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in connection to motivic integration [2], and their results were later applied to study
singularities of pairs by Mustatd [6]. Several applications in birational geometry have
been obtained since. In this paper, we investigate new connections of arc spaces in
commutative ring theory.

Let X be a scheme defined over a field k. For a nonnegative integer m, let X,,, denote
the m-jet scheme of X; when m = oo, we have the arc space X, which we also call the
oo-jet scheme of X. Given a point z € X, for every m we denote by

the fiber over x of the natural projection m,,: X,, = X. We call X} the scheme of local
m-jets of X.

Let now ¢: (Y,y) — (X,z) be a morphism of germs of schemes over k. Suppose
that for every m > 0 (including m = oo) the induced morphism ¢,,: Y,, — X, maps
the scheme of local m-jets Y,¥ of Y isomorphically to the scheme of local m-jets X7
of X. Does it follows that ¢ is an isomorphism? What if we assume that ¢ is a closed
immersion?

We will refer to these questions as the local isomorphism problem and the embedded
local isomorphism problem. Focusing on the local ring Ox ,, the latter can be interpreted
as asking whether there is a nonzero ideal in this ring which defines a subscheme of X
with same local jet schemes at x. This questions leads us to discover a new aspect to
commutative ring theory by means of jet schemes.

Given any local k-algebra R, we introduce and study various closure operations among
the ideals of R which we call m-jet closures. These are defined for every m > 0, including
m = oo where the operation is also called arc closure. For every m, the m-jet closure of
an ideal a C R is the largest ideal defining a scheme in Spec R whose scheme of local
m-jets is equal to the one of the scheme defined by a. We also introduce a notion of
m-jet support closure, where we put an analogous condition on the reduced scheme of
local m-jets. For ideals of regular local rings, the intersection of all m-jet support closures
of an ideal, for m finite, is the same as the integral closure, but the two differ in general,
with the first one giving a tighter closure operation.

One of the properties we establish is that the intersection of all m-jet closures of an
ideal, for m finite, is equal to the arc closure of the ideal. Using this, we prove that the
embedded local isomorphism problem has a positive answer for a germ (X, x) if and only
if the zero ideal of Ox , is arc closed.

This result prompts us to investigate which local k-algebras have the property that
their zero ideals are arc closed. We find an example of a non-Noetherian ring whose
zero ideal is not arc closed, and this implies that in general the above questions have a
negative answer, even assuming that ¢ is a closed embedding. In the positive direction,
we prove that the embedded local isomorphism problem has a positive answer for several
classes of schemes, among which are all varieties and homogeneous schemes over a field.
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2. The local isomorphism problem

We work over a field k. In this paper, N denotes the set of nonnegative integers.
Let X be an arbitrary scheme over k. For every m € N, we define the m-jet scheme
of X to be the scheme X, representing the functor from k-schemes to sets given by

Z v Homy(Z x Speck[t]/(t™11), X).

A point of X,, is called an m-jet of X; it corresponds to a map Spec K [t](t™!) — X
where K is the residue field of the point. We will also consider A-valued m-jets for
any k-algebra A; these are maps Spec A[t](t™*1) — X, and correspond to the A-valued
points of X,,.

Truncations k[t]/(t?PT1) — k[t]/(t™T1), defined for p > m, induce natural projections
Xp — Xy, which are affine morphisms. By taking the inverse limit, we define the arc
space (or oo-jet scheme) Xoo = lim  X,,. This is the scheme representing the functor
from k-schemes to sets given by

Z + Homy,(Z x Spf k[[t]], X).

A point of X, is called an arc (or co-jet) of X. It can be equivalently viewed as a map
Spf K[[t]] — X or a map Spec K[[t]] — X, where K is the residue field of the point.
Just like for jets, we will also consider A-valued arcs for any k-algebra A, which are
maps Spec A[[t]] — X. If X is affine (or quasi-compact and quasi-separated, see [1]),
then A-valued arcs correspond to A-valued points of X ..

We denote by 9,1 Xoo = Xy, Tt Xomw — X, and m = 75 Xoo — X the natural
projections. For ease of notation, it is often convenient to let m range in NU {oo} and
denote A[[t]], for a k-algebra A, also by A[t]/(t>).

For more on jet schemes and arc spaces, we refer to [4,8,3].

Given a point z € X, for every m € NU {oco} we denote

Definition 2.1. We call X the scheme of local m-jets of X at x.
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Roughly speaking, we would like to determine how much of the local structure of the
scheme X at the point z is encoded in the schemes of local jets X7 .

A related question asks how much of the geometry of a scheme X is encoded in its jet
schemes X, for m > 1 (including m = oo). This question was addressed in [5], where it
is shown that the answer is both positive and negative depending on how one interprets
the question. On the one hand, an example is given of two non-isomorphic schemes X
and Y whose jet schemes X,,, and Y,, are isomorphic for all m > 1 in a compatible way
with respect to the truncation morphisms X,,+1 — X, and Y,,,4+1 — Y. On the other
hand, if the isomorphisms Y,,, — X,, are induced by a given morphism ¢: Y — X, then
it is proved that ¢ must be an isomorphism.

In view of the negative example in [5], we consider the following setting. Let

¢: (Yoy) = (X, z)

is a k-morphism of germs of k-schemes. For every m € N U {oc}, there is an induced
morphism of scheme of local m-jets

B Vi - X,
given by restriction of the natural map ¢.,: Yy, — X,

Problem 2.2 (Local isomorphism problem). With the above notation, if ¢'°° is an iso-
morphism for every m € NU {oo}, does it follow that ¢ is an isomorphism of germs?

Problem 2.3 (Embedded local isomorphism problem). With the above notation, assume
that ¢ is a closed immersion. If ¢'°° is an isomorphism for every m € NU {co}, does it
follow that ¢ is an isomorphism of germs?

Remark 2.4. Taking m = 0, we see that the assumptions in either Problem 2.2 or Prob-
lem 2.3 include the condition that ¢ induces an isomorphism between the residue fields
k(xz) of x and k(y) of y. We will identity these fields, and denote them by K. Note
that, for all m, the maps ¢1°°: Y,,(y) — X,,(z) are naturally K-morphisms (and hence
K-isomorphisms under those assumptions).

Definition 2.5. We say that a germ (X, ) has the embedded local isomorphism property if
Problem 2.3 has a positive answer for every closed immersion ¢: (Y, y) — (X, x). We also
say that a germ (X, z) has the local isomorphism property for a certain class of schemes
if Problem 2.2 has a positive answer for every morphism ¢: (Y,y) — (X, z) with (Y,y)
in that class.

Proposition 2.6. Assume that (X, x) has the embedded local isomorphism property. Then
(X,x) has the local isomorphism property for all locally Noetherian k-scheme germs

(Y, y).
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The proposition is an immediate consequence of the following property.

Lemma 2.7. Let ¢: (Y,y) — (X, z) be a k-morphism of germs inducing an isomorphism
of the residue fields at x and y (which we identify and denote by K ). Assume that Y
is locally Noetherian at y and ¢°¢: Y — X¥ is a K-isomorphism. Then ¢ is a closed
immersion of germs.

Proof. By hypothesis, the differential of ¢ induces an isomorphism of K-vector spaces
between the Zariski tangent spaces mY,y/m%/,y of Y at y and mX,x/m?x,z of X at z.
This implies that the homomorphism ¢*: Ox , — Oy,, corresponding to ¢ induces a
surjection my , — my,. Indeed, we have my,, = ¢*(mx ;) + m%,ﬂ by the isomorphism
of the Zariski tangent spaces, and therefore we have mg/,y = ¢* (mem) + mﬁfyl for i > 1.
By successive substitutions, we obtain my, = ¢*(mx ;) +my. for all n > 1. Since Y
is Noetherian at y, this implies that my, = ¢*(mx ;). By this and the isomorphism
between the residue fields, we conclude that ¢*: Ox , — Oy, is surjective. O

When restricting to the embedded setting, we often denote the germ by (X, 0). Later
in Section 5, we shall reinterpret the embedded local isomorphism problem from an
algebraic point of view, relating it to certain “jet theoretic” notions of closure of ideals
in local rings.

3. Jet closures

Throughout this section, let (R, m) be a local algebra over a field k, and let X =
Spec R. We denote by o € X the closed point.

For every m € NU {co}, let R,, be the ring of regular functions of the m-jet scheme
X, so that X,,, = Spec R,,,. For an ideal a C R and m € NU {oo}, we denote

A= (Di(f) | f€a,0<i<m+1)C Ry

the ideal generated by the Hasse—Schmidt derivations D;(f) of the elements f of I. If
V(a) C X is the subscheme defined by a, then its m-jet scheme V(a),, is the subscheme
of X,,, defined by a,,.

Definition 3.1. For any ideal a C R and any m € NU {oo}, we define the m-jet closure
of a to be

a™ I :={f € R|(f)m C am (mod mR,,)}.

For m = oo, we also call the ideal

the arc closure of a.
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Unless otherwise stated, in the following statements we let m be an arbitrary element
of NU {oo} We start with the following property which implies that the m-jet closure
an ideal a is intrinsic, that is, only depends on the quotient ring R/a and hence on the
scheme Spec R/a, and not by the embedding of Spec R/a in Spec R.

Lemma 3.2. The m-jet closure a™J° of an ideal a C R is the inverse image via the
quotient map R — R/a of the m-jet closure of the zero ideal of R/a.

Proof. Let f € R be an element and let f denote the class of f in R/a. Note that the

image of (f)m in Ry /a., is equal to the ideal (f),,. The condition that (f), C a,

modulo mR,, is equivalent to the condition that (f),, = 0 modulo mR,,/a,,. It follows
that f € a™7J¢ if and only if f is in the m-jet closure of the zero ideal of R/a. O

In view of this fact, in order to study properties of m-jet closures we can reduce to
the case of the zero ideal (0) C R, after replacing R by R/a. In this special case, the
m-jet closure can be expressed in terms of the universal m-jet homomorphism.

Recall that the universal m-jet

i Xon X SpEE[]/(t7H) — X

is defined by the ring homomorphism

fi s R = Ru[t]/ (™), f= ) Di(f)E'.

=0

We denote by A, the restriction of p,, to the scheme of local m-jets XY,, and consider
the corresponding ring homomorphism

Nt R — (R /mRy) [t/ (™).
Lemma 3.3. We have
(0)™7° = ker X*,.
Proof. It suffices to observe that, by definition,
(0" ={f € R| (f)m =0 (mod mR,,)} =ker \,. O
The next property provides a geometric characterization of m-jet closures.

Proposition 3.4. The m-jet closure a™J¢ of an ideal a C R is the largest ideal b C R
such that V(6)°, =V (a)?,.
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Proof. By Lemma 3.2, it suffices to prove the proposition for the zero ideal (0) of R.
The fact that (0)""7¢ is an ideal is clear by Lemma 3.3. The second assertion follows by
the geometric reinterpretation of the definition of m-jet closure:

a" = {f e R|V(f)5, >V(a)}.
In the case of the zero ideal, we have

()™ = {f € R|V(f)i = X1},
and this implies the assertion. O

Remark 3.5. Now that we know that the m-jet closure of an ideal is itself an ideal, we
can rephrase their intrinsic property by saying that, for every ideal a C R, there is a
canonical isomorphism of k-algebras

R R/a

@ (0) )"

The next corollary implies that the m-jet closure is indeed a closure operation.

Corollary 3.6. For any ideal a C R we have

aCa™ic = (am'j‘:)m_jc.

m-j

Proof. Both the inclusion a C a™7¢ and the equality a™¢ = (a™¢)"7% are immediate

consequences of Proposition 3.4. O

Definition 3.7. We say that an ideal a C R is m-jet closed if a = a™ ¢, When m = oo
(where the condition can be written as a = a®°), we also say that a is arc closed.

Corollary 3.8. For two ideals a,b C R we have a™3¢ = o™ if and only if V(a)9, =
V(b);

9.
Proof. This is also an immediate consequences of Proposition 3.4. 0O

Proposition 3.9. For any ideal a C R and any m € N, we have a +m™ ! C amic,
Proof. By Lemma 3.2, it suffices to prove the case where a = (0) C R. Recall that

(0)™7¢ = ker A*, by Lemma 3.3. Since A%, (m) C (£), we have A, (m™*+1) C (™) =0,
and therefore m™*! C ker ¥, = (0)"7°. O

Remark 3.10. Proposition 3.9 implies in particular that even in nice situations (e.g.,
assuming that R is a Noetherian k-algebra) the m-jet closure operation on ideals is, for
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finite m, a nontrivial operation. For instance, if a is not m-primary, then a C a™¢ for
all m € N.

The following is an example where a + m™+! #£ qmic,

Example 3.11. Let a = (22 + y®) C R = k[[z,y]], where k is a field of characteristic
#2,3. A direct computation shows that a*¢ = (22 + 42, 2y®), and hence a +m5 # a*Jc.
To see this, we introduce the coordinates x; := D;(z) and y; := D;(y) on the jet schemes
of X = Spec R, where (D;);>o is the sequence of universal Hasse—Schmidt derivations.
Denoting by o € X the closed point, we have X{ = Speck[z;,y; | 1 < i < 4], and the
ideal defining V'(a)$ in there is generated by the three elements

mi 2xor1 + y%, 2x3r1 + m% + 3y2yf.

One can check that @133 is in this ideal, and this implies that xy® € a*J°. On the other
hand, zy3 ¢ a + m5.

Recall that we defined the arc closure to be a®® := a7, The following proposition
shows how the arc closure compares to the other m-jet closures.

Proposition 3.12. For any ideal a C R, we have

ﬂ amoe — qac,

meN

Proof. By Lemma 3.2, we reduce to prove the formula when a is the zero ideal of R,
where by Lemma 3.3 the proposition is equivalent to the assertion that

m ker(\: ) = ker(\%).
meN
To show one inclusion, let f € R be an element such that A% (f) # 0 in
(Roo/mRoo)[[t]]. Then the image A (f) in (Reo/mRs)[t]/(#™F1) is nonzero for
all sufficiently large integers m. Since, for any such m, the resulting map R —
(Roo /mRo)[t]/(t™T1) factors through (R,,/mR.,)[t]/(t™ 1) by the universality of A%,
it follows that Ay, (f) # 0, and hence we have f ¢ [, oy ker(Ay,).
For the reverse inclusion, assume that f ¢ ker(\*,) for some m € N. Then there exists
an A-valued m-jet v: Spec A[s]/(s™T1) — Spec R, for some k-algebra A, such that f is
not in the kernel of the homomorphism

v R — Als]/(s™1).
By further composing with the homomorphism

Als]/(s™ 1) = (Alsl/(s™ )], s+ st
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which is injective, we obtain an A[s]/(s™*1)-valued arc a: Spec (A[s]/(s™))[[t] —
Spec R, and f is not in the kernel of

o*: R— (A[s]/(smﬂ))[[t]].
This implies that f ¢ ker(\X). O
4. Jet support closures

As in the previous section, let (R, m) be a local algebra over a field k, let X = Spec R,
and let o € X be the closed point. By looking at the local jet schemes of (X,0) with
their reduced structure, we introduce the following variant of the m-jet closure.

Definition 4.1. For any ideal a C R and any m € N U {oc}, we define the m-jet support
closure of a to be

a5 =L f € R| (f)m C /& (mod mR,,)}.
For m = oo, we also call the ideal

asc ., oo-jsc

the arc support closure of a.

The m-jet support closure operation satisfies many analogous properties of the m-jet
closure operation studied in the previous section that can be proven in a similar way.

For instance, the m-jet support closure is intrinsic. That is, for any ideal a C R, the
m-jet support closure a”¢ is the inverse images via the quotient map R — R/a of the
m-jet support closure of the zero ideal of R/a.

Furthermore, the m-jet support closure of the zero ideal of R is given by
(0)" = kervj,,
where
Vit R = (R /0B )realt]/ (£ )

is the ring homomorphism associated with the restriction v, of the universal m-jet
morphism i, to the reduced scheme of local m-jets (X2,)red-

It follows from these two properties that for any ideal a C R the m-jet support closure

a™¢ is an ideal. In general, we have

acC am—jsc _ (a’m—jsc)m‘jsC

)

which says that the m-jet support closure is a closure operation among the ideals of R.
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Definition 4.2. We say that an ideal a C R is m-jet support closed if a = a™%¢. When
m = oo (where the condition can be written as a = a®%¢), we also say that a is arc support
closed.

The following comparison between m-jet support closure and m-jet closure is clear
from the definitions.

Proposition 4.3. For every ideal a C R, we have a™ 3¢ C q™Jsc,

Geometrically, we have

am—jsc = {f €ER | (V(f)om)red D (V(a)fn)red}-

In the case of the zero ideal, we have

(O)m_jsc = {f ER | (V(f)fn)rcd = (an)rcd}~

Using these facts, the same argument as in the proof of Proposition 3.4 gives the following
property.

Proposition 4.4. The m-jet support closure a™3¢ of an ideal a C R is the largest ideal
b C R such that (V(0)2)rea = (V()2,)red-

Corollary 4.5. For two ideals a,b C R, we have a™75¢ = 6™ if and only if (V (), )red =
(V(b)7 )rea-

There is one proof from the previous section that does not have an analogue for m-jet
support closure, and that is the proof of Proposition 3.12. For this reason, it is convenient
to give the following definition.

Definition 4.6. The jet support closure of an ideal a C R is the ideal

s .= ﬂ amise

meN

The fact that this is a closure operation is proven in the next proposition.

Proposition 4.7. For every ideal a C R, we have

aC o= (ajsc)jsc.

Proof. The inclusion a C @/*¢ is clear from the definition. Regarding the equality, we
have
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m-jsc
. jsc r N m-jsc r .
(a_]SC) _ ﬂ <ﬂ a” JSC) c ﬂ (am JSC) _ ﬂ ameise — ajSC’

meN \neN meN meN

jsc

and since a’*¢ C (a°¢)”", the two ideals are the same. O

Definition 4.8. We say that an ideal a C R is jet support closed if a = a¥>°.

Since all m-jet support closures are intrinsic, it follows that so is the jet support
closure. In particular, we have the following property.

Proposition 4.9. An ideal a C R is jet support closed if and only if the zero ideal of R/a
is jet support closed.

An adaptation of the first part of the proof of Proposition 3.12 gives the following
comparison between jet support closure and arc support closure. We do not know whether
the reverse inclusion holds.

Proposition 4.10. For any ideal a C R, we have a/*¢ C a®°.
The jet support closure compares to the arc closure as follows.
Proposition 4.11. For any ideal a C R, we have a*® C a/°.

Proof. By Proposition 4.3, we have
m am—jc c m am—jsc _ ajsc’
meN meN

and hence the assertion follows from Proposition 3.12. O

Proposition 4.12. Let R be a local integral domain essentially of finite type over a field k.
Let a C R be an ideal, and denote by a its integral closure.

(a) There is an inclusion /> C .
(b) If R is regular, then /¢ = a.

Proof. First, we claim that

orda () = orda(a) 1)

for every arc a € X2 . Suppose this is not the case for some «. Since a C a/*°, we must
have ord, (a’¢) < ord,(a). Setting m = ord, (a’>°), this means that there is an element
f € a/%¢ such that ord,(f) = m < ord,(a). This implies that ¢, (a) € (V(a)%,_1)red \
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(V(£)%,_1)reda- The contradiction then follows by Proposition 4.4, after we observe that
f € a™Js¢, This proves the claim.

Every divisorial valuation v on X = Spec R determines an arc a,: Speck,[[t]] = X
given by

ot R— O, = 0, =5 ky[[1]].
Here O, is the valuation ring of v, k, = O, /m,, is the residue field, @U is the m,-adic com-

pletion, and the isomorphism O, ~ k,[[t]] is given by Cohen Structure Theorem. Since
for every divisorial valuation v we have ord,, = v, Eq. (1) implies that v(a’>¢) = v(a)

for every divisorial valuation v. It follows that a¥*¢ = @ by the valuative characterization
of integral closure, and hence we have a’*¢ C @. This proves (a).
Assume now that R is regular. For any ideal b C R and any m € N, denote

Cont”™(b) := {a € X | ord,(b) > m}.
Note that

Cont>m(b) = (1&1;1 ((V(b)m)red))red'

We have
Cont”™(a) = Cont”™(a) for all m € N,

Since X is smooth, the projections ¥, : Xo — X, are surjective, and therefore we have
(V(a)m)red = (V(@)m)rea for all m € N. By restricting to the reduced fibers over o € X,
we see that

(V(a)o)rea = (V(@)9, )rea for all m €N,

and therefore we have a*¢ = (@) by Corollary 4.5 and the definition of jet support
closure. On the other hand, part (a) applied to @ implies that (@)”*° = @. Therefore we
have a’*¢ = @, which proves (b). O

The following example shows that in general, if R is not regular, the jet support
closure is a tighter operation than integral closure.

Example 4.13. Let R = k[[z,y, 2]]/(z* +y?+2?) and a = (z,y) C R (with slight abuse of
notation, we still denote by x,y, z the classes of these elements in R). Since z is integral
over a, we have @ = (z,9,2). On the other hand, note that R/a = k[[z]]/(z?). Since
(22) is integrally closed in the ring k[[x]], it is also jet support closed k[[z]]. It follows by
applying 4.9 twice that a is jet support closed in R.
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5. The embedded local isomorphism problem revisited

Our first result of this section provides a characterization of the embedded local iso-
morphism problem in terms of jet closures.

Proposition 5.1. Let (R,m) be a local k-algebra, and let X = Spec R with closed point
0 € X. Then the germ (X, 0) has the embedded local isomorphism property if and only if
the zero ideal of R is arc closed.

Proof. If ¢: (Y,0) — (X, 0) is closed immersion of k-scheme germs and Iy C R is the
ideal of Y, then for any m € N U {00} the map ¢!°°: Y2 — X2 is an isomorphism if
and only if Iy C (0)™7°. This implies that (X, 0) has the embedded local isomorphism
property if and only if

N 0" =0

meNU{oo}
By Proposition 3.12, this last condition is equivalent to the condition that (0)* = (0). O

Remark 5.2. What Proposition 5.1 says is that Problem 2.3 would not change if the
condition that ¢°¢: Y2 — X is an isomorphism for all m € N U {oo} is replaced with
the weaker requirement that just ¢!°¢: Y2 — X2 is an isomorphism.

Remark 5.3. In view of Proposition 3.12, Proposition 5.1 can equivalently be stated by
saying that (X, 0) has the embedded local isomorphism property if and only if

M ©™ =(0).

meN

In the formulation of Problem 2.3, this means that it is equivalent to only assume that
Ploc: Yo — X9 is an isomorphism for all m € N, instead of assuming it for all m €
NU {oo}.

In view of Proposition 5.1, it is natural to ask if there are general conditions that
guarantee that ideals are arc closed. Note that, by Lemma 3.2, it suffices to look at
the case of zero ideals of local k-algebras. We have already observed that ideals are not
typically m-jet closed if m € N, even in a Noetherian setting; see Remark 3.10. Our first
result in this direction shows that, in general, the arc closure is a nontrivial operation.

Proposition 5.4. There exists a local k-algebra R whose zero ideal is not arc closed.

Proof. Let R = k[[z1,x2,...]] be the power series ring in infinite countably many vari-
ables, and let m be its maximal ideal. Then the ideal
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a=(z;—2t|i>2)CR

is not m-jet closed for any m € NU {oo}. In fact, the element 27 € R, which is not in a,
belong to a™¢ for all m € NU {oc}. Indeed, for m € N we have

rp € (a4+m™Th) C g™mie
where the inclusion follows by Proposition 3.9, and hence

x € ﬂ am-ie — gac
meN

where the equality follows by Proposition 3.12. This shows that a # a®*°. We conclude
by Lemma 3.2 that the zero ideal of R/a is not arc closed. O

Corollary 5.5. There exist germs (X, 0) of k-schemes that do not have the embedded local
isomorphism property.

Proof. An example is given by X = Spec R/a where R and a are as in the proof of
Proposition 5.4. The fact that (X,0) does not have the embedded local isomorphism
property follows by Proposition 5.1. More explicitly, setting Y = Spec R/(a + (z1)),
the inclusion of germs ¢: (Y, 0) — (X, 0) gives a counterexample to the embedded local
isomorphism property. O

The example given in the proof of Proposition 5.4 is not Noetherian. We do not know
whether in the Noetherian setting every ideal is arc closed.

Problem 5.6. If R is a Noetherian local k-algebra, is every ideal a of R arc closed?
In the positive direction, we have the following results.

Definition 5.7. We say that local k-algebra (R, m) is graded if R = @nzo R, is a graded
algebra with maximal ideal m = @n21 R,,. We say that a germ (X, 0) of a k-scheme is
homogeneous if Ox , is a graded local k-algebra.

Theorem 5.8. The zero ideal of (R, m) is arc closed in the following cases:

(a) R is a graded local k-algebra;
(b) R is a reduced Noetherian local algebra essentially of finite type over k;
(¢c) R=S/(f) where S is a reqular ring essentially of finite type over k and f € S.

Proof. We first prove (a). By Lemma 3.3, we reduce to check that the homomorphism
Al R = (Roo/mRo)[[t] is injective. Consider the R-valued arc « defined by the ho-
momorphism
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a*: R — R[[{]]

given on homogeneous elements g, € R, by a*(gn) = gnt". Since o*(m) C (t), a* factors
through A% by the universal property. Since o* is injective, it follows that A% is injective
too.

Regarding (b) and (c), we observe that in both cases we can write R ~ S/b where S
is a regular ring essentially of finite type over k and b is an integrally closed ideal of S.
In this case we know that b is jet support closed by Proposition 4.12, and hence arc
closed by Proposition 4.11. Then we conclude by Lemma 3.2 that the zero ideal of R is
arc closed. O

Corollary 5.9. The following germs of k-schemes have the embedded local isomorphism
property:

(a) homogeneous germs;
(b) germs of reduced schemes of finite type over k;
(c) germs of hypersurfaces in smooth k-varieties.

Proof. By Proposition 5.1 and Theorem 5.8. O
In the geometric setting, Problem 5.6 leads to the following question.

Problem 5.10. Do germs of Noetherian k-schemes have the embedded local isomorphism
property?

This is one of those situations in which either a positive or negative solution would
be a positive outcome. If the problem is affirmatively solved, then it would imply that,
in the Noetherian setting, the local jet-schemes determine completely the germ of the
singularity, which is an interesting property of jet schemes. On the other hand, if the
problem is negatively solved, then it would mean that even in the setting of ideals
of regular Noetherian rings, there exists a geometrically meaningful non-trivial closure
operation that is tighter than integral closure.
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