de-
pending on their function and connectivity. The latter further in-
dicates neural codes are heterogeneous and can serve different
functions by changing their spatiotemporal features.
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STARXxMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Rhesus macaques Unspecified vendor McGill University and Western University

Software and algorithms

Matlab 2020a MathWorks https://mathworks.com/products/matlab.
html RRID: SCR_001622

Libsvm 3.23 Chang and Lin, 2011 https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Neuroscience Information Theory Toolbox Timme and Lapish, 2018 https://doi.org/10.1523/ENEURO.0052-
18.2018

Offline Sorter Plexon https://plexon.com/products/offline-sorter/

Other

Utah arrays Blackrock Microsystems https://blackrockneurotech.com/research/
utah-array/

Custom code This paper https://doi.org/10.5281/zenodo.6450233

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Prof. Julio Martinez-
Truijillo (julio.martinez@robarts.ca).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All data reported in this paper will be shared by the lead contact upon request.

All original code has been deposited at zenodo.org and is publicly available as of the date of publication. DOlIs are listed in the key
resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Four male rhesus macaques (Macaca mulatta) were used in these experiments, two in HPC experiments (7 and 14 years old, and 7kg
and 12kg respectively) and two in LPFC experiments (10 and 9 years old, 12kg and 10kg respectively). All procedures followed Ca-
nadian Council on Animal Care guidelines and were carried out at either McGill University or Western University and were approved
by the respective University Animal Care Committees.

METHOD DETAILS

Electrophysiological recordings

HPC recordings were carried out using 1-4 high impedance (400-1500 kOhms) tungsten electrodes lowered each day to the right
HPC, using co-registered image guidance for trajectory and depth, with examples seen in Figure 1G of recording locations. Most
recordings were done in the mid to posterior putative CA3 region. Further information on electrode placement and targeting is avail-
able in Gulli et al. (2020). LPFC recordings were acquired using two 96-channel Utah arrays positioned at the posterior end of the
principal sulcus, on the dorsal and ventral gyri of the principal sulcus and the anterior gyrus of the arcuate sulcus, targeting area
9/46. The shank length was 1.5mm, and was impacted into the brain, so was likely in layer II/lll, and electrodes had an impedance
ranging from 20 to 1500 kOhms. Signals were acquired at 30 kHz using one (HPC) or two (LPFC) 128-channel Cerebus recording
systems (Blackrock Microsystems) and saved for later offline sorting, done with Plexon Offline sorter (version 4.5.0, Plexon Inc.).
Spike sorting for the learning task was carried out by two experimenters (RAG and BWC) and sorting on all channels in both HPC
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and LPFC was verified by BWC. Time was not used as a feature during sorting, but units with waveform shapes that varied extensively
or merged with other units were excluded from these analyses. Spike sorting for the working memory task was semi-automated using
the T-Distribution method in Offline Sorter before being manually refined by MR.

Behavioral task

The learning tasks were very similar, taking place in a double ended Y maze, termed the Xmaze and described previously (Doucet
et al., 2016; Gulli et al., 2020). At the end of each Y, were two colored discs towards one of which the animals would navigate to
receive the associated reward. The reward was dictated by the context, which was indicated by a texture that was applied to the
walls, either a dark grey “steel” texture or a brown “wood” one. The highest value color in one context was the lowest in the other
context (Figure 1D). The LPFC recordings were done with only this high and low option, but the HPC had a middle color that was
worth half the reward in both contexts. Monkeys used the joystick to navigate to their chosen color, receive the associated reward,
and then turn around and navigate back towards the other end to make another choice. Figure 1 shows an example trial trajectory,
and the trajectories for two example sessions (Figures 1B and 1C).

The working memory task set-up was the same, however took place in a circular arena with a 3x3 array of potential target locations,
and a starting area on the side from where the monkey started each trial (Figure 1E). Trials started with a Cue period where one of the 9
locations had a red fog presented for 3 seconds, followed by a 2 second Delay period, after which there was a 10 second Response
period where the monkey had to navigate to the cued location. More information on task performance is included in Roussy
et al. (2021).

Behavioral analysis

Monkeys were trained to be able to learn the task before recordings, and then presented with new combinations of colors each day,
picked pseudo randomly to avoid a color occurring two days in a row. We used a performance analysis window of the 50 trials pre-
ceding the final 10 trials (excluded because performance may falter as satiation is reached).

Calculating spike width

To separate neurons into putative principal cells and interneurons, we started by interpolating the waveform signals to 1MHz, and
then aligning the waveforms for a neuron to the minimum of the trough. We then calculated the mean waveform and measured
the duration between the minimum (trough) and the maximum (peak) in microseconds (Figure S1A). To determine where to divide
the neurons into narrow and broad spiking, for each area we fit two Gaussians, and used the local minimum as the threshold to sepa-
rate them (HPC = 334us, LPFC = 333pus). Because the results were within 1us, we used the threshold for the LPFC as there were more
neurons and it might be slightly more accurate. We then discarded all narrow neurons (<10%) because we did not have enough to
analyze separately and focused our results on the putative pyramidal cells for the rest of the study.

Calculating burst propensity

The initial analysis of ISIs was just done by taking all spikes recorded from broad spiking neurons during the task and pooling them for
each area. We removed all ISls greater than 60ms and then normalized histograms to value at the stable period at 60ms for each area.
To assess the stability of the curve of the population, we calculated the difference between each point and plotted it for the HPC. We
calculated the burst fraction as the fraction of all ISIs during the task that were equal to or below 7ms. Because this could start to
correlate with high firing rates, we also made a burst index (BI) for the neurons based on the ISI histogram and the predicted ISI dis-
tribution based on a Poisson distribution with the calculated firing rate. To predict the probability of ISIs of a certain duration, we fol-
lowed the method of Livingstone et al. (1996), taking the firing rate averaged over the whole task. Using Equation 1, where 1 = firing
rate, and t = time bin. We calculated the probability for each 1ms time bin from 2-40ms, and then normalized these

f(t) = 2e™ (Equation 1)

measures by the sum of all these predictions. We then did the same thing with the measured ISIs, normalizing by the sum of the
measured ISls between 2 and 40ms. We then summed the predicted values from 2 to 7ms and subtracted that from the sum of the
measured values between 2 and 7ms. We divided this difference by the sum of the two sums to bind our index between -1 and 1 (see
Equation 2). We then repeated this for threshold values of 4, 10, 15 and 20ms.

> ISIs measured — " ISls predicted

burst index =
UrStINA®X = 5~ISis measured + 5. ISIs predicted

(Equation 2)

To calculate the @’ noise measurement, we measured the mean and the variance at three locations, the trough (minimum peak), the
peak (maximum peak), and the first point at the baseline of the spike, before any spike deflections, to get a measure of the noise. We
then calculated two d’ values, one comparing the trough to the baseline, and the other comparing the peak to the baseline both using
Equation 3. We then summed these two values and calculated the correlation with the Bl (calculated at 7ms threshold).

J - mean(peak) — mean(baseline)

Equation 3
\/var(peak) — var(baseline (Ea )
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To calculate the geometric coefficient of variation (GCV) we analyzed only ISIs below 40ms, using Equation 4 where s is the stan-
dard deviation of ISIs. We used the GCV instead of the CV because the distribution of ISIs was not normal and was more similar to log-
normal.

GCV = Vesh —1 (Equation 4)

Foveation analysis

It has previously been reported that saccades can be preceded by a pre-saccadic burst in neurons, and it is possible that this could
be driving a difference between burst measures in the two areas if there were differences in eye-movement behavior between the
monkeys. To assess this, we used the method from Corrigan et al., (2017) to classify eye position data into saccades and foveations,
code for which can be found at https://github.com/JMTNeurolLab/VR_EyeSignalClassification. Briefly, saccades were identified
based on acceleration thresholds, and then the onset and offset of saccades were defined based on deviation from main direction
of the saccade, which would indicate that the movement of the saccade was no longer driving the signal, and direction changes were
now driven by noise in the foveation. Periods between saccades were classified as foveations. We measured the durations of fovea-
tions as a proxy for frequency of saccades and compared the distributions across all sessions between the LPFC and HPC monkeys.

Performance slope analysis

To assess performance, we chose 5 epochs: the first 20 trials, the last 20 trials, and the 20 trials centered on the 4, V2, and 2/, marks of
the session. We simply calculated the hit rate for the sessions during these epochs, and then performed a regression to determine if
there was a positive slope, indicating that hit rate increased over the course of the session. We included 15 other sessions (monkey
T =8, monkey B = 7) for the performance to show that the performance was consistent but did not analyze any neural data from these
sessions. For the WM task, we analyzed three sessions (monkey T = 2, monkey B = 1) for both the behaviour and the neural data.

Burst and firing rate slopes

Similar to the performance analysis but restricted to periods after correct trials to control for reward effects. To calculate the rates of
bursts or spikes, and to be able to use only correct trials that approximated the trials used to assess performance, we used 20 correct
trials: the first 20, the last 20, and the 20 centered on the 14, 2, and 3/; marks of the session. We only analyzed broad spiking neurons
that had at least one burst in at least two epochs, analysing the same neurons for both the burst and spike rates. To normalize the
values, we summed the rates across epochs, and used this value to divide each epoch’s rate. We again ran a regression to determine
if there was a consistent trend in the rates of bursts or spikes.

Calculating information
To calculate mutual information, we used only correct trials. Bursts were detected as any group of three or more spikes where all ISIs
were equal or less than 7ms. The timing of the burst was the onset of the first spike, and which ever period the first spike occurred in
was considered the period that the burst happened in. We spilit the task into four behaviorally separate periods: the post reward
period, the context period, the decision period, and goal approach period. The post reward period started at the end of the reward
administration and is potentially when the monkey is incorporating the knowledge gained from the previous trial. This continues until
they navigate to the start of the corridor where the context appears, which is the start of the context period. The decision period starts
at the appearance of the target objects, when they must choose between the two, and the goal approach period starts at the begin-
ning of the first turn of more than 10 degrees towards an object, and proceeds until they reach the target, just before reward admin-
istration. The period of reward administration was not analyzed. The durations of each task period vary based on which period it is,
and by trial, but we calculated rates based on the duration of each individual period. We only analyzed broad spiking neurons, and
separated neurons into high bursting neurons (BI>0, HBNs) and low-bursting neurons (Bl<0, LBNs) and analyzed these subpopula-
tions separately. We used 60 sample rates from each trial period for each neuron to calculate the mutual information using the Neuro-
science Information Theory Toolbox (Timme and Lapish, 2018). We then ran 5000 shuffles to generate the p-value for the mutual in-
formation via permutation. We then ran this whole process, starting from the subsampling, 50 times and analyzed the means of the
mutual information and the p-value for each neuron.

We also repeated this whole analysis with burst thresholds set at 10ms,15ms and 20ms, and fit a line to the 4 proportions of units
that had significant burst rate information to determine whether this proportion increased with the threshold for the different
subpopulations.

Decoding analysis

For the decoding analysis, we used support vector machine (SVM) decoding from LIBSVM v.3.23 (Chang and Lin, 2011) using five-
fold cross-validation and a linear kernel on rates that were normalized between 0 and 1. We only used broad spiking, HBNs and again
randomly sampled 60 rate pairs from each trial period and ran the decoding analysis on each set of rates before shuffling the labels
and decoding again to get a measure of chance decoding. We repeated this 50 times to take the mean accuracy and mean chance
decoding of the same trials for both spike rate and burst rate decoding. Significance was determined by permutation test, where the
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mean had to be greater than 95% of the shuffled performances to be significant. To examine the differences between the perfor-
mance of the burst and spike decoder within an area, and to compare this across areas, we created a decoding index (see Equa-
tion 5). This gave us 50 index values to run a t test on.

decoding accuracy for spike rate — decoding accuracy for burst rate
decoding accuracy for spike rate + decoding accuracy for burst rate

Spike — burst index = (Equation 5)

To analyze navigation and task parameter signals, we used the decision period of correct trials, and separated them into left and
right decisions, and based on the two colors chosen. This gave us 4 combinations, and we used a subsample of 30 trials from 30
neurons, and we again used 5-fold cross validation. We ran this process 50 times on different subsamples and reported the distri-
butions of mean decoding accuracies achieved for both areas for bursts and spikes.

Optimized decoders

For the optimized ensembles, we used the same set up for the SVM, but for the pool of neurons we only used HBNs that had sig-
nificant mutual information (p <.05) for a specific rate. This limited the number of neurons we could use. To control for differences
in number of eligible neurons in the two areas, for an iteration of the optimized decoder, we would randomly select up to 30 neurons
from which we would build the decoder. For the first test, we used only neurons with significant mutual information for burst rate,
which limited us to only 15 cells in LPFC, so we used this population size for both areas. Each neuron was tested individually to
find the neuron with the best decoding accuracy. This neuron was then paired with every other neuron, and we ran an SVM on
each duo to find the best duo. The best duo was used to find the best trio that included the best duo, and so on. This does not neces-
sarily find the absolute optimal duo or trio, but it is an effective method for exploring the decoding space without having to exhaus-
tively try all possible permutations, which can be computationally expensive. Indeed, it results in better decoding accuracies than
simply using the best neurons based on individual performance, as illustrated in Leavitt et al. (2017). After building the decoder to
either 12 units for the initial analysis, or 20 units for the time window analysis (described below) we then selected another set of
random units and repeated the process to build another optimized decoder, building 50 optimized decoders in total to give us a pop-
ulation of results to analyze.

For the decoders built to assess the contribution of neurons we only used neurons with significant information in the burst rate. We
fit an exponential function (Equation 6) to each performance curve, and calculated the point where performance was 95% of the
asymptote which is defined as 1-c. This gave us 50 points for each set of decoders so we could run t tests on these points within
areas and within spike and burst rates, however, we discarded any ensembles that did not reach the 95% point within 3 standard
deviations of the distribution of 95% points.

y=1—axe (> —c (Equation 6)

The time window analysis used different time windows within which to calculate the rates. Because we wanted to analyze the
compression of the full signal, we only used the firing rates for this analysis, and used neurons that had significant firing rate mutual
information values. We used time windows of 25, 50, 100, 150, 200, 300, 400, and 500 milliseconds instead of integrating over the
whole trial period. We chose to center the windows in the middle of the period. We built the optimized decoders with pools of 30
neurons, but only built them to 20 neurons because they would have already saturated decoding performance before then. We built
50 optimized decoders for each time window for each area. To fairly compare the effect of time windows, we took the maximum of the
average performance across ensemble sizes of the best decoder (500ms) and calculated the performance of all the decoders, at
each ensemble size, as a fraction of such maximum performance. To compare these performance fractions, we took the HPC frac-
tions for each time window and sample size and subtracted the corresponding LPFC fractions, which gave us a population of differ-
ences at each ensemble size and time window. We ran a two-way ANOVA on these differences to assess for effects of time window
size or ensemble size on the differences in performance. To determine which differences between the two areas were significantly
different from 0, we calculated a one-sample t-test for each ensemble size and time window.

Working memory task analysis

We analyzed 2 sessions from monkey T and one form Monkey B and combined the neurons from each to analyze burst indices and
decoding performance. We were unable to record any hippocampal data in this task. We calculated the burst index as indicated
above, and then ran a Kolmogorov-Smirnov test to determine whether there was a difference between the Bl for the learning task
and the working memory task. We also ran a decoder on bursting and firing rates during the Cue and Delay periods to determine
if there was encoding of the target column location (grouped into three columns, left, right and center). Again, running 50 subsamples
of 19 trials in each category (57 total trials for each subsample).
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