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Nitric oxide (NO) is an important signaling molecule involved in a wide range of biological processes.
Development of non-invasive, real-time detection of NO is greatly desired yet remains challenging. Here we
report the design and development of novel I5N- and '3C-labeled NO-sensing probes for hyperpolarized nuclear
magnetic resonance (HP-NMR) studies. These probes undergo selective and rapid reaction with NO to generate in
situ AZO-products that can be monitored with distinguishable NMR signals as a read-out. This study also allows
for a direct comparison of the N and '®C nuclei performances in hyperpolarized reaction-based probes. The
simple and general SABRE-SHEATH hyperpolarization method works on the °N- and *C-NO-sensing probes.
Measured long spin-lattice relaxation (T;) values, especially for 1>’N-NO probes, will allow for real-time reaction-

based imaging of NO.

1. Introduction

Nitric oxide (NO) is an important gaseous signaling molecule that
regulates a wide range of physiological and pathophysiological
pathways.' ® NO is produced through nitric oxide synthase (NOS)-
catalyzed conversion of r-arginine to r-citrulline.* Aberrant levels of NO
production and NOS expression have been reported in the progression of
various cancers, including lung,5 % breast,”® and colon cancers.” '’
Moreover, NO has both pro- and anti-tumorigenic effects that are
concentration-dependent, where low concentrations of NO induce cell
proliferation and metastasis while high concentrations cause oxidative
stress and apoptosis.'''* Due to the crucial role of NO and NOS in
biological processes, it is of great interest to develop NO sensors to study
NO-related physiological pathways and to gain insight into the role of
NO in disease progression. An extensive number of NO sensors have

been developed, including optical imaging and photoacoustic
tomography.'° > Although in vivo applications have been demonstrated
elegantly, these imaging modalities often afford limited capability for
noninvasive deep tissue imaging.

Magnetic resonance imaging (MRI) represents a highly attractive
combination of unlimited depth penetration and high spatiotemporal
resolution. For example, manganese-based paramagnetic complexes
have been developed as contrast agents that function as MRI-detectable
probes of NO.?° Different from traditional MRI, Hyperpolarized Nuclear
Magnetic Resonance (HP-NMR) offers a powerful approach that ad-
dresses the inherently low sensitivity of traditional MRI by artificially
inducing large polarizations, thus enabling indirect detection of bio-
logical analytes of interest in low concentration through reaction-based
detection with a hyperpolarized probe.”’ *° To date, a wide range of
molecular probes as useful diagnostic hyperpolarized MRI agents have
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been investigated using dissolution Dynamic Nuclear Polarization
(dDNP),>' %% which is known to generate the largest polarization of the
solution state hyperpolarization methods so far. Meanwhile, other hy-
perpolarization techniques have been developed as alternatives that
overcome the high-cost expense, long polarization build-up time, and
the need for specialized personnel in DNP. For example, Signal Ampli-
fication By Reversible Exchange (SABRE) is an inexpensive, fast, and
easily implementable alternative to dDNP, and has shown promising
development as a clinical hyperpolarization modality.37 39

Here we report the design and development of 1°N- and '3C-labeled
probes as novel HP-MRI NO sensors, and the hyperpolarization study of
these isotope-labeled NO-sensing probes using SABRE. This study also
allows for direct comparison of the N and '3C nuclei performances as
hyperpolarized reaction-based probes. The characterizations of the
hyperpolarized isotope-labeled probes in this work suggest their po-
tential for sensitive and real-time monitoring of NO, and particularly
more favorable properties of 1>N-probes in HP-NMR studies.

2. Results and discussion

2.1. Design of *°N- and *3C-labeled 2-aminobiphenyl-5-carbonitrile as
HP-NO sensors

The design of hyperpolarizable NO sensing probes is based on the
motif of 2-aminobiphenyl-5-carbonitrile (Fig. 1). The 2-aminobiphenyl
scaffold is a NO-sensing unit that has been reported for rapid and se-
lective nitric oxide detection through a sensing mechanism that involves
nitrosation of aniline in the presence of molecular oxygen, followed by
electrophilic aromatic substitution to form the diazo bridge (AZO-
products).?> > We expect the I5N- and '3C-labeled nitrile group will
perform as the signaling unit and the AZO-products generated in situ
would provide chemical shifts distinguishably different from the 1°N-
and '®C-labeled 2-aminobiphenyl-5-carbonitriles. Furthermore, the se-
lection of isotopically-labeled nitrile for HP-NMR imaging is founded in
the potential for long polarization lifetimes (T;) in this functional group,
which are desirable for a hyperpolarized imaging probe.*® In this work,
we investigate hyperpolarization of both >N and '3C isotopes as the
nitrile functional group allows for direct comparison of the two nuclei
that are commonly used for HP-NMR studies.*’*! Commonly used '°C
labeled agents include bioactive metabolites,** > while °N based
agents are more often used in exogenous sensing probes.***° Yet, there
has not been a direct comparison of the two isotopes for a hyper-
polarized probe that undergo reaction-based sensing of a target analyte.
We expect that our reaction-based NO sensors would also make a well-
suited comparative study between '°N-labeled and '3C-labeled HP-NMR
probes.

2.2. Synthesis and characterization of °N- and 13C-enriched NO sensing
probes

First, we prepared N, N-dimethyl probes 1°N-I and '3C-I to evaluate
the chemical shift differences between the two sensors and their
resulting AZO-products '°N-I-AZO and 13C-I-AZO, respectively (Fig. 2).
The *N-labeled compound °N-I had a chemical shift difference of
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Fig. 2. Dimethyl '®N- and '®C-labeled nitric oxide sensing probes and their
respective AZO products.

ACSN) = 10 ppm and the 13C-labeled probe 13¢.I had a AC3C) = 1.6
ppm. The chemical shift difference for the >C-labeled probe was smaller
than desired, as a large chemical shift change is needed for unambiguous
signal detection. However, a large chemical shift for the >N-probe will
facilitate sensitive detection of the NO sensing reaction in clinical MRI
(1Tor37T).

Based on the encouraging results obtained from !°N/3C-I, we
designed 1°N- and !3C-labeled derivatives >N/'3C-II that bear tri-
ethylene glycol (TEG) extensions, which were expected to deliver
improved solubility profiles without affecting the core sensing and
signaling unit performances (Fig. 3A). The TEG-NO probes °N-II and
13C.IT were prepared following the synthetic route outlined in Fig. 3B.
The 1°N-4-nitrobenzonitrile 1 was synthesized from condensation of 4-
nitrobenzaldehyde with I5NH,0HeHCl, and '3C-4-nitrobenzonitrile 2
was prepared from copper-catalyzed coupling of aryliodide with K'3cN
in good yields. The isotope-labeled benzonitriles were then subjected to
a sequence of nitro reduction, bromination and Suzuki coupling,
affording the desired TEG-linked NO probes 1°N/!3C-II. This modular
synthetic route was expected to not only allow parallel synthesis of both
I5N- and *3C-labeled probes, but also to be adaptable for any structural
modifications.

To confirm the NO-sensing ability of designed probes, we treated
non-isotope-labeled TEG-NO probe II with nitric oxide generated in situ
(via a chemical reaction of NaNOy with 1 M HCI). The diazotization
reaction occurred spontaneously, leading to an instant color change
from colorless to a deep red solution. The reaction afforded II-AZO-
products in a quantitative yield, as a mixture of para- and ortho-
captured product in a 5:1 ratio (Fig. 3C). We also investigated the re-
action rate of II with NO, which is critical for real-time detection of NO

AZO-product
I-AZO

Fig. 1. Design of NO-sensing probes based on the 2-aminobiphenyl-5-carbonitrile motif.
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Fig. 3. A) Structures of '°N- and *C-TEG-NO probes with improved aqueous solubility profiles. B) Synthetic route to >N-II and 'C-II. C) Reaction of non-labeled

TEG-NO probe II with in situ generated NO.

that has a short biological lifetime in seconds.*® Using UV/Vis analysis,

we confirmed the completion of diazotization reaction of the TEG-probe
II with a stock aqueous solution of nitric oxide within 3 mins (Fig. S1).

2.3. SABRE-SHEATH hyperpolarization of NO probes

The potentials of NO-sensing probes for HP-NMR were investigated
using the hyperpolarization method, SABRE in SHield Enables Align-
ment Transfer to Heteronuclei (SABRE-SHEATH), given the simplicity
and efficiency of this method. SABRE-SHEATH uses dissolved para-
hydrogen as a source of spin order to artificially induce large magneti-
zations on a target nucleus. The parahydrogen and target substrate
reversibly interact with an iridium catalytic center to form a polarization
transfer complex (Ir(H)2(IMes)(pyr)2(NO probe)) and a magnetic field in
the pT regime is applied to the solution. Under these conditions, the
nuclear spin state of the transiently bound system is driven from over-
population of the singlet state parahydrogen, to overpopulation in the

spin up or spin down state on the target nucleus.”” From the hyperpo-
larization of the dimethyl probes °N-I and '3C-I, we were delighted to
find ®N-T had spin-lattice relaxation (T;) value of 7.4 + 0.6 min with
enhancement (¢) of 3300 in d,-MeOH (1 T) and 13¢.I had T, 0f59+26s
with a modest € of 290 (Fig. 4). The short T; lifetime of 1B3c was expected,
due to the lower gyromagnetic ratio of 13C compared to that of 1°N.*®
Nonetheless, the T1(13C) is still expected to be long enough for reaction-
based imaging.*’

We next explored hyperpolarization of I5N-TEG-NO probe I5N-11 and
13C-TEG-NO probe 13C-II in dg-EtOH, for potentially more biocompat-
ible hyperpolarization conditions (Fig. 5). Although methanol is the
common solvent for SABRE experiments, dg-EtOH has emerged as a
more biocompatible SABRE solvent despite a decrease in T; value being
observed.”’ Hyperpolarization of I5N-I1 in dg-EtOH had T; = 2.2 + 0.2
min and '3C-II had Ty = 14.1 £ 5 s. The lower polarization lifetimes
observed with ®N/'3C-II compared to the dimethyl analogs are pre-
sumably due to the molecular tumbling as well as the solvent effect (dg-
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Fig. 4. SABRE-SHEATH hyperpolarization of '°N- and '*C-NO probes '®N-I and '3C-I in d,-MeOH (1 T).
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Fig. 5. SABRE-SHEATH hyperpolarization of >N and '*C-TEG-NO probes *°N-II and *3C-II in ds-EtOH (1 T).

EtOH compared to d4-MeOH). The addition of the TEG chain increases
the size of the probe and potentially reduces the molecular tumbling rate
into a more optimal regime for relaxation.

These hyperpolarization studies demonstrate that the lifetimes,
chemical shifts, signal enhancement, and nuclear target of hyper-
polarized NO-probes are important considerations for reaction-based
HP-NMR experiments for direct monitoring of the reaction with NO.
Furthermore, monitoring the hyperpolarized signal post-reaction with
NO will provide further characterization of the azo products, as direct
evaluation of the hyperpolarized azo products is not compatible with
SABRE method due to a competing hydrogenation reaction promoted by
the SABRE catalyst.

3. Conclusion

In this work, we have designed and synthesized '°N- and 1®C-labeled
NO sensors that contain 2-aminobiphenyl core as the NO sensing unit
and isotope-labeled nitrile as the signal unit for HP-NMR. SABRE-
SHEATH hyperpolarization of these NO probes demonstrated long po-
larization lifetimes that will be critical for efficient NMR imaging
studies. While in vitro/in vivo imaging has not been demonstrated, this
work presents proof of concept of the viability of a reaction-based
hyperpolarized °N- and '®C-labeled NO sensors. The °N-labeled

probes demonstrated larger chemical shift difference (10 ppm versus
1.6 ppm) and longer T; lifetimes (in minutes) that are favorable for
hyperpolarized imaging studies, compared to those of '*C-labeled
probes. These favorable properties make 15N—probes ideal agents for
sensitive monitoring of NO using 15N magnetic resonance. Our future
work will be focused on hyperpolarized reaction-based imaging of nitric
oxide using the '°N-labeled NO probes. We expect that concurrent
improvement in the hyperpolarization technique and probe design will
lead to future nitric oxide sensing probes that will be applicable to
practical in vivo studies.

4. Experimental section
4.1. General experimental information

Unless otherwise noted, reactions were performed without exclusion
of air or moisture. All commercially available reagents and solvents were
used as received unless otherwise stated. Analytical thin-layer chroma-
tography (TLC) was performed using aluminum plates pre-coated with
0.25 mm of 230-400 mesh silica gel impregnated with a fluorescent
indicator (254 nm). TLC plates were visualized by exposure to ultravi-
olet light and/or vanillin and/or KMNOy4 stains. Organic solutions were

concentrated in vacuo using a rotary evaporator. Column
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chromatography was performed with silica gel (60 A, standard grade).

Nuclear magnetic resonance spectra were recorded at ambient
temperature on Bruker NEO 500 MHz spectrometer. Proton'H) chemical
shifts are quoted in parts per million (8) and referenced to the residual
internal CHCI3 (6 7.26). Carbon-1 3(*3C) chemical shifts are referenced
to the residual internal 13CHC13 (6 77.1). The reference point is calcu-
lated from the ratios of resonance frequencies following IUPAC recom-
mendations. Resonances are described as s (singlet), d (doublet), t
(triplet), q (quartet), quint (quintet), and combinations thereof.
Coupling constants (J) are given in Hz and rounded to the nearest 0.1.

High resolution mass spectra were recorded by the Mass Spec-
trometry Facility at the Department of Chemistry at Duke University
using an Agilent 6224 TOF LC/MS instrument (denoted by LC/ESI).
High resolution m/z values are reported in Daltons, calculated to 4
decimal points from the molecular formula. All found values are within
5 ppm tolerance. HRMS analyses of compounds containing a bromine
atom are based on the isotope of 7°Br.

Infrared spectra were recorded on a ThermoScientific Nicolet 6700
FTIR equipped with a diamond ATR. Absorption maxima (Vpax) are
described as s (strong), m (medium), w (weak), and br (broad) and are
quoted in wavenumbers (cm ™! Only selected peaks are reported.

4.2. Synthesis of 1°C- and *°N-labeled NO probes

4.2.1. 4-nitrobenzonitrile-">N (1)

15NC

1

To a 25-mL RBF were added 4-nitrobenzaldehyde (300 mg, 2.0 mmol,
1.0 equiv) and ">NH,0H-HCl (160 mg, 2.2 mmol, 1.1 equiv). DMSO (1.5
mL) was added and the reaction was heated to 80 °C and stirred for 8 h.
The reaction was then cooled to room temp and then poured into HyO
(20 mL), resulting in yellow precipitate. The solid was filtered, washed
with H0 and dried under vacuum to yield the desired product (280 mg,
93%). Ry = 0.61 (20% EtOAc/hexane); H NMR (500 MHz, CDCl3): §
8.35 (d, J = 8.8 Hz, 2H), 7.89 (d, J = 8.8 Hz, 2H); '*C NMR (126 MHz,
CDClg): 6 150.1, 133.6, 124.4, 118.4, 117.0, 116.8; 15N NMR (51 MHz,
CDCl3): 6 263.9; FTIR (thin film, DCM): 2207 (w), 1526 (s), 1369 (s)
cm™!; HRMS-ESI: satisfactory data was unobtainable.

4.2.2. 4-Aminobenzonitrile-">N (3)

NH,
15NG” :

3

To a 4-mL vial was added SnCl, dihydrate (1.7 g, 7.5 mmol, 5.0 equiv)
and EtOH (3.0 mL). To the mixture was added 1 (220 mg, 1.5 mmol, 1.0
equiv) and the resulting dark yellow reaction was heated to 70 °C. After
stirring for 40 mins, the reaction was cooled to room temp-H>0 (30 mL)
was added and the pH was adjusted to 7-8 with saturated aqueous
NaHCOs. The aqueous layer was extracted with EtOAc (10 mL x 3). The
combined organic layers were dried over NaySOs, filtered and the
filtrate was concentrated in vacuo to afford the pure product as yellow
solid (160 mg, 92%). 'H NMR (500 MHz, CDCl3): 6 7.41 (d, J = 8.5 Hz,
2H), 6.54 (d, J = 8.5 Hz, 2H), 4.14 (s, 2H); 13C NMR (126 MHz, CDCl3):
§150.5,134.0,120.3,120.1,114.6, 100.4; 15N NMR (51 MHz, CDCl3): 6
249.5; FTIR (thin film, DCM): 3365 (m), 2163 (m), 1621 (s), 1513 (s),
1320 (s) cm’l; HRMS-ESI (m/z): Calc’d for C7H7N15N+ (IM + H]"):
120.0574; found: 120.0594.

4.2.3. 4-Amino-3-bromobenzonitrile-'°N (5)

Bioorganic & Medicinal Chemistry 72 (2022) 116969

: NH,
’NC Br

5

To a 25-mL round-bottom flask were added 3 (119 mg, 1.00 mmol, 1.00
equiv) and MeCN (5 mL). N-bromosuccinimide (187 mg, 1.05 mmol,
1.05 equiv) and NH4Cl (5.3 mg, 0.10 mmol, 0.10 equiv) were added and
the reaction was stirred at room temperature for 45 min. The reaction
was then quenched by the addition of HyO (10 mL) and extracted with
EtOAc (10 mL x 3). The combined organic layers were washed with
brine (10 mL), dried over NajSO, filtered, and the filtrate was
concentrated in vacuo. The crude was subjected to silica gel chroma-
tography (15% EtOAc/Hexanes) to afford the product as an off-white
solid (190 mg, 97%). R¢ = 0.41 (20% EtOAc/hexanes); H NMR (500
MHz, CDCl3): 6 7.70 (d, J = 1.1 Hz, 1H), 7.38 (dd, J = 8.4, 1.1 Hz, 1H),
6.74 (d, J = 8.4 Hz, 1H), 4.61 (s, 2H); 13C NMR (126 MHz, CDCls): 6
148.2, 136.6, 132.6, 118.8, 114.9, 108.0, 101.5; 15N NMR (51 MHz,
CDCl3): 6 252.2; FTIR (thin film, DCM): 3364 (m), 2190 (m), 1619 (s),
1503 (s) em™'; HRMS-ESI (m/2): Calc’d for C;HgBrN'N* ([M + H]™H):
197.9679; found: 197.9682.

4.2.4. 4-Nitrobenzonitrile-1>C (2)

NO,

2

To a 50-mL round-bottom flask were added K'CN (177 mg, 2.68 mmol,
1.10 equiv), 1-iodo-4-nitrobenzene (605 mg, 2.43 mmol, 1.00 equiv)
and NMP (4 mL). The reaction was heated to 180 °C and stirred for 2 h.
The mixture was directly subjected to silica gel chromatography (10%
EtOAc/Hexanes) to afford the product (310 mg, 86%). Ry = 0.61 (20%
EtOAc/hexane); H NMR (500 MHz, CDCls): 6 8.36 (d, J = 8.7 Hz, 2H),
7.89 (dd, Jo i = 8.7, Jc_¢c = 5.2 Hz, 2H); 13C NMR (126 MHz, CDCls): 5
149.9, 133.3, 124.2, 117.9, 116.7; FTIR (thin film, DCM): 2220 (w),
1532 (s), 1349 (s) cm~'; HRMS-ESI: satisfactory data was unobtainable.

4.2.5. 4-Aminobenzonitrile-'3C (4)
NH,

N'SC

To a 4-mL vial was added SnCl, dihydrate (1.1 g, 4.8 mmol, 4.0 equiv)
and EtOH (2.4 mL). To the mixture was added 2 (180 mg, 1.2 mmol, 1.0
equiv) and the resulting yellow reaction was heated to 70 °C. After
stirring for 30 mins, the reaction was cooled to room temp-H50 (25 mL)
was added and the pH was adjusted to 7-8 with saturated aqueous
NaHCOs. The aqueous layer was extracted with EtOAc (50 mL x 3). The
combined organic layers were dried over NaySOs, filtered and the
filtrate was concentrated in vacuo to afford the pure product as yellow
solid (130 mg, 88%). 'H NMR (500 MHz, CDCl3): § 7.42 (dd, J = 8.5,
5.1 Hz, 2H), 6.66 (d, J = 8.5 Hz, 2H), 4.20 (s, 2H); 13C NMR (126 MHz,
CDCl3): 6 154.3, 150.3, 133.7, 120.0, 114.3; FTIR (thin film, DCM):
3368 (m), 2161 (m), 1604 (s), 1514 (s), 1317 (m) cm ™}, HRMS-ESI (m/
2): Calc’d for C§2CH,NZ ([M + H]™1): 120.0637; found: 120.0639.

4.2.6. 4-Amino-3-bromobenzonitrile-'>C 6)
NECE "
6

To a 15-mL round-bottom flask were added 4 (94 mg, 0.79 mmol, 1.0
equiv) and MeCN (4 mL). N-bromosuccinimide (140 mg, 0.79 mmol, 1.0
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equiv) and NH4CI (4.0 mg, 0.079 mmol, 0.10 equiv) were added and the
reaction was stirred at room temperature for 1.5 h. The reaction was
then quenched by the addition of HoO (10 mL) and extracted with EtOAc
(15 mL x 3). The combined organic layers were washed with brine (10
mL), dried over NaySQOy,, filtered, and the filtrate was concentrated in
vacuo. The crude was subjected to silica gel chromatography (10%
EtOAc/Hexanes) to afford the product as an off-white solid (130 mg,
81%). R¢ = 0.41 (20% EtOAc/hexanes); H NMR (500 MHz, CDCl3): 6
7.70 (d, J = 1.1 Hz, 1H), 7.38 (dd, J = 8.4, 1.1 Hz, 1H), 6.74 (d, J = 8.4
Hz, 1H), 4.60 (s, 2H); 3¢ NMR (126 MHz, CDCl3): 6 148.3, 136.5,
132.6, 118.7,114.9 (Jc¢ = 6.3 Hz), 107.9 (Jo_c = 7.4 Hz), 101.2 (Jc_¢
= 85.1 Hz); FTIR (thin film, DCM): 3357 (m, br), 2164 (m), 1619 (s),
1502 (s) em™'; HRMS-ESI (m/2): Calc’d for C{2CHeBrNg ([M + HI™M):
197.9742; found: 197.9748.

4.2.7. 1°N-dimethyl-NO probe (*°N-I)

NH, O
M
,;‘, e
Me
C'®N
T5N-1

To a 50-mL round-bottom flask were added 5 (200 mg, 1.0 mmol, 1.0
equiv), 3-dimethylaminophenyl boronic acid (170 mg, 1.0 mmol, 1.0
equiv), Pd(PPhs)4 (23 mg, 0.020 mmol, 0.020 equiv) and NaCOs3 (850
mg, 8.0 mmol, 8.0 equiv). HyO (3 mL), EtOH (3 mL) and benzene (10
mL) were added and the resulting milky orange solution was heated to
reflux and stirred overnight. The reaction was then cooled to room
temperature, diluted with H>O (20 mL) and extracted with DCM (20 mL
x 3). The combined organic layers were dried over NaySOy, filtered, and
the filtrate was concentrated in vacuo. The crude was subjected to silica
gel chromatography (15% EtOAc/Hexanes) to afford the product as a
yellow oil (140 mg, 59%). Rf = 0.34 (20% EtOAc/hexanes); TH NMR
(500 MHz, CDClg): § 7.42 (d, J = 1.7 Hz, 1H), 7.39 (dd, J = 8.3, 1.7 Hz,
1H), 7.33 (t, J = 7.9 Hz, 1H), 6.77-6.71 (m, 4H), 4.32 (s, 2H), 2.99 (s,
6H); *C NMR (126 MHz, CDCl3): § 150.8, 147.8, 137.7, 133.9, 132.1,
129.6, 128.0, 120.1 (Jc.y = 18.0 Hz), 116.3, 114.6, 112.3, 111.8, 99.6,
40.2; 15N NMR (51 MHz, CDCls): § 249.6; FTIR (thin film, DCM): 3364
(br, w), 2186 (m), 1597 (s), 1492 (s) cm’l; HRMS-ESI (m/z): Calc’d
C15H16N3°N ([M + H]™): 239.1309; found: 239.1310.

4.2.8. 1°N-dimethyl-AZO product (*>N-I-AZO)

C'sN
15N-1-AZO

To a 100-mL round bottom flask were added °N-I (28 mg, 0.12 mmol,
1.0 equiv) and 1 M HCI (40 mL). The solution was cooled to 0 °C using
ice bath and NaNO; (9.7 mg, 0.14 mmol, 1.2 equiv) dissolved in HyO (5
mL) was added dropwise, causing the reaction to turn clear yellow to
dark red. The resulting mixture was then allowed to warm up to room
temperature and stirred for 5 min. The reaction was then neutralized to
pH 7 with saturated aqueous NaHCO3 and extracted with DCM (30 mL
x 3). The combined organic layers were dried over NasSOy, filtered, and
the filtrate was concentrated in vacuo. The crude was subjected to silica
gel chromatography (100% EtOAc) to afford the product as an orange-
red solid (17 mg, 59%). Ry = 0.34 (20% EtOAc/hexanes); IH NMR
(500 MHz, CDCl3): § 8.77 (d, J = 1.5 Hz, 1H), 8.61 (d, J = 8.5 Hz, 1H),
8.50 (d, J=9.3 Hz, 1H), 7.94 (dd, J = 8.5, 1.5 Hz, 1H), 7.37 (dd, J = 9.3,
2.6 Hz, 1H), 7.26 (d, J = 2.6 Hz, 1H), 3.28 (s, 6H); 13C NMR (126 MHz,
CDClg): § 152.5,145.2, 141.2,133.3,131.9, 130.1, 128.1, 122.4, 121.0,
118.7 (d, Joy = 17.4 Hz), 117.5, 112.8, 97.5, 40.7; >N NMR (51 MHz,
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CDCl3): & 258.5; FTIR (thin film, DCM): 2201 (w), 2143 (w), 1618 (s),
1319 (m) cm™'; HRMS-ESI (m/z): Calc’d CysHpsN3°N ([M + HI™):
250.1105; found: 250.1107.

4.2.9. 13C—dimethyl—NO probe(13C—I)

1)
M
N e
Me

13CN
13¢.]

Synthesized following the same method as the *°N version using 6 afford
the product as an orange-red solid. R = 0.34 (20% EtOAc/hexanes); g
NMR (500 MHz, CDCl3): § 7.40 (d, J = 1.7 Hz, 1H), 7.37 (dd, J = 8.3,
1.7 Hz, 1H), 7.31 (t, J = 7.9 Hz, 1H), 6.75 (dd, J = 8.3, 2.2 Hz, 1H),
6.72-6.68 (m, 3H), 4.38 (s, 2H), 2.99 (s, 6H); 13¢ NMR (126 MHz,
CDCl3): 6 151.1, 148.0, 138.0, 134.3, 132.4, 129.9, 128.3, 120.3(13CN),
116.5,114.9, 112.4 (Jc.c = 64.3 Hz), 99.9 (Jc.c = 84.4 Hz), 40.5. FTIR
(thin film, DCM): 3366 (br, w), 2161 (m), 1599 (s), 1498 (s) cm };
HRMS-ESI (m/z): Calc’d C13CH16N3 (M + H]™): 239.1372; found:
239.1372.

4.2.10. '3C-dimethyl-AZO product(*>C-I-AZ0)

130N
13c-1-AZ0

Synthesized following the same method as the '°N version using 3C-I.
1H NMR (500 MHz, CDCl3): 6 8.77 (d, J = 1.5 Hz, 1H), 8.61 (d, J = 8.5
Hz, 1H), 8.50 (d, J = 9.3 Hz, 1H), 7.94 (ddd, J = 8.5, 4.5, 1.5 Hz, 1H),
7.37 (dd, J = 9.3, 2.6 Hz, 1H), 7.25 (d, J = 2.6 Hz, 1H), 3.29 (s, 6H); 13C
NMR (126 MHz, CDCls): § 152.4, 145.2, 141.2, 133.2, 131. 8, 130.1,
128.1, 122.4, 120.9, 118.7(13CN), 117.5, 113.0, 97.4, 40.6,FTIR (thin
film, DCM): 2183 (w), 2051 (w), 1612 (s), 1316 (m) cm_l; HRMS-ESI
(m/2): Cale’d C13CH;3N4 ([M + H]T): 250.1168; found: 250.1170.

4.2.11. 3-Bromo-N-(2-(2-(2-methoxyethoxy)ethoxy)ethyD-N-
methylaniline (S1)

Me‘N/\VO\/):\OMe

Br
S1

To a 25-mL RBF was added NaH (60% in mineral oil, 96 mg, 2.4 mmol,
1.2 equiv) and DMF (2 mL). 3-bromo-N-methylaniline (370 mg, 2.0
mmol, 1.0 equiv) was added at room temperature and the milky grey
solution was stirred for 1 h. 1-bromo-2-(2-(2-methoxyethoxy)ethoxy)
ethane (500 pL, 2.0 mmol, 1.0 equiv) was added and the resulting
mixture was heated to 80 °C and stirred for 18 h. The reaction was then
cooled to room temp, EtOAc (20 mL) was added, and the organic layer
was washed with 1 M KOH (20 mL x 3). The organic layers were dried
over NaySOy, filtered, and the filtrate was concentrated in vacuo. The
crude was isolated via autocolumn to afford the product (150 mg, 23%).
R¢ = 0.31 (40% EtOAc/hexanes); 'H NMR (500 MHz, CDCl3): § 7.04 (t,
J = 8.2 Hz, 1H), 6.82 (m, 1H), 6.79 (d, J = 7.8, 1H), 6.61 (dd, J = 8.2,
2.2 Hz, 1H), 3.64-3.62 (m, 8H), 3.54-3.50 (m, 4H), 3.38 (s, 3H), 2.96 (s,
3H); 3¢ NMR (126 MHz, CDCl3): § 150.5, 130.4, 123.6, 119.0, 114.9,
110.7, 72.1, 70.9, 70.7, 68.6, 59.2, 52.4, 39.0; FTIR (thin film, DCM):
2871 (m, br), 1591 (s), 1493 (s), 1106 (s) cm’l; HRMS-ESI (m/z): Calc’d
for C14H23BrNO3 ([M + H]™): 332.0856; found: 332.0862.
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Me‘NH ME\N/\(“/O\/);\OM

Br/\(\/o\’)g\OMe
I X
K,COg, DMF, 80 °C
Br Z Br

S1

4.2.12. N-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-N-methyl-3-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yDaniline (7)

Me.
© N/\Vo\/):\OMe

P

o}

7

To a 100-mL round bottom flask were added S1 (1.3 g, 4.0 mmol, 1.0
equiv), bis(pinacolato)diborane (1.1 g, 4.4 mmol, 1.1 equiv), Pd(dppf)
Cl, (88 mg, 0.12 mmol, 0.030 equiv) and KOAc (1.18 g, 12.0 mmol, 3.00
equiv). 1,4-Dioxane (12 mL) was added and the reaction was heated to
85 °C and stirred overnight. The reaction was then cooled to room
temperature, diluted with H,O (100 mL) and extracted with DCM (70
mL x 3). The combined organic layers were dried over NasSOy, filtered,
and the filtrate was concentrated in vacuo affording brown oil. The crude
was subjected to autocolumn to afford the product as orange oil (840
mg, 56%). R¢ = 0.28 (40% EtOAc/hexanes); 'H NMR (500 MHz, CDCl3):
6 7.23 (t, J = 8.1 Hz, 1H), 7.15-7.14 (m, 2H), 6.85-6.82 (m, 1H),
3.66-3.62 (m, 8H), 3.57-3.52 (m, 4H), 3.37 (s, 3H), 3.00 (s, 3H), 1.33 (s,
12H); 13¢ NMR (126 MHz, CDCl3): 6 148.8, 128.6,122.9,118.2, 115.4,
83.7,72.0,70.8,70.7,70.6,68.7,59.1, 52.4, 39.1, 24.9; FTIR (thin film,
DCM): 2872 (m, br), 1344 (s), 1143 (s), 1104 (s) cm’l; HRMS-ESI (m/2):
Calc’d for CooHssBNOZ ([M + H]™M): 380.2603; found: 380.2611.

4.2.13. °N-PEG-NO probe (*°N-II)

NH, O
o
l}l/\(\/ \’};\OMe
Me
15
oeN SN

To a microwave tube were added 5 (29 mg, 0.15 mmol, 1.0 equiv), 7 (56
mg, 0.15 mmol, 1.0 equiv), Pd(PPhs)4 (5.2 mg, 0.0045 mmol, 0.030
equiv) and NayCOs3 (130 mg, 1.2 mmol, 8.0 equiv). Hy0 (0.5 mL), EtOH
(0.5 mL) and benzene (1.6 mL) were added and the resulting solution
was heated to reflux and stirred overnight. The reaction was then cooled
to room temperature, diluted with HoO (10 mL) and extracted with
EtOAc (10 mL x 3). The combined organic layers were dried over
NaySOy, filtered, and the filtrate was concentrated in vacuo. The crude
was subjected to silica gel chromatography (25-40-80% EtOAc/Hex-
anes) to afford the product as a yellow oil (22 mg, 40%). Rf = 0.48
(100% EtOAc); IHNMR (500 MHz, CDCl3): 6 7.39-7.37 (m, 2H), 7.29 (t,
J =7.9 Hz, 1H), 6.74-6.66 (m, 4H), 4.40 (br s, 2H), 3.66 (t, J = 5.8 Hz,
2H), 3.61-3.60 (m, 6H), 3.56 (t, J = 5.3 Hz, 2H), 3.52 (dd, J = 5.0, 4.2
Hz, 2H), 3.37 (s, 3H), 3.00 (s, 3H); '*C NMR (126 MHz, CDCl3): § 150.0,
148.1, 138.1, 134.3, 132.5, 130.1, 128.3, 120.4, 116.4, 114.9, 112.3,
111.7, 100.1, 72.1, 70.9, 70.8, 70.7, 68.9, 59.1, 52.4, 39.0; '>N NMR
(51 MHz, CDCl3): 6 249.6; FTIR (thin film, DCM): 2913 (m, br), 2187
(w), 1599 (s), 1108 (s) cm™'; HRMS-ESI (m/z): Calc’d for
C21HgN3°NOF ([M + H]™): 371.2096; found: 371.2098.

4.2.14. 3C-PEG-NO probe(**C-II)
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e\~ O™ ome

e . 2
B,pin,, Pd(dppf)Cl
oping, Pd(dppf)Cly @
Z ?,O
(o]
7

KOACc, dioxane

r}l/\(\/o\/)j\OMe
Me
13
CN 3¢

To a microwave tube were added 6 (47 mg, 0.24 mmol, 1.0 equiv), 7 (90
mg, 0.24 mmol, 1.0 equiv), Pd(PPhs)4 (8.3 mg, 0.0071 mmol, 0.030
equiv) and NazCOs3 (200 mg, 1.9 mmol, 8.0 equiv). H20 (0.9 mL), EtOH
(0.9 mL) and benzene (3.0 mL) were added and the resulting solution
was heated to reflux and stirred overnight. The reaction was then cooled
to room temperature, diluted with HoO (15 mL) and extracted with
EtOAc (15 mL x 3). The combined organic layers were dried over
NaySQy, filtered, and the filtrate was concentrated in vacuo. The crude
was subjected to silica gel chromatography (25-40-80% EtOAc/Hex-
anes) to afford the product as a yellow oil (28 mg, 25%). Ry = 0.48
(100% EtOAc); 'HNMR (500 MHz, CDCl3): 6 7.41-7.36 (m, 2H), 7.29 (t,
J = 7.9 Hz, 1H), 6.74-6.66 (m, 4H), 4.40 (br s, 2H), 3.66 (t, J = 5.8 Hz,
2H), 3.62-3.60 (m, 6H), 3.56 (t, J = 5.3 Hz, 2H), 3.52 (dd, J = 5.0, 4.2
Hz, 2H), 3.37 (s, 3H), 3.00 (s, 3H); 13C NMR (126 MHz, CDCl3): § 150.0,
148.1, 138.1, 134.4, 132.5, 130.1, 128.3, 120.4, 116.4, 115.0, 112.3,
111.7, 100.5, 72.1, 70.9, 70.8, 70.7, 68.9, 59.1, 52.4, 39.0; FTIR (thin
film, DCM): 2877 (m, br), 2162 (w), 1599 (s), 1106 (s) cm_l; HRMS-ESI
(m/2): Calc’d for C33CH2gN305 ([M + H]™): 371.2159; found: 371.2165.

4.2.15. II-AZO product

para-Il-AZO
(para:ortho = 5:1)

ortho-II-AZO

To a 100-mL RBF was added non-labeled II (12 mg, 0.032 mmol, 1.0
equiv) and 1 M HCI (10 mL). NaNO;, (3.3 mg, 0.048 mmol, 1.5 equiv) in
0.5 mL H,0 was added dropwise at room temperature, causing the
mixture to turn dark red immediately. The starting material was
consumed within 1 min based on TLC analysis. After 5 min, the reaction
was quenched with NaHCOs to pH 7-8. The organic layer was extracted
with EtOAc (20 mL x 3), and the combined organic layers were dried
over NaySOy, filtered, and the filtrate was concentrated in vacuo. The
crude was purified via autocolumn to afford ortho-product (2.1 mg,
17%) and para-product (10 mg, 82%).

Ortho-product: R¢ = 0.38 (100% EtOAc); TH NMR (500 MHz, CDCl3):
58.86 (d, J=1.6 Hz, 1H), 8.70 (d, J = 8.5 Hz, 1H), 8.00 (dd, J = 8.5, 1.7
Hz, 1H), 7.84-7.77 (m, 2H), 4.10 (t, J = 5.5 Hz, 2H), 4.02 (t, J = 5.5 Hz,
2H), 3.65-3.64 (m, 2H), 3.62-3.60 (m, 4H), 3.53-3.51 (m, 2H), 3.36 (s,
3H), 3.35 (s, 3H); 13C NMR (126 MHz, CDCls): § 151.8, 150.5, 145.2,
133.2,131.7,130.1,128.3,128.1,122.6,121.0,117.8,97.8, 72.0, 71.1,
70.8, 70.7, 68.9, 59.1, 52.6, 39.7; FTIR (thin film, DCM): 2872 (m, br),
2200 (w), 1609 (s), 1097 (s) cm’l; HRMS-ESI (m/z): Calc’d for
Co1H25N403 ([M + H]1): 381.1921; found: 381.1910.

Para-product: R¢ = 0.14 (100% EtOAc); IH NMR (500 MHz, CDCl3):
§8.80(d, J=1.4 Hz, 1H), 8.62 (d, J = 8.5 Hz, 1H), 8.49 (d, J = 9.3 Hz,
1H), 7.95 (dd, J = 8.5, 1.4 Hz, 1H), 7.45 (dd, J = 9.3, 2.5 Hz, 1H), 7.37
(d, J = 2.5 Hz, 1H), 3.83-3.80 (m, 3H), 3.66-3.62 (m, 4H), 3.60-3.58
(m, 2H), 3.52-3.47 (m, 3H), 3.33 (s, 3H), 3.29 (s, 3H); '3C NMR (126
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MHz, CDCl3): § 152.0, 145.2, 141.2, 133.2, 131.8, 130.1, 128.1, 122.5,
121.0,118.8,117.7,112.3,97.7,72.0,71.0,70.7,68.8,59.1, 58.3, 52.6,
39.7; FTIR (thin film, DCM): 2872 (m, br), 2199 (w), 1607 (s), 1097 (s)
cm~'; HRMS-ESI (m/2): Calc’d for Cy;HasN4O3 ([M + H11): 381.1921;
found: 381.1914.
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