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ABSTRACT

Healthcare spending in the United States is concentrated on a small percentage of individuals,
with 5% of the population accounting for 50% of annual spending. Many patients among the
top 5% of spenders have complex health and social needs. Care coordination interventions,
often led by a multidisciplinary team consisting of nurses, community health workers and social
workers, are one strategy for addressing the challenges facing such patients. Care teams strive
to improve health outcomes by forging strong relationships with clients, visiting them on
a regular basis, reconciling medications, arranging primary and speciality care visits, and
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addressing social needs such as housing instability, unemployment and insurance. In this
paper, we propose a simulation algorithm that samples longitudinal patient-level encounter
histories to estimate the staffing needs for a multidisciplinary care team. Our numerical results
illustrate multiple uses of the algorithm for staffing under stationary and non-stationary patient

enrollment rates.

Section 1. Background and motivation

Healthcare spending in the United States is disproportio-
nately skewed: just 5% of the population accounts for
50% of annual spending, while just 1% accounts for
almost a quarter of annual spending (AHRQ, 2010).
Many individuals among the top 1-5% of spenders
have complex medical and social needs. According to
the National Center for Complex Care, “people with
complex health and social needs experience combina-
tions of medical, behavioural health, and social challenges
that result in extreme patterns of healthcare utilisation
and cost. They repeatedly cycle through multiple health-
care, social service, and other systems but do not derive
lasting benefits from those interactions”. Such individuals
typically have multiple chronic conditions and experi-
ence significantly higher than average hospital utilisation
rates, including avoidable hospitalisations. The social
context — the absence of stable housing or strong support
networks, the lack of employment or insurance, the pre-
sence of disabilities, and the lack of transportation
options, to name a few - further complicates the care
delivery process and adds to the individual’s
vulnerabilities.

Care coordination interventions are one strategy
for addressing the challenges facing individuals with
complex medical and social needs. Care coordination
refers to a concerted effort, often consisting of a multi-
disciplinary team of nurses, community health

workers and social workers, to help improve the health
and wellbeing of such patients. While care coordina-
tion has largely been employed telephonically, there
has been a growing shift to “high-contact”, in-person-
based interventions. In “high-contact” care coordina-
tion efforts — which are the focus of this paper - the
care team spends significant time with and on behalf
of each patient. For example, members of the care
team repeatedly visit the patient out in the community
(to observe patient’s circumstances beyond what may
be visible in a healthcare setting), checking vital signs
and discussing symptoms, helping reconcile their
medications, arranging primary and speciality care
visits, accompanying the patient to those visits, arran-
ging for transportation, procuring medical equipment,
etc. Social workers and community health workers in
the care team address issues, such as lack of housing,
employment, legal services, insurance, mental health
and addictions. Interventions can last anywhere
between a few weeks to months, and seek to end
when patient goals are achieved and patients become
self-reliant: their health status has improved, and they
are able to go about their daily lives with minimal
support from the care team. The hypothesis under-
lying care coordination interventions is that the care
team can help patients (1) improve self-efficacy and
well-being by enabling medical and social support,
including access to primary and speciality care
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appointments, housing, employment and health
insurance; (2) aim to reduce adverse and costly events,
such as avoidable emergency visits, medication-related
complications, and hospitalisations and increase utili-
sation of outpatient services and other non-emergent
medical care.

This paper deals with aggregate capacity planning
and staffing questions in “high-contact” multidisciplin-
ary care coordination teams. While care coordination
has been adopted by a range of organisations, including
payers, primary care providers, and hospitals, there is
a lack of studies on how care teams should be staffed.
Staffing a care coordination team that addresses the
needs of medically and socially complex patients in
a timely manner is challenging for many reasons.
First, the number of weeks a patient will be in the care
intervention varies significantly from patient to patient
and is difficult to predict a priori. Second, a patient
needs repeated interactions of uncertain durations
with multiple staff types during the length of the inter-
vention (interventions typically last weeks or months).
For example, two members of the care team may visit
the patient’s home each week in the early stages of an
intervention; and a home visit can last anywhere from
30 min to 2 h. Third, the number of hours a particular
staff type in the care team will need to spend with
a patient is uncertain and varies by the week of the
intervention the patient is in. For example, registered
nurse demands peak in the first 2 weeks of a patient’s
intervention while SW demands peak in the later stages,
once urgent clinical issues have been resolved
(Martinez et al., 2019). Thus, varying intervention
lengths, recurring visits with uncertain durations for
each visit, variability in demand over time via hospita-
lisations that include peaks and droughts, and multiple
staff types who play different roles at different stages all
make staffing decisions challenging.

In this study, we focus on an aggregate capacity
planning question: How many hours of each care
team staff type are needed each week and how does
this vary given the number of patients enrolled by the
care team each week? Planning for fewer staff hours
than what patients demand delays coordination tasks
and thereby increases risk of hospitalisation, whereas
having more staff hours than necessary causes under-
utilisation and increases the staffing cost of the inter-
vention. A first step achieving the right balance is the
estimation of weekly workload distributions of each
staff type as a function of the number of the patients
enrolled each week. We demonstrate how granular
patient-level encounter data can be used within the
framework of simulation to create weekly workload
histograms for each staft type. Our data come from
the Camden Coalition of Healthcare Providers (hence
forth the Camden Coalition), an organisation with sig-
nificant experience, rich data and national renown in
the field of complex care, based in Camden, New Jersey.

The simulation methodology we propose in this paper
is necessary due to complexities in the queueing network
underlying the care coordination systems such as non-
stationary routing and service time parameters.
Analytical queueing network models often require
Markovian properties which do not apply in care inter-
ventions; and while a discrete event simulation of the
process can be constructed in theory, it requires signifi-
cant amount of statistical estimation related to the time-
dependent dynamics. Analysis and optimisation in these
settings can also be achieved via random field models (as
described in some of the papers in our literature review)
which describe non-Markovian and non-stationary
patient trajectories as well as an “offered load approxima-
tion” approach that can be modelled in a mathematical
programming framework. However, reliably characteris-
ing such patient trajectory models requires a much larger
dataset than ours. We have a highly granular dataset;
however, it has a small number of patients, which makes
it difficult to use these models. We note that small
datasets are a common feature of programs that assist
patients with complex medical and social needs who
typically represent 1-5% of the population.

In our simulation methodology, we instead use the
complete longitudinal record of each patient which
embeds within it historically observed encounters,
their durations, and staff involvement. By randomly
sampling the encounter histories of the patients
according to the weekly enrolment rates and calculat-
ing the superposition of these histories over many
replications, we estimate the demand for each staff
type in any given week. We demonstrate three differ-
ent capacity planning uses of the simulation algo-
rithm. First, we estimate the workload histograms for
multiple staff types in steady state under a given mean
weekly enrolment rate. Second, we show that the
methodology can be used to infer joint workload dis-
tributions for multiple staff types that are particularly
relevant to planning home visits. This is because home
visits typically involve different staff types — for exam-
ple, a licenced practice nurse (LPN) often visits along
with a community health worker (CHW) - creating
a correlated workload pattern. Finally, we consider the
more realistic case where the mean weekly enrolments
can change with time.

The rest of the paper is organised as follows. In
Section 2, we review the literature around care coor-
dination and staff capacity planning. In Section 3,
we explain the Camden core model for care coordi-
nation. In Section 4, we summarise the data and give
examples of patient-level encounter histories. In
Section 5, we conceptualise the intervention as
a complex queueing network and present our simu-
lation algorithm. In section 6, we investigate the
results of our computational experiments. In section
7, we conclude the paper and map the directions for
future research.



Section 2: Literature review

The impacts of care coordination on patients have
been studied across numerous types of diseases and
patient characteristics. Children are often a focus of
care coordination research as they rely heavily on
adults in their life for support. A study found that
there is a positive association between care coordi-
nation and reduced functional disabilities among
children with special health care needs. These
results were enhanced when services were given in
a family-centred medical home, implying that the
family is recognised as the primary caregiver and
the care coordination team is present to aid and
support patients and their families (Litt &
McCormick, 2015). Another such study focused
on children with medical complexity and sought
to analyse the impact of nurse availability and
contact — referred to as the nurse dose - on the
success of care coordination efforts for children
with medical complexity.

Nurses are a key factor in the success of care coordi-
nation as they provide a link between patients, their
families, and other medical professionals (Cady et al.,
2015). Nurses are also crucial to the care coordination
context that we study; our model generates staffing esti-
mates for both registered nurses (RNs) and licenced
practice nurses (LPNs). Patients also need assistance in
sectors beyond healthcare - for example employment,
transportation, insurance, housing, and legal services.
For this reason, care teams have tended to include com-
munity health workers and social workers. As an exam-
ple, in the intervention described in Powers et al. (2020),
the care team consisted of a community health worker,
a social worker and a primary care physician. In our case,
care teams are led by a licenced practice nurse (LPN) and
a community health worker (CHW) and are supplemen-
ted by registered nurses (RNs) and social workers (SWs).

Features of care coordination that are most effective
in practice have also been discussed in the literature.
Brown et al. (2012) noted that successful efforts involve
repeated in-person encounters between patients and
the care team; medication management; and care
team members closely coordinating in person and
over phone with a patient’s providers. A similar review
of care coordination emphasised the importance of
patient-centric plans that integrate disease, lifestyle,
and behavioural management to increase patient
engagement and care effectiveness (Mattke et al.,
2015). The team-based care coordination program
that we study in this paper has all these features; see
Section 3 for a more detailed description on the inter-
vention. Brown et al. (2012) also found that savings can
be generated if sufficient funding is provided for care
coordination because the reduction in hospitalisation is
enough to cover the monthly fees of a care coordination
team. For a recent review of the types of interventions
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and their impact on patient utilisation and cost out-
comes, we point the reader to Chang et al. (2023).

Staffing levels are crucial in ensuring that patient
needs are met in a timely manner, yet we note that
none of these studies in the clinical and health services
literature explicitly address the staffing of multidisci-
plinary teams. One reason for this is that care coordi-
nation is an emerging field, and availability of data is
limited. Staff scheduling, on the other hand, has been
a thoroughly studied concept for decades within
healthcare systems, such as emergency departments,
hospitals, operating rooms, and physician offices.
Queueing theory, newsvendor models and other
operations research techniques have been used to
tackle scheduling issues (Barz & Rajaram, 2015;
Brandenburg et al., 2015). Appointment scheduling
and sequencing is especially important in an ambula-
tory setting where there is a need for emergent care
and scheduled procedures (Ahmadi-Javid et al., 2017;
Cayirli et al., 2006; Gupta & Denton, 2008).

This paper brings a capacity planning and staffing
perspective to the emerging field of care coordination.
A recent review paper in Manufacturing & Service
Operations Management (MSOM) (Keskinocak &
Savva, 2020) highlights “better integrated patient care”
is an area of opportunity for future research. They
believe “initiatives that aim to better coordinate acute
hospital care with preventative and chronic care in the
community” could benefit from “data-driven methods”
which is exactly what our paper aims to do.

Papers from OR&OM (Operations Research and
Operations Management) literature that are closest
to ours are Campello et al. (2017), Chow et al.
(2011), Deglise-Hawkinson et al. (2020), Helm and
Van Oyen (2014), Hilton et al. (2018), Howells et al.
(2022) and Rossi and Balasubramanian (2018). In
what follows, we review each paper and its relationship
to our study.

A key feature tackled in our paper is repeated
interactions between patients and care team staff.
Similarly, Campello et al. (2017) model the interac-
tions of customers with “case managers” using queue-
ing theory. They define case managers as servers who
are assigned multiple customers and have repeat inter-
actions with those customers. They give examples of
ED doctors, customer service representatives using
online chat, and social workers. Members of the care
team in our study operate in a manner similar to case
managers. The difference is that case managers act
independently whereas care coordination teams,
which include nurses, community health workers
and social workers among others, work together to
help a single patient. Campello et al. (2017) assume
homogeneity of customers and servers and assign
Markovian properties to arrival and service rates.
Our study assumes both deterministic and Poisson
arrivals that can be stationary or non-stationary; for
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service rates we sample patient-care team encounter
histories and use the service time realisations in these
encounter histories.

Hilton et al. (2018) models paediatric asthma
patients who also have repeated interactions with the
healthcare system following an ED visit or hospitalisa-
tion after an asthma attack. They use Markov renewal
processes to summarise time-ordered events with
varying time intervals between events (e.g., hospitali-
sations, ED visits, physician office visits) and use
model-based clustering to create patient profiles and
visualise them using network analysis. It is a paper that
describes key patterns, similar to our earlier work in
Martinez et al. (2019) but does not offer staffing
implications as we try to do here.

Howells et al. (2022) models an adult psychology
clinic in UXK's National Health Service using
a discrete event simulation. Care coordinator roles
are an important part of psychology services, and
this paper identifies the bottlenecks and suggests dif-
ferent staffing scenarios to improve accessibility of
patients to mental health services. Their results indi-
cate that having some of the therapy staff take on the
role of dedicated care coordinators could improve the
outcomes of the clinic.

Chow et al. (2011) wuses Mixed Integer
Programming and an uncapacitated Monte Carlo
simulation to optimise surgical scheduling to reduce
ward congestion. They sample patient trajectories
from a database and also try to predict staffing/
utilisation levels using MIP based optimisation and
derive guidelines for scheduling from the optimised
solutions. Their patient flow structure is standar-
dised, as patients go through pre-determined
wards, typical in a hospital setting, as opposed to
the highly variable patient trajectories through mul-
tiple staff types that is a feature of our care coordi-
nation setting. Chow et al. (2011) use of trace-driven
simulation - i.e., they directly sample patient — level
timestamps from historical data. Chow et al. (2011)
point out that trace-driven simulations have
a drawback in that they can only reproduce histor-
ical observations; however, they also note that “this
method can preserve correlation patterns between
patient type, length of stay, and patient path for
each patient”. Maintaining such patient-specific cor-
relations and the non-stationary dynamics of an
intervention, which are difficult to characterise in
an analytical patient trajectory model, is precisely
why we also chose this method.

We note further that practical operations work in
hospitals focuses on ensuring enough staft hours are
available to meet the historical demand. The assump-
tion is that having staff present for certain hours on
a certain day is sufficient for treatment needs. The
need for multiple staff types that jointly assist the
same patient over a period of time is often not

considered; and in fact, data on time spent by nurses
and other non-physician staff (such as medical tech-
nicians and social workers) is not always available in
hospital settings. Fortunately, in our care coordination
setting, data on the timing and duration of patient-
care team encounters is quite detailed. This allows to
capture of how multiple staff types are involved during
the course of a patient’s intervention. For example,
community health workers (CHWSs) and licenced
practice nurses (LPNs) regularly conduct home visits
together. The sampling of patient specific encounter
histories allows us to capture these correlated work
patterns and the joint distribution of hours needed.
Helm and Van Oyen (2014) use a random field
model and stochastic mixed integer programming to
optimise the admission scheduling and control pro-
blem for an entire hospital, with the goal of stabilising
the hospital census. A key aspect of their modelling
framework is a characterisation of a patient’s trajec-
tory from arrival to the different inpatient wards in the
hospital. Specifically, patient-level data is converted
into a probability distribution that can change over
time: it captures the probability that a patient of
a certain type (e.g., a cardiology patient, or an elective
surgery patient) would require a bed in a particular
ward on day d since arrival. This analytical model of
a patient’s evolving trajectory in the hospital is both
non-Markovian and non-stationary and is relevant to
our study. However, parameterising such a model in
the care coordination setting is a challenge. In large
hospitals, where thousands of patients are admitted in
inpatient wards each year, patient trajectories are
easier to estimate when compared to care coordina-
tion interventions where only a small number of medi-
cally complex patients are enrolled.
Deglise-Hawkinson et al. (2020) model clinical
research operations mathematically using a method
they call CAPTAIN (CApacity Planning Tool And
INformatics). A clinical research patient participating
in a trial goes through a specific protocol that involves
repeated visits to a research unit. Repeated patient
visits are also a feature of care coordination.
CAPTAIN considers the clinical research trials plan-
ning and scheduling problem from multiple perspec-
tives. It determines which new trial(s) to take on in
a heterogeneous portfolio (and which to refuse) while
considering how the required visits (determined by
the specific protocol) will transpire over time and
also ensuring that physical and nurse resources are
not exceeded. The CAPTAIN framework also captures
the Time to First Available Visit (TFAV), the earliest
available day the patient’s first visit can be scheduled.
In addition, the model allows for nurses with different
skill sets and other aspects, such as procedure rooms.
The difference with our system is that a clinical
research trial is much more prescribed and a lot less
variable compared to care coordination. In particular,



the interval between visits is pre-specified by the pro-
tocol with some flexibility around the precise day (for
example, the next visit needs to happen between 26
and 30 days from the current one, with the precise day
having a uniform probability of being chosen by the
patient). In care-coordination, the interval between
visits is not pre-specified, it must be estimated from
historical data. These intervals are stochastic and can
be short (e.g., encounters happen on successive days)
or long (no encounters occur for weeks). Longer inter-
vals are more likely to occur in the middle or later
stages of the intervention, when the patient’s health
has stabilised. Another key difference is that the work-
load induced by a visit in Deglise-Hawkinson et al.
(2020) is deterministic, while the patient-care team
encounter duration is stochastic and depends on the
encounter type (for instance, home visits may require
up to 2 h while phone calls may only need a few
minutes). Thus, there are two levels of stochasticity
that need to be accounted for in our model: one at the
level of intervals between visits (measured in terms of
number of days), and the other related to the precise
duration of the encounter. This increases the estima-
tion burden of an analytical patient trajectory model
significantly.

In summary, Helm and Van Oyen (2014) and
Deglise-Hawkinson et al. (2020) use exact optimisa-
tion approaches in the hospital and clinical research
trial settings, respectively. Embedded within their
optimisation framework are analytical models of
a patient’s flow/visits through time and the calculation
of the offered workload (i.e., the workload that would
be induced in a system without capacity limits). In
contrast, we directly sample patient-level encounter
histories in a trace-driven simulation and calculate
the offered workload realisations for multiple staff
types to facilitate aggregate capacity planning. Thus,
our approach is a heuristic one designed for a dataset
with a small number of patients, but which neverthe-
less has a high degree of granularity to model
a complex sequence of non-stationary longitudinal
encounters. We view our aggregate capacity planning
model as the first step in the development of more
sophisticated approaches.

Finally, Rossi and Balasubramanian (2018)
quantifies the workload of a primary care physician
(PCP) using longitudinal event histories assembled
from the from Medical Expenditure Panel Survey
(MEPS). The event histories concern patient visits
to primary and speciality care providers as well as
emergency department and hospital stays. By ran-
domly sampling event histories for a nationally
representative panel of patient, the paper estimates
the distribution of two types of workload asso-
ciated for a primary care physician: weekly face-to-
face office visits; the number of weekly non-PCP
events, an indirect proxy for the coordination
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workload for the PCP. Our paper has a similar
sampling methodology that uses patient event his-
tories. The main difference is that although both
papers try to estimate the demand from a panel of
patients, a PCP panel is static in Rossi and
Balasubramanian (2018), whereas panel of a care
coordination team is dynamic. In other words, in
care coordination programs patients are enrolled
and eventually complete the program in a few
weeks or months, while a primary care panel
remains largely static as the PCP builds a long-
term relationship (typically many years) with her
patients. Thus, care coordination is a much
shorter-duration, higher-engagement effort with
an ever-changing mix of patients compared long-
term, low-engagement effort of a PCP office.
A second important difference is that while Rossi
and Balasubramanian (2018) model multiple event
types, the duration of the event types are assumed
since data is not available. In contrast, the Camden
Coalition data contain event types as well as dura-
tions. Finally, Rossi and Balasubramanian (2018) is
concerned with the workload of a single provider
(the PCP), while our paper is models the indepen-
dent as well as joint distribution of the workloads
of multiple staff types in the care team.

In summary, interventions for patients with com-
plex medical and social needs are an emerging area
without a current knowledge base in the realm of
staffing and capacity planning. We create weekly
workload histograms for different staff types for
a given enrolment rate by sampling the complete
history of care team interactions with a patient.
The sampling algorithm allows us to efficiently use
a large number of details (i.e. high dimensional data)
for a small number of patients - a feature common
to all complex care intervention datasets — without
needing to parameterise a complex patient trajectory
model in a queueing network. We demonstrate three
different capacity planning applications of the algo-
rithm, including the case where arrival rates can
change over time. Thus, our algorithm considers
non-stationary dynamics from two different perspec-
tives: non-stationary/time-dependent dynamics of
the intervention, which are included in the longitu-
dinal encounter histories of the patients; and non-
stationary/time-dependent weekly enrolments (arri-
val patterns).

Section 3: The core model

We first describe further details of the care coordina-
tion intervention at the Camden Coalition. The
Coalition’s ‘Core Model’ care coordination program
(CM) works with medically and socially complex
patients who frequently utilise the hospitals in
Camden, a medium-sized city on the East Coast and
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one of the poorest and under-resourced cities in the
country. The patients selected for the community-
based clinical and social coordination program are
supported by teams consisting of non-physician mem-
bers for 30 to 120 days following a period of repeated
hospital utilisation. Individualised care plans that are
co-created by patients and care team members shape
the duration and course of the intervention and are
aimed at building durable connections between
patients and the medical and social community
resources. The importance of “authentic healing rela-
tionships” to run an effective care coordination pro-
gramme is highlighted by the patients in CM.

Patients are considered for CM if they are currently
hospitalised, have experienced two or more inpatient
admissions within a six-month period, and have 2 or
more chronic conditions. To qualify, they must also
have 2 or more additional barriers, including but not
limited to: polypharmacy (5+ medication), lack of
social support, housing instability, active drug use,
physical disabilities (e.g. hearing or vision impair-
ment), difficulty accessing serves (e.g., language bar-
rier, limited mobility, lack of transportation), and
significant mental health conditions.

Some types of hospital admissions do not satisfy the
eligibility criteria. Some examples include admissions
for oncology treatment, surgery, acute trauma (e.g.,
motor vehicle accident), chronic illnesses with limited
treatment options (e.g., multiple sclerosis), and mental
health treatment only. Moreover, patients who do not
have the mental capacity to consent to the program,
who are permanent residents of a facility, or who are
over the age of 80 are excluded.

CM starts with a patient-centred care planning
process in the hospital. During this, the needs of the
patient are organised using a taxonomy of 16 care
planning domains, such as housing, addiction, and
legal. After patient is discharged from the hospital,
CM team plans to meet patient in their home within
five days of discharge to continue the process and
perform a medication review by a nurse before
a physician reconciliates their medication. Then,
team plans to reconnect the patient to primary care
within 7 days of discharge and accompany them to
their appointment. Afterwards, the team establish
contact with the patient every week as they support
the clinical and social goals of the patient by coordi-
nating their care. When team determine that a patient
has reached their goals and developed sustainable
connections to resources that can support them medi-
cally and socially, the patient graduates from the pro-
gram. Otherwise, the enrolment is deemed incomplete
if a patient cannot be located, is no longer interested in
receiving CM services, moves outside of the program’s
geographic boundaries, is incarcerated for an extended
period, enters a long-term care facility, or is deceased.
In some situations, a patient who did not finish the

intervention may be re-enrolled if they are readmitted
to the hospital.

The CM staffing model evolved over time, but
operated primarily through assigning each patient
a two-person team consisting of a Licensed Practical
Nurse (LPN) and a Community Health Worker
(CHW). These two-person teams were supplemented
by a Registered Nurse (RN) who spanned across teams
and helped compliment the LPN for certain patient
events, such as care planning and initial home visits,
that were generally clustered earlier in the interven-
tion. In addition to the RN, the care teams were also
supported by a shared Social Work (SW) team. The
RNs and LPNs focus on clinical coordination, such as
escorting the patient to primary care or speciality
appointments. The CHWs are responsible for social
coordination, for instance, helping patients connect
with community resources, engaging with family
members, and sub-acute rehabilitation facility rounds.
Social workers and a clinical psychologist are con-
sulted as the need for their expertise arise, for example,
events that might require behavioural healthcare or
advanced social coordination, e.g., housing arrange-
ments. Americorps Community HealthCorps (which
is now defunct) volunteers supplemented the CM
team during the study period, and they were respon-
sible for work requiring less complex social
coordination.

Section 4: Data and examples of patient-level
encounter histories

We first provide a close look at the type of data used in
our study and which forms the basis for the simulation
methodology in Section 5. We use patient-care team
encounter records for 531 patients enrolled into the
Camden Coalition programme for over 164 weeks
beginning in 2012. These records described 24,249
h of staff effort. Care coordination encounters con-
ducted with or on behalf of patients were recorded by
care team members in the field via tablet computer.
This research involves retrospective analysis of de-
identified patient data. It was approved by the
Institutional Review Board (IRB) at the corresponding
author’s university. The protocol number is IRB: #198
2010-0722; a waiver of informed consent was
obtained as part of the protocol.

This section provides examples of how the
Coalition’s dataset is used to recreate patient-level
encounter histories. Consider three patients’ timeline
of events leading up to the first primary care physician
visit in Figure 1. Each shape and colour represents
a specific event and staff type. For example, the blue
triangle in week 23 of patient 168 shows that a social
worker had an interaction with this patient in the
hospital. The stacked symbols represent multiple
interactions that take place over the course of



a single day. If multiples of the same shape are stacked
within a single day, it indicates that more than one
staff type was present during the patient event:
encounters involving more than one staff are quite
common. For example, the three different coloured
circle on day 3 of patient 177 indicates that three
separate staff types attempted an enrolment visit
together.

In addition, the dataset also contains the amount of
time reported by the staff for a particular encounter.
For example, a registered nurse (RN) and community
health worker (CHW) might spend 1.5 h together with
the patient on a home visit. Or, a social worker might
spend 2 min calling an agency on behalf of the patient.
Thus, the dataset includes not only the type of encoun-
ter and staff involved but also the time spent during
the encounter by the staff. All encounters on behalf of
a patient are recorded, whether patient is present dur-
ing an encounter or not. In all, 27% of 24,249 h of staff
effort happened without the patient being present
while 3% occurred with the patient over the telephone.
Activities such as administrative meetings and train-
ings that were not liked to specific patients are not
included in the dataset.

This detailed history allows us to build encounter
histories for each patient for the entire duration of the
intervention as well as the cumulative progression of
care team hours for each patient. As an example, the
cumulative progression for two sample patients is
shown in Figure 2. The x-axis shows the number of
days passed since their enrolment in the program
(negative days specify pre-enrolment activity) and
the y-axis shows how many hours the staff members
spent with the patient in total cumulatively. The slope
of the trajectory represents the intensity of the staff
effort: steeper sections indicate that the staff members
are spending more time with the patient while flatter

O
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Day:0 2 4 6 8 10 12 14 16

Patient 177
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portions indicate minimal care team effort. In the
above example, both patients start with a steep trajec-
tory but the slope for the Individual 262 stays higher
until day 300 and then tapers off at the end whereas for
the Individual 229, the slope decreases (in a relative
sense) between days 200 and 300 and then increases
sharply again before conclusion of the intervention.
Note that the graph goes into the negatives due to the
effort spent by the care team prior to the enrolment -
generally the care team meets the patient at the hospi-
tal bedside in an effort to enlist them in the
intervention.

As noted earlier, care coordination intervention
durations and effort can vary significantly from
patient to patient. Accurately predicting the length
of intervention and care team hours at the begin-
ning of the intervention is challenging since each
patient has a unique mix of clinical and social
needs. The average duration of an intervention in
the Coalition’s dataset is 15.43 weeks, however, the
10" and 90 percentiles are 4 and 31 weeks, respec-
tively. Similarly, the average number of hours spent
by all members of the care team on a patient is 46.1
h, while the 10™ and 90™ percentiles are 6.8 h and
101.77 h, respectively.

More detailed analysis and categorisation of patient
trajectories, and descriptive analysis of staff effort and
encounter types is provided in [Martinez et al. 2019].
The following points summarise the most findings
relevant to this study:

(1) Staff effort is highly front loaded: One fifth of
post-enrolment staff effort was delivered within
12 days of enrolment (i.e., beginning of care
coordination intervention), and two fifths
were delivered within 33 days, while the next
two fifths were delivered from day 34-117.
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Event Type
-> Initial PCP Visit
-> Home Visit
-> Specialist Visit
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Figure 1. Timeline of events for three patients until their first primary care visit. (Color online).
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Figure 2. Cumulative care coordination hours by day of intervention for two sample patients.

)

©)

Staff effort is not uniformly distributed across
staff types: registered nurses (RNs), community
health workers, social workers, licenced prac-
tice nurses, and health coaches contributed to
42%, 27%, 16.1%, 24.5%, and 25.2%,
respectively.

Different staff types have different effort pro-
files. As an example, figure 3 shows the average
number of RN and SW hours needed by week
of intervention for the 526 patients in the data-
set. The early weeks of the intervention are the
busiest for both RNs and SWs, however RN
effort drops more steeply. This is because RN
effort focuses on clinical needs that are vital

immediately after the intervention to avoid
readmissions, while SW efforts on social

aspects continue once the immediate clinical
needs have been fulfilled.

Table 1 summarises the staff effort in hours for
different encounter types. The table demonstrates
that staff types vary significantly in terms of the num-
ber of hours they spend with patients. Community
health workers have the highest effort and registered
nurses the lowest. The table also demonstrates how
certain encounters require more time from certain
staff types compared to others. For example, PCP
Visit and Specialist Visit indicate encounters where

Average Hours by Week of Intervention
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—=@-=Registered Nurse (RN)

Figure 3. SW and RN average effort profiles by day of intervention. (Color Online).
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Table 1. Skill matrix (encounter type vs. hours spent per staff type). Staff types listed: CHW (community health worker); HC (health
coach); LPN (licenced licenced practical nurse); RN (registered nurse); and SW (social worker).

Row Labels CHW HC LPN RN SW Grand Total
Home Visit 2520.51 1697.57 2130.5 265.75 759.08 7373.41
Community/Nursing Home/Other Facility 651.25 1108.28 546.01 65.67 1244.64 3615.85
Enrollment Visit 473.5 308.75 608.75 315.83 52.75 1759.58
Clinical Coordination 636.87 422,92 423.16 56.31 433 1582.56
Social Coordination 94.01 408.36 51.94 12.03 957.99 1524.33
Specialist Visit 391.75 294.25 417.92 19.5 45.58 1169
Hospital 168.33 358.08 228.09 55.75 313.59 1123.84
Phone 266.57 353.15 211.2 34.12 134.57 999.61
PCP Visit 476.5 317.58 621.92 65.75 85.34 1567.09
Other 867.74 832.97 702.05 136.2 270.16 2809.12
Grand Total 6547.03 6101.91 5941.54 1026.9 3907 23524.39

a care team member accompanies a patient to the
primary care and speciality care office. We see that
social workers have the lowest involvement in PCP
and Speciality visits but have the highest hours when it
comes to meeting patients in alternative settings in the
community, for instance nursing homes.

Section 5: Methodology

5.1. Multidisciplinary care intervention as a
non-stationary queueing network

The care intervention process for patients with com-
plex medical and social needs can be conceptualised as
a non-stationary queueing network, as shown in
Figure 4. In the network, each care team staff type -
registered nurse or RN; community health worker, or
CHW; social worker, or SW; and licenced practical
nurse, or LPN - serves as a node that is numbered
accordingly. We use these four staff types as an exam-
ple while the actual problem also includes other staff
types, such as health coach and clinical psychologists.
Patients are enrolled into the intervention at a rate of A
per unit time. Once enrolled, a patient’s first

A

Vz(Ti,t)

interaction could be with either of any of the care
team staff types; these node-specific arrival rates are
denoted by A; where j = 1,2,3 and 4 in the figure. Note
that A = > A;. In Figure 4, arrivals to each of the staff
type nodeé are represented by the dashed lines. Once
the patient i is enrolled, she has recurring encounters
with multiple staff types in the care team for the length
of the intervention, similar to the three examples of
event progressions shown in Figure 1.

Let t denote a moment of time at which we
observe the queueing system, and let W, denote
the set of patients who are active in the interven-
tion at t. Denote by 7;; the number of days or
weeks patient i has been in the intervention. We
use t and 7;; because each active patient’s needs
vary depending on the stage of the intervention. At
each node j visited by the patient i at time t, the
relevant care team member spends Z]-(Tu) hours
with the patient i. The patient then moves from
node j to node k (transitions to the same node are
also allowed) with probability pj7k(‘r,-,t); further-
more, this transition takes Gj7k(‘r,~_y,) days, which
reflects the intervals between successive encounters.

Va7,

Paa (Tix) GaalTiy)

P33 (Ti,t)r Gs,a(Ti,:)

Va('[y,t)

Figure 4. Care team intervention conceptualised conceptualised as a non-stationary queueing network.
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Figure 1 provides examples of such transitions and
intervals between transitions for three patients until
their first primary care visit. From any node, the
patient can also exit from the system with prob-
ability y;, (tiz), where Vik (tie) = 1=k pik(Ti)-
Exiting the system is equivalent to completing the
intervention.

As discussed earlier and illustrated by Figure 3,
earlier stages require greater care team time and
frequency of interactions, compared to later
stages. Furthermore, certain staff types such as
registered nurses are needed earlier in an inter-
vention, while social workers are needed later.
Thus, the queueing network described here has
non-stationary dynamics even if the mean enrol-
ment rates are unchanging. Therefore, analytical
queueing models such as Jackson queuing net-
works which assume stationary and memoryless
transition probabilities cannot be used. Memory
in this case refers to knowledge of the stage of the
patient’s intervention, captured by 7;;.

We are interested in capacity planning for each staff
type in this queueing network. Specifically, for an
enrolment rate of A what is the demand/workload
distribution, i.e., the number staff hours needed on
a daily or weekly basis, at each node? Once such
a distribution is estimated, we can determine the capa-
city levels at which each staff type should work to
ensure that patient needs are met on a timely basis
and staff are not too underutilised.

One approach to estimating the demand distribu-
tion at each node is to use discrete event simulation
using off-the-shelf software. However, building such
simulation requires a significant amount of input
modelling, specifically estimating the time-dependent
parameters, such as Zj('r,;’,), pj7k(ri,t) and Gjﬁk(r,"t).
The variation in registered nurse and social worker
hours by stage of intervention seen in Figure 3 sug-
gests that service time and routing parameters would
need to be estimated for each week the patient is in the
intervention. Such estimation requires a non-trivial
amount of computational effort, formulating and opti-
mising maximum likelihood functions for Zj(r,;,),
Pk (T,‘yt) and Gjx (T,‘yt), using data observed for each
stage of the intervention (possibly for each week based
on Figure 3). While Z; (Tw) is relatively easier to esti-
mate, jointly estimating p;x (T,‘ﬁt) and Gjx (T,-A’t) - the
routing matrix and the intervals between successive
visits - poses a significant challenge. Essentially
Pk (T,"t) and Gjx (T“) together represent a patient’s
non-stationary, probabilistic trajectory through the
care intervention process, which, in the terminology
of stochastic processes, can be called a non-stationary
renewal process involving transitions between multiple
states/events. Parameterizing such renewal processes

requires datasets with a large number of patient tra-
jectories while the number of patients in care inter-
vention programs is typically small.

The queueing network conceptualisation dis-
cussed above also does not include an important
feature of complex care interventions: multiple
staff types often need to be present for certain
patient encounters. Home visits, for example,
often require two different staff types - registered
nurse and social worker; or licenced practical
nurse and community health worker - to visit
the patient’s home together. Thus, the service
time Z;(t;;) is often jointly shared across two
different staff types.

Therefore, rather than using traditional queueing
frameworks, which does not accommodate non-
stationary dynamics that include memory, a discrete
event simulation which requires significant parameter
estimation, or more recent analytical approaches
towards patient trajectory characterisation (Deglise-
Hawkinson et al., 2020; Helm & Van Oyen, 2014) we
instead use an approach that samples the complete
longitudinal event history of individual patients. The
complete longitudinal record of a historical patient
flow data set embeds within it all of the available
information for modelling the non-stationary/time-
dependent dynamics: the variation of routing and
service time parameters are automatically captured
without the explicit estimation of parameters.
Furthermore, since at any time period (a day or
a week), patients can be in many different stages, we
can use the principle of aggregation/superposition by
summing the demands across the sampled patients
who are still active in the intervention. Our method
focuses on a practical modelling approach that can
capture the significant complexity of the patient flow
processes in a manner that is useful for practitioners in
healthcare improvement. In the next section, we
describe the intuition as well as the details of our
sampling-based simulation algorithm.

5.2. A Patient trajectory-based simulation
algorithm

We capture a patient’s encounter history with the fol-
lowing notation. Denote by Z{, ; the number of hours
spent by staff type s on patient i in encounter type e in
week w of the intervention. Here, w can range from
enrolment week w = 1to weekw = y;, when the inter-
vention completes. Without loss of generality, we have
chosen a granularity of a week to allow for some level of
aggregation, however, the data allow for a granularity of
aday. Let E; ,, ; denote the set of all encounters involving
patient i and staff type s in week w of the intervention.
Then, the total hours spent by staff type s on patient i’s
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Figure 5. Visual illustration of how the simulation algorithm works for the case where exactly n =3 patients are enrolled every
week. Calculation of the demand for staff type sw in week r of replication k is shown.

care when the patient is in week w of the intervention is
given by:

_ e
Zi~,W~,S - E : Zi,w,s

e€E; s

We describe next how this aggregated encounter his-
tory can be used in the simulation to create workload
histograms for each staff type, as a function of the
weekly enrolment rate. These workload histograms
show the distribution of the required staff effort and
can be used by the team to determine a weekly capa-
city (number of hours employed for each staff type) as
described in the next section. Figure 5 provides
a visual overview of the simulation algorithm when
exactly n=3 patients are enrolled each week. The
algorithm randomly samples n unique patients with-
out replacement (i.e., patients who have not been
sampled before) each week from the dataset. Each
patient is thus assigned a starting week, and stays in
the model for y; weeks. In any week therefore, the
active patients include those who were enrolled in
prior weeks and who are yet to graduate and the
newly enrolled patients. This sampling process is
repeated until the system reaches steady state and the
number of active patients stabilises. The sum of the
hours requested of a staff member by patients who are
active in any week can be calculated after steady state
is reached. This enables estimating weekly workload
distribution unique to each staff type. We can think of
this simulation as the method of superpositions of
patient encounter histories to obtain demand esti-
mates. By repeating the simulation algorithm multiple
times, we can collect many weekly realisations since
the superpositions will involve different combinations
of patient encounter histories. In what follows, we
provide a formal description of the algorithm, starting
with the notation.

Notation

s: index for staff type, s € {rn, lpn, chw, hc, sw}

t: index for indicating week in simulation

i: index for patients

M: set of indices for patients for whom historical event
data exists. For our study, |[M| = 526.

n: variable in simulation algorithm that stores number
of patients enrolled in each week

y; : number of weeks that patient i is active in the
intervention

ay: set of indices of patients newly enrolled (arriving)
in week ¢

l;: set of indices of patients leaving the programme in
week ¢

W,: set of all patients that are currently active in week ¢
7; s the number of weeks a patient i € W, has been in
the intervention at time period t. For example, if
a patient i joined the intervention 3-weeks prior to
the current week ¢, then 7;; = 3.

K: total replications of the simulation, indexed by k
Uy: set of indices of all patients not sampled prior to
week t in replication k of the simulation. U,S M.
Zir, s : time (in hours) needed of staff type s by patient
i in week 7, of patient’s i’s intervention.

D, x: total demand (hours) for staff type s in week t of
replication k

Initializations for first week of simulation for
replication k

Sett=1

Initialize Uy = M [In the beginning all patients for
whom we have data can be sampled.]

Determine n, the number of patients enrolled in week
1. [n is either constant or sampled from a Poisson dis-
tribution with a predetermined mean.]

Randomly sample n unique patient indices from Uj.
Add the n patient indices to the set a;.
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Initialize W, = a1, and [, = @ [Patients active in
week 1 are those who were just enrolled. No patients
left the programme in week 1, hence this set is
empty.]

Initialize for all i € a; 7,7 =1 [All newly enrolled
patients are in week 1 of their intervention.]

Update Uy = Ui\ay [Patients’ indices sampled in week 1
cannot be sampled again]

Simulation algorithm for replication k

Step 1: Set t=t + 1[Advance the week of the simulation.]
Step 2: Determine s, the number of patients newly
enrolled in week ¢. [n is either constant or sampled from
a Poisson distribution with a predetermined mean.]
Step 3: If |Uk |< n, go to Step 8 [End simulation if
n unique patients cannot be sampled. ]

Else

Step 4: Randomly sample »n unique patient indices
from U. Add the n patient indices to the set a;
Step 5: Update the following sets and variables:

W; = (Wi_1\ L_1)Ua; [Patients who left the pro-
gramme in week t-1 (denoted by l,_,) are removed
from the set of active patients and patients newly
enrolled in week t are added to the set of active patients.
Note that \ indicates set subtraction.]

Forallieay, 7y = 1 [Patients who joined in simulation
week t are in week 1 of their intervention.]

Forallie (W\a¢), Tis = Tit—1 + 1 [Each patient i who
did not newly enrol and is currently active enters the
next week of their intervention. In other words, the
updated 1;; value captures which week of the interven-
tion they are currently in.]

Uk = Ui \ a; [Patients’ indices sampled in week t cannot
be sampled again in replication k.]

Step 6: Calculate demand or workload for each staff
type s in week ¢ by summing all the demand from
patient i active in set W, that are in week 7;; of
their intervention:

Dy 1k =ZieW, Zi;fi,us

[Demand for staff type s is the sum of the time needed
by each patient active in week t of simulation. The time
each patient needs from each staff type in week
t depends on T;.]

Step 7: Return to Step 1

Step 8: End simulation

5.3. Estimating the steady state demand
distribution

Since the simulation starts with the system empty and
idle (i.e., at t=1 W, is empty before patients are
sampled), there is a warm-up period before steady
state is reached. We now illustrate how to calculate
the steady state weekly demand distribution for each
staff type. If y is the average intervention duration

(average time from enrolment to graduation), then u
can be estimated by averaging the intervention dura-
tions of each patient in the dataset:

p=3" /Ml

Let A be the average number of patients enrolled each
week.

The mean steady-state number of patients active
during the intervention, L, is therefore given by:

L=Axy

This is a straightforward application of Little’s Law
(Little, 1961) which states that the long-term average
number of customers in a stationary system is equal to
the long-term average effective arrival rate multiplied
by the average time that a customer spends in the
system. As new customers arrive and existing custo-
mers leave in each period, a certain number of indivi-
duals remain active in the system; Little Law’s
estimates the mean number of active customers.
Note that L can be calculated before the simulation
begins and therefore it can be used to exclude weeks in
the warm-up period and determine when steady state
has been reached. More precisely, in any replication
k when E[|W;|] =L (i.e., the average number of
patients active in simulation week t reaches L) the
simulation has reached a steady state.

Let T be the total number of weeks that simulation
runs in replication k and b indicate the week in which
steady state is reached. Therefore, the steady state
demand distribution for staff type is s is given by
D« for all weeks t=b to t = T and for all replications
k=1to k=K. For the Camden Coalition’s dataset, y =
13.3 weeks. For a mean arrival rate of A = 3:

L=3x%x13.3=39.9

Therefore, the steady state is achieved when the
average number of patients active in the interven-
tion stabilises at approximately 40 patients. Once
the number of active patients stabilises, we can
estimate the steady state workload distribution for
each of the staff types. Figure 6 shows average
weekly demand values in hours (based on 5000
simulation replications) for each staff member
when exactly 3 patients are enrolled each week.
The simulation runs for 175 weeks since beyond
this time it is not possible to sample 3 unique
patients from the total of 526. The number of
patients stabilises at around from week 40 onwards
and so do the weekly hours for each of the staff
types. Thus, by discarding observations prior to
week 40, and by using the observations from
weeks 40 to week 175 we can estimate the distribu-
tion of demand for each staff type.

For a constant arrival rate of A = 6 the steady
state is still achieved from week 40 onwards, how-
ever the weekly demand hours for each staff type
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Figure 6. Average weekly demand for each staff type (based on 5000 replications) by week of simulation. (Color Online).

are roughly doubled. In this case, each replication
of the simulation runs for 87 weeks in total since
we cannot sample 6 unique patients from the data-
set from week 88 onwards (by week 87, 87 x 6 = 522
patients are sampled and only 3 patients are left).
Thus, the steady state distribution for each of the
staff types is calculated from week 40 to week 87.
This still gives us 47 observations in each replica-
tion and if we repeat the simulation 100 times, we
get 4700 weekly observations from which to esti-
mate the weekly workload distributions for each
staff type.

5.4. Underlying assumptions and limitations

We now address some underlying assumptions and
limitations in our simulation methodology.

(1) Biases in the Data: The encounter histories
are based on actual realisations, so they may
contain delays experienced by patients. In
other words, a particular home visit for
a patient should have occurred on week 5
of the intervention, but instead occurred in
week 6. For some other patients, encounters
might have higher tolerance so that while an
encounter occurred in a certain week, it
could have safely been moved to the follow-
ing week. To test if such factors might
impact our histograms, we conducted simu-
lations in which the encounter dates were
“perturbed” with a small probability - that
is moved to a week prior or a week later. We
found that the superpositions of the

(2)

perturbed event sequences did not change
the workload histograms. This is because in
any week, different patient combinations are
involved in the superpositions leading to an
averaging effect that produces histograms
similar to the unperturbed case.

Patient Wait Times: We have not considered
patient waiting times in this study. This is
because timeliness is of the essence when it
comes to patients with complex medical and
social needs who have been recently dis-
charged from a hospital stay. Thus, it is
reasonable to assume an “ideal” situation
where patient needs must be addressed
within the week in which they arise. We
use an offered load approach (i.e., we assume
there are no constraints on care team capa-
city) and use the weekly realisations to esti-
mate workload histograms and to determine
reasonable capacity values. The capacity
values that we derive assume that additional
demand in a week must be addressed using
overtime rather than fulfilling it in the
future. In future work, we plan to consider
a more realistic model where the care team
prioritises certain patients and encounters
based on the level of urgency related to the
hospital readmission risk.

Dedicated Staff: We assume that all staff
types in the care team are solely dedicated
to serving patients currently enrolled in the
intervention. This is different from other
hospital-based settings where high-risk, high
need patients are only a subset of the total
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patients seen by the staff members, such as
Dedicated staffing models for
patients with complex needs are common
in interventions being piloted in the United
States.

nurses.

Section 6: Results

6.1. Independent workload estimation of each
staff type

Figure 7 shows workload histograms for each staff
type (data collected in steady state weeks across all
the replications) based on 5000 replications of the
simulation, along with means and goth percentiles
for a constant/deterministic number of patients (A
=3 and A=6) being enrolled each week. Figure 8

shows the workload histograms for the case when
the number of patients enrolled follows a Poisson
distribution with a given mean (A =3 and A =6).
The workload histograms can be used for staffing
purposes. For example, the care team may choose to
staff at the 80" percentile. In the A\ =3 case and
assuming a Poisson enrolment rate each week, this
implies that the care team will plan for 46.58-h
Community Health Worker’s (CHW) time each
week, which implies more than one CHW assuming
a full-time workload of 40 h per week per CHW (or
overtime); for the equivalent A = 6 case the care team
will plan for 87.5 h of CHW’s time, which again
implies more than 2 CHWs in the care team (or
again, overtime). Notice that the goth percentile
values are slightly higher in the Poisson cases com-
pared to the constant enrolment rate. The variability
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Figure 7. Workload histograms or weekly demand distributions (x axis in hours) for each staff type under constant weekly

enrolment rates of 3 (left) and 6 (right).
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Weekly Demand Distrubution - Poisson Arrival Rate
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Figure 8. Workload histograms or weekly demand distributions (x axis in hours) for each staff type under poisson weekly

enrolment rates of with means of 3 (left) and 6 (right).

in enrolments week to week creates some additional
variability, however, from a practical point of view,
the constant and Poisson cases seem to generate
similar workload histograms. This suggests that the
variability due to the time needed for encounters has
a more significant impact than the variability due to
weekly enrolments.

Workload histograms follow symmetric normal
distributions closely and seem to scale up when the
enrolment rate is doubled. The only exception is
the RN histogram in A =3 case, which is truncated
on the left by 0 - this is because RN hours per
week are much lower than that for other staff types.

Care teams have to strike a balance between under-
utilisation, when demand is below available staff
hours, and utilisationover-utilisation, when demand
is higher than available staff hours. The latter case
implies inability to provide timely coordination and
potentially increases the risk of patient hospitalisations

and emergency events. We can construct a simple
newsvendor model for this purpose. Newsvendor
model is a single-period mathematical model used to
determine optimal inventory levels in settings with
fixed prices and uncertain demand for a perishable
product. The modern formulation has been defined
in Arrow et al. (1951). Newsvendor heuristics have
been used in healthcare literature before. A recent
example is Barz and Rajaram (2015) who calculated
the critical fractile for different patient groups and
prioritised them according to their net contributions.

While more sophisticated applications of the
newsvendor model are possible, we use it here
as a simple quantitative tool. We provide an illus-
trative example. Assuming the utilisationover-
utilisation can be addressed by overtime, and an
overtime cost (p) that is double the regular hourly
rate (which corresponds to the cost of under-
utilisation, ¢) for any staff member, we can plug
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in the critical fractile formula for the newsvendor
model to calculate the staffing level g:

q=F" <f%> =F"! (?) =F1(0.5)

Under the above assumptions, the critical fractile
corresponds to the median. For CHW, the median
is at 36 h per week and for LPN the median is at 32
h per week; these would therefore be the staffing
levels for CHW and LPN respectively. For other
values of p and c the staffing level g can be simi-
larly calculated. An alternative is to calculate the
expected weekly unsatisfied patient demand in
hours and the unutilised hours as a function of
the number of weekly hours for a staff type, for
different values of q. This is shown in Figure 9.
A care team could determine the value g based on
the costs and implications that are best suited to
their practice.

We see in Figure 9 that the distance between
unutilised hours and unsatisfied demand is mini-
mised at the median. One interesting observation is
that because partial demand satisfaction is possible
even for the demand levels above the capacity, the
expected unsatisfied demand can be quite low. For
example, if the LPN capacity is 32 h but the
demand is 36 h, LPN can still satisfy 32 h of the
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demand. Only 4/36 or 1/9" (about 11%) of the
total demand was not satisfied. This means that
even if we set the LPN capacity at the median of
32 h 88% of the weekly demand from the patient
panel can be satisfied, and the unfulfilled demand
could address through overtime or by moving non-
urgent encounters to the next week. Such quantifi-
cation will be important for care coordination
teams that might be resource constrained.

6.2. Dependent workload estimation of home
visits for LPN and CHW

Although it is easier to treat the demand for each staff
type independently and calculate their workload sepa-
rately, in reality, demand for each staff type is not
independent. As explained above, staff members at
Camden Coalition regularly work in teams of two -
one nurse and one social worker/community health
worker. This is particularly true when it comes to
home visits. Regular home visits are a central feature
of the Camden Coalition model. The Camden
Coalition targets to have the first home visit of
a patient within 5days of discharge from hospital,
and repeated home visits to the patients throughout
their intervention. Home visits are the encounter type
corresponding to the largest effort from staff,
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Figure 9. LPN and CHW expected unutilised unutilised hours (Unutil) and unsatisfied demand (Unsat) at different capacity levels.

(Color Online).



accounting for 30.6% of total time effort (Martinez
et al.,, 2019). Other care coordination programmes
are likely to implement a similar care model.

For situations in which two or more staff types are
involved in addressing the needs of a patient, calculat-
ing the staff weekly workload as a joint bivariate or
multivariate distribution is more accurate.
Fortunately, our simulation methodology and the
level of granularity in our data allows for such calcula-
tions. Recall that D, ; , represents the workload for staff
type s in week ¢ of replication k. We use D, ; across all
steady state weeks in all replications to create work-
load histograms independently for each staff type.
Now suppose that we are interested in estimating the
bivariate weekly workload distribution for LPN and
CHW. We would now use realisations of the pair
[Drpnik Derw, k] across all steady state weeks in all
replications to create a bivariate weekly workload his-
togram. If we further restrict the encounters to be only
home visits, then we have the bivariate weekly work-
load histogram for LPN and CHW for home visits.

The key insight here is that since LPNs and CHWs
frequently conduct home visits together, an increase
(or decrease) in home visit workload in week for LPN
also would mean an increase (or decrease) in home
visit workload for the CHW, and vice versa. Thus, the
home visit workloads for these staff types are corre-
lated. This is what we mean by dependent workload
estimation. In contrast, we can create a bivariate work-
load distribution by assuming independence. In the
independent case, the probability that a LPN works h;
hours in any given week and the CHW works h, hours
is simply the product of the individual probabilities
estimated separately based in histograms for LPN and
CHW shown in Figure 7. That is, the home visit work-
loads for LPN and CHW have no correlation: an
increase (or decrease) in one does not necessarily
mean an increase (or decrease) in the other.

Figure 10 illustrates the difference between estimat-
ing the bivariate distribution under the independent
and dependent assumptions. In the left panel, we see
the bivariate histogram of number of home visit hours
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for LPN and CHW when we assume independence,
and the in right panel we see the bivariate histogram
when we assume dependence. These plots are calcu-
lated for LPN and CHW home visits under constant
demand (3 patients enrolled per week).

Although the distributions look similar, there are
a few key differences. The demand is more tightly
focused around the mean and has a higher-valued
single peak under the dependent distribution (right
panel in Figure 10) when compared to independent
bivariate distribution (left panel in Figure 10). This
tighter distribution is due to the correlation in home
visit hours that we discussed earlier.

The largest difference between the two distributions
occurs when the when the LPN home visit demand is
13 h per week and CHW home-visit demand is 14
h per week. The dependent distribution estimates that
this combination of home visit hours occurs 33.55% of
the time, while the independent distribution estimates
it occurs 26.42% of the time. Thus the independent
distribution underestimates the joint demand by
about 7.13% which can lead to an inaccurate staffing
decisions. However, especially at higher capacities for
the staff members, we find that the independent dis-
tribution is a good approximation of the dependent
distribution.

We can use the bivariate cumulative distribution for
home visits similar to how we used the independent
cumulative distributions for all encounter types in
a newsvendor model. If we assume that LPN and CHW
have the same overtime and underutilisation cost ratio as
before (2:1), we can reserve the capacity for home visits at
the median. Using the bivariate cumulative distribution,
the capacity values closest to the median are at 18 h for
LPN and 15 h for CHW - those are the hours that could
be reserved for weekly home visits based on the news-
vendor model, when an average of 3 patients are enrolled
in the program per week.

We can also similarly calculate the expected
unutilised hours and unsatisfied demand per week
for different combinations of LPN and CHW capa-
city levels as shown in Tables 3 and 4.

20

10

Weekly Hours for CHW 0 o Weekly Hours for LPN

Figure 10. Independent (left) and dependent (right) bivariate histograms of home visits for LPN and CHW.
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Table 2. LPN & CHW hours per week reserved for home visits vs. expected unutilised
capacity in hours. Each cell contains two unutilised unutilised capacity values in
hours: the first value for the LPN, the second for the CHW.

LPN\CHW 0 10 20 30

0 0,0 0,037 0,531 0,14.58
10 0.63,0 0.63,0.37 0.63,5.31 0.63,14.58
20 7.22,0 7.22,037 7.22,531 7.22,14.58
30 17.03,0 17.03,0.37 17.03,5.31 17.03,14.58

Table 3. LPN & CHW hours per week reserved for home visits vs. expected unsatisfied
demand in hours. Each cell contains two unsatisfied home visit demand values in hours:
the first value for the LPN, the second for the CHW.

LPN\CHW 0 20 30

0 12.97,15.45 12.97,5.82 12.97,0.77 12.97,0.04
10 4.43,15.45 4.43,5.82 4.43,0.77 4.43,0.04
20 0.66,15.45 0.66,5.82 0.66,0.77 0.66,0.04
30 0.02,15.45 0.02,5.82 0.02,0.77 0.02,0.04

To explain how to read and use above tables,
we look at an example. If both LPN & CHW
reserve 10 h per week for home visits, the weekly
expected unutilised capacity will be 0.63 h for LPN
and 0.37 h for CHW (Table 2) and the weekly
expected unsatisfied demand will be 4.43 h for
LPN and 5.82 h for CHW (Table 3). This is an
unreasonable number of home visit hours unful-
filled and is likely to have an impact on patient
outcomes. If CHW and LPN were staffed at 20
h each, the number of unsatisfied home visit hours
goes down to 0.66 and 0.77-h respectively for the
two staff types. On the flip side, the two staff types
would have 7.22 to 5.31 h of unutilised home visit
capacity. One thing to note is that while we are
reserving the capacity specifically for home
encounters (due to their importance in the care
coordination intervention), unutilised capacity
could still be used for other encounter types
whereas unsatisfied demand will have negative
connotations so it might make more sense to be
more conservative. However, our newsvendor cal-
culations above assume overtime costs for unsatis-
fied demand, so it might not be a significant
concern if the staff types can be paid for addi-
tional hours beyond their allotted capacity.

6.3. 6.3. Non-stationary enrolment rates

In our analysis so far, we have assumed that while the
number of enrolments from one week to the next can
change (when sampled from the Poisson distribution),
the mean weekly enrolment rates are unchanging or

stationary. We now discuss how the impact of non-
stationary enrolment rates can be analysed. Non-
stationary enrolments are common in practice and
arise for a variety of reasons. Care teams often start
with a small number of patients, and as they learn the
best practices of assisting patients and streamlining
their processes, they enrol more patients and hire
new staff members. Greater awareness of care coordi-
nation efforts in a community can also result in
increased enrolments. A common problem in such
situations is that as demand surges to a new equili-
brium, the care team will need to adapt their staffing
levels.

In this section, we model the case where a care team
starts weekly enrolments that follows a Poisson dis-
tribution with a mean rate of 3 from week 1 to week
60. Starting in week 61, the mean weekly enrolment
rate increases linearly over a 5-week period to a new
mean of 5 in week 65. In other words, the distribution
of weekly enrolments still follows the Poisson distri-
bution, however the rate is non-stationary and repre-
sents a surge/increase over the current status quo. We
assume that the mean weekly enrolment rate of 5
holds until week 120.

The simulation algorithm presented in Section 5
is modified to sample new enrolments each week
based on the above non-stationary Poisson pattern.
After experimenting with different number of repli-
cations to evaluate the stability of the results, we
used 200 replications of the 120-week period to
analyse the results. First, we plot how the average
number of patients active in the program (i.e.,
estimate of E [|W,|] based on 200 replications)

Table 4. Percentiles of the RN weekly workload distribution for each of the four 20-week segments.

Percentile Weeks 41-60 Weeks 61-80 Weeks 81-100 Weeks 101-120
10th 1.84 3.17 425 4.00
25th 3.42 5.33 6.42 6.25
50th 5.5 8.08 9.33 9.33
75th 8.16 11.42 12.83 12.66
90th 10.92 14.83 16.24 15.92




changes in the 120-week time period, see Figure 11
below. The average number of active patients also
follows a non-stationary pattern. After the initial
transient phase in weeks 1-35, the system reaches
steady state for A=3. This steady state remains
until week 61 when the mean weekly enrolment
rate starts to increase. Although the mean weekly
enrolments stop increasing in week 65, the number
of active patients continues to rise in weeks 61-80
and stabilises partially in weeks 81-100 and more
decisively in weeks 101-120. This demonstrates
how an increase in weekly enrolment rate (from
A=3 to A=5) in a 5-week period can create
a much longer transient period of approximately
30-40 weeks.

To demonstrate how staffing levels should be
adjusted, we divide the time horizon into 4 segments
of 20 weeks each (weeks 41-60; 61-80; 81-100; 101-
120). For each 20-week period, we estimate the work-
load histograms for each staff type based on the 200
replications. This gives us 4000 observations for each
20-week segment. As an example, Table 4 shows esti-
mates of 10™, 25, 50, 75", and 90" percentiles of
the registered nurse (RN) workload distribution in the
each of the four 20-week segments. As expected, the
percentiles in the transient 20-week segment lie in
between the weeks 41-60 and 81-100 segments; and
the percentiles in the last two 20-week segments are
quite similar. These estimates can be used by care
teams to gradually transition their capacities to meet
the increase in demand.
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By increasing the number of replications, the care
team can also look at equivalent smaller time seg-
ments, if they need more precise short-term planning.
For example, the 10™, 25™, 50™, 75™ and 90™ percen-
tiles for RN workload in weeks 61-65 (the weeks in
which enrolments started rising) based on 200 replica-
tions are 2.33, 4.1, 6.58, 9.83 and 12.84 h, respectively.
These numbers are within 2 h of the percentiles for
weeks 41-60, and therefore suggest that an RN staffing
needs to be increased only minimally in the surge
weeks.

More complicated profiles than the linear demand
surge we considered above can be similarly analysed.
For instance, staffing estimates for a non-stationary
pattern where certain months of the year have higher
demand than others can also be quantified.

Section 7: Conclusions and future work

In summary, several insights can be obtained from
our study. The first is that patient-level longitudinal
data can be effectively used for aggregate capacity
planning purposes, even when the number of
patients in the dataset is small. Detailed event pro-
gression data for a small number of patients is
a common feature of interventions involving
patients with complex medical and social needs.
This is because such patients only represent 1-5%
of a population but can have a disproportionate
impact on the health system, in terms of healthcare
utilisation as well as costs.

61 81 101

Simulation Week

Figure 11. Average number of active patients in non-stationary case.
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The second insight is that our sampling-based
simulation algorithm can (a) implicitly model non-
stationary/time-dependent features inherent in
a patient’s intervention and (b) explicitly model
changes in the weekly enrolment rates. Traditional
queueing network models are unable to capture
such non-stationary dynamics. While discrete
event simulation models of non-stationary queue-
ing networks are possible, they require data for
a large number of patients which are typically not
available to care coordination programs.

Results based on our algorithm reveal several pat-
terns. First, weekly workload distributions vary widely
between staff types with registered nurses having the
smallest effort while community health workers
(CHWs) having the largest. As their name suggests,
CHWs are recruited from the same community as the
patients and are well versed with the available medical
and social support systems. They therefore form
a central pillar of the coordination effort, increasing
the ability of the care team to effectively engage with
patients. However, the pairing of different staff types
for certain encounters is also a vital part of the care
intervention. For example, a licenced practical nurse
(LPN) and community health worker (CHW) often
conduct home visits together. The LPN provides clin-
ical expertise during the home visit while CHW helps
connect the patient to agencies in the community that
provide social support. Thus, both medical and social
needs are coordinated together. Therefore, it is more
accurate to consider the correlations in workload
between staff types when making staffing decisions.
Our results also demonstrate using the joint workload
distribution involving multiple staff types provides
a more accurate picture of staffing needs. Specifically,
we found that for home visits, the LPN-CHW bivari-
ate joint distribution is more tightly focused around
the mean and has a higher-valued single peak com-
pared to the LPN-CHW bivariate distribution created
assuming independence.

Finally, our approach can also be used to create
staffing plans when the mean weekly enrolment rate
fluctuates. A key insight is that even short-term
changes in mean weekly enrolments can result in
long transient periods. Workload distributions for
any small time segment in a transient period can be
analysed with sufficient replications of our simulation
algorithm, and can help care teams adjust their staffing
levels. Such analysis is useful for planned increases or
decreases in enrolment and seasonal patterns that
recur each year. For unplanned changes, the nonsta-
tionary enrolments model could be used to generate
what-if scenarios to scale up or scale down capacity
levels for members of the care team.

We view the aggregate capacity planning approach
in this study as a first step in the development of more
detailed and sophisticated approaches. In future work,

we plan create an analytical patient trajectory model
using principled methods (such as maximum entropy
estimation) that are able to overcome the limitations
of sparse data and can capture the probabilistic trajec-
tory of a patient beyond what is observed historically.
Next, the inclusion of patient characteristics - combi-
nations of specific medical conditions and social
needs — that lead to greater effort or require higher
priority would help with care team decision making.
Finally, a model that explicitly considers patient wait
times along with the prioritisation of patient types and
patient encounters based on urgency (or risk of hos-
pitalisation) would lead to policies on how best the
care team should allocate their time.
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