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Abstract—Machine learning (ML), being now widely
accessible to the research community at large, has fostered
a proliferation of new and striking applications of these
emergent mathematical techniques across a wide range of
disciplines. In this paper, we will focus on a particular
case study: the field of paleoanthropology, which seeks to
understand the evolution of the human species based on
biological (e.g. bones, genetics) and cultural (e.g. stone
tools) evidence. As we will show, the easy availability
of ML algorithms and lack of expertise on their proper
use among the anthropological research community has
led to foundational misapplications that have appeared
throughout the literature. The resulting unreliable results
not only undermine efforts to legitimately incorporate
ML into anthropological research, but produce potentially
faulty understandings about our human evolutionary and
behavioral past.

The aim of this paper is to provide a brief introduction
to some of the ways in which ML has been applied
within paleoanthropology; we also include a survey of
some basic ML algorithms for those who are not fully
conversant with the field, which remains under active
development. We discuss a series of missteps, errors,
and violations of correct protocols of ML methods that
appear disconcertingly often within the accumulating
body of anthropological literature. These mistakes include
use of outdated algorithms and practices; inappropriate
testing/training splits, sample composition, and textual
explanations; as well as an absence of transparency due to
the lack of data/code sharing, and the subsequent limita-
tions imposed on independent replication. We assert that
expanding samples, sharing data and code, re-evaluating
approaches to peer review, and, most importantly, de-
veloping interdisciplinary teams that include experts in
ML are all necessary for progress in future research
incorporating ML within anthropology and beyond.
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I. Introduction

The purpose of anthropology is to better under-
stand what it means to be human. This is an unimag-
inably broad field spanning all physical spaces that
have been occupied by humans, from the present to
the distant past. Though a plethora of frameworks are
employed within anthropology, it is generally divided
into four major subfields: biological anthropology, ar-
chaeology, socio-cultural anthropology, and linguistic
anthropology. Biological anthropology broadly focuses
on past, present, and future human biological varia-
tion, adaptation, and evolution. Archaeology studies
human cultural evolution through the reconstruction
of human behaviors based on the analysis of material
culture remains. Socio-cultural anthropology exam-
ines the ways in which people navigate the world
today. And, language as a cultural tool is the focal
point of linguistic anthropology.

Given the breadth of the field of anthropology,
this abbreviated survey will focus on how ML is
currently impacting one particular subfield. Paleoan-
thropology is a multi-disciplinary field that brings
together experts in Earth sciences, genetics, archae-
ology, biological anthropology and more to explore
human evolution before the Holocene Epoch. The
incorporation of ML into paleoanthropology follows
a long tradition of adapting STEM methodologies
to build inferences about the past (e.g., radiometric
dating, ancient DNA sequencing, geometric morpho-
metrics, etc.). Though lessons from this study may
well impact other areas within anthropology where
ML can be applied, we will restrict our attention
to three areas of research within paleoanthropology
that constitute the dominant sources of data in the
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field: the study of bone artifacts, stone artifacts, and
the spatial associations between artifacts within and
between sites. These are also the areas where we
have both experience and expertise. We will focus
on the analysis of bone modifications associated with
butchering and the consumption of meat and marrow
by early humans; behaviors related to the manufacture
and use of stone (lithic) tools; and modeling the
environments in which early humans lived.
Assemblages found at paleoanthropological sites
are generally comprised of stones, bones, and other
materials and are oftentimes fragmented. Deteriora-
tion over time of behaviorally-meaningful materials is
an issue facing all archaeologists, let alone paleoan-
thropologists working in the deep past (more than
10,000 years ago). Due to this, paleoanthropologists
seek to understand a complex past by extracting as
much information from the remaining materials in the
depositional record as possible, including quantifying
and analyzing otherwise unremarkable fragments and
pieces. Because paleoanthropology encompasses an
array of disciplines and approaches too numerous
to cover here, specifics on the nature of the data
typical in the three aforementioned subfields will be
explicated in Section II in the appropriate subsections.
The intended audience for this review paper consists
of two almost disjoint groups of researchers: those
versed in the basics of machine learning who are inter-
ested in new and promising directions of application,
and those familiar with anthropology, in particular
paleoanthropology, who are interested in the potential
advances offered by modern machine learning tools.
As we will demonstrate by surveying the literature,
while machine learning has begun to make inroads
into palecanthropology, its applications to date have
often been compromised by failure to understand
basic protocols and avoid common pitfalls. We argue
that this underscores a need for interdisciplinary
teams that combine researchers from both groups
that can fully and correctly exploit the potentialities
inherent in such an endeavor. This is because machine
learning experts are, by and large, not qualified to
run a proper analysis of archaeological data, whereas
anthropologists utilizing mathematical tools without
full knowledge or informed input from experts can
potentially lead to their misuse, thereby undermining
their efforts to derive anthropologically meaningful
outcomes. One platform for fostering such teams
is the AMAAZE (Anthropological and Mathemati-
cal Analysis of Archaeological and Zooarchaeological
Evidence) consortium (AMAAZE.umn.edu), whose
contributions to date are, in part, surveyed. And

since our intended readership is diverse, as we seek
to engage as broad a readership as possible, we will
present results and research that will, at times, be well
known by one of the groups, but perhaps not by the
other. We also envision that other social scientists,
beyond anthropologists, may benefit from the lessons
learned from this review.

For those who incompletely understand the math-
ematical foundations, ML carries a certain mystique,
that is amplified by media reports of remarkable
successes. Even within the mathematically sophisti-
cated research community, our lack of understand-
ing of how ML algorithms work leads to a “black
box” phenomenology where one judges the algorithms
merely by some measure of success in assigned tasks.
Often overlooked in the hype are the increasingly
visible limitations of ML. Even less commented on
are the misuses of ML, in which basic procedures
that are required to avoid misleading and spurious
classifications were not understood and/or followed.
It is easy to achieve results that appear impressive
to the ML novice if one does not follow the proper
protocols and procedures.

The authors wish to emphasize that this cursory
overview focuses on the missteps that have been made
within anthropology and the applications of ML in
terms of methods and data. The “appropriateness”
of the anthropological question and/or the archaeo-
logical method of investigation behind each study is
beyond the scope of this paper. Specific points and
potential pitfalls include proper use of training and
testing data; the role and dangers of overfitting; the
incorporation of bootstrapping; differences in machine
learning algorithms; the concept of deep learning; the
requirements underlying the specification of sample
size, given that anthropology produces relatively small
data sets; the influence of balance within the sam-
ples and how this and other considerations must be
taken into account when interpreting results; and the
necessary assumptions that must be met in order to
apply machine learning methods in one’s research.
Overall, four primary issues are observed when re-
viewing the existing ML studies in paleoanthropology:
(1) train/test set contamination, (2) an absence, or
incorrect application, of a train-test split, (3) lack
of cross-validation and inappropriate measures of
success, (4) a lack of transparency in the sharing
of data and code that is standard practice among
ML experts, and is essential for evaluating issues 1-
3. In addition, many studies we reviewed contained
inadequate or obfuscating textual explanations of
ML methods, which made the evaluation challenging,
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(a) Fragmentation by Stone Tool

(b) Fragmentation by Carnivore

Fig. 1. These fragments derive from elk limb bones that were experimentally broken. In image (a), the elk bone was broken by
a human using stone tools. The indentation on the edge of the fragment indicates where the stone tool made impact with the
bone. In the image b, the elk bone was fed to a spotted hyena at the Milwaukee County Zoo in Wisconsin. When carnivores
chew on bones, their teeth create scores and pits on the surface of the bone and multiple adjacent indentations along the edge.

especially when code and data were not shared.

Nevertheless, despite the disconcerting findings con-
cerning the current use of ML in the field, we are
completely convinced that, when properly applied,
machine learning promises a revolution in anthropol-
ogy, particularly for our understanding of human evo-
lution. The exceptional potential of machine learning
for this field lies in overcoming as yet insurmountable
classification problems that arise throughout anthro-
pology, including those discussed here, identifying new
feature sets conducive to machine learning algorithms,
addressing the challenge of limited data sets through
data augmentation and expansion into unsupervised
learning, and by providing ways to expeditiously syn-
thesize vast amounts and types of field data spanning
large time scales or geographic regions in order to
make sound inferences and interpretations. The goal
of this paper is to help, in some small way, foster this
revolution. Sections V and VI describe our proposals
for how this can be effected.

I1. Overview of ML in paleoanthropology

Many problems in anthropology and related fields
involve the classification or categorization of objects to
better understand how human behaviors and cultures
changed across time and space. Paleoanthropologists
have begun to use machine learning within their
subfields to answer a variety of questions about human
evolution. Below we summarize some of the current
work in this field.

A. Bone modification studies

Faunal remains are commonplace at paleoanthro-
pological sites. Fossil collections extracted from these
sites are generally large by archaeological standards,

and can contain over 10,000 specimens which can
provide a wealth of information for taphonomic anal-
ysis. Taphonomy is the study of what happens to
an animal from the moment of death to the moment
it is discovered by a paleontologist or anthropologist.
This is often done through the examination of skeletal
remains and the ways in which they have been mod-
ified through time. Analyzing bone fracture patterns
and bone surface modifications (BSMs) is one way
researchers reconstruct what happened in the past
at these sites and ascertain early human subsistence
patterns. Bone surfaces can be scratched, scraped,
and otherwise damaged in a variety of ways. This
can include stone tools that leave cut and percussion
marks (Figure 1), carnivore mastication that leaves
tooth scores and tooth pits (Figure 1), or the marks
left behind by trampling bone in granular sediments.
Bones can also be broken, for example, by humans
or large carnivores that are interested in consuming
embedded foods such as brains or bone marrow or by
geological processes such as rockfall.

Since bones are one of the artifacts that occur in
abundance at paleoanthropological sites, the iden-
tification of agents of bone breakage is essential
to understanding how the site formed, how early
humans evolved biologically and behaviorally, and
how they interacted with their environment and with
each other. However, long-standing debates over such
identifications have yet to be resolved at important
paleoanthropological sites such as are found in Dikika,
Ethiopia (3.4 Ma) and Olduvai Gorge, Tanzania (1.8
Ma) [1], [2].

Some researchers have applied machine learning to
feature sets that are traditionally used in taphonomic
analysis and are based on qualitative features as
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observed by the analyst and measurements taken
manually [3]-[7]. As examples, some of the data
traditionally gathered by taphonomists include angles
between features on the bones, dimensional mea-
surements of bone surface modifications and bone
fragments, and descriptive observations such as how
straight or curved a linear BSM is or how jagged or
smooth a fracture ridge is on a bone fragment (see
Figure 2 for an illustration of such angle measure-
ments). Most of these data are qualitative or measured
using rudimentary tools such as calipers and handheld
goniometers.

Recent work has applied ML methods to the prob-
lem of classifying bone surface modifications according
to the agents that produced them (e.g. humans,
various carnivores, and trampling marks) [2], [3], [§],
[9] (and other works by these authors), identifying
human behavioral variation during butchering (e.g.
using simple flakes with straight cutting edges versus
retouched flakes that have a more serrated cutting
edge) [3], differentiating marks made on fleshed and
defleshed bones [10], exploring how captivity and
domestication of dog species affects the morphology of
the traces they leave behind [11], testing the efficacy
of different methodologies [12], and testing inter- and
intra-observer variation during the process of feature
extraction [4], [12]. Machine learning has also been
applied to fracture patterns resulting from marrow
extraction to identify whether carnivores or humans
were responsible for breaking the bones [1], [6], [7].

Geometric morphometrics, which studies shapes
through Cartesian landmarks, has recently been com-
bined with machine learning to study 2D and 3D
models of BSMs [8], [11], [12] (and other works by
these authors). And others have applied convolutional
neural networks and transfer learning to images of
BSMs [2], [5], [9], [10], [13] (and other works by
these authors), including recent work using generative
adversarial networks (GANs) for data augmentation
[13].

Within the realm of fracture pattern analysis,
machine learning has been applied to new feature sets
resulting from recently developed methods for feature
extraction from 3D models of bone fragments [1], [14].
These methods are highly accurate and replicable
and can be applied to 3D models of any object.
Thus, these methods can be used to address a wide
array of anthropological questions and can be used by
independent research teams for independent testing of
anthropological applications.

B. Lithic technology

Stone tool (lithic) technology is the most ubiquitous
artifact type recovered from prehistoric archaeological
sites. As already mentioned, the archaeological record
is largely fragmented (i.e., incomplete). How archaeol-
ogists study lithic artifacts is intended to compensate
for the missing material. Metric and categorical data
on key morphological attributes on lithic artifacts are
collected in order to, for example, pinpoint functional
and cultural trends in tool production, reveal the
production methods employed as sequential gestures
of percussion, and characterize the transformation
undergone by an artifact during its use, between initial
creation and eventual discard. As technology has
progressed, so too have the methods lithic analysts use
to study lithic artifacts (see Figure 2). As one would
expect, given the diverse anthropological questions
one can hope to answer utilizing lithic materials
(e.g., raw material sourcing, technological know-how
and practice, population mobility) there are an even
greater number of analytical approaches utilized today
to answer those questions. While unable to detail the
many developments in how to study lithic artifacts
that have occurred in the last few decades, the
following examples illustrate the varying types of data
that can be collected to yield relevant behavioral in-
formation. Elemental analyses on lithics can reveal the
sources of the raw materials used in tool production
demonstrating mobility patterns exhibited by people
in the past. The quantitative and qualitative analysis
of artifactual debris of manufacture can be used to re-
construct the sequential steps in the reductive process
of creating stone tools out of a raw nodule. In addition
to a discontinuous view of the technological sequence,
the continuous variables of shape and volume (among
other things) can now be accurately analyzed due to
the utilization of the latest 3D scanning technology
allowing for more objective, quantitative assessments
of lithic assemblages promoting comparability across
research teams. ML is now one such “new” method
being borrowed by archaeologists.

To date, ML has been applied in a number of lithic
studies addressing a wide variety of anthropologi-
cal questions: identifying heat-treated raw material
nodules, a practice employed to improve the ease
of working raw nodules into stone artifacts [15];
identifying the materials worked by a stone tool
according to the classification of the use-wear created
on its edge [16], [17]; predicting the original flake mass
from variables on the striking platform in order to
quantify the degree of resharpening (and thus the
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) Textured 3D Models

b) Segmented Models (c)
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Measurements

Angle
Collected on 3D Models

Fig. 2. An illustration of the 3D models of archaeological materials and the types of data which can be collected from them:
(a) textured 3D models of lithic (top) and bone (bottom) artifacts, (b) an illustration of how a researcher might separate out
(i.e., segment) the differing planes which make up the geometry of these 3D objects, and (c) examples of angle measurements
collected using the virtual goniometer which can be taken on these types of objects. The pictured lithic artifact is from the
site of Stranskd skédla IIT (Czech Republic) and was 3D scanned by Gilbert Tostevin. A lithic artifact is made by striking a
cryptocrystaline rock to create a Hertzian conchoidal fracture that separates a sharp flake tool from the parent core or nodule.
The bone object, scanned by Katrina Yezzi-Woodley, is an experimentally-produced fragment from an elk produced by carnivore

mastication.

length of its use-life as a tool) [18]; predicting site
formation conditions from the surface alteration of the
site’s lithic artifacts [19]; creating more quantitatively
rigorous approaches to the creation of typologies for
studying artifact shape through time and space [20],
[21]; predicting the raw material of the stone tool from
the cut marks produced by the edge [22]; identifying
the geochemical signatures of geological sources of
lithic raw materials as a means of studying prehistoric
mobility and material selection criteria [23], [24]; dis-
tinguishing the flake products from different reduction
strategies for exploiting the volume of a core [25];
distinguishing chronological manifestations of lithic
behavior between the Middle and Late Stone Age
in Africa through the presence vs. absence of types
within assemblages [26]; developing virtual knapping
software [27]; and quantifying lithic knapping skill
acquisition for studying the evolution of human cog-
nition [28].

C. Environmental modeling

Predictive models in the archaeological literature
often explore wholly different questions, but most
revolve around a similar theme: the reconstruction of
past climates and environments and their effects on

human evolution and behavior. ML has been applied
to Geographic Information Systems (GIS) data to
explore human-environmental interactions relating to
niche construction, range expansion, biogeography,
paleo-climate reconstruction, site use patterns, spatio-
temporal analysis, interactions between early humans,
or, often, combinations of many of these factors.
For example, ML has been employed to explore the
socio-cultural and ecological factors relating to the
geographic distributions of various techno-complexes
(e.g. [29]). Machine learning has also been applied
to create a model of world population before the
adoption of agriculture, which uses modern hunter-
gatherers/foragers as analogs for past human groups
[30].

Another primary application of ML on GIS data for
archaeological purposes is remote sensing. Traditional
remote sensing methods of satellite imagery, LiDAR,
aerial photography, etc., involve time intensive ex-
ploratory data analysis and qualitative observations.
Combining data gathered from archaeological sur-
vey, excavations, topographic maps, and geological
sampling with more advanced satellite imagery (e.g.,
LandSat imagery) can revolutionize the search for
prospective archaeological sites if the large sets of
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data can be synthesized and analyzed rapidly (e.g.
[31], [32]).

D. Machine learning in AMAAZE

In this section, we review recent applications of
ML within our interdisciplinary consortium, the An-
thropological and Mathematical Analysis of Archaeo-
logical and Zooarchaeological Evidence (AMAAZE)!.
The motivating purpose of AMAAZE is to leverage
advanced mathematical tools, particularly machine
learning, time series analysis, and advanced geometric
methods, to address fundamental questions in anthro-
pology and human evolution that arise from the study
of bones, lithics, and other artifacts, and thereby
foster new and productive collaborations between
mathematicians and anthropologists.

As part of our research we seek to understand how
the geometry of broken bone fragments is related to
and helps distinguish among agents of breakage. Our
studies are based on a large experimentally produced
collection of bone fragments that are then used as
proxies for what happened in the past. Our controlled
samples are from elk, cow, sheep, and deer bones
that have been broken by humans using stone tools,
by spotted hyenas, and by simulated rockfall. This
collection has enabled us to begin to train, develop,
and refine machine learning and geometry-based clas-
sification tools in preparation for the analysis of field
samples.

The first step in this process was to develop
new methods of feature extraction. In particular,
the virtual goniometer [14] is a plug-in that can be
used with the open access software Meshlab. This
tool collects goniometric data with much greater
accuracy and precision than the handheld pocket
goniometer that is traditionally used for measuring
angles on archaeological objects of interest. Data are
automatically output to a .csv file which prevents
data recording errors and provides all the necessary
information for replication by independent researchers
(see Fig. 2).

In order to collect these data, we require 3D
models of bone fragments. To that end we developed
the batch artifact scanning protocol which creates
triangulated surface meshes representing the physical
objects rapidly (< 3 minutes per fragment on average)
[33]. The speed with which we are able to create 3D
models can be attributed to the fact that we are
able to simultaneously scan multiple fragments that

'See https://amaaze.umn.edu

are then automatically segmented and surfaced using
Python scripts.

We have recently applied machine learning to a
feature set extracted using the aforementioned tools
[1]. The purpose of this study was to differentiate bone
fragments broken by hominins using hammerstone and
anvil from those broken by spotted hyenas through
mastication. The results are promising (average mean
accuracy of 77%). This research is ongoing as we
expand the experimental sample to include other
agents of bone breakage and increase the size of the
samples within each class.

Once we have fine tuned and evaluated the ML
algorithms for classification of our in-house collection
of bone fragments, we will then apply our classifiers to
samples and data gathered through field work at im-
portant paleoanthropological sites, namely Dmanisi,
Georgia (1.8 Ma).

ITI. Machine Learning

We will next provide a brief overview, for non-
experts, to some of the most popular machine learning
models and algorithms, prior to our discussion on
how machine learning technology is being used and
misused in anthropology.

Machine learning (ML) is a type of artificial in-
telligence by which computers can develop the abil-
ity to perform tasks by learning from examples or
experience, and are not a priori coded with explicit
instructions. ML methods learn from training data,
which includes features and labels. The features can
consist of both the actual data object, as well as
data derived from the object, such as other in-
formation, measurements, and characteristics of the
object. The labels associated with each data object
are the targets for prediction or classification by the
ML method. For example, in our work with bone
fragments, the training data features contain various
geometric measurements, most notably information
about the break angles formed between the outside
natural surface of the bone fragment and the broken
surface, and surface curvature invariants, while the
labels consist of the (known) actor of breakage. In
general, the features can also include image data,
such as computed tomography (CT) scans of the bone
fragment, or a 3D model of the bone as a triangulated
mesh.

ML methods can be broken down into three main
categories: fully supervised, semi-supervised, and un-
supervised learning. The distinction is based on how
much labeled data is used by the algorithm. Fully
supervised learning algorithms learn from labeled
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data; that is, the algorithms use datasets that consist
of both features and their corresponding labels to
“learn” how to classify new datapoints. Unsupervised
learning refers to ML methods that use only features,
and do not use any label information. Examples of un-
supervised learning include clustering (i.e., grouping
similar data points), data visualization, and dimension
reduction. Semi-supervised learning lies in between
fully supervised and unsupervised learning; it makes
use of both labeled and unlabeled data and is most
useful when very little labeled data is available. We
will focus our overview on fully supervised learning, as
it is the most common in current paleoanthropological
research. On the other hand, since the quantity
of labeled data is limited in paleoanthropological
collections, there is great potential for the use of
unsupervised or semi-supervised techniques in future
research.

A. Machine learning overview

In fully supervised ML classification, a
training dataset consisting of g, features
thrazn’ Xgram’ . train

X € RP and corresponding

) Y PMNyrain
train train

labels y{" ", y5 ,,yf{"tffi” € RY are used by the
ML method to “learn” a classification rule that maps
each Xfmm to its label yfmm. The classification rule
is usually a parameterized function f(x;w), where
w € RF are parameters that control the behaviour
of f. The number of parameters k, which can be
quite large, depends on the choice of ML model, and
the choice of hyperparameters (see Section III-E) for
that model. Training the ML method involves finding
parameters w so that f(x"%";w) is as close to yr"
as possible, and this is often done by minimizing a
training loss of the form

1 Ntrain

Lirain(w) = (™). 3™,

Ntrain i—1 (1)
where £(y1,y2) is a function that measures the dis-
crepancy between the predicted and true labels. A
simple example is £(y1,y2) = ||y1—y2]||?, in which case
the training loss is the mean squared error. A variety
of alternative loss functions can be utilized, depending
on the application. The optimal w is commonly found
or approximated using (stochastic) gradient descent.

The size of the training loss Liqin 1S & measure
of the success of the ML method in fitting the
training data, but in general does not give any
indication of how the method will perform on new
unseen data. The ultimate goal of ML is to “learn”
classification rules that generalize well to unseen data.

In practice, the performance of the ML method on
new data is measured by evaluating the model on a
“held-out” testing dataset, consisting of nss features
xhest xbest o xIest and labels ylest yhest, o ylest
that have not been used in any way during training

of the ML method. The test loss is given by

1 Ntest
Cion(w®) = —— S 0(F(xtest; %), ylest),
Ntest im1

where w* are the optimal weights chosen by the ML
method during training.

If the test loss Liest(w*) is similar to the training
loss Lirain(w*), then the ML method is said to
generalize well. In this case, if the loss is small, then
the ML method is appropriately fitting the training
data, while if the loss is still large after training, then
the method may be underfitting. On the other hand, if
the test loss is much larger than the training loss, then
the model is overfitting the training data and does not
generalize well. Figure 3 serves to illustrate these three
scenarios. It is very important to emphasize that in
a proper application of ML, the testing dataset must
be independent of all aspects of training, so that the
test loss can be trusted as an unbiased estimation of
model performance.

In practice, the held-out testing dataset is obtained
by making a train-test split of the dataset before
training. One decides on the fraction of data to set
aside for testing, say 25%, and then the dataset is
split at random into a training set with 75% of the
data, and a testing set with 25% of the data. It is
essential to perform the train-test split prior to any
steps used in training the ML method, and to use
only the training data to train the model. Some of
the training data can be held out in a validation set,
in order to perform hyperparameter optimization or
ensemble learning during training (see, e.g., Section
III-E).

In particular, it is important to ensure there is
no contamination of data between the training and
testing datasets. Indeed, many of the issues we dis-
cuss in the following sections stem from researchers
either omitting the train-test split step, or mistakenly
allowing data from the test set to contaminate the
training set. There are subtleties in the train-test split
that can lead to inadvertent contamination. One must
avoid training and testing data points with non-zero
correlation between their labels, for instance, splitting
on small scale features to classify large scale objects.
An example is the use of break data to classify bone
fragments; see below for details.
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(a) Underfitting

(b) Appropriate fitting

(c) Overfitting

Fig. 3. An illustration of (a) underfitting, (b) appropriate fitting, and (c) overfitting. In each case the red curve indicates the
decision boundary learned by the ML method, and will be used to classify new unseen data points into one class or the other.

B. Common ML methods

An ML method is a particular choice of the pa-
rameterized function f(x;w) introduced in Section
III-A (see Eq. (1)), along with a training algorithm
for determining the parameters w. There is now
an ever-increasing plethora of ML methods, each
of which has its advantages in certain applications.
We describe some of the more commonly used and
powerful methods below, and refer the reader to [34],
[35] for more details. It is worth noting that the field of
ML is rapidly evolving, whereby older algorithms are
often replaced by improved contemporary methods;
thus knowledge of the current literature is essential
to well founded applications. Furthermore, as new ML
methods are developed, it would be worth revisiting
earlier studies to see whether they can be replicated
and, potentially, improved. This is another reason for
our emphasis on reproducibility and availability of
data and code.

1) k-nearest neighbor classifier: One of the most
basic machine learning methods is the nearest neigh-
bor classifier, in which a new data point with features
x is classified by the label corresponding to the
training datapoint whose feature vector xfmm is most
similar to x. The similarity between feature vectors
can be computed using various distance metrics on
the features space R?, and common examples include
any norm on Euclidean space, such as the Euclidean
norm or p-norms (e.g., the p = 1 Manhattan distance,
or the p = oo Chebyshev distance), angular metrics
like the cosine distance that use the dot product
between feature vectors, and metrics for discrete
feature vectors like the Hamming distance. Often the
nearest neighbor is not a reliable predictor of class
membership, due to noise in the dataset, and so
a superior classifier can be constructed by utilizing

information from the k-nearest neighbors in feature
space, where k > 2 is a “hyperparameter” specified
in advance by the user. The labels of the k neighbors
are then combined (by majority vote or a weighted
average) to perform the classification.

2) Support vector machines (SVM): A support
vector machine (SVM) uses a linear decision boundary
to separate classes. In the case of two classes (i.e.,
binary classification), the SVM classification rule is
based on a real-valued linear function f(x;w) =x-w
and a threshold b € R, and a data point x is in one
class if f(x;w) > b and in the other if f(x;w) < b.
The parameters w and b are learned by maximizing
the margin of the linear classifier on the training
dataset. Roughly speaking, the margin measures how
far the decision boundary is from the closest training
datapoints (which are called support vectors). Multi-
class SVM with three or more classes works via the
one-versus-rest approach in ML, which is a general
technique for constructing a multi-class classifier out
of a binary one.

Linear SVM works well only when the classes are
linearly separable, which means it is possible to find
a line (or in higher dimensions, a hyperplane) so
that the two classes (in binary classification) are
on opposing sides of the line. The simple example
in Figure 3 is not linearly separable. In order to
handle such cases within the SVM framework, it is
common to use the kernel trick, whereby the training
set features are augmented by additional nonlinear
functions of the existing features, which lifts the data
into a higher dimensional space, where linear SVM
is applied. The goal is to choose a kernel for which
the higher dimensional kernel features are linearly
separable, even though they were not in the base
space. Common kernels include polynomial functions,
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radial basis functions, and sigmoids.

3) Decision trees and random forest: Decision trees
in machine learning use a binary tree decision making
structure for classifying datapoints. Each node in the
tree is a decision that performs a binary split on
one feature in the dataset (i.e., is z3 < 17), and
the classification of a new datapoint is determined
by which leaf the data point arrives at after flowing
through the decision tree. Decision trees are trained
recursively in a greedy manner. At each step the
method considers binary splits of all features, and
selects the split that maximizes a measure of quality.
The algorithm proceeds recursively until reaching a
maximum tree depth. Decision trees have the ad-
vantage of mimicking some types of human decision
making processes and their decisions can be more
transparent and interpretable. However, they also risk
overfitting, especially when they split on the same
features repeatedly. The random forest algorithm uses
ensemble learning (see Section III-C) to combine the
outputs of multiple decision trees in a way that
reduces overfitting and improves performance.

4) Neural networks and deep learning: Neural
networks are ML models that loosely resemble the
biological neural networks in human and animal
brains. They are formed by arranging large numbers of
individual neurons into interconnected layers. A single
neuron is an affine function composed with a nonlinear
activation function, i.e., f(z;w,b) = o(z-w+b), where
the weights w and bias b are tunable parameters.
Common choices for the activation function include
the rectified linear unit ReLU o(t) = max{t¢,0} and
the sigmoid o(t) = 1/(14 e™*). A single neuron can
implement an SVM classifier, though its training does
not seek the maximum margin classifier. Connecting
multiple neurons together into layers can model more
complicated nonlinear decision functions. Deep learn-
ing simply refers to neural networks with at least 2
layers.

There are several kinds of neural networks, each
designed for different types of data. A fully con-
nected neural network (or multi-layer perceptron,
feed-forward neural network) can process any type
of data that is represented as vectors in Euclidean
space. They consist of several layers of neurons,
connected so that each layers’ outputs feed into the
next layers’ inputs. Convolutional neural networks
are specifically designed to process images. They
are special cases of fully connected neural networks,
where the affine functions in the neurons are replaced
with the convolution operation on 2D or 3D images,
which is useful for extracting features therefrom. The

convolution operation requires very few parameters,
and explicitly encodes locality of image features,
and translation equivariance, which increases the
expressive power of convolutional neural networks
for problems in computer vision. Recurrent neural
networks are specifically designed to process time
series data (e.g., speech or handwriting recognition).
The input to the network consists of the prior elements
in the temporal data, and the output is a prediction
that evolves in time. Finally, graph neural networks
refer to a wide class of neural networks that have been
designed to process unstructured graph data, such as
biological or social networks, or triangulated surfaces.

Deep learning methods are normally trained by
minimizing a loss function like that in (1) with gradi-
ent descent. The backpropagation algorithm, based on
the chain rule for differentiation, is used to compute
the gradients of the loss function in all the weight and
bias parameters of the neural network. Since neural
networks have the capacity to overfit, many types of
regularization techniques have been proposed in the
literature, including early stopping, dropout, batch
normalization, and many others. With these modern
techniques, deep learning generally does not overfit
training data even when the neural networks are
highly overparameterized, though the mathematical
reasons for this are still poorly understood.

C. Ensemble learning

Ensemble learning is a general technique in ML for
combining the results of multiple, possibly weak, ML
classifiers together to obtain a stronger classifier with
improved performance. There are many established
techniques for ensemble learning, including bootstrap
aggregation, boosting, stacking, and many others.
In bootstrap aggregation, the weak classifiers are
usually of the same type (e.g., decision trees), but
each classifier is trained on a different bootstrapped
version of the training set. The bootstrapped dataset
is constructed by random sampling with replace-
ment from the training set, and can also involve
randomly sampling among the features of the data.
The classifiers’ performance is evaluated on the out-
of-bag data (i.e., the training points not in the
bootstrapped sample), and the multiple classifiers are
combined based on their performance. One of the most
widely used ensemble learning methods is the random
forest algorithm, which combines the results of many
random decision trees with bootstrap aggregation.

Boosting refers to ensemble learning methods that
operate incrementally, and focuses the training of
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future methods on the training points that were mis-
classified by previous models. One of the most widely
used boosting methods is Adaboost [36]. Stacking
refers to combining multiple, possibly very different,
ML methods by training another ML method to
combine their predictions.

We emphasize that ensemble learning must be
performed on the training set alone. In particular,
the evaluation of the multiple weak learners and
learning how to combine them, must involve only the
datapoints available in the training set. The testing
set can only be used for a final evaluation of the
ensemble learning method.

D. Cross-validation

The performance of ML methods can be dependent
on the random selection of training and testing sets,
especially when sample sizes are small. For proper
evaluation of ML methods, it is important to use
either k-fold cross validation, or to run the ML
methods on many train-test splits chosen at random,
in order to assess the variability in performance of
the method with respect to changing the training and
testing sets. k-fold cross validation splits the dataset
at random into k£ equal sized “folds”, and trains the
ML algorithm separately on each fold, taking the fold
as the testing set, and the rest of the dataset as
the training set. The average and standard deviation
of accuracy scores over the k-folds or many random
train-test splits should be reported.

E. Hyperparameter optimization

Hyperparameters refer to parameters in ML meth-
ods that are used to control the learning process
but are not optimized as a direct result of train-
ing the ML model. Examples of hyperparameters
include the number of neighbors k in the k-nearest
neighbor algorithm, the choice of kernel in SVM, or
the maximum tree depth in decision trees. In deep
learning there are many hyperparameters, including
the architecture of the neural network (i.e., number
of layers, number of neurons per layer, etc.), the
learning rate for gradient descent, how many training
epochs to run, and the dropout rate, among many
others. There are many hyperparameters in ensemble
learning, controlling how the constituent ML methods
are trained, evaluated, and combined.

Optimizing hyperparameters can lead to improved
results in machine learning. However, it is important
that the process of optimizing hyperparameters does

not utilize the testing accuracy in any way. Hyperpa-
rameter optimization must be performed using only
the information present in the training set. Common
techniques involve holding out part of the training
set as a validation set and using the wvalidation
accuracy to compare models trained with different
hyperparameters. In a similar spirit, one can also
use k-fold cross validation on the training set for
hyperparameter tuning and model selection.

IV. The misuse of ML in anthropology

We have reviewed over 80 papers in the literature
on applications of ML to anthropology and have
identified a core set of fundamental mistakes that have
been made. These mistakes render the results of many
papers misleading and, in some cases, uninterpretable.

A. Train/test contamination

One of the most common and serious types of
mistakes we have observed are flaws in the ML work-
flow that lead to various amounts of contamination
between the testing and training sets. The most
egregious example of this is the use of bootstrapping
to increase sample size before the train-test split.
Bootstrapping refers to sampling with replacement
from a dataset and is a statistical technique with
important applications in ensemble learning, where
it is used to generate bootstrapped datasets to train
constituent learners on. However, it should never be
used to substantially increase the size of a dataset,
nor should it ever be used on the whole dataset before
a train-test split (proper applications always involve
bootstrapping the training set). Bootstrapping before
a train-test split creates many duplicates of each
datapoint, so that many (sometimes all) datapoints
appear in both the testing and training set. There
is then no longer a held-out test set that can be
used to evaluate the ML methods; consequently,
reported accuracies should be interpreted as training
accuracies, in which case high accuracies can merely
indicate severe overfitting. In fact, it was shown in [1]
and [37] that bootstrapping before the train-test split
can produce accuracies close to 100% on randomized
datasets that contain no information.

There are several studies that have inappropriately
used bootstrapping before train-test split, and re-
port near perfect accuracy scores (e.g., [38] reports
99.73% — 100% accuracy). In [3, p. 5] it is stated, “In
order to provide the modelling with large training and
testing/validation sets, the sample was bootstrapped
10,000 times, yielding a sample that is substantially
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bigger than BSM samples that one may encounter
in archaeofaunal assemblages.”. In [4, p. 2713] the
author states, “the sample was bootstrapped 1000
times to make it bigger and more similar to the sam-
ples that one may encounter in large archaeofuanal
assemblages.” As [37, p. 3] point out in their critical
response to [3], “bootstrapping existing data cannot
be used as a substitute for collecting more data”. The
reason to have large data sets when applying machine
learning to classification problems is to capture the
range of variability in each class. Resampling from
existing data cannot accomplish this.

As an explicit example, we note the dataset in [3]
contains 633 BSMs. These were bootstrapped 10, 000
times to create a dataset with 10,000 BSMs, though
only 633 are unique—the rest are duplicates. The
10, 000 sample dataset is then split into 70% training
and 30% testing. For a given BSM, the probability
that all of its bootstrapped copies end up in the same
set (training or testing) is roughly 0.009,? and so the
expected number of the 633 BSMs that are split prop-
erly into the train/test sets without contamination
is less than 6. Essentially all of the datapoints are
in both the training and testing dataset, and so the
results in [3] are completely uninterpretable.

Bootstrapping before the train-test split was used
again by some of the same authors in [6], where they
inappropriately argued for its use in ML to increase
the accuracy of ML classifiers. In addition, the authors
of [6] make another serious mistake with their train-
test split, which further contaminates the training set.
The paper is concerned with classifying bone frag-
ments by the agent of breakage, which can be hominin
or animal in this case. They train ML classifiers to
classify each break on a bone fragment, instead of
classifying the entire fragment. Each fragment has
several different breaks, and their train-test split is
done on the break-level, meaning that each fragment
can contribute breaks to both the training and testing
set. This leads to a train/test contamination due to
their use of fragment-level variables for classification,
which are common to all breaks on a fragment. This
issue was pointed out in [1], where it was shown
that this type of break-level train-test split can also
produce artificially high accuracies on randomized
datasets that contain no information. These inap-
propriate uses of bootstrapping have diffused into
the community, leading subsequent studies [8] to
bootstrap their sample 1000 times before the train-

2The probability is < e~ 0-310:000/633 | ,—0.7-10,000/633
0.009.

test split (they report near perfect accuracies around
99%).

A related issue involves applying data augmentation
before the train-test split. Data augmentation in
image classification involves increasing the size of the
training set by applying random transformations to
the training images (e.g., scaling, rotations, adding
noise, color shifts, etc.), and is a very effective method
for training deep neural networks to identify images
in different situations. When applied properly data
augmentation is done only to the training set and
is usually done on each mini-batch during stochastic
optimization. Several studies (e.g. [9], [13]) appear to
be using data augmentation on the entire dataset to
create a larger dataset prior to the train-test split.
This contaminates the training and testing data in a
similar way to bootstrapping before a train-test split.

A related, though less serious, problem concerns
applying certain types of preprocessing to the dataset
before the train-test split. This can include standardiz-
ing the features (to be zero-mean with unit variance),
applying principal component analysis (PCA) for di-
mension reduction, outlier detection and deletion, and
so on. We want to stress that some of these missteps
are relatively minor, and that data cleaning (i.e., re-
moving erroneously recorded data, or datapoints with
missing features) is a valid procedure to apply before
the train-test split. Issues arise when the preprocessing
goes beyond basic data cleaning. Standardizing the
features, applying PCA, or certain types of outlier
detection utilizes information from all the datapoints,
including those that will later be assigned to the
testing set, leading to train/test contamination. In a
proper ML workflow, these preprocessing steps should
be applied to the training set alone, and their maps
can be recorded for use in testing.

The studies [3], [4] apply standardization of the
data before a train-test split, while the studies [§],
[11] (and other works by these authors) apply PCA
for dimension reduction before the train-test split.
In [24] the authors use the t-SNE embedding to
visualize the dataset in two dimensions and manually
remove “outliers” before the train-test split. Due to
the difficulty interpreting the t-SNE embedding, the
“outliers” removed could in fact be valid datapoints
that are simply difficult to classify, thereby artificially
increasing accuracy scores. In [16] missing data was
filled in with the median of the features from its class.

B. Train-test split
Another set of common mistakes concerns the train-
test split. Many works either do not use a train-
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test split, in which case their accuracies should be
interpreted as training accuracies, or they fail to
ensure that the test set is not used in some way during
training for tuning hyperparameters, model selection,
or ensemble learning.

In their analysis of lithics, Grove and Blinkorn [26]
use ensemble learning with an ensemble of 1000 neural
networks. However, they do not appear to retain a
held-out testing set to evaluate the ensemble on. Each
neural network is trained and evaluated on a random
85%/15% train-test split of the whole dataset, and
they are combined based on their performance. Hence,
every datapoint is used in training on average 850 of
the neural networks, and so there is no held-out testing
data to evaluate the model. Nash and Prewitt [20] do
not use a train-test split; they train their models on
the whole dataset. As such, the tables in their paper
are misleadingly reporting training accuracy. They do
test their models on a new testing set of 5 datapoints,
but this is too small for proper evaluation. MacLeod
[21] does not perform a train-test split, as the entire
data set is included within the confusion matrix. His
accuracy results of close to 100% are thus training
accuracy and indicative of overfitting.

A related issue has to do with model selection. In [4]
the author advocates for using as many ML methods
as possible for any problem at hand, and to then
choose the best one. This approach aligns well with
the spirit of ensemble learning, however, the authors
do not employ ensemble learning, and they instead
evaluate their plethora of models on the testing set. It
is important to use a validation set for model selection
in the ensemble learning framework, so that there is
a held-out test set for evaluating the “best” model.
Similar issues appear in [2], which uses two layers of
ensemble learning, whereby they correctly train 18
ensembles that each reach about 95% accuracy, and
then hand pick 4 of the ensembles that performed best
to create a super-ensemble that predicts by majority
vote and obtains 100% accuracy. Similarly, in [9] the
authors experiment with a large number of models
and select the best ones, based on testing accuracy,
for further supervised learning experiments.

C. Cross-validation and measurements of success

Several studies do not use cross-validation or mul-
tiple train-test splits. In the context of small sample
sizes, the testing accuracy from one split may be a
poor indicator of expected model performance. For
example, in [32] the authors consider only one train-
test split on a dataset with 338 datapoints.

We have also observed studies drawing incorrect or
unsupported conclusions from testing models on new
data. In [4], the author tests their model’s predictions
against those of three expert analysts in the field, and
finds that their model performed vastly differently
than the experts, agreeing very well with one expert
and very poorly with another. They concluded that
this provides evidence of high inter-observer error.
However, an equally valid explanation is that their
model is overfitting the training data and does not
generalize well. The study, as published, therefore
cannot distinguish between inter-observer error and
model overfitting.

V. Discussion

We have discovered a large number of cases appear-
ing in the published paleoanthropological literature in
which machine learning methods were misused, lead-
ing to faulty if not wrong conclusions and misleading
estimations of success. In order to avoid further invalid
applications of ML, we advocate for procedures that
include interdisciplinary collaboration, well founded
and reliable peer-review, archiving of data and code
in readily available repositories that can be used
for replication and further analysis by independent
research teams, and increasing sample sizes.

A. Inter-disciplinary teams

The proper application of ML methods in research
requires a wide range of expertise, including familiar-
ity with the mathematical foundations of the subject.
The ease at which modern software packages can
be used to implement ML methods should not be
regarded as a replacement for domain-area expertise.
A number of the studies we reviewed relied on out-
dated or inadequate algorithms that are no longer
employed in modern ML practice. This does not
mean the methods are incorrect; they are simply hard
to evaluate and the results could be substantially
improved by inter-disciplinary collaboration. Archae-
ologists are typically not trained in computer science,
nor mathematics, and certainly do not have the depth-
of-knowledge acquired by experts in machine learning.
Such research is, at its foundation, inter-disciplinary
in nature, and thus is best conducted with inter-
disciplinary teams of researchers, where ML experts
can propose and vet the appropriate methods and
protocols, and thereby identify and avoid common
mistakes. Otherwise, the great potential that ML may
yield in understanding human behavior in the past will
never be realized (see [39] for further discussion).
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B. Peer review process

The frequency of common ML mistakes in the
papers we reviewed suggests to the authors that there
is an absence of a rigorous and informed peer re-
view structure in place within existing archaeological
journals that can appropriately vet the ML protocols
employed. This situation is particularly evident when
the peer review process allowed the publication of
inaccurate, inappropriate, or obfuscated ML methods
that would not have been acceptable in journals
regularly utilized by ML experts.

We would advocate for archaeological journals that
frequently publish ML studies to include one or more
ML experts on their editorial board and for ML
studies to be peer reviewed by experts in ML as
well as archaeology. Without ML expertise at the
highest levels in the journal hierarchy, poor quality
ML studies will continue to be published in high
quality archaeology journals, damaging the field and
the journals’ reputations. We also advocate for the
creation of new cross-disciplinary journals focused on
applications of ML in archaeology and other areas
where ML is being actively used to address these
concerns.

C. Reproducibility

A majority of the papers we reviewed suffered
from issues of reproducibility. Many papers (e.g., [17],
[23]) had inadequate or confusing textual explanations
of the ML methods, making comprehension of the
appropriateness of the ML application difficult. Access
to raw data and code enables the reader to clarify such
confusions. Unfortunately complete data and code
were frequently not available, so we were not always
able to verify with certainty the exact ML methods
that were used and the mistakes that were made. Of
the papers cited in this review, the citations that share
no, or incomplete data, and/or no code include [2]-[9],
[11], [12], [17]-]20], [22], [23], [25], [29], [30], [40].

Not only does the sharing of data and code aid
the reader in understanding the published works, but
it also enables independent replication which is a
hallmark of the scientific process and fundamental for
vetting and advancing research. We feel that sharing
code and data needs to become a standard practice
within anthropology for those who apply ML in their
anthropological research (or even writ large).

D. Sample sizes

Another complicating factor in any archaeological
study but particularly those in paleoanthropological

contexts is sample size. ML methods that rely on large
sample sizes may not perform well on the smaller data
sets common in the field. With small sample sizes, bias
can creep into trained models, and even models with
seemingly good testing accuracy may not generalize
to field data. Archaeological studies are limited to
the archaeological record (i.e., what is preserved and
recovered), so there are frequently strict limitations
on sample sizes (usually in the hundreds or at most
thousands of datapoints). This does not mean ML
cannot be applied, but researchers should be aware of
sample size issues and be transparent about how far
their conclusions actually reach. To harness the power
of modern machine learning techniques, which thrive
on vast amounts of training data, researchers should
be working to increase sample sizes in the future.

Overall, while daunting given the complexities of
its usage and the underlying mathematics, ML has
much to offer paleoanthropological studies. This is
particularly evident in topics such as bone taphonomy
which have been hotly debated for decades despite the
application of non-ML statistical techniques. Again,
we wish to emphasize that this review is not meant
to discourage researchers from using ML. Instead, we
are detailing the aforementioned warnings and recom-
mendations in order to ensure that this burgeoning
growth in ML applications continues appropriately.
As with any new analytical technique development (or
borrowing), there is a “learning” period during which
researchers must figure out what is appropriate or not.
Paleoanthropologists have much to learn in terms of
how to appropriately apply ML to their studies, but
collaborations with ML experts will greatly expedite
this learning period. By working together, we can
build more reliable test sets, identify the types of
data and resources that need to be shared in order to
reproduce studies, define the best ways in which to
share those data, and design approaches to effectively
evaluate research outcomes.

Our individual paleoanthropological datasets may
be limited, but practicing data-sharing and open
code access through platforms such as Github will
only improve future studies (e.g., larger, aggregated
datasets; improved ML algorithms). The authors are
excited to see the growth of interdisciplinary research
and research teams which will result from the growing
applications of ML in paleoanthropology and archae-
ology. With expanded research networks (and the
accompanying new perspectives), we expect to see
many new, stimulating questions asked and answered.
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