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a b s t r a c t 
Background and objective: Neural network based image reconstruction methods are becoming increasingly 
popular. However, limited training data and the lack of theoretical guarantees for generalizability raised 
concerns, especially in biomedical imaging applications. These challenges are known to lead to an un- 
stable reconstruction process that poses significant problems in biomedical image reconstruction. In this 
paper, we present a new framework that uses untrained generator networks to tackle this challenge, 
leveraging the structure of deep networks for regularizing solutions based on a technique known as Deep 
Image Prior (DIP). 
Methods: To achieve a high reconstruction accuracy, we propose a framework optimizing both the latent 
vector and the weights of a generator network during the reconstruction process. We also propose the 
corresponding reconstruction strategies to improve the stability and convergent performance of the pro- 
posed framework. Furthermore, instead of calculating forward projection in each iteration, we propose 
implementing its normal operator as a convolutional kernel under parallel beam geometry, thus greatly 
accelerating the calculation. 
Results: Our experiments show that the proposed framework has significant improvements over other 
state-of-the-art conventional, pre-trained, and untrained methods under sparse-view, limited-angle, and 
low-dose conditions. 
Conclusions: Applying to parallel beam X-ray imaging, our framework shows advantages in speed, accu- 
racy, and stability of the reconstruction process. We also show that the proposed framework is compat- 
ible with all differentiable regularizations that are commonly used in biomedical image reconstruction 
literature. Our framework can also be used as a post-processing technique to further improve the recon- 
struction generated by any other reconstruction methods. Furthermore, the proposed framework requires 
no training data and can be adjusted on-demand to adapt to different conditions (e.g. noise level, geom- 
etry, and imaged object). 

© 2022 Elsevier B.V. All rights reserved. 
1. Introduction 

Neural networks have achieved unprecedented success in a 
wide range of applications. They have also emerged as a new tool 
in CT reconstruction with the potential to change the field. Recon- 
struction methods in this area generally use neural networks to 
find a mapping from raw inputs to specific outputs. One such ex- 
ample is the mapping from sinogram data to reconstructed images. 
Neural networks can not only build end-to-end image reconstruc- 
tion algorithms [1,2] , but also enhance the performance of any pro- 
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cedures in conventional reconstruction methods like plugins [3–5] . 
Furthermore, neural networks allow for implementing complicated 
prior [6] and have the potential to enable high-quality low-dose, 
or sparse-measurement (e.g. sparse-view and limited-angle) CT re- 
construction [3,4] . 

Still, neural network related methods face their own challenges. 
First, as data-driven methods, neural networks require plenty of 
training data. However, getting enough training data is challeng- 
ing in specific biomedical imaging applications. In practice, high- 
dose reconstructions obtained with classical methods are consid- 
ered ground truth, which implies that patients have to be exposed 
to high doses of X-ray radiation. Second, neural network related 
methods lack classical guarantees. These methods are built on the 
assumption that the distribution of test input should be the same 
as that of the training input. Although the loss functions for the 
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training data is minimized during the training process, there is no 
guarantee that such loss functions can also be minimized for each 
inference input. Third, networks have to be retrained for each spe- 
cific setting (e.g. reconstruction resolution, sinogram domain sam- 
pling ratio, noise level, imaging objects, etc.). Hence, in practice, 
hundreds of different networks are required to facilitate that many 
different settings. As a result, implementing neural networks in 
medical image reconstruction imposes the risk of missing patient- 
specific features. Small abnormal changes, which would be consid- 
ered symbols of illness by radiologists, may be ignored by neural 
network related algorithms and cause severe consequences [7] . 

In this paper, we propose a new framework for CT reconstruc- 
tion. It uses an untrained generator network as a prior, and both 
the weights and the latent vector of the generator are optimized it- 
eratively during the reconstruction process to match the observed 
measurements. While reference images (optional) can be used in 
the regularizers to guide and accelerate the reconstruction, the 
proposed framework has no training process and does not re- 
quire a training dataset. Thus, the problems caused by the training 
dataset and process can be eliminated. The extraordinary ability 
of neural networks together with a strategy to increase the stabil- 
ity of the reconstruction process minimizes the difference between 
the measurement and reconstruction result. Also, the DIP helps 
generate a more natural result without a training process. The ex- 
periments show that the proposed framework provides significant 
improvements over other state-of-the-art conventional methods, 
pre-trained and untrained models, especially under sparse-view, 
limited-angle, and low-dose conditions. 

The remainder of this paper is organized as follows: the de- 
tails of the CT reconstruction problem, related works, and proposed 
framework are introduced in Section 2 ; the proposed framework 
is compared with conventional methods, pre-trained models, and 
an untrained method on phantoms and real CT images under dif- 
ferent conditions in Section 3 . We also show that the proposed 
framework can improve the results generated by other algorithms. 
The corresponding discussion is in Section 4 ; the conclusion of this 
study is presented in Section 5 . 
2. Materials and methods 
2.1. Computed tomography and MBIR 

Computed tomography (CT) is an essential technology with a 
wide range of applications in biomedical imaging. Since its intro- 
duction in the 1970s, multiple methods have been proposed to im- 
prove its speed and accuracy. However, conventional methods can- 
not provide quality images under low-dose or sparse-measurement 
(sparse-view and limited-angle) conditions, which is necessary to 
reduce the potentially harmful radiation. In our work, we com- 
pare our proposed method with conventional reconstruction meth- 
ods, pre-trained and untrained neural network related methods on 
these non-ideal scenarios for a basic 2D parallel beam geometry. 
In that case, the forward operator is given by the Radon trans- 
form [8] , which can be expressed as: 
g (y ) = P θ{ f } (y ) = ∫ 

R f (t θ + P T 
θ⊥ y )d t, 

where P 
θ⊥ is a 1 × 2 transformation matrix that geometrically 

projects the 2D x -coordinate system onto the 1D y -coordinate sys- 
tem perpendicular to θ. The attenuation map of an imaged object 
f ( x ) can be represented by a discretization kernel ψ as: 
f ψ ( x ) = ∑ 

k ∈ Z 2 c k ψ ( x − k ) , 

where c k is a set of coefficients of total number n 2 . Thus, the for- 
ward model can be represented as a matrix: 

g = A c =  
            

P θ1 { ψ} ( y 1 − P θ⊥ 
1 k 1 ) . . . P θ1 { ψ} ( y 1 − P θ⊥ 

1 k n 2 ) 
. . . . . . 
P θ1 { ψ} ( y l − P θ⊥ 

1 k 1 ) . . . P θ1 { ψ} ( y l − P θ⊥ 
1 k n 2 ) 

. . . . . . 
P θm { ψ} ( y 1 − P θ⊥ 

m k 1 ) . . . P θm { ψ} ( y 1 − P θ⊥ 
m k n 2 ) 

. . . . . . 
P θm { ψ} ( y l − P θ⊥ 

m k 1 ) . . . P θm { ψ} ( y l − P θ⊥ 
m k n 2 ) 

 
            

 
 c 1 . . . 

c n 2 
 
 , 

where y 1 to y l indicate l sampling points in the sinogram domain, 
θ1 to θm indicate m projection angles, and k 1 to k n 2 indicate the 
coordinates of n 2 pixels. The CT reconstruction problem aims to 
get c from the measurement g , which requires inverting the matrix 
A . However, under the sparse-measurement condition, the inverse 
problem is ill-posed. 

Conventional model based iterative reconstruction (MBIR) re- 
lated methods calculate the residual between the reconstruction 
and the measurement ( g − A c ), then back project it to the im- 
age domain ( A T ( g − A c ) = A T g − A T A c ) in each iteration to obtain 
reconstruction results. Furthermore, the sparsity of the original 
images can be utilized to improve the reconstruction quality. As 
a result, multiple regularizers such as total variation (TV) [9] , 
anisotropic total variation (ATV) [10] , reweighted anisotropic to- 
tal variation (RwATV) [11] , and anisotropic relative total variation 
(ARTV) [12] are proposed to improve the reconstruction quality un- 
der sparse-measurement or low-dose condition. Other researchers 
proposed using Markov random field (MRF) to pursue similar re- 
sults, such as Gaussian MRF [13] , Gaussian mixture MRF (GM- 
MRF) [14] , and q-generalized Gaussian MRF (qGGMRF) [15] . In that 
case, the MBIR methods involve solving an unconstrained opti- 
mization problem: 
arg min 

c | g − A c | 2 + λR ( c ) , (1) 
where R indicates regularizers. However, these methods are far 
from ideal, especially when the number of views or the angular 
range of the projection angles is too small. According to the central 
slice theorem ( Fig. 1 (a)), the 1D Fourier transform of a projection 
is equal to a slice in the frequency domain of the original image. 
Similarly, the back projection operation is equivalent to updating 
the corresponding frequency slice in the frequency domain. Thus, 
a missing projection is equal to a missing slice in the frequency 
domain ( Fig. 1 (b)), and the sparse-measurement CT reconstruction 
is equal to recovering the whole frequency image from the few 
slices indicated by the blue area ( Fig. 1 (c)) or lines ( Fig. 1 (d)). How- 
ever, MBIR methods with regularizations such as total variation 
cannot solve the problem very well. This is because the forward 
and back projection scenario itself can only update the frequency 
pixels in the measured area, and the unknown area cannot be ac- 
curately inpainted with only the regularizations such as TV. To 
tackle this challenge, multiple neural network related methods are 
proposed. 
2.2. Neural network related methods 

Neural network approaches can be used for CT image recon- 
struction both directly and indirectly. Zhu et al. [1] proposed a uni- 
fied, end-to-end reconstruction framework called AUTOMAP. This 
framework uses two convolutional layers and three large fully con- 
nected layers to learn the mapping between the measured sino- 
gram and the reconstructed image. The author claimed that AU- 
TOMAP outperforms conventional reconstruction methods on noise 
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Fig. 1. (a) The Fourier transform of the projection of an image is equal to a slice of 
the Fourier transform of that image through the origin in the Fourier space perpen- 
dicular to the projection angle. (b) Back projection (2 views) in the image (left) and 
frequency (right) domains. (c) Limited-angle ( 0 ◦ − 90 ◦ in this case) CT reconstruc- 
tion is equal to recovering the whole frequency image from the frequency slices in 
the blue area. (d) Sparse-view CT reconstruction is equal to recovering the whole 
frequency image from the few slices indicated by the blue lines. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
and artifact reduction tasks and can be used in multiple image re- 
construction areas such as CT, PET, and MRI. The main shortcoming 
of AUTOMAP is that its main building blocks consist of large fully 
connected layers. Depending on the problem, the number of pa- 
rameters can grow quickly with the data dimension, which makes 
efficient training, storage, and inference of the model infeasible. In 
the past several years, more research was done to improve its per- 
formance and reduce its size. Ell50 and MED50 [16] are networks 
for CT reconstruction or any Radon transform-based inverse prob- 
lems. They use multiple convolutional layers to reduce the num- 
ber of parameters, and U-net [17] structure to extract features from 
multiple resolutions. Furthermore, measured data is first processed 
by filtered back projection (FBP), since the authors believe that 
the FBP encapsulates information about the physics of the inverse 
problem, provides a warm start to the CNN, and thus simplifies 
the learning procedure. As a result, the sizes of the networks are 
much smaller than that of AUTOMAP while achieving better re- 

sults. IRadonMAP [18] proposed designing specific layers to imitate 
the procedures of the FBP algorithm and also achieved impressive 
results. 

Neural networks can also work as plugins for conventional 
reconstruction methods to improve their performances. For ex- 
ample, a set of all images that satisfies regularizations (priors) 
such as non-negativity and data-mismatch is defined as a feasible 
set. Projections onto convex sets algorithms (POCS) such as ASD- 
POCS [19] require such a set. However, the set is hard to obtain 
under conditions such as sparse-view, limited-angle, and low-dose. 
Furthermore, conventional convex regularizations may be unable 
to generate an optimal feasible set. By using neural networks, some 
more complicated or non-convex priors can also be used to better 
define the feasible set. The “projection onto feasible set” operation 
can also be easily implemented. Algorithm 1 explains the idea in 
Algorithm 1 Neural network in MBIR. 
Input: measurement matrix A , measurement g , initial guess c , algo- 
rithm C solving the convex regularizations, and a pre-trained neu- 
ral network G . 

1: Repeat: 
2: w ← C( g , A c ) 
3: c ← G ( arg min z || w − G ( z ) || ) 
4: Until: convergence, or a fixed number of iterations is reached. 

more detail, where line (2) is used to solve the conventional con- 
vex regularizations such as non-negativity, data-mismatch, and TV. 
The algorithm C can be a simple gradient descent rule or any it- 
erative reconstruction (IR) algorithm. Line (3) is the realization of 
projection onto the feasible set, where the neural network G can 
be pre-trained to model complicated non-convex regularizations. 
During the reconstruction, G is fixed and the latent vector z is 
trainable so that the “projection onto feasible set” operation can 
be achieved. The loop can be repeated multiple times [20,21] so 
that G can steer the solution in each iteration. It can also be re- 
peated just once so that G can be regarded as a post-processing 
method, which will be discussed in the next paragraph. 

Neural networks can act as pre or post-processing methods. 
Lee et al. [22] used a fully convolutional U-net to complete the 
incomplete sinogram from sparse-view measurement, improving 
the accuracy of sparse-view CT reconstruction. Anirudh et al. 
[23,24] achieved similar results using GAN. Chen et al. [5] removed 
noise from low-dose CT images with a three-layer convolutional 
neural network (CNN). A similar three-layer CNN can also be used 
for artifact reduction in limited-angle CT reconstruction [4] . Xie 
et al. [3] proposed using GAN to remove the artifacts for limited- 
angle CT reconstruction. 

Recently, researchers proposed using multiple neural networks 
at different parts of the reconstruction process to obtain better re- 
sults. Yin et al. [25] proposed using two neural network models to 
denoise in the sinogram domain and image domain respectively. 
Hu et al. [26,27] shared similar ideas with [25] , the difference be- 
ing the introduction of a discriminator to further guide the model. 
All these newly proposed methods have complex structures, loss 
functions, and multiple sub-networks. For example, the method 
proposed in Zhang et al. [27] uses two ResUNets for image and 
sinogram domain denoising, one discriminator for image domain 
discrimination, and five losses: 
• The loss between denoised sinogram signal and ground truth 

sinogram signal. 
• The loss between the filtered back projection (FBP) of the de- 

noised sinogram signal and ground truth. 
• The loss between the denoised FBP of the denoised sinogram 

signal and ground truth. 
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• The loss between the sinogram of the denoised FBP of the de- 

noised sinogram signal and ground truth sinogram signal. 
• The loss for the discriminator. 

As mentioned in Section 1 , these methods are problematic for 
large-scale implementation. The fundamental weakness is the re- 
quirement for a well-trained model. It is difficult, if not impossible, 
to properly train these models in the medical imaging area. Popu- 
lar image processing benchmark such as CIFAR-10 contains 60,0 0 0 
small images of size 32 × 32 , while CT reconstruction benchmark 
such as the LIDC-IDRI [28] (Lung Image Database Consortium Im- 
age Collection) dataset only contains 1018 patients, which is in- 
sufficient to properly train a deep neural network for patients of 
all demographics. The fact that the training dataset may be im- 
balanced further complicates this issue. On top of that, network 
related methods require the inference input to share the same dis- 
tribution with the training data, which may lead to severe con- 
sequences. For example, pre-trained models tend to ignore details 
like abnormal structures or tiny perturbations, and replace them 
with the ubiquitous textures learned from the training datasets. 
However, such details may correspond to the symptoms of an ill- 
ness with an extremely low incident rate, making their replace- 
ments unacceptable [7] . The cascade of multiple sub-networks 
makes the problem even worse, as the perturbations may be am- 
plified level by level. Furthermore, the complex structures of these 
models impede efficient training. As a result, all these models lack 
versatility and have to be trained for each specific problem at a 
very high cost. 

In order to overcome these challenges, some researchers pro- 
posed using inverse GAN [29] related methods, where the latent 
vector z of a pre-trained generator G ( z ; w ) is optimized by solving 
the problem: 
z ∗ = arg min 

z || g − A G ( z ; w ) || 2 2 , ˆ c = G ( z ∗; w ) . (2) 
This guarantees that at least a local minimum of the objective 
function can be found in the space spanned by the generator 
G . However, to obtain a high-quality result, an appropriate pre- 
trained model is still necessary. 
2.3. Deep image prior 

Methods requiring less or even no training data are also pro- 
posed to tackle the problem. Ulyanov et al. [30] pointed out that 
the structure of a convolutional network itself is sufficient to cap- 
ture plenty of low-level image statistical priors. Thus, high-quality 
images can be generated in standard inverse problems such as 
denoising, inpainting, and super-resolution with no training pro- 
cess. Researchers also claimed that convolutional image generators 
fit natural images faster than noise and learn to construct them 
from low to high frequencies [30–32] . Bojanowski et al. [33] pro- 
posed assigning latent vectors to each training image and training 
a generator or decoder solely by these image-vector pairs. Impres- 
sive results were obtained in the absence of the corresponding dis- 
criminator or encoder (which is necessary for the general autoen- 
coder and GAN framework). Thus, the author claimed that the pro- 
posed method shares many desirable properties with autoencoder 
and GAN, such as interpolating meaningfully between samples and 
performing linear arithmetic with noise vectors. These researches 
imply that one can generate images with relatively simple net- 
work structures and training processes. A preliminary implemen- 
tation called the CS-DIP algorithm is available in Veen et al. [34] . 
Instead of using a pre-trained generator and optimizing the latent 
z-space, the author proposed using an untrained generator and op- 
timizing the generators weights while keeping the latent z-space 
fixed, which can be expressed as: 
w ∗ = arg min 

w || g − A G ( z ; w ) || 2 2 , ˆ c = G ( z ∗; w ) . (3) 

The proposed algorithm was tested by using Gaussian measure- 
ment and Fourier measurement (common in MRI applications). Al- 
though it requires a sufficient number of measurements and is not 
stable enough (the author proposed to run the algorithm multi- 
ple times and choose the best result), impressive results were pro- 
duced. Another attempt with U-net is available in Baguer et al. 
[35] . 
2.4. Proposed method 

Let c ∗ ∈ R n 2 be the coefficients that we are trying to get, A ∈ 
R m ×n 2 be the measurement matrix. Given A and the corresponding 
observations g = A c ∗, we want to get a ˆ c which is close to c ∗. A 
generator/decoder is a convolutional neural network which can be 
represented as G ( z ; w ) : R k → R n 2 . It takes a latent vector z ∈ R k 
as the input and is parameterized by the weights w . These mod- 
els have shown an impressive ability to generate not only natural 
images but also CT images. In this paper, an untrained convolu- 
tional neural network will be used to reconstruct CT images of size 
256 × 256 . 
2.4.1. Proposed framework 

The basic idea of the proposed framework is to find a latent 
vector and its pairing weights for a randomly initialized generator, 
so that the generated image and the imaged object are consistent 
under the same measurements. 

As described in Eq. (3) , the CS-DIP algorithm will randomly ini- 
tialize and then freeze the latent vector z . Only the weights of the 
generator will be optimized during the reconstruction process. In 
our framework, both the latent vector z and the weights of the 
generator w will be optimized. We believe that by making both z 
and w trainable, we can enhance the models’ ability to generate ar- 
bitrary images. Thus, the corresponding optimization problem can 
be written as: 
( z ∗, w ∗) = arg min 

z , w || g − A G ( z , w ) || 2 2 , ˆ c = G ( z ∗, w ∗) . (4) 
To solve Eq. (4) and other similar problems, one of the most 

important challenges is that the forward projection needs to be 
computed in each iteration, corresponding to the calculation of 
A G ( z , w ) . However, the size of matrix A in the X-ray CT reconstruc- 
tion problem is too large to be calculated efficiently: its number of 
rows equals the number of measurements; its number of columns 
equals the number of pixels of the reconstructed image. We pro- 
pose using the normal operator of matrix A to accelerate the cal- 
culation. Thus, Eq. (4) can be written as: 
( z ∗, w ∗) = arg min 

z , w || A T g − A T A G ( z , w ) || 2 2 , ˆ c = G ( z ∗, w ∗) , (5) 
where A T g is the back projection of sinogram signal g , and A T A 
indicates the combination of forward and back-projection. The ad- 
vantage of Eq. (5) over Eq. (4) is that A T A can be calculated ef- 
ficiently. The calculation of A T A G ( z , w ) can be implemented with 
a freezing convolution kernel of size (2 n − 1) 2 in a neural net- 
work [36,37] . 

Although Eq. (5) is a non-convex problem, high-quality results 
are still obtainable using gradient-based optimizers. Ulyanov et al. 
[30] pointed out that generators/decoders such as DCGAN and au- 
toencoder tend to produce smooth, natural images because of their 
convolutional structures. Veen et al. [34] further claimed that this 
property is also applicable in the general linear measurement pro- 
cess. As a result, a high-quality reconstructed image ˆ c = G ( z ∗, w ∗) 
can be obtained with a small number of measurements without 
pre-training. 

It is worth mentioning that the proposed framework is more 
like a conventional IR method instead of a neural network related 
method, as it requires no training process and the result is updated 
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iteratively. For IR methods, linear optimization algorithms are used 
as solvers and priors: The algorithms guarantee that the objec- 
tive function can be minimized. Also, the result generated by the 
solver will be selected as the best result when the system is under- 
determined. For the proposed framework, gradient-based optimiz- 
ers and the structures of CNNs are used as solvers and priors. The 
ability of the neural network guarantees the minimization of the 
objective function, and the DIP helps generate the best result when 
the system is under-determined. 
2.4.2. Regularizations and references 

In the discussion above, only one data-mismatch term is in- 
cluded in the objective function. In practice, we would like to ac- 
count for more factors. Thus, Eq. (5) can be rewritten as: 
( z ∗, w ∗) = arg min 

z , w || A T g − A T A G ( z , w ) || 2 2 + λR (G ( z , w )) , 
ˆ c = G ( z ∗, w ∗) , (6) 

where R (·) is a penalty term with a weighted parameter λ. Com- 
pared with the conventional optimization framework, neural net- 
work based framework is similar to the Superiorization Method 
(SM) [38] , where a proximity function is explicitly designed and 
minimized in each iteration to steer the algorithm to a solution 
that not only minimizes the data-mismatch term but also fits the 
regularization. In our proposed framework, the penalty term does 
not need to be explicitly designed as all the differentiable func- 
tions are usable. Such a property greatly helps the reconstruction 
process, especially when the measurements are of low quality. Al- 
though many other complex functions or even other neural net- 
works [3,29] can be used as regularizations, in this paper, we shall 
focus on the following three regularizations: 

Total variation (TV) It is one of the most popular regularizations 
and has been proven useful in recovering piece-wise smooth im- 
ages and denoising. The TV of an image is defined as the sum of 
image gradients [9] : 
TV ( f ) = ||∇ f || 1 = ∑ 

i, j 
√ 

(∂ x f i, j ) 2 + (∂ y f i, j ) 2 , (7) 
where || · || 1 indicates the l 1 norm. Thus, TV counts the summa- 
tion of image gradient magnitude. In practice, ∂ x f i, j and ∂ y f i, j are 
approximated by difference operators, for example, ∂ x f i, j ≈ f i, j −
f i −1 , j and ∂ y f i, j ≈ f i, j − f i, j−1 . TV regularization and its variants 
such as anisotropic total variation (ATV) [10] , adaptive-weighted 
total variation (AwTV) [39] and anisotropic relative total variation 
(ARTV) [11] are widely used in low-dose, sparse-view and limited- 
angle CT reconstructions. In this paper, for simplicity, we shall only 
consider the TV regularization, but its variants can also be imple- 
mented in our framework. 

Indication mask In most cases, the imaged object is located at 
the center of the imaging area, and the non-zero area is less than 
50% of the total area. It is evident that the reconstruction perfor- 
mance can be further improved if such property can be utilized as 
a prior. We propose using a binary mask to roughly indicate the 
non-zero area of the ground truth. It can be used to reduce the 
number of unknown pixels and eliminate the artifact caused by 
sparse-measurement. Also, such a mask is easy to obtain. 

Reference images Reference images such as templates, images 
from adjacent slices and other similar objects can also contribute 
to the reconstruction. They can help the untrained network to find 
an intermediate result that is close to the ground truth. If multiple 
reference images are available, the soft-max function can be used 
to normalize the losses, so that the reconstructed image can be 
guided to the most similar reference image. It is worth mention- 
ing that reference images can also be the reconstruction results of 
FBP, conventional IR algorithms, or even other pre-trained models. 
In that case, our proposed framework can be regarded as a post- 
processing method. 

Fig. 2. The reconstructed images at the early stages of the reconstruction process. 
(a) Ground truth image; (b), (c) and (d) reconstructed images after 0, 30, and 60 
iterations. 
2.4.3. Reconstruction strategies 

One of the biggest challenges faced by the current untrained 
neural network based reconstruction methods is achieving stabil- 
ity. The CS-DIP algorithm proposed by Veen et al. [34] has a high 
probability to generate extremely abnormal or even entirely black 
output, especially when the number of views is small. We propose 
using the following approaches to tackle this problem. 

The first approach deals with the dying ReLU [40] problem. In 
the DIP related methods, all the models’ weights are randomly ini- 
tialized and then updated to minimize an objective function (loss 
function). This is equivalent to training a neural network with only 
one input-output pair. As a result, ReLU neurons of the neural net- 
work may become inactive at the early stage of the reconstruc- 
tion process and cannot be reactivated. We propose using leaky 
ReLU [41] to solve this problem. It has a small slope for negative 
values, so that the dying ReLU problem can be solved without in- 
troducing any extra trainable parameters. 

The second approach is about regularization. A unique image 
that minimizes the data mismatch term can be found when the 
number of measurements is sufficient. Adding the regularization 
sacrifices the data fidelity for the image regularity. However, for in- 
complete data where multiple images have equivalent data fidelity, 
regularization takes on the additional role of selecting the most 
probable result under the same data fidelity. For an untrained neu- 
ral network whose parameters are initialized randomly, regulariza- 
tion may steer the reconstruction process into a local minimum. 
In fact, one of the reasons that CS-DIP generates output contain- 
ing entirely black or white blocks is the improper using of TV. An 
example is shown in Fig. 2 , where the CS-DIP algorithm is used 
to reconstruct an image ( Fig. 2 (a)). At the start of the reconstruc- 
tion process, the output quickly converges to a shape where sev- 
eral non-zero blocks cluster at the center of the image ( Fig. 2 (c) 
and (d)). At this stage, minimizing the TV loss can easily generate 
some totally white or black areas. This will not increase the loss 
of data mismatch since the loss is so unoptimized that it can be 
reduced even if the weights are updated in a direction away from 
the global minimum. Such a problem may cause the algorithm to 
get stuck in a local minimum. Furthermore, zero pixel intensity al- 
ways implies that a ReLU neuron is deactivated and cannot be re- 
activated. As a result, high-quality reconstruction results cannot be 
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obtained. To solve this problem, we propose to dynamically set the 
weight of the regularization term λ. 

At the start of the training process, the weights correspond- 
ing to regularizations such as TV are set to 0 to avoid the local 
minimum and dying ReLU problems; the weights corresponding 
to reference images can be set to 1 to guide the model closer to 
the global minimum. Then, during the reconstruction process, the 
weights of regularizations increase while the weights of reference 
images decrease. In the final stage, the weights of regularizations 
are set to a proper value to achieve a good trade-off between data 
mismatch and image regularity. Artifacts caused by sparse-view or 
limited-angle projection can also be minimized in this stage by 
utilizing different kinds of regularization. The weights of reference 
images can be set to zero to avoid potential interference. 

Another potential method is to use reference images to pre- 
train the model. Note that the goal of the training here is to bet- 
ter initialize the model so that the initial output is closer to the 
ground truth. Thus, no more than several images are needed. Also, 
since the model is still being optimized during the reconstruction 
process, incorrect information learned from reference images can 
be removed. 
3. Results 

In this section, we will compare our method with the state-of- 
the-art untrained model, CS-DIP [34] , the well-known pre-trained 
models ELL50 and MED50 [16] , conventional reconstruction meth- 
ods such as Lasso in DCT basis [42] and Daubechies wavelet ba- 
sis [43] , as well as TVAL3 [44,45] . Shepp–Logan phantom [46] , 
LIDC-IDRI [28] (the lung image database consortium image col- 
lection) dataset, and random ellipses dataset [16] are used in our 
experiments. All computations were done on one PC with an i7- 
8700K CPU, 32 GB of RAM, and an NVIDIA GeForce RTX 2080 GPU 
using Python. 
3.1. Comparing with CS-DIP and conventional methods 
3.1.1. Reconstruction performance 

We first test the reconstruction performance of the proposed 
framework. To make a fair comparison, we use a generator net- 
work whose structure is the same as the CS-DIP algorithm ( Fig. 3 ). 
The differences are the objective functions ( Eqs. (5) and (3) ), re- 
construction strategies (described in Section 2.4.3 ), and the use of 
leaky ReLU. RMSProp with 0.9 momentum and 0 weight decay is 
used as the optimizer. The learning rate is 10 −2 for cold start re- 
construction and 10 −3 for warm start reconstruction; both learn- 
ing rates decrease by a factor of 0.8 per 500 iterations. Two of the 
most important properties are measured, and the results are as fol- 
lows: 

Stability To test the stability of reconstruction, we rerun the re- 
construction process 10 0 0 times and count the number of abnor- 
mal outputs (e.g. entirely black). It turns out that the average error 
rate of the CS-DIP with the number of views between 5 and 50 
is 21% , while ours is 3 . 3% . Furthermore, the proposed framework 
can achieve a 0% error rate if a reference image is used. This re- 
sult shows that the proposed framework is more stable. It is worth 
mentioning that abnormal outputs will be removed manually and 
won’t be taken into account in the following experiments. 

Convergence The cold start convergent performance is shown 
in Fig. 4 (a), where both networks are untrained; the warm start 
convergent performance is shown in Fig. 4 (b), where an adjacent 
slice of the reconstructed slice is used as a reference image to pre- 
train the networks. Our method shows a consistent improvement 
in both cases. This indicates that the performance of the untrained 
network can be improved by making the latent vector trainable. 

Fig. 3. The network structure. 

Fig. 4. The reconstruction loss in logarithmic scale. (a) Cold start, the generator net- 
work is completely untrained; (b) warm start, the generator network is pre-trained 
by one reference image. 
3.1.2. Sparse-view reconstruction 

Now the reconstruction accuracy of the proposed framework is 
tested. Shepp–Logan phantom and images from LIDC-IDRI are used 
as the ground truth, and all the images are of size 256 × 256 . In 
all the following experiments, the sinogram sampling step is equal 
to the pixel size, and each projection has 513 sampling points so 
that projections with different angles can be sampled completely. 
The weight ( λ) of the TV regularization is set to 0 at the beginning 
and linearly increases to 10 −2 at the final stage. The weight of ref- 
erence images, if applicable, is set to 1 

1+ e ( n 
n s −n c ) , where n indicates 

the current number of iterations. It is a sigmoid function centered 
at n c = 5 and stretched by the factor n s = 10 0 0 . As a result, the 
weight is close to 1 at the early stage of the reconstruction pro- 
cess ( n n s + n c ), and will decrease to 0 at the end ( n n s , n c ) to avoid 
interference. It is worth mentioning that all these hyperparame- 
ters can be adjusted on-demand for each specific reconstruction 
problem since the proposed framework acts as a conventional IR 
method and requires no training process. However, for simplicity, 
the hyperparameters are fixed in our experiments, and the imple- 
mentation detail of the proposed algorithm can be described by 
Algorithm 2 . 

For sparse-view CT reconstruction, the projection angles uni- 
formly distribute from 0 ◦ to 180 ◦, and the number of projections 
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Algorithm 2 Proposed algorithm using an Untrained NN. 
Input: measurement matrix A , measurement g , randomly initialized 
neural network G ( z , w ) (shown in Fig. 3), hyperparameters λ for 
penalty term. 

1: Repeat: 
2: c ← G ( z , w ) 
3: z , w ← update z and w by the loss function || A T g −

A T A G ( z , w ) || 2 2 + λR (G ( z , w )) using backpropagation algorithm. 
4: update λ
5: Until: convergence, or a fixed number of iterations is reached. 

Fig. 5. SNR of sparse view reconstruction result. (a) Shepp–Logan phantom; (b) Real 
images from LIDC-IDRI. 
goes from 5 to 50. The performance of the reconstruction is shown 
in Fig. 5 , and some of the reconstruction results are shown in 
Figs. 6 and 7 . 
3.1.3. Limited-angle reconstruction 

To test the proposed framework’s performance on limited-angle 
reconstruction, we redo the experiment in Section 3.1.2 with the 
projections uniformly distributing from 0 ◦ to 90 ◦. In this experi- 
ment, only the LIDC-IDRI dataset will be used, since the Shepp–
Logan phantom has no reference image. 

Fig. 8 shows the ground truth ( Fig. 8 (a) and (b)), the reference 
image ( Fig. 8 (c), and the indication mask ( Fig. 8 (d)). It is worth 
mentioning that the reference image is closer to Fig. 8 (b) than 
Fig. 8 (a), so a complete comparison can be shown. Four methods 
are compared in our experiment. The first two methods are the 
CS-DIP method and the proposed framework with only TV regu- 
larization. The third and fourth methods are the proposed frame- 
works with extra customized regularizations: the third calculating 

the l 2 distance between the reconstructed image and the reference 
image, and the fourth using an indication mask. The results are 
shown in Fig. 9 . Previous conventional methods with TV regular- 
ization and its variants are not included since they can only gener- 
ate acceptable reconstruction results when the angular range and 
the number of projections are large (e.g. 140 projections uniformly 
distributed from 15 ◦ to 155 ◦ in Chen et al. [47] ). 
3.2. Comparing with ELL50 and MED50 

In this section, we compare our framework with the well- 
known pre-trained models ELL50 and MED50 [16] , which corre- 
spond to the same network trained by two different datasets (the 
random ellipses dataset and real CT images). ELL50 and MED50 
take FBP images as input and generate reconstructed images di- 
rectly. To make a fair comparison, our proposed framework takes 
FBP images as references. We also use the reconstructed images 
produced by ELL50 and MED50 as references to see if the proposed 
framework can be used as a post-processing method to further im- 
prove the reconstruction quality. It is worth mentioning that the 
system is determined when the number of views is close to 100 
and highly under-determined when the number of views is smaller 
than 50. The performances on the random ellipses dataset and 
LIDC-IDRI dataset are shown in Figs. 10 and 11 respectively. Some 
of the reconstruction results of the LIDC-IDRI dataset are shown in 
Fig. 12 . 
3.3. Noise in the sinogram 

In this section, we repeat the experiments in Section 3.2 by us- 
ing the sinogram data polluted with Poisson distributed noise to 
test the proposed framework’s performance under low-dose con- 
ditions. The average number of X-ray photons received by the i th 
detector can be expressed as: 
E i = I 0 e [ P f ] i , (8) 
where I 0 > 0 is the blank measurement ( [ P f ] i = 0 ). It is worth 
mentioning that the sinogram data in our experiment is simulated 
by the Radon transform instead of obtained from a real instrument. 
Thus, I 0 here is a parameter for relative measurement. 

The experiment results on real images and phantoms are shown 
in Fig. 13 , where the results of FBP are used as a baseline to help 
understand the effect of the noise. 
4. Discussion 
4.1. Convergence and the selection of hyperparameters 

Without considering extra regularizations, the global minimum 
can be achieved by conventional linear optimization algorithms. 
However, such convergence doesn’t reach optimal reconstruction 
due to the under-determined system and noise. Thus, regulariza- 
tions are introduced to the loss function despite making conver- 
gence more difficult and adding extra hyperparameters ( λ). 

According to the universal approximation theorem [48] , deep 
neural networks can be used to approximate any functions. Thus, 
both pre-trained models and the proposed framework use neu- 
ral networks to guarantee convergence. However, pre-trained mod- 
els are not optimized for inference images, since inference image 
is excluded from the training dataset; neither are they optimized 
for every single training image, since the model is optimized for 
all training images on average. On the other hand, the proposed 
method’s neural network is optimized for a single inference image, 
so the aforementioned problems can be avoided. As a result, the 
convergence performance of the proposed method is at least not 
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Fig. 6. The reconstructed results of Shepp–Logan phantom for different methods under sparse-view conditions. The first and second rows show the results generated from 
5 and 30 projections respectively. These projections distribute uniformly from 0 ◦ to 180 ◦ . 

Fig. 7. The reconstructed results of an image from LIDC-IDRI dataset for different methods under sparse-view conditions. The first and second rows show the results 
generated from 5 and 30 projections respectively. These projections distribute uniformly from 0 ◦ to 180 ◦ . 

Fig. 8. Ground truth images, reference image, and indication mask. 

Fig. 9. SNR of limited-angle reconstruction. CS-DIP: the method proposed by Veen 
et al. [34] ; Our: The proposed framework; Our_mask: The proposed framework with 
regularization using indication mask Fig. 8 (d); Our_ref: The proposed framework 
with regularization using reference image Fig. 8 (c). 
worse than that of the current pre-trained neural network related 
methods. 

The selection of the hyperparameters ( λ) is another problem for 
all the reconstruction algorithms using extra regularizations. Ide- 
ally, we can adjust such hyperparameters and their corresponding 
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Fig. 10. SNR of reconstruction result under sparse-view and limited-angle ( 0 ∼ π
2 ) 

conditions for phantom. Our_FBP indicates the result of using filtered back projec- 
tion images as references in our proposed framework; Our_ELL50 indicates the re- 
sult of using the images reconstructed by ELL50 as references. All the algorithms 
are tested on the random ellipses dataset. 
regularizations to adapt to different conditions (e.g. different noise 
levels, number of views, angular ranges, imaged objects). Unlike 
other pre-trained models, whose hyperparameters and correspond- 
ing regularizations cannot be changed after the training process, 
ours can be adjusted on-demand as the proposed framework re- 
quires no training process. 
4.2. Comparing with CS-DIP and conventional methods 

As discussed at the end of Section 2.4.1 , the proposed frame- 
work is in fact an IR method. In that case, a fair comparison 
should be among the proposed framework and other conventional 
MBIR methods. As shown in Fig. 5 , the proposed framework shows 
a consistent improvement over all the other methods, especially 
in reconstructing real images. Furthermore, our method requires 
fewer views than others. Figs. 6 and 7 show the reconstruction re- 
sults of the Shepp–Logan phantom and an image from LIDC-IDRI 
dataset under sparse-view conditions. From the first row of these 
two figures (reconstruction results from 5 projections), it is evi- 
dent that both the proposed framework and CS-DIP method gen- 
erate more reasonable results than the other methods. This clearly 
indicates the effectiveness of DIP. Also, it is obvious that the im- 
proper use of ReLU and TV regularization makes the reconstruc- 
tion results of CS-DIP too piece-wise constant (the TV of the re- 
construction results are too small) and thus downgrades the per- 
formance. The same problem can also be found in the second row 
of these two figures (reconstruction results from 30 projections), 
where both the proposed framework and CS-DIP method correctly 
capture the shape of the reconstructed image, but the CS-DIP algo- 

Fig. 11. SNR of reconstruction results under sparse-view and limited-angle ( 0 ∼ π
2 ) 

conditions for real CT images. Our_FBP indicates the result of using filtered back 
projection images as references in our framework; Our_MED50 indicates the result 
of using the images reconstructed by MED50 as references. All the algorithms are 
tested on the LIDC-IDRI dataset. 

Fig. 12. The sparse-view (first row, 30 projections distributed uniformly from 0 ◦ to 
180 ◦) and limited-angle (second row, 90 projections distributed uniformly from 0 ◦
to 90 ◦) CT reconstruction results of MED50 (first column) and our proposed frame- 
work using FBP as the reference (second column). The ground truth is shown in 
Fig. 8 (a). 
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Fig. 13. Effect of quantum noise modeled by Poisson distribution in the sinogram 
on reconstruction SNR. The first plot shows results on random ellipses phantom and 
the second plot shows results on images from LIDC-IDRI dataset. 
rithm gets stuck in a local minimum and cannot generate a high- 
quality result. 

From Fig. 9 , it is evident that our proposed framework 
shows consistent improvement over the CS-DIP method under the 
limited-angle condition. Customized regularizations do help the re- 
construction process a lot, even an indication mask can provide 
an improvement of 5 dB. Furthermore, if the similarity between 
the reference image and the imaged object is relatively high, ac- 
curate reconstruction can be obtained with extremely sparse mea- 
surements. 

It is worth mentioning that the size of the measurement matrix 
A is 513 m × 256 2 , which is too large to be stored. In that case, the 
current untrained reconstruction algorithm based on Eq. (3) has to 
use complicated algorithms such as De Man and Basu [49] , Long 
et al. [50] , Ha and Mueller [51] to calculate A G ( w ; z ) . However, our 
algorithm based on Eq. (5) only needs a fixed convolution kernel 
of size 511 × 511 to calculate A T A G ( z , w ) , which can be handled 
efficiently with a GPU. 
4.3. Comparing with ELL50 and MED50 

Although the proposed framework is in fact an IR algorithm, 
comparisons with pre-trained models MED50 and ELL50 are made 
for a complete analysis. There is no doubt that other pre-trained 
models with more complicated network structures and loss func- 
tions have better performance than that of MED50 and ELL50, but 
our goal is not to outperform all the pre-trained models. A fair 
comparison should focus on the structural properties as well as the 
difference caused by the training process, instead of the complex- 

ity of the networks. Therefore, MED50 and ELL50 are selected since 
they have a similar network complexity to the proposed network. 

The reason for choosing MED50 and ELL50 is that the proposed 
framework has a similar network complexity, and 

Fig. 10 (a) shows that our framework using FBP images as refer- 
ence (Our_FBP, yellow line) improves the reconstruction results sig- 
nificantly under the sparse-view condition (number of views ≤ 50 ). 
It is worth mentioning that the proposed framework using the re- 
construction result of ELL50 as reference (Our_ELL50, red line) out- 
performs the original ELL50 (blue line). This indicates that when 
being used as a post-processing method, our untrained network 
has the capability to utilize only the correct information from the 
reference images to further improve the reconstruction quality. 

In the limited-angle reconstruction problem ( Fig. 10 (b)), where 
the system is always under-determined, the proposed framework 
using FBP images as reference (Our_FBP, yellow line) outperforms 
the pre-trained ELL50 model (blue line) by about 8 dB. This indi- 
cates that high-quality results can be achieved by our untrained 
network directly. Furthermore, our framework can achieve higher 
reconstruction accuracy by using the reconstructed image as a ref- 
erence (Our_ELL50, red line), where the improvement is about 
10 dB. The comparison with MED50 on real CT images ( Fig. 11 ) 
shows the same trend. 

It is worth mentioning that the random ellipses dataset is rel- 
atively easier for the proposed untrained network than the pre- 
trained network. However, it is the opposite for the LIDC-IDRI 
dataset. The reasons are: 
1. Compared with the real CT images, ellipses are relatively easier 

for the untrained model to generate. 
2. In the LIDC-IDRI dataset, one of the most obvious features is 

that the imaged objects are always at the center of the images, 
which can be utilized by a pre-trained model to improve its 
reconstruction accuracy easily. 
Those may be the reasons for the slight differences between 

Figs. 10 and 11 . 
Fig. 12 shows some of the reconstruction results of MED50 and 

the proposed framework under sparse-view and limited-angle con- 
ditions. The system is highly under-determined (30 projections for 
sparse-view, and 90 ◦ angular range for limited-angle), so an ex- 
act reconstruction may be unobtainable. However, it is evident that 
our proposed method still generates high quality results ( Fig. 12 (b) 
and (d)). Comparing to others, the results generated by the pro- 
posed method have a totally black background and much fewer ar- 
tifacts. There are two main reasons for such a huge improvement: 
1. The deep image prior is much more powerful than a pre- 

trained neural network with a similar network structure under 
sparse-measurement conditions. 

2. Although more than 20 0 0 images from the LIDC-IDRI dataset 
are used for training the pre-trained model, the majority of 
the images are different from the inference images and may 
even interfere with the training process since they may cor- 
respond to different cross-sections. This also implies that in- 
stead of learning the correct reconstruction method, pre-trained 
models actually generate results from similar training images 
directly. As a result, a much larger training dataset is necessary 
for a well-trained model, which is impractical in the field of 
medical imaging. 

4.4. Noise in the sinogram 
Fig. 13 shows that the noise in the sinogram has little effect on 

the proposed framework, which indicates that our framework has 
better noise resistance performance than others when doing low- 
dose CT reconstructions. 
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4.5. Versatility 

In this paper, for simplicity and fairness, only the 2D CT re- 
construction in parallel-beam geometry of the size 256 × 256 is 
discussed. The reason to look into parallel-beam geometry is that 
the forward projection A and its normal operator A T A can be cal- 
culated exactly and efficiently under the parallel-beam geome- 
try [37,52] . We use the size 256 × 256 because the forward pro- 
jection A in the compared MBIR algorithms and CS-DIP algorithm 
will be too large to compute when the reconstruction resolution 
increases to 512 × 512 . It is worth mentioning that the proposed 
framework can be used for multiple scenarios, since the key point 
of our proposed framework is to use an untrained model to do re- 
construction directly, and the forward projections in different ge- 
ometries are also well analyzed. The proposed framework is com- 
patible with all regularizations used in both IR and neural net- 
work related methods. Furthermore, unlike other pre-trained mod- 
els, these regularizations can be modified in the proposed frame- 
work on-demand (e.g. increasing the weight of total variation reg- 
ularization when the noise level is high). 
5. Conclusion 

In this paper, we introduce a new neural network related 
framework for X-ray CT reconstruction. We show that better re- 
construction results can be obtained without a training process by 
making all the neural network parameters trainable and using a 
new reconstruction strategy. We significantly reduce the compu- 
tational cost in parallel-ray X-ray CT reconstruction by using the 
normal operator of the forward model. We also show that the pro- 
posed framework is compatible with multiple regularizations, and 
these regularizations can be adjusted on-demand for different sce- 
narios. Furthermore, such a framework can also be applied to any 
other neural network based image reconstruction methods. 

Most of our effort is focused on sparse-view and limited-angle 
CT reconstruction. We discover that the results can be improved 
significantly by using customized regularization, including but not 
limited to total variation and l 2 distance to reference images. It 
is worth mentioning that the incorrect information from reference 
images can be removed since the proposed framework guarantees 
the minimization of objective functions during the reconstruction 
process. 

In our experiments, the proposed framework outperforms the 
conventional methods, the CS-DIP algorithm, and pre-trained mod- 
els with similar network complexity. This improvement will be 
more evident under sparse-measurement conditions with a real 
object. The proposed framework can also act as a post-processing 
method to further improve the reconstruction results generated by 
these algorithms. Furthermore, our framework shows impressive 
noise resistance performance when solving the low-dose CT recon- 
struction problem. 

With these results, we conclude that under sparse-view, 
limited-angle, and low-dose conditions, the proposed framework is 
better than all the methods discussed above, especially when there 
is insufficient training data to obtain a well-trained model. 
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