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Abstract

A recent paper in this journal presents magnetic resonance imaging (MRI) data on humans which
are asserted to ‘suggest that we may have witnessed entanglement mediated by consciousness-
related brain functions. Those brain functions must then operate non-classically, which would
mean that consciousness is non-classical.” Unfortunately, the article provides no evidence to
justify this claim. In fact, the paper only provides evidence for what we already knew: the brain
(and any other living tissue) is complex, multicompartmental, and imprecisely characterized

by MRI.

A recent paper in this journal [ 1] presents magnetic resonance imaging (MRI) data on humans which are
asserted to ‘suggest that we may have witnessed entanglement mediated by consciousness-related brain
functions. Those brain functions must then operate non-classically, which would mean that
consciousness is non-classical.” The experiments were on done on resting human subjects by imaging
intermolecular multiple-quantum coherences (iMQCs) which provide a novel source of image contrast
[2—-12]. This certainly qualifies as an extraordinary claim, given theoretical derivations that no ensemble
of small spin systems near thermal equilibrium at body temperature can ever exhibit entanglement [13].
Such a claim would normally call for extraordinary evidence, particularly because [ 1] postulates no
mechanism, and never even states what might be entangled. Instead, the evidence for ‘non-classical’
behavior presented in reference [1] is the authors’ statement that they were unable to fully simulate their
observed signals, plus claims that some signals were larger than they should be in the ‘classical’ limit. This
assertion is incorrect, as are other assertions in the paper about magnetic resonance that disagree with
decades of published work.

The concepts of coherence, correlation, and entanglement are easily confused, and can lead to a variety of
misinterpretations [14]. A coherence is an off-diagonal element of the density matrix when it is written in the
Hamiltonian eigenbasis. It is an intermolecular multiple-quantum coherence (iMQC) when the connected
states involve flipping multiple spins on different molecules. In the early 1990s, two-dimensional NMR
experiments [15] observed spectral peaks with all of the theoretical properties of iMQC transitions, between
spins typically separated by many microns or even millimeters. The idea that such iMQCs would be observable also
was an extraordinary claim in the early 1990s (they were called CRAZED sequences for a good reason), but the
experiments were trivial to reproduce on any of thousands of existing spectrometers-including, for example,
observation of coherences between molecules in different tubes [5]. Eventually, a full theoretical interpretation
evolved [6, 16, 17]; the effects also manifest in simpler form as multiple spin echoes in solid *He[18] and in
water [19].

The theoretical interpretation [6, 16] showed that these effects arise because of a limitation in the canonical
expansion for the Boltzmann equilibrium density matrix for N nuclear spins in a high field:
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Figure 1. (adapted from reference [6]): Intermolecular multiple quantum signals come from pairs of spins separated by a macroscopic
distance, dictated by the spatial modulation of the magnetization created by gradient pulses. The case shown here assumes a 3ms
gradient pulse of 2 G cm ™', reasonable numbers for MRI, but [1] never states what gradients were used. In any event, the modulation
distance could not be smaller than about 10 microns, or water diffusion would eliminate the effect. Thus, the signal arises from pairs of
molecules separated by at least 50,000 times the size of a water molecule. Reprinted from [6] with permission from AAAS.
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where w, is the nuclear spin Larmor frequency (800 Mrad s~ ' in the 3T magnet used in [1]), E is the unit
(identity) matrix, and the matrix I; is diagonal in the usual (Zeeman) basis set, returning +1,/2 if spin i is up ()
and —1/2 if spin i is down (). At body temperature, fiw,/kT &2 x 10~ for '"H nuclei at 3T. In the traditional
treatment, the term in {brackets} in equation [1] is then assumed to be small and is omitted, leaving only one-
spin operators at equilibrium. As discussed extensively in [16], the problem is that there are N operators in the
last saved term (where N & 10°° for a human brain) but N operators in the first omitted term, and even more in
later terms in the expansion. This matters because the dipole-dipole interaction between distant water molecules
(separated by many microns) is not eliminated by liquid diffusion on an NMR timescale, and these two-spin
couplings can convert multispin operators (such as the ones created by rotating the term in brackets using an rf
pulse) into observable magnetization.

Because the dipole-dipole interaction averages to zero over a spherical surface, large signals are only
produced by breaking spin symmetry, most commonly with gradient pulses. The simplest case is the pulse
sequence {rfpulse, flip angle 90°}-{ gradient pulse, length T, gradient strength G}-{rf pulse, flip angle 45°}-
delay 7). During the second delay both the longitudinal (z-axis) magnetization and the transverse magnetization
are modulated with a spatial period 27/yGT which is typically 5-500 pim (about a million times larger than a
water molecule). In that case, alarge signal can be recovered which is a sum of an astronomically number of very
small terms, each reflecting a pair of spins separated by roughly the ‘correlation distance’ 7w/GT, half the spatial
period (figure 1) [6].

Specific properties of iMQCs are readily predicted. For the zero-quantum coherences (iZQCs) observed in
[1], they are independent of the phase of the exciting pulse and of the resonance offset, but have a well-defined
dependence on the correlation gradient direction, as was observed. The maximum signal for the sequence above
is 41% of the bulk magnetization [4], vastly larger than anything measured in [1].

Itis important to note that in structured media, such as tissue, the contrast (both theoretically and
experimentally) is not a simple combination of conventional image contrasts [20]. In a typical application, the
decay of an iZQC signal will reflect the distribution of resonance frequency differences between spins separated
by the correlation distance. This is not the same as the distribution of resonance frequency differences over the
size of an MRI image voxel (which samples a volume thousands of times larger) that gives conventional contrast
such as T, relaxation. Thus, while a quantitative signal calculation is completely possible for a simple sample,
such as a spherical ball of water, the expected signal is very sensitive to details of the precise structure of the
magnetization at the micron level [21] which is of course unknown in vivo. This is, of course, why iMQC imaging
is useful-it extracts information.
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Intermolecular multiple-quantum coherences in solution are, however, essentially classical in nature,
meaning that it is also possible to use a modified Bloch equation picture to visualize them [6, 16, 17]. Thus, they
are absolutely not a witness to entanglement. In fact, they do not even reflect any correlation between the spins,
meaning that for any operators I,1, I, (o, =x, y, or z) and spins 1, 2

<Ia1182> = TT(PIMI[}Z) = (Ia1> <Id2> (2)

This follows because the initial N-spin equilibrium density matrix is separable into a direct product of N2 x 2
matrices o;, each one of which specifies the state of only one spin:

p=0® 0 03...00, (3)

At equilibrium the individual states have the form 0; = E/2 + (tanh(fw,/2kT)) L;; the spin operators can be
rotated in a pulse sequence, but the very small, distant dipolar couplings in solution never create significant
terms that break this separability.

As discussed in detail in [ 16, 22] couplings between spins within the same molecule can create correlations
(meaning the equalities in equations (2)—(3) can be violated), and (intramolecular) multiple quantum
coherences have been used in many applications, including a variety of simulations of quantum computation.
However, what [1] claims is evidence suggesting entanglement, which is a still more stringent concept than
correlation. As discussed in reference [23], a system is by definition not entangled if its density matrix can be
written as an average of separable density matrices, with nonnegative weights p; that sum to 1:

p = pp=y 001 ® 02 ® 03...80,) (4)
i i

Reference [13] showed that, starting from any density matrix that is ‘sufficiently close’ to the completely mixed
state 2~ NE, every possible matrix must be expressible in this form. For the case of pairs of coupled spins,
sufficiently close would be any temperature above about 10 mK. This and related arguments [24] are also the
reason that NMR quantum computation is not scalable to large systems, and is not being actively pursued.
Entanglement does exist in spin ensembles, but only in very special cases such as large magnetization (tens of
thousands of times higher than in [1]), or in parahydrogen gas (because the nuclear degrees of freedom are
coupled to rotation).

With this in mind, what was measured in reference [ 1] The short answer is that it is impossible to tell from
the paper. The pulse sequence is only sketched out in their figure 2; the methods section disagrees with their
figure 2; and critical parameters such as the strength of the gradient used to give the iZQC signal are not
included. It is impossible to reproduce the experiment. Even if we knew the exact sequence, the magnetization is
very highly modulated because saturated magnetization is created and allowed to partially relax, and the brain is
structured at alevel of detail far finer than the voxel size of an MR image. This implies it would be impossible to
do an accurate calculation, and makes it preposterous to assert that a signal difference would not have a classical
explanation.

They never state what they think might be ‘entangled.” Water has two spins, and entangled states of water
exist (very far from room temperature thermal equilibrium), but they would disappear within milliseconds in
bulk tissue because water protonates and deprotonates [25]. The signal detected in [1] is detected by dipolar
interactions (as proven by the experimental dependence on gradient direction), which again is only sensitive to
pairs of spins many microns apart.

The paper contains additional astonishing claims, such as ‘Consciousness-related or electrophysiological
signals are unknown in NMR’ This ignores over three decades of work in functional MRI (fMRI) [26], which has
been used in thousands of studies to monitor brain activity (including functional MRI with iMQCs) [7, 27, 28].
However, this claim is needed to justify assigning ‘entanglement’ to the difference between awake and sleeping
brain scans-a difference which, in any event, is also the subject of hundreds of papers on resting state fMRI [29].

Itis nearly impossible to prove a negative in science. I cannot disprove the assertion that a contribution to the
difference between two complex experiments is because of entanglement. I also cannot disprove the assertion
that a contribution to the difference is because of active intervention by aliens from Alpha Centauri. I don’t
believe the latter explanation, because I know of no evidence for it, but either explanation is equally consistent
with what is presented here.

This work was supported by the National Science Foundation under grant CHE-2003109.
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