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ABSTRACT

Background and objective: Neural network based image reconstruction methods are becoming increasingly
popular. However, limited training data and the lack of theoretical guarantees for generalizability raised
concerns, especially in biomedical imaging applications. These challenges are known to lead to an un-
stable reconstruction process that poses significant problems in biomedical image reconstruction. In this
paper, we present a new framework that uses untrained generator networks to tackle this challenge,
leveraging the structure of deep networks for regularizing solutions based on a technique known as Deep
Image Prior (DIP).

Methods: To achieve a high reconstruction accuracy, we propose a framework optimizing both the latent
vector and the weights of a generator network during the reconstruction process. We also propose the
corresponding reconstruction strategies to improve the stability and convergent performance of the pro-
posed framework. Furthermore, instead of calculating forward projection in each iteration, we propose
implementing its normal operator as a convolutional kernel under parallel beam geometry, thus greatly
accelerating the calculation.

Results: Our experiments show that the proposed framework has significant improvements over other
state-of-the-art conventional, pre-trained, and untrained methods under sparse-view, limited-angle, and
low-dose conditions.

Conclusions: Applying to parallel beam X-ray imaging, our framework shows advantages in speed, accu-
racy, and stability of the reconstruction process. We also show that the proposed framework is compat-
ible with all differentiable regularizations that are commonly used in biomedical image reconstruction
literature. Our framework can also be used as a post-processing technique to further improve the recon-
struction generated by any other reconstruction methods. Furthermore, the proposed framework requires
no training data and can be adjusted on-demand to adapt to different conditions (e.g. noise level, geom-
etry, and imaged object).

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

cedures in conventional reconstruction methods like plugins [3-5].
Furthermore, neural networks allow for implementing complicated

Neural networks have achieved unprecedented success in a
wide range of applications. They have also emerged as a new tool
in CT reconstruction with the potential to change the field. Recon-
struction methods in this area generally use neural networks to
find a mapping from raw inputs to specific outputs. One such ex-
ample is the mapping from sinogram data to reconstructed images.
Neural networks can not only build end-to-end image reconstruc-
tion algorithms [1,2], but also enhance the performance of any pro-
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prior [6] and have the potential to enable high-quality low-dose,
or sparse-measurement (e.g. sparse-view and limited-angle) CT re-
construction [3,4].

Still, neural network related methods face their own challenges.
First, as data-driven methods, neural networks require plenty of
training data. However, getting enough training data is challeng-
ing in specific biomedical imaging applications. In practice, high-
dose reconstructions obtained with classical methods are consid-
ered ground truth, which implies that patients have to be exposed
to high doses of X-ray radiation. Second, neural network related
methods lack classical guarantees. These methods are built on the
assumption that the distribution of test input should be the same
as that of the training input. Although the loss functions for the
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training data is minimized during the training process, there is no
guarantee that such loss functions can also be minimized for each
inference input. Third, networks have to be retrained for each spe-
cific setting (e.g. reconstruction resolution, sinogram domain sam-
pling ratio, noise level, imaging objects, etc.). Hence, in practice,
hundreds of different networks are required to facilitate that many
different settings. As a result, implementing neural networks in
medical image reconstruction imposes the risk of missing patient-
specific features. Small abnormal changes, which would be consid-
ered symbols of illness by radiologists, may be ignored by neural
network related algorithms and cause severe consequences [7].

In this paper, we propose a new framework for CT reconstruc-
tion. It uses an untrained generator network as a prior, and both
the weights and the latent vector of the generator are optimized it-
eratively during the reconstruction process to match the observed
measurements. While reference images (optional) can be used in
the regularizers to guide and accelerate the reconstruction, the
proposed framework has no training process and does not re-
quire a training dataset. Thus, the problems caused by the training
dataset and process can be eliminated. The extraordinary ability
of neural networks together with a strategy to increase the stabil-
ity of the reconstruction process minimizes the difference between
the measurement and reconstruction result. Also, the DIP helps
generate a more natural result without a training process. The ex-
periments show that the proposed framework provides significant
improvements over other state-of-the-art conventional methods,
pre-trained and untrained models, especially under sparse-view,
limited-angle, and low-dose conditions.

The remainder of this paper is organized as follows: the de-
tails of the CT reconstruction problem, related works, and proposed
framework are introduced in Section 2; the proposed framework
is compared with conventional methods, pre-trained models, and
an untrained method on phantoms and real CT images under dif-
ferent conditions in Section 3. We also show that the proposed
framework can improve the results generated by other algorithms.
The corresponding discussion is in Section 4; the conclusion of this
study is presented in Section 5.

2. Materials and methods
2.1. Computed tomography and MBIR

Computed tomography (CT) is an essential technology with a
wide range of applications in biomedical imaging. Since its intro-
duction in the 1970s, multiple methods have been proposed to im-
prove its speed and accuracy. However, conventional methods can-
not provide quality images under low-dose or sparse-measurement
(sparse-view and limited-angle) conditions, which is necessary to
reduce the potentially harmful radiation. In our work, we com-
pare our proposed method with conventional reconstruction meth-
ods, pre-trained and untrained neural network related methods on
these non-ideal scenarios for a basic 2D parallel beam geometry.
In that case, the forward operator is given by the Radon trans-
form [8], which can be expressed as:

£0) = PolN)0) = [ F60+PLya,

where Py is a 1x 2 transformation matrix that geometrically
projects the 2D x-coordinate system onto the 1D y-coordinate sys-
tem perpendicular to #. The attenuation map of an imaged object
f(x) can be represented by a discretization kernel i as:
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where ¢ is a set of coefficients of total number n2. Thus, the for-
ward model can be represented as a matrix:

g=Ac=
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where y; to y; indicate | sampling points in the sinogram domain,
0, to 6, indicate m projection angles, and k; to k, indicate the
coordinates of n? pixels. The CT reconstruction problem aims to
get ¢ from the measurement g, which requires inverting the matrix
A. However, under the sparse-measurement condition, the inverse
problem is ill-posed.

Conventional model based iterative reconstruction (MBIR) re-
lated methods calculate the residual between the reconstruction
and the measurement (g— Ac), then back project it to the im-
age domain (A"(g— Ac) = A"g — A"Ac) in each iteration to obtain
reconstruction results. Furthermore, the sparsity of the original
images can be utilized to improve the reconstruction quality. As
a result, multiple regularizers such as total variation (TV) [9],
anisotropic total variation (ATV) [10], reweighted anisotropic to-
tal variation (RwWATV) [11], and anisotropic relative total variation
(ARTV) [12] are proposed to improve the reconstruction quality un-
der sparse-measurement or low-dose condition. Other researchers
proposed using Markov random field (MRF) to pursue similar re-
sults, such as Gaussian MRF [13], Gaussian mixture MRF (GM-
MRF) [14], and qg-generalized Gaussian MRF (qGGMRF) [15]. In that
case, the MBIR methods involve solving an unconstrained opti-
mization problem:

argmin |g — Ac|? + AR(c), (1)
(o

where R indicates regularizers. However, these methods are far
from ideal, especially when the number of views or the angular
range of the projection angles is too small. According to the central
slice theorem (Fig. 1(a)), the 1D Fourier transform of a projection
is equal to a slice in the frequency domain of the original image.
Similarly, the back projection operation is equivalent to updating
the corresponding frequency slice in the frequency domain. Thus,
a missing projection is equal to a missing slice in the frequency
domain (Fig. 1(b)), and the sparse-measurement CT reconstruction
is equal to recovering the whole frequency image from the few
slices indicated by the blue area (Fig. 1(c)) or lines (Fig. 1(d)). How-
ever, MBIR methods with regularizations such as total variation
cannot solve the problem very well. This is because the forward
and back projection scenario itself can only update the frequency
pixels in the measured area, and the unknown area cannot be ac-
curately inpainted with only the regularizations such as TV. To
tackle this challenge, multiple neural network related methods are
proposed.

2.2. Neural network related methods

Neural network approaches can be used for CT image recon-
struction both directly and indirectly. Zhu et al. [1] proposed a uni-
fied, end-to-end reconstruction framework called AUTOMAP. This
framework uses two convolutional layers and three large fully con-
nected layers to learn the mapping between the measured sino-
gram and the reconstructed image. The author claimed that AU-
TOMAP outperforms conventional reconstruction methods on noise
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Fig. 1. (a) The Fourier transform of the projection of an image is equal to a slice of
the Fourier transform of that image through the origin in the Fourier space perpen-
dicular to the projection angle. (b) Back projection (2 views) in the image (left) and
frequency (right) domains. (c) Limited-angle (0° —90° in this case) CT reconstruc-
tion is equal to recovering the whole frequency image from the frequency slices in
the blue area. (d) Sparse-view CT reconstruction is equal to recovering the whole
frequency image from the few slices indicated by the blue lines. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

and artifact reduction tasks and can be used in multiple image re-
construction areas such as CT, PET, and MRI. The main shortcoming
of AUTOMAP is that its main building blocks consist of large fully
connected layers. Depending on the problem, the number of pa-
rameters can grow quickly with the data dimension, which makes
efficient training, storage, and inference of the model infeasible. In
the past several years, more research was done to improve its per-
formance and reduce its size. EII50 and MED50 [16] are networks
for CT reconstruction or any Radon transform-based inverse prob-
lems. They use multiple convolutional layers to reduce the num-
ber of parameters, and U-net [17] structure to extract features from
multiple resolutions. Furthermore, measured data is first processed
by filtered back projection (FBP), since the authors believe that
the FBP encapsulates information about the physics of the inverse
problem, provides a warm start to the CNN, and thus simplifies
the learning procedure. As a result, the sizes of the networks are
much smaller than that of AUTOMAP while achieving better re-
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sults. IRadonMAP [18] proposed designing specific layers to imitate
the procedures of the FBP algorithm and also achieved impressive
results.

Neural networks can also work as plugins for conventional
reconstruction methods to improve their performances. For ex-
ample, a set of all images that satisfies regularizations (priors)
such as non-negativity and data-mismatch is defined as a feasible
set. Projections onto convex sets algorithms (POCS) such as ASD-
POCS [19] require such a set. However, the set is hard to obtain
under conditions such as sparse-view, limited-angle, and low-dose.
Furthermore, conventional convex regularizations may be unable
to generate an optimal feasible set. By using neural networks, some
more complicated or non-convex priors can also be used to better
define the feasible set. The “projection onto feasible set” operation
can also be easily implemented. Algorithm 1 explains the idea in

Algorithm 1 Neural network in MBIR.

Input:measurement matrix A, measurement g, initial guess c, algo-
rithm C solving the convex regularizations, and a pre-trained neu-
ral network G.

1: Repeat:

2. w <« C(C(g Ac)

3: €« G(argmin,||w - G(2)]])

4; Until: convergence, or a fixed number of iterations is reached.

more detail, where line (2) is used to solve the conventional con-
vex regularizations such as non-negativity, data-mismatch, and TV.
The algorithm C can be a simple gradient descent rule or any it-
erative reconstruction (IR) algorithm. Line (3) is the realization of
projection onto the feasible set, where the neural network G can
be pre-trained to model complicated non-convex regularizations.
During the reconstruction, G is fixed and the latent vector z is
trainable so that the “projection onto feasible set” operation can
be achieved. The loop can be repeated multiple times [20,21] so
that G can steer the solution in each iteration. It can also be re-
peated just once so that G can be regarded as a post-processing
method, which will be discussed in the next paragraph.

Neural networks can act as pre or post-processing methods.
Lee et al. [22] used a fully convolutional U-net to complete the
incomplete sinogram from sparse-view measurement, improving
the accuracy of sparse-view CT reconstruction. Anirudh et al.
[23,24] achieved similar results using GAN. Chen et al. [5] removed
noise from low-dose CT images with a three-layer convolutional
neural network (CNN). A similar three-layer CNN can also be used
for artifact reduction in limited-angle CT reconstruction [4]. Xie
et al. [3] proposed using GAN to remove the artifacts for limited-
angle CT reconstruction.

Recently, researchers proposed using multiple neural networks
at different parts of the reconstruction process to obtain better re-
sults. Yin et al. [25] proposed using two neural network models to
denoise in the sinogram domain and image domain respectively.
Hu et al. [26,27] shared similar ideas with [25], the difference be-
ing the introduction of a discriminator to further guide the model.
All these newly proposed methods have complex structures, loss
functions, and multiple sub-networks. For example, the method
proposed in Zhang et al. [27] uses two ResUNets for image and
sinogram domain denoising, one discriminator for image domain
discrimination, and five losses:

o The loss between denoised sinogram signal and ground truth
sinogram signal.

o The loss between the filtered back projection (FBP) of the de-
noised sinogram signal and ground truth.

o The loss between the denoised FBP of the denoised sinogram
signal and ground truth.
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e The loss between the sinogram of the denoised FBP of the de-
noised sinogram signal and ground truth sinogram signal.
o The loss for the discriminator.

As mentioned in Section 1, these methods are problematic for
large-scale implementation. The fundamental weakness is the re-
quirement for a well-trained model. It is difficult, if not impossible,
to properly train these models in the medical imaging area. Popu-
lar image processing benchmark such as CIFAR-10 contains 60,000
small images of size 32 x 32, while CT reconstruction benchmark
such as the LIDC-IDRI [28] (Lung Image Database Consortium Im-
age Collection) dataset only contains 1018 patients, which is in-
sufficient to properly train a deep neural network for patients of
all demographics. The fact that the training dataset may be im-
balanced further complicates this issue. On top of that, network
related methods require the inference input to share the same dis-
tribution with the training data, which may lead to severe con-
sequences. For example, pre-trained models tend to ignore details
like abnormal structures or tiny perturbations, and replace them
with the ubiquitous textures learned from the training datasets.
However, such details may correspond to the symptoms of an ill-
ness with an extremely low incident rate, making their replace-
ments unacceptable [7]. The cascade of multiple sub-networks
makes the problem even worse, as the perturbations may be am-
plified level by level. Furthermore, the complex structures of these
models impede efficient training. As a result, all these models lack
versatility and have to be trained for each specific problem at a
very high cost.

In order to overcome these challenges, some researchers pro-
posed using inverse GAN [29] related methods, where the latent
vector z of a pre-trained generator G(z; w) is optimized by solving
the problem:

z* = argmin ||g — AG(z; w)||3, €= G(z"; w). (2)
z

This guarantees that at least a local minimum of the objective

function can be found in the space spanned by the generator

G. However, to obtain a high-quality result, an appropriate pre-

trained model is still necessary.

2.3. Deep image prior

Methods requiring less or even no training data are also pro-
posed to tackle the problem. Ulyanov et al. [30] pointed out that
the structure of a convolutional network itself is sufficient to cap-
ture plenty of low-level image statistical priors. Thus, high-quality
images can be generated in standard inverse problems such as
denoising, inpainting, and super-resolution with no training pro-
cess. Researchers also claimed that convolutional image generators
fit natural images faster than noise and learn to construct them
from low to high frequencies [30-32]. Bojanowski et al. [33] pro-
posed assigning latent vectors to each training image and training
a generator or decoder solely by these image-vector pairs. Impres-
sive results were obtained in the absence of the corresponding dis-
criminator or encoder (which is necessary for the general autoen-
coder and GAN framework). Thus, the author claimed that the pro-
posed method shares many desirable properties with autoencoder
and GAN, such as interpolating meaningfully between samples and
performing linear arithmetic with noise vectors. These researches
imply that one can generate images with relatively simple net-
work structures and training processes. A preliminary implemen-
tation called the CS-DIP algorithm is available in Veen et al. [34].
Instead of using a pre-trained generator and optimizing the latent
z-space, the author proposed using an untrained generator and op-
timizing the generators weights while keeping the latent z-space
fixed, which can be expressed as:

w* = argmin ||g — AG(z; w)||3, €= G(z*; w). (3)
w
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The proposed algorithm was tested by using Gaussian measure-
ment and Fourier measurement (common in MRI applications). Al-
though it requires a sufficient number of measurements and is not
stable enough (the author proposed to run the algorithm multi-
ple times and choose the best result), impressive results were pro-
duced. Another attempt with U-net is available in Baguer et al.
[35].

2.4. Proposed method

Let ¢* € R" be the coefficients that we are trying to get, A €
R™*" be the measurement matrix. Given A and the corresponding
observations g = Ac*, we want to get a ¢ which is close to c¢*. A
generator/decoder is a convolutional neural network which can be
represented as G(z; w) : Rk — R™. It takes a latent vector z e Rk
as the input and is parameterized by the weights w. These mod-
els have shown an impressive ability to generate not only natural
images but also CT images. In this paper, an untrained convolu-
tional neural network will be used to reconstruct CT images of size
256 x 256.

2.4.1. Proposed framework

The basic idea of the proposed framework is to find a latent
vector and its pairing weights for a randomly initialized generator,
so that the generated image and the imaged object are consistent
under the same measurements.

As described in Eq. (3), the CS-DIP algorithm will randomly ini-
tialize and then freeze the latent vector z. Only the weights of the
generator will be optimized during the reconstruction process. In
our framework, both the latent vector z and the weights of the
generator w will be optimized. We believe that by making both z
and w trainable, we can enhance the models’ ability to generate ar-
bitrary images. Thus, the corresponding optimization problem can
be written as:

(z*, w*) = argmin ||g — AG(z, w)||3, €= G(z", w*). (4)
zw

To solve Eq. (4) and other similar problems, one of the most
important challenges is that the forward projection needs to be
computed in each iteration, corresponding to the calculation of
AG(z, w). However, the size of matrix A in the X-ray CT reconstruc-
tion problem is too large to be calculated efficiently: its number of
rows equals the number of measurements; its number of columns
equals the number of pixels of the reconstructed image. We pro-
pose using the normal operator of matrix A to accelerate the cal-
culation. Thus, Eq. (4) can be written as:

(z*.w*) = argmin||A'g - A"AG(z, w) ||}, &= G(z".w"), (5)
zw

where A'g is the back projection of sinogram signal g, and A'A
indicates the combination of forward and back-projection. The ad-
vantage of Eq. (5) over Eq. (4) is that ATA can be calculated ef-
ficiently. The calculation of ATAG(z, w) can be implemented with
a freezing convolution kernel of size (2n—1)2 in a neural net-
work [36,37].

Although Eq. (5) is a non-convex problem, high-quality results
are still obtainable using gradient-based optimizers. Ulyanov et al.
[30] pointed out that generators/decoders such as DCGAN and au-
toencoder tend to produce smooth, natural images because of their
convolutional structures. Veen et al. [34] further claimed that this
property is also applicable in the general linear measurement pro-
cess. As a result, a high-quality reconstructed image ¢ = G(z*, w*)
can be obtained with a small number of measurements without
pre-training.

It is worth mentioning that the proposed framework is more
like a conventional IR method instead of a neural network related
method, as it requires no training process and the result is updated
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iteratively. For IR methods, linear optimization algorithms are used
as solvers and priors: The algorithms guarantee that the objec-
tive function can be minimized. Also, the result generated by the
solver will be selected as the best result when the system is under-
determined. For the proposed framework, gradient-based optimiz-
ers and the structures of CNNs are used as solvers and priors. The
ability of the neural network guarantees the minimization of the
objective function, and the DIP helps generate the best result when
the system is under-determined.

2.4.2. Regularizations and references

In the discussion above, only one data-mismatch term is in-
cluded in the objective function. In practice, we would like to ac-
count for more factors. Thus, Eq. (5) can be rewritten as:

(z*,w*) = argmin ||A"g — ATAG(z, w)||3 + AR(G(z, w)),
zw

¢ =G(z",w"), (6)

where R(-) is a penalty term with a weighted parameter A. Com-
pared with the conventional optimization framework, neural net-
work based framework is similar to the Superiorization Method
(SM) [38], where a proximity function is explicitly designed and
minimized in each iteration to steer the algorithm to a solution
that not only minimizes the data-mismatch term but also fits the
regularization. In our proposed framework, the penalty term does
not need to be explicitly designed as all the differentiable func-
tions are usable. Such a property greatly helps the reconstruction
process, especially when the measurements are of low quality. Al-
though many other complex functions or even other neural net-
works [3,29] can be used as regularizations, in this paper, we shall
focus on the following three regularizations:

Total variation (TV) It is one of the most popular regularizations
and has been proven useful in recovering piece-wise smooth im-
ages and denoising. The TV of an image is defined as the sum of
image gradients [9]:

V() = IVl =YV (0:fi)2 + 0 fi )2 )
i.j

where || -||; indicates the I; norm. Thus, TV counts the summa-
tion of image gradient magnitude. In practice, dxf; ; and 9y f; ; are
approximated by difference operators, for example, df; ; ~ f; j —
fiz1,j and Oy fij~ fij— fij—1. TV regularization and its variants
such as anisotropic total variation (ATV) [10], adaptive-weighted
total variation (AwWTV) [39] and anisotropic relative total variation
(ARTV) [11] are widely used in low-dose, sparse-view and limited-
angle CT reconstructions. In this paper, for simplicity, we shall only
consider the TV regularization, but its variants can also be imple-
mented in our framework.

Indication mask In most cases, the imaged object is located at
the center of the imaging area, and the non-zero area is less than
50% of the total area. It is evident that the reconstruction perfor-
mance can be further improved if such property can be utilized as
a prior. We propose using a binary mask to roughly indicate the
non-zero area of the ground truth. It can be used to reduce the
number of unknown pixels and eliminate the artifact caused by
sparse-measurement. Also, such a mask is easy to obtain.

Reference images Reference images such as templates, images
from adjacent slices and other similar objects can also contribute
to the reconstruction. They can help the untrained network to find
an intermediate result that is close to the ground truth. If multiple
reference images are available, the soft-max function can be used
to normalize the losses, so that the reconstructed image can be
guided to the most similar reference image. It is worth mention-
ing that reference images can also be the reconstruction results of
FBP, conventional IR algorithms, or even other pre-trained models.
In that case, our proposed framework can be regarded as a post-
processing method.
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(c) 30th Iteration

(d) 60th lteration

Fig. 2. The reconstructed images at the early stages of the reconstruction process.
(a) Ground truth image; (b), (¢) and (d) reconstructed images after 0, 30, and 60
iterations.

2.4.3. Reconstruction strategies

One of the biggest challenges faced by the current untrained
neural network based reconstruction methods is achieving stabil-
ity. The CS-DIP algorithm proposed by Veen et al. [34] has a high
probability to generate extremely abnormal or even entirely black
output, especially when the number of views is small. We propose
using the following approaches to tackle this problem.

The first approach deals with the dying ReLU [40] problem. In
the DIP related methods, all the models’ weights are randomly ini-
tialized and then updated to minimize an objective function (loss
function). This is equivalent to training a neural network with only
one input-output pair. As a result, ReLU neurons of the neural net-
work may become inactive at the early stage of the reconstruc-
tion process and cannot be reactivated. We propose using leaky
ReLU [41] to solve this problem. It has a small slope for negative
values, so that the dying ReLU problem can be solved without in-
troducing any extra trainable parameters.

The second approach is about regularization. A unique image
that minimizes the data mismatch term can be found when the
number of measurements is sufficient. Adding the regularization
sacrifices the data fidelity for the image regularity. However, for in-
complete data where multiple images have equivalent data fidelity,
regularization takes on the additional role of selecting the most
probable result under the same data fidelity. For an untrained neu-
ral network whose parameters are initialized randomly, regulariza-
tion may steer the reconstruction process into a local minimum.
In fact, one of the reasons that CS-DIP generates output contain-
ing entirely black or white blocks is the improper using of TV. An
example is shown in Fig. 2, where the CS-DIP algorithm is used
to reconstruct an image (Fig. 2(a)). At the start of the reconstruc-
tion process, the output quickly converges to a shape where sev-
eral non-zero blocks cluster at the center of the image (Fig. 2(c)
and (d)). At this stage, minimizing the TV loss can easily generate
some totally white or black areas. This will not increase the loss
of data mismatch since the loss is so unoptimized that it can be
reduced even if the weights are updated in a direction away from
the global minimum. Such a problem may cause the algorithm to
get stuck in a local minimum. Furthermore, zero pixel intensity al-
ways implies that a ReLU neuron is deactivated and cannot be re-
activated. As a result, high-quality reconstruction results cannot be
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obtained. To solve this problem, we propose to dynamically set the
weight of the regularization term A.

At the start of the training process, the weights correspond-
ing to regularizations such as TV are set to O to avoid the local
minimum and dying ReLU problems; the weights corresponding
to reference images can be set to 1 to guide the model closer to
the global minimum. Then, during the reconstruction process, the
weights of regularizations increase while the weights of reference
images decrease. In the final stage, the weights of regularizations
are set to a proper value to achieve a good trade-off between data
mismatch and image regularity. Artifacts caused by sparse-view or
limited-angle projection can also be minimized in this stage by
utilizing different kinds of regularization. The weights of reference
images can be set to zero to avoid potential interference.

Another potential method is to use reference images to pre-
train the model. Note that the goal of the training here is to bet-
ter initialize the model so that the initial output is closer to the
ground truth. Thus, no more than several images are needed. Also,
since the model is still being optimized during the reconstruction
process, incorrect information learned from reference images can
be removed.

3. Results

In this section, we will compare our method with the state-of-
the-art untrained model, CS-DIP [34], the well-known pre-trained
models ELL50 and MED50 [16], conventional reconstruction meth-
ods such as Lasso in DCT basis [42] and Daubechies wavelet ba-
sis [43], as well as TVAL3 [44,45]. Shepp-Logan phantom [46],
LIDC-IDRI [28] (the lung image database consortium image col-
lection) dataset, and random ellipses dataset [16] are used in our
experiments. All computations were done on one PC with an i7-
8700K CPU, 32 GB of RAM, and an NVIDIA GeForce RTX 2080 GPU
using Python.

3.1. Comparing with CS-DIP and conventional methods

3.1.1. Reconstruction performance

We first test the reconstruction performance of the proposed
framework. To make a fair comparison, we use a generator net-
work whose structure is the same as the CS-DIP algorithm (Fig. 3).
The differences are the objective functions (Eqs. (5) and (3)), re-
construction strategies (described in Section 2.4.3), and the use of
leaky ReLU. RMSProp with 0.9 momentum and O weight decay is
used as the optimizer. The learning rate is 10~2 for cold start re-
construction and 10~3 for warm start reconstruction; both learn-
ing rates decrease by a factor of 0.8 per 500 iterations. Two of the
most important properties are measured, and the results are as fol-
lows:

Stability To test the stability of reconstruction, we rerun the re-
construction process 1000 times and count the number of abnor-
mal outputs (e.g. entirely black). It turns out that the average error
rate of the CS-DIP with the number of views between 5 and 50
is 21%, while ours is 3.3%. Furthermore, the proposed framework
can achieve a 0% error rate if a reference image is used. This re-
sult shows that the proposed framework is more stable. It is worth
mentioning that abnormal outputs will be removed manually and
won'’t be taken into account in the following experiments.

Convergence The cold start convergent performance is shown
in Fig. 4(a), where both networks are untrained; the warm start
convergent performance is shown in Fig. 4(b), where an adjacent
slice of the reconstructed slice is used as a reference image to pre-
train the networks. Our method shows a consistent improvement
in both cases. This indicates that the performance of the untrained
network can be improved by making the latent vector trainable.
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Input(1,256,1,1) J L

ConvTranspose2d(4,1,0) ConvTranspose2d(3,1,1)
Batchnorm2d(1024) Batchnorm2d(128)
Leaky RelU Leaky RelU

ConvTranspose?2d(4,2,1) Interpolate(2)
Batchnorm2d(512) ConvTranspose2d(3,1,1)
Leaky RelU Batchnorm2d(64)
ConvTranspose2d(3,1,1) Leaky_RelU
Batchnorm2d(256) Interpolate(2)
Leaky_RelU ConvTranspose2d(3,1,1)
Interpolate(2) Batchnorm2d(64)
ConvTranspose2d(3,1,1) Leaky RelU
Batchnorm2d(256) Interpolate(2)
Leaky RelU ConvTranspose?d(3,1,1)
Interpolate(2) Tanh

3 Output(1,1,256,256)

Fig. 3. The network structure.

Cold Start Loss in Logarithmic Scale Warm Start Loss in Logarithmic Scale
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(a) (b)

Fig. 4. The reconstruction loss in logarithmic scale. (a) Cold start, the generator net-
work is completely untrained; (b) warm start, the generator network is pre-trained
by one reference image.

3.1.2. Sparse-view reconstruction

Now the reconstruction accuracy of the proposed framework is
tested. Shepp-Logan phantom and images from LIDC-IDRI are used
as the ground truth, and all the images are of size 256 x 256. In
all the following experiments, the sinogram sampling step is equal
to the pixel size, and each projection has 513 sampling points so
that projections with different angles can be sampled completely.
The weight (1) of the TV regularization is set to 0 at the beginning
and linearly increases to 10~2 at the final stage. The weight of ref-
erence images, if applicable, is set to . e(:%%). where n indicates
the current number of iterations. It is a+sigmoid function centered
at n. =5 and stretched by the factor ng = 1000. As a result, the
weight is close to 1 at the early stage of the reconstruction pro-
cess (nﬂs <« n¢), and will decrease to 0 at the end (nﬂs > n¢) to avoid
interference. It is worth mentioning that all these hyperparame-
ters can be adjusted on-demand for each specific reconstruction
problem since the proposed framework acts as a conventional IR
method and requires no training process. However, for simplicity,
the hyperparameters are fixed in our experiments, and the imple-
mentation detail of the proposed algorithm can be described by
Algorithm 2.

For sparse-view CT reconstruction, the projection angles uni-
formly distribute from 0° to 180°, and the number of projections
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Algorithm 2 Proposed algorithm using an Untrained NN.
Input:measurement matrix A, measurement g, randomly initialized
neural network G(z, w) (shown in Fig. 3), hyperparameters A for
penalty term.

1: Repeat:

22 c<G(z,w)

3: zw< update z and w by the loss function ||ATg-
ATAG(z, w)||§ + AR(G(z, w)) using backpropagation algorithm.

update A

: Until: convergence, or a fixed number of iterations is reached.

ooR

Reconstruction SNR(dB)

—CS-DIP
—Our
Lasso_DCT
—Lasso_Wavelet
TVAL3
5 10 15 20 30 50
Number of Views

(a)

Reconstruction SNR(dB)

Cs-DIP

Our
Lasso_DCT

4 —Lasso_Wavelet
TVAL3

5 10 15 20 30 50
Number of Views

(b)

Fig. 5. SNR of sparse view reconstruction result. (a) Shepp-Logan phantom; (b) Real
images from LIDC-IDRI.

goes from 5 to 50. The performance of the reconstruction is shown
in Fig. 5, and some of the reconstruction results are shown in
Figs. 6 and 7.

3.1.3. Limited-angle reconstruction

To test the proposed framework’s performance on limited-angle
reconstruction, we redo the experiment in Section 3.1.2 with the
projections uniformly distributing from 0° to 90°. In this experi-
ment, only the LIDC-IDRI dataset will be used, since the Shepp-
Logan phantom has no reference image.

Fig. 8 shows the ground truth (Fig. 8(a) and (b)), the reference
image (Fig. 8(c), and the indication mask (Fig. 8(d)). It is worth
mentioning that the reference image is closer to Fig. 8(b) than
Fig. 8(a), so a complete comparison can be shown. Four methods
are compared in our experiment. The first two methods are the
CS-DIP method and the proposed framework with only TV regu-
larization. The third and fourth methods are the proposed frame-
works with extra customized regularizations: the third calculating
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the I, distance between the reconstructed image and the reference
image, and the fourth using an indication mask. The results are
shown in Fig. 9. Previous conventional methods with TV regular-
ization and its variants are not included since they can only gener-
ate acceptable reconstruction results when the angular range and
the number of projections are large (e.g. 140 projections uniformly
distributed from 15° to 155° in Chen et al. [47]).

3.2. Comparing with ELL50 and MED50

In this section, we compare our framework with the well-
known pre-trained models ELL50 and MED50 [16], which corre-
spond to the same network trained by two different datasets (the
random ellipses dataset and real CT images). ELL50 and MED50
take FBP images as input and generate reconstructed images di-
rectly. To make a fair comparison, our proposed framework takes
FBP images as references. We also use the reconstructed images
produced by ELL50 and MED50 as references to see if the proposed
framework can be used as a post-processing method to further im-
prove the reconstruction quality. It is worth mentioning that the
system is determined when the number of views is close to 100
and highly under-determined when the number of views is smaller
than 50. The performances on the random ellipses dataset and
LIDC-IDRI dataset are shown in Figs. 10 and 11 respectively. Some
of the reconstruction results of the LIDC-IDRI dataset are shown in
Fig. 12.

3.3. Noise in the sinogram

In this section, we repeat the experiments in Section 3.2 by us-
ing the sinogram data polluted with Poisson distributed noise to
test the proposed framework’s performance under low-dose con-
ditions. The average number of X-ray photons received by the ith
detector can be expressed as:

E; = IpetPTh, (8)

where Iy > 0 is the blank measurement ([Pf]; =0). It is worth
mentioning that the sinogram data in our experiment is simulated
by the Radon transform instead of obtained from a real instrument.
Thus, Iy here is a parameter for relative measurement.

The experiment results on real images and phantoms are shown
in Fig. 13, where the results of FBP are used as a baseline to help
understand the effect of the noise.

4. Discussion
4.1. Convergence and the selection of hyperparameters

Without considering extra regularizations, the global minimum
can be achieved by conventional linear optimization algorithms.
However, such convergence doesn’t reach optimal reconstruction
due to the under-determined system and noise. Thus, regulariza-
tions are introduced to the loss function despite making conver-
gence more difficult and adding extra hyperparameters (1).

According to the universal approximation theorem [48], deep
neural networks can be used to approximate any functions. Thus,
both pre-trained models and the proposed framework use neu-
ral networks to guarantee convergence. However, pre-trained mod-
els are not optimized for inference images, since inference image
is excluded from the training dataset; neither are they optimized
for every single training image, since the model is optimized for
all training images on average. On the other hand, the proposed
method’s neural network is optimized for a single inference image,
so the aforementioned problems can be avoided. As a result, the
convergence performance of the proposed method is at least not



Z. Shu and A. Entezari Computer Methods and Programs in Biomedicine 226 (2022) 107167

(a) Ground truth (e) Lasso DCT (f) Lasso wavelet

Fig. 6. The reconstructed results of Shepp-Logan phantom for different methods under sparse-view conditions. The first and second rows show the results generated from
5 and 30 projections respectively. These projections distribute uniformly from 0° to 180°.

(a) Ground truth (c) CS-DIP (d) TVAL (e) Lasso DCT (f) Lasso Wavelet

Fig. 7. The reconstructed results of an image from LIDC-IDRI dataset for different methods under sparse-view conditions. The first and second rows show the results
generated from 5 and 30 projections respectively. These projections distribute uniformly from 0° to 180°.

20 Reconstruction SNR(dB)

18

=)

S

(a) Ground Truth 1 (b) Ground Truth 2 DA
& —Our_ref
5 10 15 20 30 50
Number of Views
Fig. 9. SNR of limited-angle reconstruction. CS-DIP: the method proposed by Veen
et al. [34]; Our: The proposed framework; Our_mask: The proposed framework with
regularization using indication mask Fig. 8(d); Our_ref: The proposed framework
with regularization using reference image Fig. 8(c).
worse than that of the current pre-trained neural network related
(c) Reference Image ) Indication Mask methods. )
The selection of the hyperparameters (A) is another problem for
Fig. 8. Ground truth images, reference image, and indication mask. all the reconstruction algorithms using extra regularizations. Ide-

ally, we can adjust such hyperparameters and their corresponding
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25 Sparse View uction SNR(dB) on
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—Our_ELL50
Our_FBP
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Number of Views

(a)

Limited Angle Reconstruction SNR(dB) on Phantom

2 —ELL50
—Our_ELL50
Our_FBP

5 10 15 20 30 50 100
Number of Views

(b)

Fig. 10. SNR of reconstruction result under sparse-view and limited-angle (0 ~ 3)
conditions for phantom. Our_FBP indicates the result of using filtered back projec-
tion images as references in our proposed framework; Our_ELL50 indicates the re-
sult of using the images reconstructed by ELL50 as references. All the algorithms
are tested on the random ellipses dataset.

regularizations to adapt to different conditions (e.g. different noise
levels, number of views, angular ranges, imaged objects). Unlike
other pre-trained models, whose hyperparameters and correspond-
ing regularizations cannot be changed after the training process,
ours can be adjusted on-demand as the proposed framework re-
quires no training process.

4.2. Comparing with CS-DIP and conventional methods

As discussed at the end of Section 2.4.1, the proposed frame-
work is in fact an IR method. In that case, a fair comparison
should be among the proposed framework and other conventional
MBIR methods. As shown in Fig. 5, the proposed framework shows
a consistent improvement over all the other methods, especially
in reconstructing real images. Furthermore, our method requires
fewer views than others. Figs. 6 and 7 show the reconstruction re-
sults of the Shepp-Logan phantom and an image from LIDC-IDRI
dataset under sparse-view conditions. From the first row of these
two figures (reconstruction results from 5 projections), it is evi-
dent that both the proposed framework and CS-DIP method gen-
erate more reasonable results than the other methods. This clearly
indicates the effectiveness of DIP. Also, it is obvious that the im-
proper use of ReLU and TV regularization makes the reconstruc-
tion results of CS-DIP too piece-wise constant (the TV of the re-
construction results are too small) and thus downgrades the per-
formance. The same problem can also be found in the second row
of these two figures (reconstruction results from 30 projections),
where both the proposed framework and CS-DIP method correctly
capture the shape of the reconstructed image, but the CS-DIP algo-
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24 Sparse View Reconstruction SNR(dB) on Real Image
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(a)

Limited Angle Reconstruction SNR(dB) on Real Image
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4
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Fig. 11. SNR of reconstruction results under sparse-view and limited-angle (0 ~ %)
conditions for real CT images. Our_FBP indicates the result of using filtered back
projection images as references in our framework; Our_MED50 indicates the result
of using the images reconstructed by MED50 as references. All the algorithms are
tested on the LIDC-IDRI dataset.

(c)

Fig. 12. The sparse-view (first row, 30 projections distributed uniformly from 0° to
180°) and limited-angle (second row, 90 projections distributed uniformly from 0°
to 90°) CT reconstruction results of MED50 (first column) and our proposed frame-
work using FBP as the reference (second column). The ground truth is shown in
Fig. 8(a).
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Low Dose Reconstruction SNR(dB) on Phantom Image
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Fig. 13. Effect of quantum noise modeled by Poisson distribution in the sinogram

on reconstruction SNR. The first plot shows results on random ellipses phantom and
the second plot shows results on images from LIDC-IDRI dataset.

x10*

rithm gets stuck in a local minimum and cannot generate a high-
quality result.

From Fig. 9, it is evident that our proposed framework
shows consistent improvement over the CS-DIP method under the
limited-angle condition. Customized regularizations do help the re-
construction process a lot, even an indication mask can provide
an improvement of 5 dB. Furthermore, if the similarity between
the reference image and the imaged object is relatively high, ac-
curate reconstruction can be obtained with extremely sparse mea-
surements.

It is worth mentioning that the size of the measurement matrix
A is 513 m x 2562, which is too large to be stored. In that case, the
current untrained reconstruction algorithm based on Eq. (3) has to
use complicated algorithms such as De Man and Basu [49], Long
et al. [50], Ha and Mueller [51] to calculate AG(w; z). However, our
algorithm based on Eq. (5) only needs a fixed convolution kernel
of size 511 x 511 to calculate ATAG(z, w), which can be handled
efficiently with a GPU.

4.3. Comparing with ELL50 and MED50

Although the proposed framework is in fact an IR algorithm,
comparisons with pre-trained models MED50 and ELL50 are made
for a complete analysis. There is no doubt that other pre-trained
models with more complicated network structures and loss func-
tions have better performance than that of MED50 and ELL50, but
our goal is not to outperform all the pre-trained models. A fair
comparison should focus on the structural properties as well as the
difference caused by the training process, instead of the complex-

10
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ity of the networks. Therefore, MED50 and ELL50 are selected since
they have a similar network complexity to the proposed network.

The reason for choosing MED50 and ELL50 is that the proposed
framework has a similar network complexity, and

Fig. 10 (a) shows that our framework using FBP images as refer-
ence (Our_FBP, yellow line) improves the reconstruction results sig-
nificantly under the sparse-view condition (number of views < 50).
It is worth mentioning that the proposed framework using the re-
construction result of ELL50 as reference (Our_ELL50, red line) out-
performs the original ELL50 (blue line). This indicates that when
being used as a post-processing method, our untrained network
has the capability to utilize only the correct information from the
reference images to further improve the reconstruction quality.

In the limited-angle reconstruction problem (Fig. 10(b)), where
the system is always under-determined, the proposed framework
using FBP images as reference (Our_FBP, yellow line) outperforms
the pre-trained ELL50 model (blue line) by about 8 dB. This indi-
cates that high-quality results can be achieved by our untrained
network directly. Furthermore, our framework can achieve higher
reconstruction accuracy by using the reconstructed image as a ref-
erence (Our_ELL50, red line), where the improvement is about
10 dB. The comparison with MED50 on real CT images (Fig. 11)
shows the same trend.

It is worth mentioning that the random ellipses dataset is rel-
atively easier for the proposed untrained network than the pre-
trained network. However, it is the opposite for the LIDC-IDRI
dataset. The reasons are:

1. Compared with the real CT images, ellipses are relatively easier
for the untrained model to generate.

2. In the LIDC-IDRI dataset, one of the most obvious features is
that the imaged objects are always at the center of the images,
which can be utilized by a pre-trained model to improve its
reconstruction accuracy easily.

Those may be the reasons for the slight differences between
Figs. 10 and 11.

Fig. 12 shows some of the reconstruction results of MED50 and
the proposed framework under sparse-view and limited-angle con-
ditions. The system is highly under-determined (30 projections for
sparse-view, and 90° angular range for limited-angle), so an ex-
act reconstruction may be unobtainable. However, it is evident that
our proposed method still generates high quality results (Fig. 12(b)
and (d)). Comparing to others, the results generated by the pro-
posed method have a totally black background and much fewer ar-
tifacts. There are two main reasons for such a huge improvement:

1. The deep image prior is much more powerful than a pre-
trained neural network with a similar network structure under
sparse-measurement conditions.

2. Although more than 2000 images from the LIDC-IDRI dataset
are used for training the pre-trained model, the majority of
the images are different from the inference images and may
even interfere with the training process since they may cor-
respond to different cross-sections. This also implies that in-
stead of learning the correct reconstruction method, pre-trained
models actually generate results from similar training images
directly. As a result, a much larger training dataset is necessary
for a well-trained model, which is impractical in the field of
medical imaging.

4.4. Noise in the sinogram

Fig. 13 shows that the noise in the sinogram has little effect on
the proposed framework, which indicates that our framework has
better noise resistance performance than others when doing low-
dose CT reconstructions.
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4.5. Versatility

In this paper, for simplicity and fairness, only the 2D CT re-
construction in parallel-beam geometry of the size 256 x 256 is
discussed. The reason to look into parallel-beam geometry is that
the forward projection A and its normal operator A'A can be cal-
culated exactly and efficiently under the parallel-beam geome-
try [37,52]. We use the size 256 x 256 because the forward pro-
jection A in the compared MBIR algorithms and CS-DIP algorithm
will be too large to compute when the reconstruction resolution
increases to 512 x 512. It is worth mentioning that the proposed
framework can be used for multiple scenarios, since the key point
of our proposed framework is to use an untrained model to do re-
construction directly, and the forward projections in different ge-
ometries are also well analyzed. The proposed framework is com-
patible with all regularizations used in both IR and neural net-
work related methods. Furthermore, unlike other pre-trained mod-
els, these regularizations can be modified in the proposed frame-
work on-demand (e.g. increasing the weight of total variation reg-
ularization when the noise level is high).

5. Conclusion

In this paper, we introduce a new neural network related
framework for X-ray CT reconstruction. We show that better re-
construction results can be obtained without a training process by
making all the neural network parameters trainable and using a
new reconstruction strategy. We significantly reduce the compu-
tational cost in parallel-ray X-ray CT reconstruction by using the
normal operator of the forward model. We also show that the pro-
posed framework is compatible with multiple regularizations, and
these regularizations can be adjusted on-demand for different sce-
narios. Furthermore, such a framework can also be applied to any
other neural network based image reconstruction methods.

Most of our effort is focused on sparse-view and limited-angle
CT reconstruction. We discover that the results can be improved
significantly by using customized regularization, including but not
limited to total variation and [, distance to reference images. It
is worth mentioning that the incorrect information from reference
images can be removed since the proposed framework guarantees
the minimization of objective functions during the reconstruction
process.

In our experiments, the proposed framework outperforms the
conventional methods, the CS-DIP algorithm, and pre-trained mod-
els with similar network complexity. This improvement will be
more evident under sparse-measurement conditions with a real
object. The proposed framework can also act as a post-processing
method to further improve the reconstruction results generated by
these algorithms. Furthermore, our framework shows impressive
noise resistance performance when solving the low-dose CT recon-
struction problem.

With these results, we conclude that under sparse-view,
limited-angle, and low-dose conditions, the proposed framework is
better than all the methods discussed above, especially when there
is insufficient training data to obtain a well-trained model.
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