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ABSTRACT
Healthcare spending in the United States is concentrated on a small percentage of individuals, 
with 5% of the population accounting for 50% of annual spending. Many patients among the 
top 5% of spenders have complex health and social needs. Care coordination interventions, 
often led by a multidisciplinary team consisting of nurses, community health workers and social 
workers, are one strategy for addressing the challenges facing such patients. Care teams strive 
to improve health outcomes by forging strong relationships with clients, visiting them on 
a regular basis, reconciling medications, arranging primary and speciality care visits, and 
addressing social needs such as housing instability, unemployment and insurance. In this 
paper, we propose a simulation algorithm that samples longitudinal patient-level encounter 
histories to estimate the staffing needs for a multidisciplinary care team. Our numerical results 
illustrate multiple uses of the algorithm for staffing under stationary and non-stationary patient 
enrollment rates.
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Section 1. Background and motivation

Healthcare spending in the United States is disproportio
nately skewed: just 5% of the population accounts for 
50% of annual spending, while just 1% accounts for 
almost a quarter of annual spending (AHRQ, 2010). 
Many individuals among the top 1–5% of spenders 
have complex medical and social needs. According to 
the National Center for Complex Care, “people with 
complex health and social needs experience combina
tions of medical, behavioural health, and social challenges 
that result in extreme patterns of healthcare utilisation 
and cost. They repeatedly cycle through multiple health
care, social service, and other systems but do not derive 
lasting benefits from those interactions”. Such individuals 
typically have multiple chronic conditions and experi
ence significantly higher than average hospital utilisation 
rates, including avoidable hospitalisations. The social 
context – the absence of stable housing or strong support 
networks, the lack of employment or insurance, the pre
sence of disabilities, and the lack of transportation 
options, to name a few – further complicates the care 
delivery process and adds to the individual’s 
vulnerabilities.

Care coordination interventions are one strategy 
for addressing the challenges facing individuals with 
complex medical and social needs. Care coordination 
refers to a concerted effort, often consisting of a multi- 
disciplinary team of nurses, community health 

workers and social workers, to help improve the health 
and wellbeing of such patients. While care coordina
tion has largely been employed telephonically, there 
has been a growing shift to “high-contact”, in-person- 
based interventions. In “high-contact” care coordina
tion efforts – which are the focus of this paper – the 
care team spends significant time with and on behalf 
of each patient. For example, members of the care 
team repeatedly visit the patient out in the community 
(to observe patient’s circumstances beyond what may 
be visible in a healthcare setting), checking vital signs 
and discussing symptoms, helping reconcile their 
medications, arranging primary and speciality care 
visits, accompanying the patient to those visits, arran
ging for transportation, procuring medical equipment, 
etc. Social workers and community health workers in 
the care team address issues, such as lack of housing, 
employment, legal services, insurance, mental health 
and addictions. Interventions can last anywhere 
between a few weeks to months, and seek to end 
when patient goals are achieved and patients become 
self-reliant: their health status has improved, and they 
are able to go about their daily lives with minimal 
support from the care team. The hypothesis under
lying care coordination interventions is that the care 
team can help patients (1) improve self-efficacy and 
well-being by enabling medical and social support, 
including access to primary and speciality care 
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appointments, housing, employment and health 
insurance; (2) aim to reduce adverse and costly events, 
such as avoidable emergency visits, medication-related 
complications, and hospitalisations and increase utili
sation of outpatient services and other non-emergent 
medical care.

This paper deals with aggregate capacity planning 
and staffing questions in “high-contact” multidisciplin
ary care coordination teams. While care coordination 
has been adopted by a range of organisations, including 
payers, primary care providers, and hospitals, there is 
a lack of studies on how care teams should be staffed. 
Staffing a care coordination team that addresses the 
needs of medically and socially complex patients in 
a timely manner is challenging for many reasons. 
First, the number of weeks a patient will be in the care 
intervention varies significantly from patient to patient 
and is difficult to predict a priori. Second, a patient 
needs repeated interactions of uncertain durations 
with multiple staff types during the length of the inter
vention (interventions typically last weeks or months). 
For example, two members of the care team may visit 
the patient’s home each week in the early stages of an 
intervention; and a home visit can last anywhere from 
30 min to 2 h. Third, the number of hours a particular 
staff type in the care team will need to spend with 
a patient is uncertain and varies by the week of the 
intervention the patient is in. For example, registered 
nurse demands peak in the first 2 weeks of a patient’s 
intervention while SW demands peak in the later stages, 
once urgent clinical issues have been resolved 
(Martinez et al., 2019). Thus, varying intervention 
lengths, recurring visits with uncertain durations for 
each visit, variability in demand over time via hospita
lisations that include peaks and droughts, and multiple 
staff types who play different roles at different stages all 
make staffing decisions challenging.

In this study, we focus on an aggregate capacity 
planning question: How many hours of each care 
team staff type are needed each week and how does 
this vary given the number of patients enrolled by the 
care team each week? Planning for fewer staff hours 
than what patients demand delays coordination tasks 
and thereby increases risk of hospitalisation, whereas 
having more staff hours than necessary causes under
utilisation and increases the staffing cost of the inter
vention. A first step achieving the right balance is the 
estimation of weekly workload distributions of each 
staff type as a function of the number of the patients 
enrolled each week. We demonstrate how granular 
patient-level encounter data can be used within the 
framework of simulation to create weekly workload 
histograms for each staff type. Our data come from 
the Camden Coalition of Healthcare Providers (hence 
forth the Camden Coalition), an organisation with sig
nificant experience, rich data and national renown in 
the field of complex care, based in Camden, New Jersey.

The simulation methodology we propose in this paper 
is necessary due to complexities in the queueing network 
underlying the care coordination systems such as non- 
stationary routing and service time parameters. 
Analytical queueing network models often require 
Markovian properties which do not apply in care inter
ventions; and while a discrete event simulation of the 
process can be constructed in theory, it requires signifi
cant amount of statistical estimation related to the time- 
dependent dynamics. Analysis and optimisation in these 
settings can also be achieved via random field models (as 
described in some of the papers in our literature review) 
which describe non-Markovian and non-stationary 
patient trajectories as well as an “offered load approxima
tion” approach that can be modelled in a mathematical 
programming framework. However, reliably characteris
ing such patient trajectory models requires a much larger 
dataset than ours. We have a highly granular dataset; 
however, it has a small number of patients, which makes 
it difficult to use these models. We note that small 
datasets are a common feature of programs that assist 
patients with complex medical and social needs who 
typically represent 1–5% of the population.

In our simulation methodology, we instead use the 
complete longitudinal record of each patient which 
embeds within it historically observed encounters, 
their durations, and staff involvement. By randomly 
sampling the encounter histories of the patients 
according to the weekly enrolment rates and calculat
ing the superposition of these histories over many 
replications, we estimate the demand for each staff 
type in any given week. We demonstrate three differ
ent capacity planning uses of the simulation algo
rithm. First, we estimate the workload histograms for 
multiple staff types in steady state under a given mean 
weekly enrolment rate. Second, we show that the 
methodology can be used to infer joint workload dis
tributions for multiple staff types that are particularly 
relevant to planning home visits. This is because home 
visits typically involve different staff types – for exam
ple, a licenced practice nurse (LPN) often visits along 
with a community health worker (CHW) – creating 
a correlated workload pattern. Finally, we consider the 
more realistic case where the mean weekly enrolments 
can change with time.

The rest of the paper is organised as follows. In 
Section 2, we review the literature around care coor
dination and staff capacity planning. In Section 3, 
we explain the Camden core model for care coordi
nation. In Section 4, we summarise the data and give 
examples of patient-level encounter histories. In 
Section 5, we conceptualise the intervention as 
a complex queueing network and present our simu
lation algorithm. In section 6, we investigate the 
results of our computational experiments. In section 
7, we conclude the paper and map the directions for 
future research.
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Section 2: Literature review

The impacts of care coordination on patients have 
been studied across numerous types of diseases and 
patient characteristics. Children are often a focus of 
care coordination research as they rely heavily on 
adults in their life for support. A study found that 
there is a positive association between care coordi
nation and reduced functional disabilities among 
children with special health care needs. These 
results were enhanced when services were given in 
a family-centred medical home, implying that the 
family is recognised as the primary caregiver and 
the care coordination team is present to aid and 
support patients and their families (Litt & 
McCormick, 2015). Another such study focused 
on children with medical complexity and sought 
to analyse the impact of nurse availability and 
contact – referred to as the nurse dose – on the 
success of care coordination efforts for children 
with medical complexity.

Nurses are a key factor in the success of care coordi
nation as they provide a link between patients, their 
families, and other medical professionals (Cady et al.,  
2015). Nurses are also crucial to the care coordination 
context that we study; our model generates staffing esti
mates for both registered nurses (RNs) and licenced 
practice nurses (LPNs). Patients also need assistance in 
sectors beyond healthcare – for example employment, 
transportation, insurance, housing, and legal services. 
For this reason, care teams have tended to include com
munity health workers and social workers. As an exam
ple, in the intervention described in Powers et al. (2020), 
the care team consisted of a community health worker, 
a social worker and a primary care physician. In our case, 
care teams are led by a licenced practice nurse (LPN) and 
a community health worker (CHW) and are supplemen
ted by registered nurses (RNs) and social workers (SWs).

Features of care coordination that are most effective 
in practice have also been discussed in the literature. 
Brown et al. (2012) noted that successful efforts involve 
repeated in-person encounters between patients and 
the care team; medication management; and care 
team members closely coordinating in person and 
over phone with a patient’s providers. A similar review 
of care coordination emphasised the importance of 
patient-centric plans that integrate disease, lifestyle, 
and behavioural management to increase patient 
engagement and care effectiveness (Mattke et al.,  
2015). The team-based care coordination program 
that we study in this paper has all these features; see 
Section 3 for a more detailed description on the inter
vention. Brown et al. (2012) also found that savings can 
be generated if sufficient funding is provided for care 
coordination because the reduction in hospitalisation is 
enough to cover the monthly fees of a care coordination 
team. For a recent review of the types of interventions 

and their impact on patient utilisation and cost out
comes, we point the reader to Chang et al. (2023).

Staffing levels are crucial in ensuring that patient 
needs are met in a timely manner, yet we note that 
none of these studies in the clinical and health services 
literature explicitly address the staffing of multidisci
plinary teams. One reason for this is that care coordi
nation is an emerging field, and availability of data is 
limited. Staff scheduling, on the other hand, has been 
a thoroughly studied concept for decades within 
healthcare systems, such as emergency departments, 
hospitals, operating rooms, and physician offices. 
Queueing theory, newsvendor models and other 
operations research techniques have been used to 
tackle scheduling issues (Barz & Rajaram, 2015; 
Brandenburg et al., 2015). Appointment scheduling 
and sequencing is especially important in an ambula
tory setting where there is a need for emergent care 
and scheduled procedures (Ahmadi-Javid et al., 2017; 
Cayirli et al., 2006; Gupta & Denton, 2008).

This paper brings a capacity planning and staffing 
perspective to the emerging field of care coordination. 
A recent review paper in Manufacturing & Service 
Operations Management (MSOM) (Keskinocak & 
Savva, 2020) highlights “better integrated patient care” 
is an area of opportunity for future research. They 
believe “initiatives that aim to better coordinate acute 
hospital care with preventative and chronic care in the 
community” could benefit from “data-driven methods” 
which is exactly what our paper aims to do.

Papers from OR&OM (Operations Research and 
Operations Management) literature that are closest 
to ours are Campello et al. (2017), Chow et al. 
(2011), Deglise-Hawkinson et al. (2020), Helm and 
Van Oyen (2014), Hilton et al. (2018), Howells et al. 
(2022) and Rossi and Balasubramanian (2018). In 
what follows, we review each paper and its relationship 
to our study.

A key feature tackled in our paper is repeated 
interactions between patients and care team staff. 
Similarly, Campello et al. (2017) model the interac
tions of customers with “case managers” using queue
ing theory. They define case managers as servers who 
are assigned multiple customers and have repeat inter
actions with those customers. They give examples of 
ED doctors, customer service representatives using 
online chat, and social workers. Members of the care 
team in our study operate in a manner similar to case 
managers. The difference is that case managers act 
independently whereas care coordination teams, 
which include nurses, community health workers 
and social workers among others, work together to 
help a single patient. Campello et al. (2017) assume 
homogeneity of customers and servers and assign 
Markovian properties to arrival and service rates. 
Our study assumes both deterministic and Poisson 
arrivals that can be stationary or non-stationary; for 
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service rates we sample patient-care team encounter 
histories and use the service time realisations in these 
encounter histories.

Hilton et al. (2018) models paediatric asthma 
patients who also have repeated interactions with the 
healthcare system following an ED visit or hospitalisa
tion after an asthma attack. They use Markov renewal 
processes to summarise time-ordered events with 
varying time intervals between events (e.g., hospitali
sations, ED visits, physician office visits) and use 
model-based clustering to create patient profiles and 
visualise them using network analysis. It is a paper that 
describes key patterns, similar to our earlier work in 
Martinez et al. (2019) but does not offer staffing 
implications as we try to do here.

Howells et al. (2022) models an adult psychology 
clinic in U.K’.s National Health Service using 
a discrete event simulation. Care coordinator roles 
are an important part of psychology services, and 
this paper identifies the bottlenecks and suggests dif
ferent staffing scenarios to improve accessibility of 
patients to mental health services. Their results indi
cate that having some of the therapy staff take on the 
role of dedicated care coordinators could improve the 
outcomes of the clinic.

Chow et al. (2011) uses Mixed Integer 
Programming and an uncapacitated Monte Carlo 
simulation to optimise surgical scheduling to reduce 
ward congestion. They sample patient trajectories 
from a database and also try to predict staffing/ 
utilisation levels using MIP based optimisation and 
derive guidelines for scheduling from the optimised 
solutions. Their patient flow structure is standar
dised, as patients go through pre-determined 
wards, typical in a hospital setting, as opposed to 
the highly variable patient trajectories through mul
tiple staff types that is a feature of our care coordi
nation setting. Chow et al. (2011) use of trace-driven 
simulation – i.e., they directly sample patient – level 
timestamps from historical data. Chow et al. (2011) 
point out that trace-driven simulations have 
a drawback in that they can only reproduce histor
ical observations; however, they also note that “this 
method can preserve correlation patterns between 
patient type, length of stay, and patient path for 
each patient”. Maintaining such patient-specific cor
relations and the non-stationary dynamics of an 
intervention, which are difficult to characterise in 
an analytical patient trajectory model, is precisely 
why we also chose this method.

We note further that practical operations work in 
hospitals focuses on ensuring enough staff hours are 
available to meet the historical demand. The assump
tion is that having staff present for certain hours on 
a certain day is sufficient for treatment needs. The 
need for multiple staff types that jointly assist the 
same patient over a period of time is often not 

considered; and in fact, data on time spent by nurses 
and other non-physician staff (such as medical tech
nicians and social workers) is not always available in 
hospital settings. Fortunately, in our care coordination 
setting, data on the timing and duration of patient- 
care team encounters is quite detailed. This allows to 
capture of how multiple staff types are involved during 
the course of a patient’s intervention. For example, 
community health workers (CHWs) and licenced 
practice nurses (LPNs) regularly conduct home visits 
together. The sampling of patient specific encounter 
histories allows us to capture these correlated work 
patterns and the joint distribution of hours needed.

Helm and Van Oyen (2014) use a random field 
model and stochastic mixed integer programming to 
optimise the admission scheduling and control pro
blem for an entire hospital, with the goal of stabilising 
the hospital census. A key aspect of their modelling 
framework is a characterisation of a patient’s trajec
tory from arrival to the different inpatient wards in the 
hospital. Specifically, patient-level data is converted 
into a probability distribution that can change over 
time: it captures the probability that a patient of 
a certain type (e.g., a cardiology patient, or an elective 
surgery patient) would require a bed in a particular 
ward on day d since arrival. This analytical model of 
a patient’s evolving trajectory in the hospital is both 
non-Markovian and non-stationary and is relevant to 
our study. However, parameterising such a model in 
the care coordination setting is a challenge. In large 
hospitals, where thousands of patients are admitted in 
inpatient wards each year, patient trajectories are 
easier to estimate when compared to care coordina
tion interventions where only a small number of medi
cally complex patients are enrolled.

Deglise-Hawkinson et al. (2020) model clinical 
research operations mathematically using a method 
they call CAPTAIN (CApacity Planning Tool And 
INformatics). A clinical research patient participating 
in a trial goes through a specific protocol that involves 
repeated visits to a research unit. Repeated patient 
visits are also a feature of care coordination. 
CAPTAIN considers the clinical research trials plan
ning and scheduling problem from multiple perspec
tives. It determines which new trial(s) to take on in 
a heterogeneous portfolio (and which to refuse) while 
considering how the required visits (determined by 
the specific protocol) will transpire over time and 
also ensuring that physical and nurse resources are 
not exceeded. The CAPTAIN framework also captures 
the Time to First Available Visit (TFAV), the earliest 
available day the patient’s first visit can be scheduled. 
In addition, the model allows for nurses with different 
skill sets and other aspects, such as procedure rooms.

The difference with our system is that a clinical 
research trial is much more prescribed and a lot less 
variable compared to care coordination. In particular, 
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the interval between visits is pre-specified by the pro
tocol with some flexibility around the precise day (for 
example, the next visit needs to happen between 26 
and 30 days from the current one, with the precise day 
having a uniform probability of being chosen by the 
patient). In care-coordination, the interval between 
visits is not pre-specified, it must be estimated from 
historical data. These intervals are stochastic and can 
be short (e.g., encounters happen on successive days) 
or long (no encounters occur for weeks). Longer inter
vals are more likely to occur in the middle or later 
stages of the intervention, when the patient’s health 
has stabilised. Another key difference is that the work
load induced by a visit in Deglise-Hawkinson et al. 
(2020) is deterministic, while the patient-care team 
encounter duration is stochastic and depends on the 
encounter type (for instance, home visits may require 
up to 2 h while phone calls may only need a few 
minutes). Thus, there are two levels of stochasticity 
that need to be accounted for in our model: one at the 
level of intervals between visits (measured in terms of 
number of days), and the other related to the precise 
duration of the encounter. This increases the estima
tion burden of an analytical patient trajectory model 
significantly.

In summary, Helm and Van Oyen (2014) and 
Deglise-Hawkinson et al. (2020) use exact optimisa
tion approaches in the hospital and clinical research 
trial settings, respectively. Embedded within their 
optimisation framework are analytical models of 
a patient’s flow/visits through time and the calculation 
of the offered workload (i.e., the workload that would 
be induced in a system without capacity limits). In 
contrast, we directly sample patient-level encounter 
histories in a trace-driven simulation and calculate 
the offered workload realisations for multiple staff 
types to facilitate aggregate capacity planning. Thus, 
our approach is a heuristic one designed for a dataset 
with a small number of patients, but which neverthe
less has a high degree of granularity to model 
a complex sequence of non-stationary longitudinal 
encounters. We view our aggregate capacity planning 
model as the first step in the development of more 
sophisticated approaches.

Finally, Rossi and Balasubramanian (2018) 
quantifies the workload of a primary care physician 
(PCP) using longitudinal event histories assembled 
from the from Medical Expenditure Panel Survey 
(MEPS). The event histories concern patient visits 
to primary and speciality care providers as well as 
emergency department and hospital stays. By ran
domly sampling event histories for a nationally 
representative panel of patient, the paper estimates 
the distribution of two types of workload asso
ciated for a primary care physician: weekly face-to- 
face office visits; the number of weekly non-PCP 
events, an indirect proxy for the coordination 

workload for the PCP. Our paper has a similar 
sampling methodology that uses patient event his
tories. The main difference is that although both 
papers try to estimate the demand from a panel of 
patients, a PCP panel is static in Rossi and 
Balasubramanian (2018), whereas panel of a care 
coordination team is dynamic. In other words, in 
care coordination programs patients are enrolled 
and eventually complete the program in a few 
weeks or months, while a primary care panel 
remains largely static as the PCP builds a long- 
term relationship (typically many years) with her 
patients. Thus, care coordination is a much 
shorter-duration, higher-engagement effort with 
an ever-changing mix of patients compared long- 
term, low-engagement effort of a PCP office. 
A second important difference is that while Rossi 
and Balasubramanian (2018) model multiple event 
types, the duration of the event types are assumed 
since data is not available. In contrast, the Camden 
Coalition data contain event types as well as dura
tions. Finally, Rossi and Balasubramanian (2018) is 
concerned with the workload of a single provider 
(the PCP), while our paper is models the indepen
dent as well as joint distribution of the workloads 
of multiple staff types in the care team.

In summary, interventions for patients with com
plex medical and social needs are an emerging area 
without a current knowledge base in the realm of 
staffing and capacity planning. We create weekly 
workload histograms for different staff types for 
a given enrolment rate by sampling the complete 
history of care team interactions with a patient. 
The sampling algorithm allows us to efficiently use 
a large number of details (i.e. high dimensional data) 
for a small number of patients – a feature common 
to all complex care intervention datasets – without 
needing to parameterise a complex patient trajectory 
model in a queueing network. We demonstrate three 
different capacity planning applications of the algo
rithm, including the case where arrival rates can 
change over time. Thus, our algorithm considers 
non-stationary dynamics from two different perspec
tives: non-stationary/time-dependent dynamics of 
the intervention, which are included in the longitu
dinal encounter histories of the patients; and non- 
stationary/time-dependent weekly enrolments (arri
val patterns).

Section 3: The core model

We first describe further details of the care coordina
tion intervention at the Camden Coalition. The 
Coalition’s ‘Core Model’ care coordination program 
(CM) works with medically and socially complex 
patients who frequently utilise the hospitals in 
Camden, a medium-sized city on the East Coast and 

HEALTH SYSTEMS 5



one of the poorest and under-resourced cities in the 
country. The patients selected for the community- 
based clinical and social coordination program are 
supported by teams consisting of non-physician mem
bers for 30 to 120 days following a period of repeated 
hospital utilisation. Individualised care plans that are 
co-created by patients and care team members shape 
the duration and course of the intervention and are 
aimed at building durable connections between 
patients and the medical and social community 
resources. The importance of “authentic healing rela
tionships” to run an effective care coordination pro
gramme is highlighted by the patients in CM.

Patients are considered for CM if they are currently 
hospitalised, have experienced two or more inpatient 
admissions within a six-month period, and have 2 or 
more chronic conditions. To qualify, they must also 
have 2 or more additional barriers, including but not 
limited to: polypharmacy (5+ medication), lack of 
social support, housing instability, active drug use, 
physical disabilities (e.g. hearing or vision impair
ment), difficulty accessing serves (e.g., language bar
rier, limited mobility, lack of transportation), and 
significant mental health conditions.

Some types of hospital admissions do not satisfy the 
eligibility criteria. Some examples include admissions 
for oncology treatment, surgery, acute trauma (e.g., 
motor vehicle accident), chronic illnesses with limited 
treatment options (e.g., multiple sclerosis), and mental 
health treatment only. Moreover, patients who do not 
have the mental capacity to consent to the program, 
who are permanent residents of a facility, or who are 
over the age of 80 are excluded.

CM starts with a patient-centred care planning 
process in the hospital. During this, the needs of the 
patient are organised using a taxonomy of 16 care 
planning domains, such as housing, addiction, and 
legal. After patient is discharged from the hospital, 
CM team plans to meet patient in their home within 
five days of discharge to continue the process and 
perform a medication review by a nurse before 
a physician reconciliates their medication. Then, 
team plans to reconnect the patient to primary care 
within 7 days of discharge and accompany them to 
their appointment. Afterwards, the team establish 
contact with the patient every week as they support 
the clinical and social goals of the patient by coordi
nating their care. When team determine that a patient 
has reached their goals and developed sustainable 
connections to resources that can support them medi
cally and socially, the patient graduates from the pro
gram. Otherwise, the enrolment is deemed incomplete 
if a patient cannot be located, is no longer interested in 
receiving CM services, moves outside of the program’s 
geographic boundaries, is incarcerated for an extended 
period, enters a long-term care facility, or is deceased. 
In some situations, a patient who did not finish the 

intervention may be re-enrolled if they are readmitted 
to the hospital.

The CM staffing model evolved over time, but 
operated primarily through assigning each patient 
a two-person team consisting of a Licensed Practical 
Nurse (LPN) and a Community Health Worker 
(CHW). These two-person teams were supplemented 
by a Registered Nurse (RN) who spanned across teams 
and helped compliment the LPN for certain patient 
events, such as care planning and initial home visits, 
that were generally clustered earlier in the interven
tion. In addition to the RN, the care teams were also 
supported by a shared Social Work (SW) team. The 
RNs and LPNs focus on clinical coordination, such as 
escorting the patient to primary care or speciality 
appointments. The CHWs are responsible for social 
coordination, for instance, helping patients connect 
with community resources, engaging with family 
members, and sub-acute rehabilitation facility rounds. 
Social workers and a clinical psychologist are con
sulted as the need for their expertise arise, for example, 
events that might require behavioural healthcare or 
advanced social coordination, e.g., housing arrange
ments. Americorps Community HealthCorps (which 
is now defunct) volunteers supplemented the CM 
team during the study period, and they were respon
sible for work requiring less complex social 
coordination.

Section 4: Data and examples of patient-level 
encounter histories

We first provide a close look at the type of data used in 
our study and which forms the basis for the simulation 
methodology in Section 5. We use patient-care team 
encounter records for 531 patients enrolled into the 
Camden Coalition programme for over 164 weeks 
beginning in 2012. These records described 24,249 
h of staff effort. Care coordination encounters con
ducted with or on behalf of patients were recorded by 
care team members in the field via tablet computer. 
This research involves retrospective analysis of de- 
identified patient data. It was approved by the 
Institutional Review Board (IRB) at the corresponding 
author’s university. The protocol number is IRB: #198 
2010–0722; a waiver of informed consent was 
obtained as part of the protocol.

This section provides examples of how the 
Coalition’s dataset is used to recreate patient-level 
encounter histories. Consider three patients’ timeline 
of events leading up to the first primary care physician 
visit in Figure 1. Each shape and colour represents 
a specific event and staff type. For example, the blue 
triangle in week 23 of patient 168 shows that a social 
worker had an interaction with this patient in the 
hospital. The stacked symbols represent multiple 
interactions that take place over the course of 
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a single day. If multiples of the same shape are stacked 
within a single day, it indicates that more than one 
staff type was present during the patient event: 
encounters involving more than one staff are quite 
common. For example, the three different coloured 
circle on day 3 of patient 177 indicates that three 
separate staff types attempted an enrolment visit 
together.

In addition, the dataset also contains the amount of 
time reported by the staff for a particular encounter. 
For example, a registered nurse (RN) and community 
health worker (CHW) might spend 1.5 h together with 
the patient on a home visit. Or, a social worker might 
spend 2 min calling an agency on behalf of the patient. 
Thus, the dataset includes not only the type of encoun
ter and staff involved but also the time spent during 
the encounter by the staff. All encounters on behalf of 
a patient are recorded, whether patient is present dur
ing an encounter or not. In all, 27% of 24,249 h of staff 
effort happened without the patient being present 
while 3% occurred with the patient over the telephone. 
Activities such as administrative meetings and train
ings that were not liked to specific patients are not 
included in the dataset.

This detailed history allows us to build encounter 
histories for each patient for the entire duration of the 
intervention as well as the cumulative progression of 
care team hours for each patient. As an example, the 
cumulative progression for two sample patients is 
shown in Figure 2. The x-axis shows the number of 
days passed since their enrolment in the program 
(negative days specify pre-enrolment activity) and 
the y-axis shows how many hours the staff members 
spent with the patient in total cumulatively. The slope 
of the trajectory represents the intensity of the staff 
effort: steeper sections indicate that the staff members 
are spending more time with the patient while flatter 

portions indicate minimal care team effort. In the 
above example, both patients start with a steep trajec
tory but the slope for the Individual 262 stays higher 
until day 300 and then tapers off at the end whereas for 
the Individual 229, the slope decreases (in a relative 
sense) between days 200 and 300 and then increases 
sharply again before conclusion of the intervention. 
Note that the graph goes into the negatives due to the 
effort spent by the care team prior to the enrolment – 
generally the care team meets the patient at the hospi
tal bedside in an effort to enlist them in the 
intervention.

As noted earlier, care coordination intervention 
durations and effort can vary significantly from 
patient to patient. Accurately predicting the length 
of intervention and care team hours at the begin
ning of the intervention is challenging since each 
patient has a unique mix of clinical and social 
needs. The average duration of an intervention in 
the Coalition’s dataset is 15.43 weeks, however, the 
10th and 90 percentiles are 4 and 31 weeks, respec
tively. Similarly, the average number of hours spent 
by all members of the care team on a patient is 46.1 
h, while the 10th and 90th percentiles are 6.8 h and 
101.77 h, respectively.

More detailed analysis and categorisation of patient 
trajectories, and descriptive analysis of staff effort and 
encounter types is provided in [Martinez et al. 2019]. 
The following points summarise the most findings 
relevant to this study:

(1) Staff effort is highly front loaded: One fifth of 
post-enrolment staff effort was delivered within 
12 days of enrolment (i.e., beginning of care 
coordination intervention), and two fifths 
were delivered within 33 days, while the next 
two fifths were delivered from day 34–117.

Enrollment Visit Attempt

Phone

Other Coordination

Hospital

Specialist Visit

Home Visit

Initial PCP Visit

Event Type
Registered Nurse

Community Health Worker

Licensed Practical Nurse 

Hospital Worker

Social Worker

Health Coach

Staff Type

Day: 0    2    4    6    8    10    12    14    16    18    20    22    24    26    28    30    32    34    36    38    40   42 44    46    48    50    52    54 
Patient 168

Day: 0    2    4    6    8    10    12    14    16    18    20    22    24    26    28    30    32    34    36    38    40   42 44    46    48
Patient 99

Patient 177
Day: 0    2    4    6    8    10    12    14    16    

Figure 1. Timeline of events for three patients until their first primary care visit. (Color online).
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(2) Staff effort is not uniformly distributed across 
staff types: registered nurses (RNs), community 
health workers, social workers, licenced prac
tice nurses, and health coaches contributed to 
4.2%, 27%, 16.1%, 24.5%, and 25.2%, 
respectively.

(3) Different staff types have different effort pro
files. As an example, figure 3 shows the average 
number of RN and SW hours needed by week 
of intervention for the 526 patients in the data
set. The early weeks of the intervention are the 
busiest for both RNs and SWs, however RN 
effort drops more steeply. This is because RN 
effort focuses on clinical needs that are vital 

immediately after the intervention to avoid 
readmissions, while SW efforts on social 
aspects continue once the immediate clinical 
needs have been fulfilled.

Table 1 summarises the staff effort in hours for 
different encounter types. The table demonstrates 
that staff types vary significantly in terms of the num
ber of hours they spend with patients. Community 
health workers have the highest effort and registered 
nurses the lowest. The table also demonstrates how 
certain encounters require more time from certain 
staff types compared to others. For example, PCP 
Visit and Specialist Visit indicate encounters where 
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Figure 2. Cumulative care coordination hours by day of intervention for two sample patients.
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a care team member accompanies a patient to the 
primary care and speciality care office. We see that 
social workers have the lowest involvement in PCP 
and Speciality visits but have the highest hours when it 
comes to meeting patients in alternative settings in the 
community, for instance nursing homes.

Section 5: Methodology

5.1. Multidisciplinary care intervention as a 
non-stationary queueing network

The care intervention process for patients with com
plex medical and social needs can be conceptualised as 
a non-stationary queueing network, as shown in 
Figure 4. In the network, each care team staff type – 
registered nurse or RN; community health worker, or 
CHW; social worker, or SW; and licenced practical 
nurse, or LPN – serves as a node that is numbered 
accordingly. We use these four staff types as an exam
ple while the actual problem also includes other staff 
types, such as health coach and clinical psychologists. 
Patients are enrolled into the intervention at a rate of λ 
per unit time. Once enrolled, a patient’s first 

interaction could be with either of any of the care 
team staff types; these node-specific arrival rates are 
denoted by λj where j = 1,2,3 and 4 in the figure. Note 
that λ ¼

P

j
λj. In Figure 4, arrivals to each of the staff 

type nodes are represented by the dashed lines. Once 
the patient i is enrolled, she has recurring encounters 
with multiple staff types in the care team for the length 
of the intervention, similar to the three examples of 
event progressions shown in Figure 1.

Let t denote a moment of time at which we 
observe the queueing system, and let Wt denote 
the set of patients who are active in the interven
tion at t. Denote by τi;t the number of days or 
weeks patient i has been in the intervention. We 
use t and τi;t because each active patient’s needs 
vary depending on the stage of the intervention. At 
each node j visited by the patient i at time t, the 
relevant care team member spends Zj τi;t

� �
hours 

with the patient i. The patient then moves from 
node j to node k (transitions to the same node are 
also allowed) with probability pj;k τi;t

� �
; further

more, this transition takes Gj;k τi;t
� �

days, which 
reflects the intervals between successive encounters. 

Table 1. Skill matrix (encounter type vs. hours spent per staff type). Staff types listed: CHW (community health worker); HC (health 
coach); LPN (licenced licenced practical nurse); RN (registered nurse); and SW (social worker).

Row Labels CHW HC LPN RN SW Grand Total

Home Visit 2520.51 1697.57 2130.5 265.75 759.08 7373.41
Community/Nursing Home/Other Facility 651.25 1108.28 546.01 65.67 1244.64 3615.85
Enrollment Visit 473.5 308.75 608.75 315.83 52.75 1759.58
Clinical Coordination 636.87 422.92 423.16 56.31 43.3 1582.56
Social Coordination 94.01 408.36 51.94 12.03 957.99 1524.33
Specialist Visit 391.75 294.25 417.92 19.5 45.58 1169
Hospital 168.33 358.08 228.09 55.75 313.59 1123.84
Phone 266.57 353.15 211.2 34.12 134.57 999.61
PCP Visit 476.5 317.58 621.92 65.75 85.34 1567.09
Other 867.74 832.97 702.05 136.2 270.16 2809.12
Grand Total 6547.03 6101.91 5941.54 1026.9 3907 23524.39

RN (1) 
Z1( i,t)

LPN(4)
Z4( i,t)

CHW (2)
Z2( i,t)

SW (3)
Z3( i,t)

p
1,3 (
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λ3 3( i,t)
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Figure 4. Care team intervention conceptualised conceptualised as a non-stationary queueing network.
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Figure 1 provides examples of such transitions and 
intervals between transitions for three patients until 
their first primary care visit. From any node, the 
patient can also exit from the system with prob
ability γj;k τi;t

� �
, where γj;k τi;t

� �
¼ 1 �

P
k pj;k τi;t

� �
. 

Exiting the system is equivalent to completing the 
intervention.

As discussed earlier and illustrated by Figure 3, 
earlier stages require greater care team time and 
frequency of interactions, compared to later 
stages. Furthermore, certain staff types such as 
registered nurses are needed earlier in an inter
vention, while social workers are needed later. 
Thus, the queueing network described here has 
non-stationary dynamics even if the mean enrol
ment rates are unchanging. Therefore, analytical 
queueing models such as Jackson queuing net
works which assume stationary and memoryless 
transition probabilities cannot be used. Memory 
in this case refers to knowledge of the stage of the 
patient’s intervention, captured by τi;t .

We are interested in capacity planning for each staff 
type in this queueing network. Specifically, for an 
enrolment rate of λ what is the demand/workload 
distribution, i.e., the number staff hours needed on 
a daily or weekly basis, at each node? Once such 
a distribution is estimated, we can determine the capa
city levels at which each staff type should work to 
ensure that patient needs are met on a timely basis 
and staff are not too underutilised.

One approach to estimating the demand distribu
tion at each node is to use discrete event simulation 
using off-the-shelf software. However, building such 
simulation requires a significant amount of input 
modelling, specifically estimating the time-dependent 
parameters, such as Zj τi;t

� �
, pj;k τi;t

� �
and Gj;k τi;t

� �
. 

The variation in registered nurse and social worker 
hours by stage of intervention seen in Figure 3 sug
gests that service time and routing parameters would 
need to be estimated for each week the patient is in the 
intervention. Such estimation requires a non-trivial 
amount of computational effort, formulating and opti
mising maximum likelihood functions for Zj τi;t

� �
, 

pj;k τi;t
� �

and Gj;k τi;t
� �

, using data observed for each 
stage of the intervention (possibly for each week based 
on Figure 3). While Zj τi;t

� �
is relatively easier to esti

mate, jointly estimating pj;k τi;t
� �

and Gj;k τi;t
� �

– the 
routing matrix and the intervals between successive 
visits – poses a significant challenge. Essentially 
pj;k τi;t

� �
and Gj;k τi;t

� �
together represent a patient’s 

non-stationary, probabilistic trajectory through the 
care intervention process, which, in the terminology 
of stochastic processes, can be called a non-stationary 
renewal process involving transitions between multiple 
states/events. Parameterizing such renewal processes 

requires datasets with a large number of patient tra
jectories while the number of patients in care inter
vention programs is typically small.

The queueing network conceptualisation dis
cussed above also does not include an important 
feature of complex care interventions: multiple 
staff types often need to be present for certain 
patient encounters. Home visits, for example, 
often require two different staff types – registered 
nurse and social worker; or licenced practical 
nurse and community health worker – to visit 
the patient’s home together. Thus, the service 
time Zj τi;t

� �
is often jointly shared across two 

different staff types.
Therefore, rather than using traditional queueing 

frameworks, which does not accommodate non- 
stationary dynamics that include memory, a discrete 
event simulation which requires significant parameter 
estimation, or more recent analytical approaches 
towards patient trajectory characterisation (Deglise- 
Hawkinson et al., 2020; Helm & Van Oyen, 2014) we 
instead use an approach that samples the complete 
longitudinal event history of individual patients. The 
complete longitudinal record of a historical patient 
flow data set embeds within it all of the available 
information for modelling the non-stationary/time- 
dependent dynamics: the variation of routing and 
service time parameters are automatically captured 
without the explicit estimation of parameters. 
Furthermore, since at any time period (a day or 
a week), patients can be in many different stages, we 
can use the principle of aggregation/superposition by 
summing the demands across the sampled patients 
who are still active in the intervention. Our method 
focuses on a practical modelling approach that can 
capture the significant complexity of the patient flow 
processes in a manner that is useful for practitioners in 
healthcare improvement. In the next section, we 
describe the intuition as well as the details of our 
sampling-based simulation algorithm.

5.2. A Patient trajectory-based simulation 
algorithm

We capture a patient’s encounter history with the fol
lowing notation. Denote by Ze

i;w;s the number of hours 
spent by staff type s on patient i in encounter type e in 
week w of the intervention. Here, w can range from 
enrolment week w ¼ 1to weekw ¼ μi, when the inter
vention completes. Without loss of generality, we have 
chosen a granularity of a week to allow for some level of 
aggregation, however, the data allow for a granularity of 
a day. Let Ei,w,s denote the set of all encounters involving 
patient i and staff type s in week w of the intervention. 
Then, the total hours spent by staff type s on patient i’s 
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care when the patient is in week w of the intervention is 
given by: 

Zi;w;s ¼
X

e2Ei;w;s

Ze
i;w;s 

We describe next how this aggregated encounter his
tory can be used in the simulation to create workload 
histograms for each staff type, as a function of the 
weekly enrolment rate. These workload histograms 
show the distribution of the required staff effort and 
can be used by the team to determine a weekly capa
city (number of hours employed for each staff type) as 
described in the next section. Figure 5 provides 
a visual overview of the simulation algorithm when 
exactly n = 3 patients are enrolled each week. The 
algorithm randomly samples n unique patients with
out replacement (i.e., patients who have not been 
sampled before) each week from the dataset. Each 
patient is thus assigned a starting week, and stays in 
the model for μi weeks. In any week therefore, the 
active patients include those who were enrolled in 
prior weeks and who are yet to graduate and the 
newly enrolled patients. This sampling process is 
repeated until the system reaches steady state and the 
number of active patients stabilises. The sum of the 
hours requested of a staff member by patients who are 
active in any week can be calculated after steady state 
is reached. This enables estimating weekly workload 
distribution unique to each staff type. We can think of 
this simulation as the method of superpositions of 
patient encounter histories to obtain demand esti
mates. By repeating the simulation algorithm multiple 
times, we can collect many weekly realisations since 
the superpositions will involve different combinations 
of patient encounter histories. In what follows, we 
provide a formal description of the algorithm, starting 
with the notation.

Notation
s: index for staff type, s ϵ {rn, lpn, chw, hc, sw}
t: index for indicating week in simulation
i: index for patients
M: set of indices for patients for whom historical event 
data exists. For our study, |M| = 526.
n: variable in simulation algorithm that stores number 
of patients enrolled in each week
μi : number of weeks that patient i is active in the 
intervention
at: set of indices of patients newly enrolled (arriving) 
in week t
lt : set of indices of patients leaving the programme in 
week t
Wt: set of all patients that are currently active in week t
τi;t : the number of weeks a patient i 2 Wt has been in 
the intervention at time period t. For example, if 
a patient i joined the intervention 3-weeks prior to 
the current week t, then τi;t = 3.
K: total replications of the simulation, indexed by k
Uk: set of indices of all patients not sampled prior to 
week t in replication k of the simulation. Uk⊆ M.
Zi;τi;t ;s : time (in hours) needed of staff type s by patient 
i in week τi;t of patient’s i’s intervention.
Ds;t;k: total demand (hours) for staff type s in week t of 
replication k

Initializations for first week of simulation for 
replication k
Set t = 1
Initialize Uk = M [In the beginning all patients for 
whom we have data can be sampled.]
Determine n, the number of patients enrolled in week 
1. [n is either constant or sampled from a Poisson dis
tribution with a predetermined mean.]
Randomly sample n unique patient indices from Uk. 
Add the n patient indices to the set a1.

Figure 5. Visual illustration of how the simulation algorithm works for the case where exactly n = 3 patients are enrolled every 
week. Calculation of the demand for staff type sw in week r of replication k is shown.
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Initialize W1 ¼ a1, and l1 ¼ Ø [Patients active in 
week 1 are those who were just enrolled. No patients 
left the programme in week 1, hence this set is 
empty.]
Initialize for all i ϵ a1 τi;1 ¼ 1 [All newly enrolled 
patients are in week 1 of their intervention.]
Update Uk = Uk\a1 [Patients’ indices sampled in week 1 
cannot be sampled again]

Simulation algorithm for replication k
Step 1: Set t=t + 1[Advance the week of the simulation.]
Step 2: Determine n, the number of patients newly 
enrolled in week t. [n is either constant or sampled from 
a Poisson distribution with a predetermined mean.]
Step 3: If |Uk |< n, go to Step 8 [End simulation if 
n unique patients cannot be sampled.]
Else
Step 4: Randomly sample n unique patient indices 
from Uk. Add the n patient indices to the set at
Step 5: Update the following sets and variables:
Wt ¼ ðWt�1n lt�1Þ [ at [Patients who left the pro
gramme in week t-1 (denoted by lt�1) are removed 
from the set of active patients and patients newly 
enrolled in week t are added to the set of active patients. 
Note that \ indicates set subtraction.]
For all i ϵ at, τi;t ¼ 1 [Patients who joined in simulation 
week t are in week 1 of their intervention.]
For all i ϵ Wtnatð Þ, τi;t ¼ τi;t�1 þ 1 [Each patient i who 
did not newly enrol and is currently active enters the 
next week of their intervention. In other words, the 
updated τi;t value captures which week of the interven
tion they are currently in.]
Uk = Uk n at [Patients’ indices sampled in week t cannot 
be sampled again in replication k.]
Step 6: Calculate demand or workload for each staff 
type s in week t by summing all the demand from 
patient i active in set Wt that are in week τi;t of 
their intervention:
Ds,t,k =

P
i2Wt

Zi;τi;t ;s

[Demand for staff type s is the sum of the time needed 
by each patient active in week t of simulation. The time 
each patient needs from each staff type in week 
t depends on τi;t .]
Step 7: Return to Step 1
Step 8: End simulation

5.3. Estimating the steady state demand 
distribution

Since the simulation starts with the system empty and 
idle (i.e., at t = 1 Wt is empty before patients are 
sampled), there is a warm-up period before steady 
state is reached. We now illustrate how to calculate 
the steady state weekly demand distribution for each 
staff type. If μ is the average intervention duration 

(average time from enrolment to graduation), then μ 
can be estimated by averaging the intervention dura
tions of each patient in the dataset: 

μ ¼
X

i2M
μi= Mj j

Let λ be the average number of patients enrolled each 
week.

The mean steady-state number of patients active 
during the intervention, L, is therefore given by: 

L ¼ λ � μ 

This is a straightforward application of Little’s Law 
(Little, 1961) which states that the long-term average 
number of customers in a stationary system is equal to 
the long-term average effective arrival rate multiplied 
by the average time that a customer spends in the 
system. As new customers arrive and existing custo
mers leave in each period, a certain number of indivi
duals remain active in the system; Little Law’s 
estimates the mean number of active customers. 
Note that L can be calculated before the simulation 
begins and therefore it can be used to exclude weeks in 
the warm-up period and determine when steady state 
has been reached. More precisely, in any replication 
k when E½jWtj� � L (i.e., the average number of 
patients active in simulation week t reaches L) the 
simulation has reached a steady state.

Let T be the total number of weeks that simulation 
runs in replication k and b indicate the week in which 
steady state is reached. Therefore, the steady state 
demand distribution for staff type is s is given by 
Ds,t,k for all weeks t = b to t = T and for all replications 
k = 1 to k = K. For the Camden Coalition’s dataset, μ =  
13.3 weeks. For a mean arrival rate of λ ¼ 3:

L = 3 × 13.3 = 39.9
Therefore, the steady state is achieved when the 

average number of patients active in the interven
tion stabilises at approximately 40 patients. Once 
the number of active patients stabilises, we can 
estimate the steady state workload distribution for 
each of the staff types. Figure 6 shows average 
weekly demand values in hours (based on 5000 
simulation replications) for each staff member 
when exactly 3 patients are enrolled each week. 
The simulation runs for 175 weeks since beyond 
this time it is not possible to sample 3 unique 
patients from the total of 526. The number of 
patients stabilises at around from week 40 onwards 
and so do the weekly hours for each of the staff 
types. Thus, by discarding observations prior to 
week 40, and by using the observations from 
weeks 40 to week 175 we can estimate the distribu
tion of demand for each staff type.

For a constant arrival rate of λ ¼ 6 the steady 
state is still achieved from week 40 onwards, how
ever the weekly demand hours for each staff type 
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are roughly doubled. In this case, each replication 
of the simulation runs for 87 weeks in total since 
we cannot sample 6 unique patients from the data
set from week 88 onwards (by week 87, 87 × 6 = 522 
patients are sampled and only 3 patients are left). 
Thus, the steady state distribution for each of the 
staff types is calculated from week 40 to week 87. 
This still gives us 47 observations in each replica
tion and if we repeat the simulation 100 times, we 
get 4700 weekly observations from which to esti
mate the weekly workload distributions for each 
staff type.

5.4. Underlying assumptions and limitations

We now address some underlying assumptions and 
limitations in our simulation methodology.

(1) Biases in the Data: The encounter histories 
are based on actual realisations, so they may 
contain delays experienced by patients. In 
other words, a particular home visit for 
a patient should have occurred on week 5 
of the intervention, but instead occurred in 
week 6. For some other patients, encounters 
might have higher tolerance so that while an 
encounter occurred in a certain week, it 
could have safely been moved to the follow
ing week. To test if such factors might 
impact our histograms, we conducted simu
lations in which the encounter dates were 
“perturbed” with a small probability – that 
is moved to a week prior or a week later. We 
found that the superpositions of the 

perturbed event sequences did not change 
the workload histograms. This is because in 
any week, different patient combinations are 
involved in the superpositions leading to an 
averaging effect that produces histograms 
similar to the unperturbed case.

(2) Patient Wait Times: We have not considered 
patient waiting times in this study. This is 
because timeliness is of the essence when it 
comes to patients with complex medical and 
social needs who have been recently dis
charged from a hospital stay. Thus, it is 
reasonable to assume an “ideal” situation 
where patient needs must be addressed 
within the week in which they arise. We 
use an offered load approach (i.e., we assume 
there are no constraints on care team capa
city) and use the weekly realisations to esti
mate workload histograms and to determine 
reasonable capacity values. The capacity 
values that we derive assume that additional 
demand in a week must be addressed using 
overtime rather than fulfilling it in the 
future. In future work, we plan to consider 
a more realistic model where the care team 
prioritises certain patients and encounters 
based on the level of urgency related to the 
hospital readmission risk.

(3) Dedicated Staff: We assume that all staff 
types in the care team are solely dedicated 
to serving patients currently enrolled in the 
intervention. This is different from other 
hospital-based settings where high-risk, high 
need patients are only a subset of the total 

Figure 6. Average weekly demand for each staff type (based on 5000 replications) by week of simulation. (Color Online).
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patients seen by the staff members, such as 
nurses. Dedicated staffing models for 
patients with complex needs are common 
in interventions being piloted in the United 
States.

Section 6: Results

6.1. Independent workload estimation of each 
staff type

Figure 7 shows workload histograms for each staff 
type (data collected in steady state weeks across all 
the replications) based on 5000 replications of the 
simulation, along with means and 80th percentiles 
for a constant/deterministic number of patients (λ  
= 3 and λ = 6) being enrolled each week. Figure 8 

shows the workload histograms for the case when 
the number of patients enrolled follows a Poisson 
distribution with a given mean (λ = 3 and λ = 6).

The workload histograms can be used for staffing 
purposes. For example, the care team may choose to 
staff at the 80th percentile. In the λ = 3 case and 
assuming a Poisson enrolment rate each week, this 
implies that the care team will plan for 46.58-h 
Community Health Worker’s (CHW) time each 
week, which implies more than one CHW assuming 
a full-time workload of 40 h per week per CHW (or 
overtime); for the equivalent λ = 6 case the care team 
will plan for 87.5 h of CHW’s time, which again 
implies more than 2 CHWs in the care team (or 
again, overtime). Notice that the 80th percentile 
values are slightly higher in the Poisson cases com
pared to the constant enrolment rate. The variability 

Figure 7. Workload histograms or weekly demand distributions (x axis in hours) for each staff type under constant weekly 
enrolment rates of 3 (left) and 6 (right).
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in enrolments week to week creates some additional 
variability, however, from a practical point of view, 
the constant and Poisson cases seem to generate 
similar workload histograms. This suggests that the 
variability due to the time needed for encounters has 
a more significant impact than the variability due to 
weekly enrolments.

Workload histograms follow symmetric normal 
distributions closely and seem to scale up when the 
enrolment rate is doubled. The only exception is 
the RN histogram in λ = 3 case, which is truncated 
on the left by 0 – this is because RN hours per 
week are much lower than that for other staff types.

Care teams have to strike a balance between under- 
utilisation, when demand is below available staff 
hours, and utilisationover-utilisation, when demand 
is higher than available staff hours. The latter case 
implies inability to provide timely coordination and 
potentially increases the risk of patient hospitalisations 

and emergency events. We can construct a simple 
newsvendor model for this purpose. Newsvendor 
model is a single-period mathematical model used to 
determine optimal inventory levels in settings with 
fixed prices and uncertain demand for a perishable 
product. The modern formulation has been defined 
in Arrow et al. (1951). Newsvendor heuristics have 
been used in healthcare literature before. A recent 
example is Barz and Rajaram (2015) who calculated 
the critical fractile for different patient groups and 
prioritised them according to their net contributions.

While more sophisticated applications of the 
newsvendor model are possible, we use it here 
as a simple quantitative tool. We provide an illus
trative example. Assuming the utilisationover- 
utilisation can be addressed by overtime, and an 
overtime cost (p) that is double the regular hourly 
rate (which corresponds to the cost of under- 
utilisation, c) for any staff member, we can plug 

Figure 8. Workload histograms or weekly demand distributions (x axis in hours) for each staff type under poisson weekly 
enrolment rates of with means of 3 (left) and 6 (right).
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in the critical fractile formula for the newsvendor 
model to calculate the staffing level q: 

q ¼ F�1 p � c
p

� �

¼ F�1 2 � 1
2

� �

¼ F�1 0:5ð Þ

Under the above assumptions, the critical fractile 
corresponds to the median. For CHW, the median 
is at 36 h per week and for LPN the median is at 32 
h per week; these would therefore be the staffing 
levels for CHW and LPN respectively. For other 
values of p and c the staffing level q can be simi
larly calculated. An alternative is to calculate the 
expected weekly unsatisfied patient demand in 
hours and the unutilised hours as a function of 
the number of weekly hours for a staff type, for 
different values of q. This is shown in Figure 9. 
A care team could determine the value q based on 
the costs and implications that are best suited to 
their practice.

We see in Figure 9 that the distance between 
unutilised hours and unsatisfied demand is mini
mised at the median. One interesting observation is 
that because partial demand satisfaction is possible 
even for the demand levels above the capacity, the 
expected unsatisfied demand can be quite low. For 
example, if the LPN capacity is 32 h but the 
demand is 36 h, LPN can still satisfy 32 h of the 

demand. Only 4/36 or 1/9th (about 11%) of the 
total demand was not satisfied. This means that 
even if we set the LPN capacity at the median of 
32 h 88% of the weekly demand from the patient 
panel can be satisfied, and the unfulfilled demand 
could address through overtime or by moving non- 
urgent encounters to the next week. Such quantifi
cation will be important for care coordination 
teams that might be resource constrained.

6.2. Dependent workload estimation of home 
visits for LPN and CHW

Although it is easier to treat the demand for each staff 
type independently and calculate their workload sepa
rately, in reality, demand for each staff type is not 
independent. As explained above, staff members at 
Camden Coalition regularly work in teams of two – 
one nurse and one social worker/community health 
worker. This is particularly true when it comes to 
home visits. Regular home visits are a central feature 
of the Camden Coalition model. The Camden 
Coalition targets to have the first home visit of 
a patient within 5 days of discharge from hospital, 
and repeated home visits to the patients throughout 
their intervention. Home visits are the encounter type 
corresponding to the largest effort from staff, 
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accounting for 30.6% of total time effort (Martinez 
et al., 2019). Other care coordination programmes 
are likely to implement a similar care model.

For situations in which two or more staff types are 
involved in addressing the needs of a patient, calculat
ing the staff weekly workload as a joint bivariate or 
multivariate distribution is more accurate. 
Fortunately, our simulation methodology and the 
level of granularity in our data allows for such calcula
tions. Recall that Ds,t,k represents the workload for staff 
type s in week t of replication k. We use Ds,t,k across all 
steady state weeks in all replications to create work
load histograms independently for each staff type. 
Now suppose that we are interested in estimating the 
bivariate weekly workload distribution for LPN and 
CHW. We would now use realisations of the pair 
[DLPN,t,k, DCHW,t,k] across all steady state weeks in all 
replications to create a bivariate weekly workload his
togram. If we further restrict the encounters to be only 
home visits, then we have the bivariate weekly work
load histogram for LPN and CHW for home visits.

The key insight here is that since LPNs and CHWs 
frequently conduct home visits together, an increase 
(or decrease) in home visit workload in week for LPN 
also would mean an increase (or decrease) in home 
visit workload for the CHW, and vice versa. Thus, the 
home visit workloads for these staff types are corre
lated. This is what we mean by dependent workload 
estimation. In contrast, we can create a bivariate work
load distribution by assuming independence. In the 
independent case, the probability that a LPN works h1 
hours in any given week and the CHW works h2 hours 
is simply the product of the individual probabilities 
estimated separately based in histograms for LPN and 
CHW shown in Figure 7. That is, the home visit work
loads for LPN and CHW have no correlation: an 
increase (or decrease) in one does not necessarily 
mean an increase (or decrease) in the other.

Figure 10 illustrates the difference between estimat
ing the bivariate distribution under the independent 
and dependent assumptions. In the left panel, we see 
the bivariate histogram of number of home visit hours 

for LPN and CHW when we assume independence, 
and the in right panel we see the bivariate histogram 
when we assume dependence. These plots are calcu
lated for LPN and CHW home visits under constant 
demand (3 patients enrolled per week).

Although the distributions look similar, there are 
a few key differences. The demand is more tightly 
focused around the mean and has a higher-valued 
single peak under the dependent distribution (right 
panel in Figure 10) when compared to independent 
bivariate distribution (left panel in Figure 10). This 
tighter distribution is due to the correlation in home 
visit hours that we discussed earlier.

The largest difference between the two distributions 
occurs when the when the LPN home visit demand is 
13 h per week and CHW home-visit demand is 14 
h per week. The dependent distribution estimates that 
this combination of home visit hours occurs 33.55% of 
the time, while the independent distribution estimates 
it occurs 26.42% of the time. Thus the independent 
distribution underestimates the joint demand by 
about 7.13% which can lead to an inaccurate staffing 
decisions. However, especially at higher capacities for 
the staff members, we find that the independent dis
tribution is a good approximation of the dependent 
distribution.

We can use the bivariate cumulative distribution for 
home visits similar to how we used the independent 
cumulative distributions for all encounter types in 
a newsvendor model. If we assume that LPN and CHW 
have the same overtime and underutilisation cost ratio as 
before (2:1), we can reserve the capacity for home visits at 
the median. Using the bivariate cumulative distribution, 
the capacity values closest to the median are at 18 h for 
LPN and 15 h for CHW – those are the hours that could 
be reserved for weekly home visits based on the news
vendor model, when an average of 3 patients are enrolled 
in the program per week.

We can also similarly calculate the expected 
unutilised hours and unsatisfied demand per week 
for different combinations of LPN and CHW capa
city levels as shown in Tables 3 and 4.

Figure 10. Independent (left) and dependent (right) bivariate histograms of home visits for LPN and CHW.
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To explain how to read and use above tables, 
we look at an example. If both LPN & CHW 
reserve 10 h per week for home visits, the weekly 
expected unutilised capacity will be 0.63 h for LPN 
and 0.37 h for CHW (Table 2) and the weekly 
expected unsatisfied demand will be 4.43 h for 
LPN and 5.82 h for CHW (Table 3). This is an 
unreasonable number of home visit hours unful
filled and is likely to have an impact on patient 
outcomes. If CHW and LPN were staffed at 20 
h each, the number of unsatisfied home visit hours 
goes down to 0.66 and 0.77-h respectively for the 
two staff types. On the flip side, the two staff types 
would have 7.22 to 5.31 h of unutilised home visit 
capacity. One thing to note is that while we are 
reserving the capacity specifically for home 
encounters (due to their importance in the care 
coordination intervention), unutilised capacity 
could still be used for other encounter types 
whereas unsatisfied demand will have negative 
connotations so it might make more sense to be 
more conservative. However, our newsvendor cal
culations above assume overtime costs for unsatis
fied demand, so it might not be a significant 
concern if the staff types can be paid for addi
tional hours beyond their allotted capacity.

6.3. 6.3. Non-stationary enrolment rates

In our analysis so far, we have assumed that while the 
number of enrolments from one week to the next can 
change (when sampled from the Poisson distribution), 
the mean weekly enrolment rates are unchanging or 

stationary. We now discuss how the impact of non- 
stationary enrolment rates can be analysed. Non- 
stationary enrolments are common in practice and 
arise for a variety of reasons. Care teams often start 
with a small number of patients, and as they learn the 
best practices of assisting patients and streamlining 
their processes, they enrol more patients and hire 
new staff members. Greater awareness of care coordi
nation efforts in a community can also result in 
increased enrolments. A common problem in such 
situations is that as demand surges to a new equili
brium, the care team will need to adapt their staffing 
levels.

In this section, we model the case where a care team 
starts weekly enrolments that follows a Poisson dis
tribution with a mean rate of 3 from week 1 to week 
60. Starting in week 61, the mean weekly enrolment 
rate increases linearly over a 5-week period to a new 
mean of 5 in week 65. In other words, the distribution 
of weekly enrolments still follows the Poisson distri
bution, however the rate is non-stationary and repre
sents a surge/increase over the current status quo. We 
assume that the mean weekly enrolment rate of 5 
holds until week 120.

The simulation algorithm presented in Section 5 
is modified to sample new enrolments each week 
based on the above non-stationary Poisson pattern. 
After experimenting with different number of repli
cations to evaluate the stability of the results, we 
used 200 replications of the 120-week period to 
analyse the results. First, we plot how the average 
number of patients active in the program (i.e., 
estimate of E [|Wt|] based on 200 replications) 

Table 2. LPN & CHW hours per week reserved for home visits vs. expected unutilised 
capacity in hours. Each cell contains two unutilised unutilised capacity values in 
hours: the first value for the LPN, the second for the CHW.

LPN\CHW 0 10 20 30

0 0,0 0,0.37 0,5.31 0,14.58
10 0.63,0 0.63,0.37 0.63,5.31 0.63,14.58
20 7.22,0 7.22,0.37 7.22,5.31 7.22,14.58
30 17.03,0 17.03,0.37 17.03,5.31 17.03,14.58

Table 3. LPN & CHW hours per week reserved for home visits vs. expected unsatisfied 
demand in hours. Each cell contains two unsatisfied home visit demand values in hours: 
the first value for the LPN, the second for the CHW.

LPN\CHW 0 10 20 30

0 12.97,15.45 12.97,5.82 12.97,0.77 12.97,0.04
10 4.43,15.45 4.43,5.82 4.43,0.77 4.43,0.04
20 0.66,15.45 0.66,5.82 0.66,0.77 0.66,0.04
30 0.02,15.45 0.02,5.82 0.02,0.77 0.02,0.04

Table 4. Percentiles of the RN weekly workload distribution for each of the four 20-week segments.
Percentile Weeks 41–60 Weeks 61–80 Weeks 81–100 Weeks 101–120

10th 1.84 3.17 4.25 4.00
25th 3.42 5.33 6.42 6.25
50th 5.5 8.08 9.33 9.33
75th 8.16 11.42 12.83 12.66
90th 10.92 14.83 16.24 15.92
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changes in the 120-week time period, see Figure 11 
below. The average number of active patients also 
follows a non-stationary pattern. After the initial 
transient phase in weeks 1–35, the system reaches 
steady state for λ = 3. This steady state remains 
until week 61 when the mean weekly enrolment 
rate starts to increase. Although the mean weekly 
enrolments stop increasing in week 65, the number 
of active patients continues to rise in weeks 61–80 
and stabilises partially in weeks 81–100 and more 
decisively in weeks 101–120. This demonstrates 
how an increase in weekly enrolment rate (from 
λ = 3 to λ = 5) in a 5-week period can create 
a much longer transient period of approximately 
30–40 weeks.

To demonstrate how staffing levels should be 
adjusted, we divide the time horizon into 4 segments 
of 20 weeks each (weeks 41–60; 61–80; 81–100; 101– 
120). For each 20-week period, we estimate the work
load histograms for each staff type based on the 200 
replications. This gives us 4000 observations for each 
20-week segment. As an example, Table 4 shows esti
mates of 10th, 25th, 50th, 75th, and 90th percentiles of 
the registered nurse (RN) workload distribution in the 
each of the four 20-week segments. As expected, the 
percentiles in the transient 20-week segment lie in 
between the weeks 41–60 and 81–100 segments; and 
the percentiles in the last two 20-week segments are 
quite similar. These estimates can be used by care 
teams to gradually transition their capacities to meet 
the increase in demand.

By increasing the number of replications, the care 
team can also look at equivalent smaller time seg
ments, if they need more precise short-term planning. 
For example, the 10th, 25th, 50th, 75th and 90th percen
tiles for RN workload in weeks 61–65 (the weeks in 
which enrolments started rising) based on 200 replica
tions are 2.33, 4.1, 6.58, 9.83 and 12.84 h, respectively. 
These numbers are within 2 h of the percentiles for 
weeks 41–60, and therefore suggest that an RN staffing 
needs to be increased only minimally in the surge 
weeks.

More complicated profiles than the linear demand 
surge we considered above can be similarly analysed. 
For instance, staffing estimates for a non-stationary 
pattern where certain months of the year have higher 
demand than others can also be quantified.

Section 7: Conclusions and future work

In summary, several insights can be obtained from 
our study. The first is that patient-level longitudinal 
data can be effectively used for aggregate capacity 
planning purposes, even when the number of 
patients in the dataset is small. Detailed event pro
gression data for a small number of patients is 
a common feature of interventions involving 
patients with complex medical and social needs. 
This is because such patients only represent 1–5% 
of a population but can have a disproportionate 
impact on the health system, in terms of healthcare 
utilisation as well as costs.
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Figure 11. Average number of active patients in non-stationary case.
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The second insight is that our sampling-based 
simulation algorithm can (a) implicitly model non- 
stationary/time-dependent features inherent in 
a patient’s intervention and (b) explicitly model 
changes in the weekly enrolment rates. Traditional 
queueing network models are unable to capture 
such non-stationary dynamics. While discrete 
event simulation models of non-stationary queue
ing networks are possible, they require data for 
a large number of patients which are typically not 
available to care coordination programs.

Results based on our algorithm reveal several pat
terns. First, weekly workload distributions vary widely 
between staff types with registered nurses having the 
smallest effort while community health workers 
(CHWs) having the largest. As their name suggests, 
CHWs are recruited from the same community as the 
patients and are well versed with the available medical 
and social support systems. They therefore form 
a central pillar of the coordination effort, increasing 
the ability of the care team to effectively engage with 
patients. However, the pairing of different staff types 
for certain encounters is also a vital part of the care 
intervention. For example, a licenced practical nurse 
(LPN) and community health worker (CHW) often 
conduct home visits together. The LPN provides clin
ical expertise during the home visit while CHW helps 
connect the patient to agencies in the community that 
provide social support. Thus, both medical and social 
needs are coordinated together. Therefore, it is more 
accurate to consider the correlations in workload 
between staff types when making staffing decisions. 
Our results also demonstrate using the joint workload 
distribution involving multiple staff types provides 
a more accurate picture of staffing needs. Specifically, 
we found that for home visits, the LPN-CHW bivari
ate joint distribution is more tightly focused around 
the mean and has a higher-valued single peak com
pared to the LPN-CHW bivariate distribution created 
assuming independence.

Finally, our approach can also be used to create 
staffing plans when the mean weekly enrolment rate 
fluctuates. A key insight is that even short-term 
changes in mean weekly enrolments can result in 
long transient periods. Workload distributions for 
any small time segment in a transient period can be 
analysed with sufficient replications of our simulation 
algorithm, and can help care teams adjust their staffing 
levels. Such analysis is useful for planned increases or 
decreases in enrolment and seasonal patterns that 
recur each year. For unplanned changes, the nonsta
tionary enrolments model could be used to generate 
what-if scenarios to scale up or scale down capacity 
levels for members of the care team.

We view the aggregate capacity planning approach 
in this study as a first step in the development of more 
detailed and sophisticated approaches. In future work, 

we plan create an analytical patient trajectory model 
using principled methods (such as maximum entropy 
estimation) that are able to overcome the limitations 
of sparse data and can capture the probabilistic trajec
tory of a patient beyond what is observed historically. 
Next, the inclusion of patient characteristics – combi
nations of specific medical conditions and social 
needs – that lead to greater effort or require higher 
priority would help with care team decision making. 
Finally, a model that explicitly considers patient wait 
times along with the prioritisation of patient types and 
patient encounters based on urgency (or risk of hos
pitalisation) would lead to policies on how best the 
care team should allocate their time.
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