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If a morphism of germs of schemes induces isomorphisms of 
all local jet schemes, does it follow that the morphism is an 
isomorphism? This problem is called the local isomorphism 
problem. In this paper, we use jet schemes to introduce 
various closure operations among ideals and relate them to the 
local isomorphism problem. This approach leads to a partial 
solution of the local isomorphism problem, which is shown to 
have a negative answer in general and a positive one in several 
situations of geometric interest.
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in connection to motivic integration [2], and their results were later applied to study 
singularities of pairs by Mustaţă [6]. Several applications in birational geometry have 
been obtained since. In this paper, we investigate new connections of arc spaces in 
commutative ring theory.

Let X be a scheme defined over a field k. For a nonnegative integer m, let Xm denote 
the m-jet scheme of X; when m = ∞, we have the arc space X∞, which we also call the 
∞-jet scheme of X. Given a point x ∈ X, for every m we denote by

Xx
m := π−1

m (x)

the fiber over x of the natural projection πm : Xm → X. We call Xx
m the scheme of local 

m-jets of X.
Let now φ : (Y, y) → (X, x) be a morphism of germs of schemes over k. Suppose 

that for every m ≥ 0 (including m = ∞) the induced morphism φm : Ym → Xm maps 
the scheme of local m-jets Y y

m of Y isomorphically to the scheme of local m-jets Xx
m

of X. Does it follows that φ is an isomorphism? What if we assume that φ is a closed 
immersion?

We will refer to these questions as the local isomorphism problem and the embedded 
local isomorphism problem. Focusing on the local ring OX,x, the latter can be interpreted 
as asking whether there is a nonzero ideal in this ring which defines a subscheme of X
with same local jet schemes at x. This questions leads us to discover a new aspect to 
commutative ring theory by means of jet schemes.

Given any local k-algebra R, we introduce and study various closure operations among 
the ideals of R which we call m-jet closures. These are defined for every m ≥ 0, including 
m = ∞ where the operation is also called arc closure. For every m, the m-jet closure of 
an ideal a ⊂ R is the largest ideal defining a scheme in Spec R whose scheme of local 
m-jets is equal to the one of the scheme defined by a. We also introduce a notion of 
m-jet support closure, where we put an analogous condition on the reduced scheme of 
local m-jets. For ideals of regular local rings, the intersection of all m-jet support closures 
of an ideal, for m finite, is the same as the integral closure, but the two differ in general, 
with the first one giving a tighter closure operation.

One of the properties we establish is that the intersection of all m-jet closures of an 
ideal, for m finite, is equal to the arc closure of the ideal. Using this, we prove that the 
embedded local isomorphism problem has a positive answer for a germ (X, x) if and only 
if the zero ideal of OX,x is arc closed.

This result prompts us to investigate which local k-algebras have the property that 
their zero ideals are arc closed. We find an example of a non-Noetherian ring whose 
zero ideal is not arc closed, and this implies that in general the above questions have a 
negative answer, even assuming that φ is a closed embedding. In the positive direction, 
we prove that the embedded local isomorphism problem has a positive answer for several 
classes of schemes, among which are all varieties and homogeneous schemes over a field.
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2. The local isomorphism problem

We work over a field k. In this paper, N denotes the set of nonnegative integers.
Let X be an arbitrary scheme over k. For every m ∈ N, we define the m-jet scheme

of X to be the scheme Xm representing the functor from k-schemes to sets given by

Z �→ Homk(Z × Spec k[t]/(tm+1), X).

A point of Xm is called an m-jet of X; it corresponds to a map Spec K[t](tm+1) → X

where K is the residue field of the point. We will also consider A-valued m-jets for 
any k-algebra A; these are maps Spec A[t](tm+1) → X, and correspond to the A-valued 
points of Xm.

Truncations k[t]/(tp+1) → k[t]/(tm+1), defined for p > m, induce natural projections 
Xp → Xm which are affine morphisms. By taking the inverse limit, we define the arc 
space (or ∞-jet scheme) X∞ = lim←−−m

Xm. This is the scheme representing the functor 
from k-schemes to sets given by

Z �→ Homk(Z×̂ Spf k[[t]], X).

A point of X∞ is called an arc (or ∞-jet) of X. It can be equivalently viewed as a map 
Spf K[[t]] → X or a map Spec K[[t]] → X, where K is the residue field of the point. 
Just like for jets, we will also consider A-valued arcs for any k-algebra A, which are 
maps Spec A[[t]] → X. If X is affine (or quasi-compact and quasi-separated, see [1]), 
then A-valued arcs correspond to A-valued points of X∞.

We denote by ψm : X∞ → Xm, πm : Xm → X, and π = π∞ : X∞ → X the natural 
projections. For ease of notation, it is often convenient to let m range in N ∪ {∞} and 
denote A[[t]], for a k-algebra A, also by A[t]/(t∞).

For more on jet schemes and arc spaces, we refer to [4,8,3].
Given a point x ∈ X, for every m ∈ N ∪ {∞} we denote

Xx
m := π−1

m (x).

Definition 2.1. We call Xx
m the scheme of local m-jets of X at x.
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Roughly speaking, we would like to determine how much of the local structure of the 
scheme X at the point x is encoded in the schemes of local jets Xx

m.
A related question asks how much of the geometry of a scheme X is encoded in its jet 

schemes Xm for m ≥ 1 (including m = ∞). This question was addressed in [5], where it 
is shown that the answer is both positive and negative depending on how one interprets 
the question. On the one hand, an example is given of two non-isomorphic schemes X
and Y whose jet schemes Xm and Ym are isomorphic for all m ≥ 1 in a compatible way 
with respect to the truncation morphisms Xm+1 → Xm and Ym+1 → Ym. On the other 
hand, if the isomorphisms Ym → Xm are induced by a given morphism φ : Y → X, then 
it is proved that φ must be an isomorphism.

In view of the negative example in [5], we consider the following setting. Let

φ : (Y, y) → (X, x)

is a k-morphism of germs of k-schemes. For every m ∈ N ∪ {∞}, there is an induced 
morphism of scheme of local m-jets

φloc
m : Y y

m → Xx
m

given by restriction of the natural map φm : Ym → Xm.

Problem 2.2 (Local isomorphism problem). With the above notation, if φloc
m is an iso-

morphism for every m ∈ N ∪ {∞}, does it follow that φ is an isomorphism of germs?

Problem 2.3 (Embedded local isomorphism problem). With the above notation, assume 
that φ is a closed immersion. If φloc

m is an isomorphism for every m ∈ N ∪ {∞}, does it 
follow that φ is an isomorphism of germs?

Remark 2.4. Taking m = 0, we see that the assumptions in either Problem 2.2 or Prob-
lem 2.3 include the condition that φ induces an isomorphism between the residue fields 
k(x) of x and k(y) of y. We will identity these fields, and denote them by K. Note 
that, for all m, the maps φloc

m : Ym(y) → Xm(x) are naturally K-morphisms (and hence 
K-isomorphisms under those assumptions).

Definition 2.5. We say that a germ (X, x) has the embedded local isomorphism property if 
Problem 2.3 has a positive answer for every closed immersion φ : (Y, y) → (X, x). We also 
say that a germ (X, x) has the local isomorphism property for a certain class of schemes 
if Problem 2.2 has a positive answer for every morphism φ : (Y, y) → (X, x) with (Y, y)
in that class.

Proposition 2.6. Assume that (X, x) has the embedded local isomorphism property. Then 
(X, x) has the local isomorphism property for all locally Noetherian k-scheme germs 
(Y, y).
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The proposition is an immediate consequence of the following property.

Lemma 2.7. Let φ : (Y, y) → (X, x) be a k-morphism of germs inducing an isomorphism 
of the residue fields at x and y (which we identify and denote by K). Assume that Y

is locally Noetherian at y and φloc
1 : Y y

1 → Xx
1 is a K-isomorphism. Then φ is a closed 

immersion of germs.

Proof. By hypothesis, the differential of φ induces an isomorphism of K-vector spaces 
between the Zariski tangent spaces mY,y/m2

Y,y of Y at y and mX,x/m2
X,x of X at x. 

This implies that the homomorphism φ∗ : OX,x → OY,y corresponding to φ induces a
surjection mX,x → mY,y. Indeed, we have mY,y = φ∗(mX,x) + m2

Y,y by the isomorphism 
of the Zariski tangent spaces, and therefore we have mi

Y,y = φ∗(mi
X,x) + m

i+1
Y,y for i ≥ 1. 

By successive substitutions, we obtain mY,y = φ∗(mX,x) + mn
Y,y for all n ≥ 1. Since Y

is Noetherian at y, this implies that mY,y = φ∗(mX,x). By this and the isomorphism 
between the residue fields, we conclude that φ∗ : OX,x → OY,y is surjective. �

When restricting to the embedded setting, we often denote the germ by (X, o). Later 
in Section 5, we shall reinterpret the embedded local isomorphism problem from an 
algebraic point of view, relating it to certain “jet theoretic” notions of closure of ideals 
in local rings.

3. Jet closures

Throughout this section, let (R, m) be a local algebra over a field k, and let X =
Spec R. We denote by o ∈ X the closed point.

For every m ∈ N ∪ {∞}, let Rm be the ring of regular functions of the m-jet scheme 
Xm, so that Xm = Spec Rm. For an ideal a ⊂ R and m ∈ N ∪ {∞}, we denote

am := (Di(f) | f ∈ a, 0 ≤ i < m + 1) ⊂ Rm

the ideal generated by the Hasse–Schmidt derivations Di(f) of the elements f of I. If 
V (a) ⊂ X is the subscheme defined by a, then its m-jet scheme V (a)m is the subscheme 
of Xm defined by am.

Definition 3.1. For any ideal a ⊂ R and any m ∈ N ∪ {∞}, we define the m-jet closure
of a to be

am-jc := {f ∈ R | (f)m ⊂ am (mod mRm)}.

For m = ∞, we also call the ideal

aac := a∞-jc

the arc closure of a.
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Unless otherwise stated, in the following statements we let m be an arbitrary element 
of N ∪ {∞} We start with the following property which implies that the m-jet closure 
an ideal a is intrinsic, that is, only depends on the quotient ring R/a and hence on the 
scheme Spec R/a, and not by the embedding of Spec R/a in Spec R.

Lemma 3.2. The m-jet closure am-jc of an ideal a ⊂ R is the inverse image via the 
quotient map R → R/a of the m-jet closure of the zero ideal of R/a.

Proof. Let f ∈ R be an element and let f denote the class of f in R/a. Note that the 
image of (f)m in Rm/am is equal to the ideal (f)m. The condition that (f)m ⊂ am

modulo mRm is equivalent to the condition that (f)m = 0 modulo mRm/am. It follows 
that f ∈ am-jc if and only if f is in the m-jet closure of the zero ideal of R/a. �

In view of this fact, in order to study properties of m-jet closures we can reduce to 
the case of the zero ideal (0) ⊂ R, after replacing R by R/a. In this special case, the 
m-jet closure can be expressed in terms of the universal m-jet homomorphism.

Recall that the universal m-jet

μm : Xm×̂ Spf k[t]/(tm+1) → X

is defined by the ring homomorphism

μ∗
m : R → Rm[t]/(tm+1), f �→

m∑
i=0

Di(f)ti.

We denote by λm the restriction of μm to the scheme of local m-jets Xo
m, and consider 

the corresponding ring homomorphism

λ∗
m : R → (Rm/mRm)[t]/(tm+1).

Lemma 3.3. We have

(0)m-jc = ker λ∗
m.

Proof. It suffices to observe that, by definition,

(0)m-jc = {f ∈ R | (f)m = 0 (mod mRm)} = ker λ∗
m. �

The next property provides a geometric characterization of m-jet closures.

Proposition 3.4. The m-jet closure am-jc of an ideal a ⊂ R is the largest ideal b ⊂ R

such that V (b)o
m = V (a)o

m.
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Proof. By Lemma 3.2, it suffices to prove the proposition for the zero ideal (0) of R. 
The fact that (0)m-jc is an ideal is clear by Lemma 3.3. The second assertion follows by 
the geometric reinterpretation of the definition of m-jet closure:

am-jc = {f ∈ R | V (f)o
m ⊃ V (a)o

m}.

In the case of the zero ideal, we have

(0)m-jc = {f ∈ R | V (f)o
m = Xo

m},

and this implies the assertion. �
Remark 3.5. Now that we know that the m-jet closure of an ideal is itself an ideal, we 
can rephrase their intrinsic property by saying that, for every ideal a ⊂ R, there is a 
canonical isomorphism of k-algebras

R

am-jc
∼= R/a

((0)R/a)m-jc .

The next corollary implies that the m-jet closure is indeed a closure operation.

Corollary 3.6. For any ideal a ⊂ R we have

a ⊂ am-jc = (am-jc)m-jc
.

Proof. Both the inclusion a ⊂ am-jc and the equality am-jc = (am-jc)m-jc are immediate 
consequences of Proposition 3.4. �
Definition 3.7. We say that an ideal a ⊂ R is m-jet closed if a = am-jc. When m = ∞
(where the condition can be written as a = aac), we also say that a is arc closed.

Corollary 3.8. For two ideals a, b ⊂ R we have am-jc = bm-jc if and only if V (a)o
m =

V (b)o
m.

Proof. This is also an immediate consequences of Proposition 3.4. �
Proposition 3.9. For any ideal a ⊂ R and any m ∈ N, we have a + mm+1 ⊂ am-jc.

Proof. By Lemma 3.2, it suffices to prove the case where a = (0) ⊂ R. Recall that 
(0)m-jc = ker λ∗

m by Lemma 3.3. Since λ∗
m(m) ⊂ (t), we have λ∗

m(mm+1) ⊂ (tm+1) = 0, 
and therefore mm+1 ⊂ ker λ∗

m = (0)m-jc. �
Remark 3.10. Proposition 3.9 implies in particular that even in nice situations (e.g., 
assuming that R is a Noetherian k-algebra) the m-jet closure operation on ideals is, for 
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finite m, a nontrivial operation. For instance, if a is not m-primary, then a � am-jc for 
all m ∈ N.

The following is an example where a + mm+1 �= am-jc.

Example 3.11. Let a = (x2 + y3) ⊂ R = k[[x, y]], where k is a field of characteristic 
�= 2, 3. A direct computation shows that a4-jc = (x2 + y3, xy3), and hence a +m5 �= a4-jc. 
To see this, we introduce the coordinates xi := Di(x) and yi := Di(y) on the jet schemes 
of X = Spec R, where (Di)i≥0 is the sequence of universal Hasse–Schmidt derivations. 
Denoting by o ∈ X the closed point, we have Xo

4 = Spec k[xi, yi | 1 ≤ i ≤ 4], and the 
ideal defining V (a)o

4 in there is generated by the three elements

x2
1, 2x2x1 + y2

1 , 2x3x1 + x2
2 + 3y2y2

1 .

One can check that x1y3
1 is in this ideal, and this implies that xy3 ∈ a4-jc. On the other 

hand, xy3 /∈ a + m5.

Recall that we defined the arc closure to be aac := a∞-jc. The following proposition 
shows how the arc closure compares to the other m-jet closures.

Proposition 3.12. For any ideal a ⊂ R, we have⋂
m∈N

am-jc = aac.

Proof. By Lemma 3.2, we reduce to prove the formula when a is the zero ideal of R, 
where by Lemma 3.3 the proposition is equivalent to the assertion that⋂

m∈N

ker(λ∗
m) = ker(λ∗

∞).

To show one inclusion, let f ∈ R be an element such that λ∗
∞(f) �= 0 in 

(R∞/mR∞)[[t]]. Then the image λ∗
∞(f) in (R∞/mR∞)[t]/(tm+1) is nonzero for 

all sufficiently large integers m. Since, for any such m, the resulting map R →
(R∞/mR∞)[t]/(tm+1) factors through (Rm/mRm)[t]/(tm+1) by the universality of λ∗

m, 
it follows that λ∗

m(f) �= 0, and hence we have f /∈
⋂

m∈N
ker(λ∗

m).
For the reverse inclusion, assume that f /∈ ker(λ∗

m) for some m ∈ N. Then there exists 
an A-valued m-jet γ : Spec A[s]/(sm+1) → Spec R, for some k-algebra A, such that f is 
not in the kernel of the homomorphism

γ∗ : R → A[s]/(sm+1).

By further composing with the homomorphism

A[s]/(sm+1) →
(
A[s]/(sm+1)

)
[[t]], s �→ st,
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which is injective, we obtain an A[s]/(sm+1)-valued arc α : Spec
(
A[s]/(sm+1)

)
[[t]] →

Spec R, and f is not in the kernel of

α∗ : R →
(
A[s]/(sm+1)

)
[[t]].

This implies that f /∈ ker(λ∗
∞). �

4. Jet support closures

As in the previous section, let (R, m) be a local algebra over a field k, let X = Spec R, 
and let o ∈ X be the closed point. By looking at the local jet schemes of (X, o) with 
their reduced structure, we introduce the following variant of the m-jet closure.

Definition 4.1. For any ideal a ⊂ R and any m ∈ N ∪ {∞}, we define the m-jet support 
closure of a to be

am-jsc := {f ∈ R | (f)m ⊂ √
am (mod mRm)}.

For m = ∞, we also call the ideal

aasc := a∞-jsc

the arc support closure of a.

The m-jet support closure operation satisfies many analogous properties of the m-jet 
closure operation studied in the previous section that can be proven in a similar way.

For instance, the m-jet support closure is intrinsic. That is, for any ideal a ⊂ R, the 
m-jet support closure am-jc is the inverse images via the quotient map R → R/a of the 
m-jet support closure of the zero ideal of R/a.

Furthermore, the m-jet support closure of the zero ideal of R is given by

(0)m-jsc = ker ν∗
m,

where

ν∗
m : R → (Rm/mRm)red[t]/(tm+1)

is the ring homomorphism associated with the restriction νm of the universal m-jet 
morphism μm to the reduced scheme of local m-jets (Xo

m)red.
It follows from these two properties that for any ideal a ⊂ R the m-jet support closure 

am-jsc is an ideal. In general, we have

a ⊂ am-jsc = (am-jsc)m-jsc
,

which says that the m-jet support closure is a closure operation among the ideals of R.
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Definition 4.2. We say that an ideal a ⊂ R is m-jet support closed if a = am-jsc. When 
m = ∞ (where the condition can be written as a = aasc), we also say that a is arc support 
closed.

The following comparison between m-jet support closure and m-jet closure is clear 
from the definitions.

Proposition 4.3. For every ideal a ⊂ R, we have am-jc ⊂ am-jsc.

Geometrically, we have

am-jsc = {f ∈ R | (V (f)o
m)red ⊃ (V (a)o

m)red}.

In the case of the zero ideal, we have

(0)m-jsc = {f ∈ R | (V (f)o
m)red = (Xo

m)red}.

Using these facts, the same argument as in the proof of Proposition 3.4 gives the following 
property.

Proposition 4.4. The m-jet support closure am-jsc of an ideal a ⊂ R is the largest ideal 
b ⊂ R such that (V (b)o

m)red = (V (a)o
m)red.

Corollary 4.5. For two ideals a, b ⊂ R, we have am-jsc = bm-jsc if and only if (V (a)o
m)red =

(V (b)o
m)red.

There is one proof from the previous section that does not have an analogue for m-jet 
support closure, and that is the proof of Proposition 3.12. For this reason, it is convenient 
to give the following definition.

Definition 4.6. The jet support closure of an ideal a ⊂ R is the ideal

ajsc :=
⋂

m∈N

am-jsc.

The fact that this is a closure operation is proven in the next proposition.

Proposition 4.7. For every ideal a ⊂ R, we have

a ⊂ ajsc = (ajsc)jsc
.

Proof. The inclusion a ⊂ ajsc is clear from the definition. Regarding the equality, we 
have
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(ajsc)jsc =
⋂

m∈N

( ⋂
n∈N

an-jsc

)m-jsc

⊂
⋂

m∈N

(am-jsc)m-jsc =
⋂

m∈N

am-jsc = ajsc,

and since ajsc ⊂ (ajsc)jsc, the two ideals are the same. �
Definition 4.8. We say that an ideal a ⊂ R is jet support closed if a = ajsc.

Since all m-jet support closures are intrinsic, it follows that so is the jet support 
closure. In particular, we have the following property.

Proposition 4.9. An ideal a ⊂ R is jet support closed if and only if the zero ideal of R/a

is jet support closed.

An adaptation of the first part of the proof of Proposition 3.12 gives the following 
comparison between jet support closure and arc support closure. We do not know whether 
the reverse inclusion holds.

Proposition 4.10. For any ideal a ⊂ R, we have ajsc ⊂ aasc.

The jet support closure compares to the arc closure as follows.

Proposition 4.11. For any ideal a ⊂ R, we have aac ⊂ ajsc.

Proof. By Proposition 4.3, we have⋂
m∈N

am-jc ⊂
⋂

m∈N

am-jsc = ajsc,

and hence the assertion follows from Proposition 3.12. �
Proposition 4.12. Let R be a local integral domain essentially of finite type over a field k. 
Let a ⊂ R be an ideal, and denote by a its integral closure.

(a) There is an inclusion ajsc ⊂ a.
(b) If R is regular, then ajsc = a.

Proof. First, we claim that

ordα(ajsc) = ordα(a) (1)

for every arc α ∈ Xo
∞. Suppose this is not the case for some α. Since a ⊂ ajsc, we must 

have ordα(ajsc) < ordα(a). Setting m = ordα(ajsc), this means that there is an element 
f ∈ ajsc such that ordα(f) = m < ordα(a). This implies that ψm(α) ∈ (V (a)o

m−1)red \
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(V (f)o
m−1)red. The contradiction then follows by Proposition 4.4, after we observe that 

f ∈ am-jsc. This proves the claim.
Every divisorial valuation v on X = Spec R determines an arc αv : Spec kv[[t]] → X

given by

α∗
v : R → Ov → Ôv

�−→ kv[[t]].

Here Ov is the valuation ring of v, kv = Ov/mv is the residue field, Ôv is the mv-adic com-
pletion, and the isomorphism Ôv � kv[[t]] is given by Cohen Structure Theorem. Since 
for every divisorial valuation v we have ordαv

= v, Eq. (1) implies that v(ajsc) = v(a)
for every divisorial valuation v. It follows that ajsc = a by the valuative characterization 
of integral closure, and hence we have ajsc ⊂ a. This proves (a).

Assume now that R is regular. For any ideal b ⊂ R and any m ∈ N, denote

Cont>m(b) := {α ∈ X∞ | ordα(b) > m}.

Note that

Cont>m(b) =
(
ψ−1

m ((V (b)m)red)
)

red.

We have

Cont>m(a) = Cont>m(a) for all m ∈ N.

Since X is smooth, the projections ψm : X∞ → Xm are surjective, and therefore we have 
(V (a)m)red = (V (a)m)red for all m ∈ N. By restricting to the reduced fibers over o ∈ X, 
we see that

(V (a)o
m)red = (V (a)o

m)red for all m ∈ N,

and therefore we have ajsc = (a)jsc by Corollary 4.5 and the definition of jet support 
closure. On the other hand, part (a) applied to a implies that (a)jsc = a. Therefore we 
have ajsc = a, which proves (b). �

The following example shows that in general, if R is not regular, the jet support 
closure is a tighter operation than integral closure.

Example 4.13. Let R = k[[x, y, z]]/(x2 +y2 +z2) and a = (x, y) ⊂ R (with slight abuse of 
notation, we still denote by x, y, z the classes of these elements in R). Since z is integral 
over a, we have a = (x, y, z). On the other hand, note that R/a ∼= k[[x]]/(x2). Since 
(x2) is integrally closed in the ring k[[x]], it is also jet support closed k[[x]]. It follows by 
applying 4.9 twice that a is jet support closed in R.
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5. The embedded local isomorphism problem revisited

Our first result of this section provides a characterization of the embedded local iso-
morphism problem in terms of jet closures.

Proposition 5.1. Let (R, m) be a local k-algebra, and let X = Spec R with closed point 
o ∈ X. Then the germ (X, o) has the embedded local isomorphism property if and only if 
the zero ideal of R is arc closed.

Proof. If φ : (Y, o) ↪→ (X, o) is closed immersion of k-scheme germs and IY ⊂ R is the 
ideal of Y , then for any m ∈ N ∪ {∞} the map φloc

m : Y o
m → Xo

m is an isomorphism if 
and only if IY ⊂ (0)m-jc. This implies that (X, o) has the embedded local isomorphism 
property if and only if ⋂

m∈N∪{∞}
(0)m-jc = (0).

By Proposition 3.12, this last condition is equivalent to the condition that (0)ac = (0). �
Remark 5.2. What Proposition 5.1 says is that Problem 2.3 would not change if the 
condition that φloc

m : Y o
m → Xo

m is an isomorphism for all m ∈ N ∪ {∞} is replaced with 
the weaker requirement that just φloc

∞ : Y o
∞ → Xo

∞ is an isomorphism.

Remark 5.3. In view of Proposition 3.12, Proposition 5.1 can equivalently be stated by 
saying that (X, o) has the embedded local isomorphism property if and only if⋂

m∈N

(0)m-jc = (0).

In the formulation of Problem 2.3, this means that it is equivalent to only assume that 
φloc

m : Y o
m → Xo

m is an isomorphism for all m ∈ N, instead of assuming it for all m ∈
N ∪ {∞}.

In view of Proposition 5.1, it is natural to ask if there are general conditions that 
guarantee that ideals are arc closed. Note that, by Lemma 3.2, it suffices to look at 
the case of zero ideals of local k-algebras. We have already observed that ideals are not 
typically m-jet closed if m ∈ N, even in a Noetherian setting; see Remark 3.10. Our first 
result in this direction shows that, in general, the arc closure is a nontrivial operation.

Proposition 5.4. There exists a local k-algebra R whose zero ideal is not arc closed.

Proof. Let R = k[[x1, x2, . . . ]] be the power series ring in infinite countably many vari-
ables, and let m be its maximal ideal. Then the ideal
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a = (x1 − xi
i | i ≥ 2) ⊂ R

is not m-jet closed for any m ∈ N ∪ {∞}. In fact, the element x1 ∈ R, which is not in a, 
belong to am-jc for all m ∈ N ∪ {∞}. Indeed, for m ∈ N we have

x1 ∈ (a + mm+1) ⊂ am-jc

where the inclusion follows by Proposition 3.9, and hence

x1 ∈
⋂

m∈N

am-jc = aac

where the equality follows by Proposition 3.12. This shows that a �= aac. We conclude 
by Lemma 3.2 that the zero ideal of R/a is not arc closed. �
Corollary 5.5. There exist germs (X, o) of k-schemes that do not have the embedded local 
isomorphism property.

Proof. An example is given by X = Spec R/a where R and a are as in the proof of 
Proposition 5.4. The fact that (X, o) does not have the embedded local isomorphism 
property follows by Proposition 5.1. More explicitly, setting Y = Spec R/(a + (x1)), 
the inclusion of germs φ : (Y, o) → (X, o) gives a counterexample to the embedded local 
isomorphism property. �

The example given in the proof of Proposition 5.4 is not Noetherian. We do not know 
whether in the Noetherian setting every ideal is arc closed.

Problem 5.6. If R is a Noetherian local k-algebra, is every ideal a of R arc closed?

In the positive direction, we have the following results.

Definition 5.7. We say that local k-algebra (R, m) is graded if R =
⊕

n≥0 Rn is a graded 
algebra with maximal ideal m =

⊕
n≥1 Rn. We say that a germ (X, o) of a k-scheme is 

homogeneous if OX,o is a graded local k-algebra.

Theorem 5.8. The zero ideal of (R, m) is arc closed in the following cases:

(a) R is a graded local k-algebra;
(b) R is a reduced Noetherian local algebra essentially of finite type over k;
(c) R = S/(f) where S is a regular ring essentially of finite type over k and f ∈ S.

Proof. We first prove (a). By Lemma 3.3, we reduce to check that the homomorphism 
λ∗

∞ : R → (R∞/mR∞)[[t]] is injective. Consider the R-valued arc α defined by the ho-
momorphism
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α∗ : R → R[[t]]

given on homogeneous elements gn ∈ Rn by α∗(gn) = gntn. Since α∗(m) ⊂ (t), α∗ factors 
through λ∗

∞ by the universal property. Since α∗ is injective, it follows that λ∗
∞ is injective 

too.
Regarding (b) and (c), we observe that in both cases we can write R � S/b where S

is a regular ring essentially of finite type over k and b is an integrally closed ideal of S. 
In this case we know that b is jet support closed by Proposition 4.12, and hence arc 
closed by Proposition 4.11. Then we conclude by Lemma 3.2 that the zero ideal of R is 
arc closed. �
Corollary 5.9. The following germs of k-schemes have the embedded local isomorphism 
property:

(a) homogeneous germs;
(b) germs of reduced schemes of finite type over k;
(c) germs of hypersurfaces in smooth k-varieties.

Proof. By Proposition 5.1 and Theorem 5.8. �
In the geometric setting, Problem 5.6 leads to the following question.

Problem 5.10. Do germs of Noetherian k-schemes have the embedded local isomorphism 
property?

This is one of those situations in which either a positive or negative solution would 
be a positive outcome. If the problem is affirmatively solved, then it would imply that, 
in the Noetherian setting, the local jet-schemes determine completely the germ of the 
singularity, which is an interesting property of jet schemes. On the other hand, if the 
problem is negatively solved, then it would mean that even in the setting of ideals 
of regular Noetherian rings, there exists a geometrically meaningful non-trivial closure 
operation that is tighter than integral closure.
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