IEEE Access

Multidisciplinary * Rapid Review * Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.DOI

Towards An Optimal Latency-Energy
Dynamic Offloading Scheme for
Collaborative Cloud Networks

JUI MHATRE', (Student Member, IEEE), AHYOUNG LEEZ?, (Senior Member, IEEE), and TU N.

NGUYENS3, (Senior Member, IEEE)

]Department of Computer Science, Kennesaw State University, Marietta, GA, 30144, USA (e-mail: jmhatre 1 @students.kennesaw.edu)
2Department of Computer Science, Kennesaw State University, Marietta, GA, 30144, USA (e-mail: ahyoung.lee @kennesaw.edu)
3Deparlmem of Computer Science, Kennesaw State University, Marietta, GA, 30144, USA (e-mail: tu.nguyen @kennesaw.edu)

Corresponding author: Ahyoung Lee (e-mail: ahyoung.lee @kennesaw.edu).

ABSTRACT Growing technologies like virtualization and artificial intelligence have become more popular
nowadays because they are more handy and accessible on mobile devices. But lack of resources for
processing these applications at the user end and the limited energy of mobile devices are still significant
hurdles. Collaborative edge and cloud computing are one of the solutions to this problem. An optimal
offloading strategy is required to balance transmission latency for the cloud and limited resources at edge
servers. We have proposed a multi-period deep deterministic policy gradient (MP-DDPG) algorithm to find
an optimal offloading policy to the collaborative cloud network including the central cloud server, edge
cloud servers, and mobile devices constrained by minimization of computation, transmission delay, and
energy consumption. The novelty of this algorithm lies in partitioning the task to offload in multiple time
slots and reusing cloud and edge resources in every slot, rather than taking a single offloading decision and
running out of remote resources by offloading a single large task. Our results show that MP-DDPG achieves
the minimum latency and energy consumption in the collaborative cloud network.

INDEX TERMS Collaborative cloud computing, computation offloading, latency, energy efficiency, deep

reinforcement learning, multi-period deep deterministic policy gradient

I. INTRODUCTION

ITH boom in the field of high-speed technologies like
Wthe Internet of Things (IoT), big data technologies,
and machine learning tech trends are growing to new heights.
As a consequence of mobile computing, these technologies
are made available to users on their mobile devices, thus
making it more convenient for them to access those. But
this convenience remains at risk due to mobile devices’ en-
ergy and computation resource limitations. Processing power
and memory resources can be increased to improve heavy
computation on mobile devices. But this improvement comes
along with economic cost. A better solution to this problem
is to offload computation to cloud or edge servers which is
originally proposed in [1]. With the advent of computation-
intensive technologies, insufficiency of computing and stor-
age resources was faced at edge servers. Leveraging cloud
resources for excess computation would solve this problem
at the cost of transmission latency and energy. Since cloud
servers are located at remote locations, both time and energy

VOLUME 4, 2023

are consumed in sending queries and receiving the results.
Edge servers are a good solution in cases where we require
immediate results or in case of inadequate battery life. Edge
servers are near mobile devices, because of which time and
energy are conserved. However close edge servers are, there
is some time and energy consumed, but it wins when it
comes to computation on the mobile device itself. But mobile
devices do not have sufficient processing power for large
artificial intelligence and machine learning tasks. Thus it
is necessary to find an equilibrium of offloading ratios for
transmitting tasks to the cloud and edge servers. Offloading
should be such that, after completing the task, minimum
energy is consumed and we obtain results within the time
limits specified by the application. Offloading entire tasks to
the cloud servers eats up a lot of time and energy. Authors
in [2] proposed a partitioning-and-offloading scheme for
the heterogeneous tasks-server system to reduce the overall
system latency and energy consumption. Partitioning appli-

IEEE Access

J. Mhatre et al.: MP-DDPG: Optimal Latency-Energy Dynamic Offloading Scheme in Collaborative Cloud Networks

cations are also discussed in [3] so that the device can obtain
the most benefit from computation offloading.

In this paper, we are trying to optimize energy consump-
tion and latency by finding an optimal offloading ratio. The
solution to this problem depends on various factors, such
as the location of mobile devices, battery capacity of each
device and edge servers, accepted delay for applications
on their respective devices, and the size of the task to be
computed. Previously this problem is solved using machine
learning-based algorithms. The novelty of our approach lies
in multi-step problem solutions. We present an algorithm to
generate a series of offloading ratios such that not necessarily
the entire task is completed in the first iteration. It may take
multiple offloading iterations. We ensure that the total energy
consumed in completing the task evaluation is lower com-
pared to an all-in-one-go task evaluation. We find minimum
energy and latency consumption by adjusting the offloading
ratios for given inputs of previously mentioned factors. It can
be compared to multi-linear problem solving which is an NP-
hard problem. Thus our problem of optimizing these continu-
ous features is an NP-hard problem and it cannot be solved in
polynomial time. Vast and detailed work is done to solve this
optimization problem considering different situations. We
formulate our offloading problem as a Multi-Period Markov
Decision Process (MP-MDP) [4] and propose an algorithm
based on deep deterministic reinforcement learning for a
multi-step offloading strategy. Thus, the main contributions
and intellectual merits of this paper are summarized as
follows:

« Research formulation: We formulate our offloading
strategy based on communication and computation
time and energy consumption by mobile devices, edge
servers, and cloud servers.

o Algorithm: We propose "Multi-Period Deep Deter-
ministic Policy Gradient” (MP-DDPG) based on the
reinforcement learning method for finding optimal of-
floading strategy by scheduling at each time slot conse-
quently using network resources optimally.

« Evaluation: We conduct a comparative study of edge-
enabled 1_TIER and 2_TIER architectures based on
DDPG and MP-DDPG algorithms. We show how MP-
DDPG optimized delay and energy consumption both.

The remainder of this paper is organized as follows. Sec-
tion II gives a detailed literature survey of existing offloading
strategies using heuristic as well as machine learning-based
solutions. In section III, we present the system model of
the offloading strategy. We also discuss communication and
computation models and formulate the optimization problem.
In Section IV, we discuss the offloading problem is MP-
MDP and propose an MP-DDPG algorithm based on a Re-
inforcement Learning approach to solve it. Section V gives
simulation results and analysis of the system. Finally, the
paper is concluded in section VI.

Il. RELATED WORK

As we discussed in the previous section, finding offloading
ratio is an optimization problem and is NP-Hard, most of the
solutions are based on Machine learning approaches.

A. HEURISTIC BASED OFFLOADING

Initial work is done using heuristic approaches. In [5] online
task offloading algorithm that minimizes the completion time
of the application on the mobile device is proposed. For se-
quential task line topology task graphs are used whereas, for
the concurrent task, general topology task graphs are used.
They design an algorithm using a load-balancing heuristic to
offload tasks to the cloud, such that the parallelism between
the mobile and the cloud is maximized. In [6] a set of
online and batch scheduling heuristics are proposed to of-
fload dynamically arriving independent tasks among mobile
nodes. Graph-based partitioning technique is used in [7] to
allocate software components to machines in the cloud with
heterogeneous infrastructure while minimizing the required
bandwidth. Most of the heuristic approaches use graph-based
techniques to find the offloading scheme. But they fail to
consider factors such as the mobility of devices. Heuristic
algorithms cannot evaluate multiple factors such as location,
current load of servers, battery capacity, and application
requirements. These machine learning-based approaches are
the best solution for such NP-hard problems.

B. MACHINE LEARNING OFFLOADING
Offloading decisions are made based on parameters such as
network bandwidth, data computation, the amount of data
exchanged over the networks, etc. Many of the proposed
algorithms used to make offloading decisions are aimed at
improving latency and minimizing energy [8]-[11]. In [8],
the perform latency optimization in multi-user Mobile edge
computation offloading (MECO) system with partial compu-
tation offloading with the design objective is to minimize the
weighted-sum delay of all devices under the limited com-
munication and computation resource constraints. Offloading
strategy is decided in [9] using convex optimization and the
Lagrangian approach. The novelty of this paper lies in finding
an offloading strategy for devices in motion. [10] using
computation offloading using reinforcement learning using
Q-Learning approach for latency and energy optimization in
edge and cloud environment. Two offloading strategies for
unmanned aerial vehicles are discussed in [11]. In the first
approach, UAVs share their load with peer UAVs, whereas
cloud and edge servers are used in the second approach.
Other criteria include analyzing parameters: server speed,
bandwidth, server load, available memory, and data trans-
fer rate between servers and mobile systems. The solutions
to solve these problems include partitioning programs and
predicting parametric variations in application behavior and
execution environment using machine learning approaches
are discussed in [9], [12]. In reference, [13], a large state
space scenario such as large battery levels, data rates nor-
malized using CNN to find offloading strategies using Q-

VOLUME 4, 2023

IEEE Access

J. Mhatre et al.: MP-DDPG: Optimal Latency-Energy Dynamic Offloading Scheme in Collaborative Cloud Networks

Centralized Cloud

Tier Two
Communication

(MD-Cloud)

()

(01001
Edge &5
. Sewer%
Tier One EIPRY
Communication T T T T
(MD-EC)

'i;;;f_iI*\“511:;;\\\
-

Centralized Controller

il\IP—DDPGE
ol

Offloading Decision
communication

Cloud Transmission

)
84
Overloaded

Edge Server ¥ZZ755 P

Edge Transmission

FIGURE 1. Offloading strategies in a collaborative cloud network.

learning. Authors of the reference [14] discuss the advantages
of collaborating cloud and edge technologies rather than just
using the cloud technology. Reference [15] proposes dy-
namic offloading decisions based on linear programming and
semi-deterministic relaxation algorithms. With improvement
in reinforcement learning, deterministic Q-learning [16]—[18]
and policy gradient algorithms [19] is brought to use.

It is challenging to do edge server selection and find
an offloading strategy for a mobile device that lies in the
overlapping region, where the mobile device may be under
the coverage of more than one base station. Reference [20]
works on overlapping area problems where base stations are
deployed in a dense and heterogeneous manner. It converts
offloading decision problem to a 0-1 integer optimization
problem which makes a binary offloading decision, after
that, a binary-coded Genetic Algorithm Based Distributed
Offloading Strategy (GABDOS) is applied to obtain a fast
near-optimal adaptive offloading decision.

C. REINFORCEMENT LEARNING BASED OFFLOADING

Parallel task offloading for efficient edge server usage is
proposed by [21] using a deep deterministic policy gradient
(DDPG) approach with an improvement of 19% in ultra-
low latency. Reference [22] tackles the mobility issue in the
context of web applications focusing on latency minimization
using a serialization algorithm. A multi-device, multi-server
computation offloading framework for heterogeneous mobile
edge computing (MEC) is discussed in [23] to minimize
energy consumption, load balance, execution latency, and
network usage. They propose Com-DDPG, RL based on

VOLUME 4, 2023

LSTM, and a bidirectional recurrent neural network (BRNN).
Another similar solution is the FPTT-DDPG algorithm based
on DDPG proposed in [19], which uses filter pruned and
tensor decomposed deep neural network to solve the optimal
offloading decision to minimize user energy consumption
and total latency. The reference [24] jointly minimizes the
processing delay using DDPG in the unmanned aerial vehicle
(UAV) mobile network. The reference [25] compares offload-
ing strategy results of the DQN and DDPG algorithms for
the continuous space in their proposed backscatter-assisted
hybrid MEC offloading scenario.

Vehicular edge computing is a new upcoming topic. In
reference [26] discusses issues of vehicular edge computing
and proposes to perform joint service caching and com-
putation offloading in a vehicular edge environment. This
optimization is done by formulating the problem as a long-
term mixed integer non-linear programming (MINLP). It
proposes deep reinforcement learning to obtain a sub-optimal
solution with low computation complexity. The simulation
results demonstrate an effective performance improvement
in a task processing delay. Another reinforcement learning-
based solution is proposed in [27]. They first optimized
energy consumption using a power scheduling algorithm
based on a deep deterministic policy gradient algorithm.
Later they performed delay-based optimization using Deep
Q-networks (DQN) based algorithm by considering the in-
fluence of task queue information, channel state information,
and task information. In [28] presents offloading solutions
for resource-constrained edge servers and latency-sensitive
IoT applications. Hurdles such as insufficient sample diver-

3

IEEE Access

J. Mhatre et al.: MP-DDPG: Optimal Latency-Energy Dynamic Offloading Scheme in Collaborative Cloud Networks

TABLE 1. Time and Energy for Computation of task from MD n on MD itself, edge and CCs

Site Computation Time (CT) Transmission Time (TT) Computation Energy (CE) Transmission Energy (TE)
Mobile Device | CTMP = % + qn - CEMP =z x ax B Xcp, -
Bxcp B Pt Lthl
Edge Server | CTFES = ﬁxf;fc + qm TTES = E:m CEES = crEs TEES = TrES
idle of fl
Central Cloud CTSC = % TTEC = X8 CEF = cl'jic“gc TEYC = TI"D;“:LCC

sity and high exploration cost, an experience-sharing deep
reinforcement learning-based distributed function offloading
method called ES-DRL is proposed in the setting of a com-
bined stateful and stateless execution model for serverless
edge computing is proposed. In this reference, each Edge
Function as a Service (EFaaS) S) obtains the current state
of the local environment and inputs them to the local DRL
agent, which outputs the function offloading strategy. Refer-
ence [29] achieves efficient resource allocation objective by
proposing HRL-Edge-Cloud, a novel heuristic reinforcement
learning-based multi-resource allocation (MRA) framework,
which significantly overcomes the bottlenecks of wireless
bandwidth and computes capacity jointly at the Edge cloud
and cloud server. They solve the MRA problem by acceler-
ating the conventional Q-Learning algorithm with a heuristic
method and applying a novel linear-annealing technique. In
[30] a unique problem is highlighted related to the offloading
problem of dependent tasks. Care should be taken while
dealing with such a problem since there is cause and result
relation between modules. They establish the dependent task
model as a directed acyclic graph to solve such problems.
A Dependent Task-Offloading Strategy (DTOS) based on
deep reinforcement learning is proposed with minimizing the
weighted sum of delay and energy consumption of network
services as the optimization objective.

In previous work, we notice that offloading decision for

a particular set of tasks is done once. If edge servers and
cloud servers capacity is reached, the remaining workload is
computed locally. Due to a lack of resources in a given slot,
mobile devices are bound to bear the workload. We identify
this loophole and propose a strategy to minimally delay the
computation and reap the benefits of resources at edge and
cloud servers. While doing this, we also follow delay con-
straints. This reduces the energy overhead of mobile devices,
which remains a concern for all mobile device users.

Thus, through our proposed algorithm, we focus on,

¢ Optimize energy and time constraints within the limits
of the requirement of applications

« Offloading strategy for devices that lie within the range
of multiple edge servers.

o Multi-period iterative task offloading, which avoids star-
vation of devices for results when servers are loaded and
occupied with other devices

o Faster availability of servers for processing of newly
registered devices for a given base station.

lll. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multi-user, multi-edge computation hetero-
geneous mobile device network. Our architecture in Fig. 1
has M = (1,2,...m) edge servers (ES) deployed at base
stations, N = (1,2,...n) mobile devices (MD), and there
is only one centralized cloud (CC) as ¢ = 1. We assume
that the tasks are partitionable and do not discuss details of
partitioning strategies. Each mobile device n € N offloads
its task to computation sites with different ratios (« for
MD, ¢ for CC, and two ESs with S and ~y). This decision
of site selection and offloading ratio calculation is made
by a centralized controller using the MP-DDPG algorithm.
Offloading decisions made at each time slot ¢ gives the op-
portunity of re-evaluating the available computing resources.
Each mobile device n € N has a computation-intensive and
delay-sensitive task to be executed, say its size is B,, for
B,, > 0 and accepted delay, D,,, for D,, > 0.

A. COMMUNICATION MODEL

For a task generated by MD, there are three types of compu-
tation sites available (local computation, edge computation,
and cloud computation). Task of size B,, bytes is offloaded
to cloud ¢, edge servers m, and/or computed locally at its
mobile device n. Let x can be either an edge computation site
or cloud computation site, z € (ES, CC). For any of these
sites, offloading involves some transmission cost. The trans-
mission data rate is determined between n and x by several
important factors: transmission power P,, of mobile device
n, bandwidth W, and SINR I,,, caused by IoT devices
on channel q. The orthogonal frequency division multiple
access (OFDMA) methods are adopted to allocate radio and
computing resources simultaneously. The transmission rate
of mobile device n when offloading to a site x is given by
[31] as,

Pn:v X hqnm
N,

() + Iy

where Ny, is channel gain, Ny is noise power and k is the

number of active MDs that offload their computation tasks to
site x, then W is divided equally among k.

w
Tne = ? 10g2(1 +)ﬂ (D

B. COMPUTATION MODEL

For a device n, the task is executed in two ways: locally or
offloaded to an edge server or cloud server. The summary of
the computation model is described in Table 1. A detailed
explanation of computation is as follows:

VOLUME 4, 2023

IEEE Access

J. Mhatre et al.: MP-DDPG: Optimal Latency-Energy Dynamic Offloading Scheme in Collaborative Cloud Networks

Local computation: If the system decides to compute a
task of size B bytes locally with ratio o and the computation
capacity of mobile device n is f which takes ¢ cycles to
compute per task with and queuing delay ¢, then the total
time required can be given as

X B X ¢,

Energy consumption for local computation, when z is con-
sumption per cycle, can be given as,

CEMP — 2 x a x B x cy,. (3)

Edge server computation: If the system decides to com-
pute the task on the edge server with a ratio of «, then in
addition to computation time, the transmission time is also
involved. Energy consumption is also involved in transmis-
sion as well as computation. Transmission energy is incurred
from the mobile device which offloads the task to the server.
Let the uplink communication data rate for mobile device n
to edge server m be ,,,,. The transmission time and energy

are given as,
ax B

TTES = ——— 4)
Tnm
Poffl
ES __ nm
TEE = s (5)

Let us consider that the computation resources of the edge
server have frequency f,, and take c,, cycles to compute one
byte, hence the computation time and energy are defined by,

a X B x e,

CTnES == f + Qm7 (6)
Pidle
ES m
CEE = orEs” (7)

Cloud computation: If the system decides to compute the
task on the cloud server with a ratio of «, then computation
time, transmission time, communication energy, and trans-
mission energy are involved. Let the uplink communication
data rate for mobile device n to cloud server ¢ be r,,.. The
transmission time and energy are given as,

ax B

TTSC = -~ ®)
ne
Poffl
cC _ nc
TEC = Treo)

Let us consider that the computation resources of the cloud
server have frequency f. and take c. cycles to compute one
byte, hence the computation time and energy are defined by,

B x c.
CTEC:% (10)
Pidle
CESC = cree (11)

to compute tasks of [N mobile devices in 7 timeslots is
the maximum time spent by any computation site, whereas
energy consumed is contributed by each computation site.
Mathematically, total time 7" and energy E can be given by,

T= ZZmax{C WP, (CT,

t=1 i=1

S+ TTE®), (CTHC +TTH)}
(12)

E=) > {CE{"+CE;°+TE;’+CEZ°+TEZ} (13)
t=1 i=1
C. PROBLEM FORMULATION
Our problem is to find offloading ratios in collaborated edge
and cloud computing systems to minimize delay and energy
consumption of all MDs and ESs. We formulate this opti-
mization as,

N T
a%i%(zz:ait(myf” + CEMP)+ (14)
T =1 t=1
Bn(TTﬁ?Sl + TE’LEtSl + C]’;?Sl + CEE5‘1)
%t(TTﬁsz +TE£S2 + C/]W,L_}?S2 +CEzEtS2)
0:(TTSC + TESS + CTSC + CEG°)).

S.t.

Dt + Bt + Yot + 0 = 1. (15)
t=1
Ty, < D, (16)
> (CEY" + ZTE TESS) < ESetiery. (17)
t=1
for Vn e N.

T

N
Z Z CEES < Ebattery, (18)
t=11

=1
max(CTy'”, (TTy” + CT;°), (TTE + CTE%)), (19)

forvVte r < ﬁT, where AT is the duration of one-time slot.

The equation in (14) gives a minimization equation for
energy and time consumed in offloading for two edge servers,
one cloud server, and computation at local mobile devices
where 3 and v are offloading ratios of two edge servers.
For scaling our solution to add more edge servers, we can
increase offloading ratios such that offloading ratios sepa-
rately identify each edge server. Constraint in (15) suggests
that each mobile device n distributes the entire task to all
computation sites over the time period 7. Constraint in (16)
guarantees that the task is completed within a specified dead-
line. Constraints in (17), (18) ensure the battery of MD ain’t
exhausted and energy consumed by edge servers should be
limited. We have set a limit of energy consumption by edge
servers and for each understanding, this limit is numerically
set using its battery capacity. Constraint in (19) presents

Where P24 is power consumed when z € (cloud, edgeserverfhat offloading decision is taken per time slot. We design

is idle and P"f f when offloading to . The total time taken

VOLUME 4, 2023

optimization of offloading strategy as an MP-MDP which is a

5

IEEE Access

J. Mhatre et al.: MP-DDPG: Optimal Latency-Energy Dynamic Offloading Scheme in Collaborative Cloud Networks

State (s5)
[L4
{ \ Avg. Action (4),
. —_————

i . Total Reward (R .
(Ei;r;;f;i; Action(a Actor (Action otal Reward (R) Learning Agent
matrix (X)) Generator) Action (MP-DDPG)

T Generation Policy
h Times
4

Intermediate Reward ()

FIGURE 2. Offloading strategy optimization using MP-DDPG, formulated as
MP-MDP problem.

5-tuple problem (S, A, R, T, X) as follows (illustrated in Fig.
2),
« States (S): At beginning of each time slot ¢, the system
observes a state s; of the network, defined as,

st = {B(t),D(t), E+(t), Ln(t)}, (20)

where B(t) = {Bi(t), B2(t)...Bn(t)} is a set of task
sizes of all N in MDs, D(t) = {D1(t), Da(t)...Dn(t)}
is a set of their acceptable delays, E.(t) is a set of
batteries left at computation sites x, and S is sequence
of states s;.

o Actions (A): Action a; at time ¢ represents a set of
offloading ratios in which tasks are offloaded to compu-
tation sites. Actions A is average of a; taken over period
T, where the action a; is defined as,

ay = {al(t),ﬁl(t),"ﬁ(t),51(t)},V1 S N7 (21)

and «, 3,7, 0 are offloading ratios for different compu-
tation sites.

« Reward (R): Every action a; taken to drive system from
S¢ to sy41 should maximize the reward r;. From the
start state (task submitted for computation) to the final
state (task completion) a series of intermediate actions
are taken to generate intermediate rewards. Total reward
R is the total of all immediate rewards. Since we aim
to reduce the overall latency and energy, the reward is
calculated as

R=—(T+E), (22)

where T and E' can be found from (12) and (13).

« State Transition Matrix Providing Next State (X):
Performing action takes the system to the next state
which is given as, {B(t 4+ 1), D;(t) — AT, {E,(t) —
Eus}, Ln(t + 1)} where E, is site s battery con-
sumed in state s;. X denotes a mapping function which
calculates sy and aids selection of action a;.

e Period (7): A total number of time-slots taken to com-
plete tasks of mobile device n for Vn € N MDs.

IV. PROPOSED METHOD

In this section, we introduce our reinforcement learning-
based algorithm called "multi-period deep deterministic pol-
icy gradient (MP-DDPG) algorithm" for dynamic resource
allocation through offloading strategy optimization spanned
over multiple time slots based on Multi-Period Markov De-
cision Process (MP-MDP) [4].

6

A. MULTI-PERIOD MARKOV DECISION PROCESS
Let a D be the maximum acceptable delay for a task of
size B, where D > 7 X &T, AT is the duration of the
one-time slot. MP-MDP process consists of states S and
actions A to complete task B. For generating the next state
S¢+1, an optimal action a; is selected using a deterministic
policy x(s¢). The optimal policy is obtained such that the
cost corresponding to action is maximum. For a multi-period
process, the cost can be calculated as,
T
Cr(sr,ar) = Cy(se,ar) + Z ci(siya;), Vt<t,7 > 1
i=t41
=Cr(sr,a.), Vt=7,7 > 1
(23)

Algorithm 1 Algorithm for DDPG

Require: Randomly initialize the critic network Q(s,a|6q)
and actor-network by 1u(s|6,,) using weights 6 and 6,,.
Ensure: Initialize Replay buffer R_buff
for episode = 1..Mdo
Initialize random noise Ny for action exploration
Receive initial observation state s1
fort = 1..Tdo
as = f1(s¢]0,) + No
calculate reward r; by executing a; on state s,
Store transition in buffer
R_buff.add(ss, at, ¢, St41)
Sample minibatch of K transitions from R_buff
Sety’ =r(s¢,ar) +7 x Q'(8't41, 1 (5't41))
Update critic by minimizing loss L
Update actor policy using policy gradient Vg, Ly,
Update target networks 0,/ and 0
end for
end for

B. DEEP DETERMINISTIC POLICY GRADIENT
ALGORITHM

Originally proposed in [32], Deep Deterministic Policy Gra-
dient (DDPG) (Algorithm 1) is an algorithm that concur-
rently learns a Q-function and a policy. It is efficient in
solving problems with continuous action spaces. DDPG has
two main networks, one is the critic and another is the actor-
network. They further contain subnetworks, online neural
networks, and target neural networks which have the same
design. These four networks combine their efforts to generate
an optimized solution by training their corresponding param-
eters (6). These parameters define a policy function pig(s).
The actor-network evaluates this policy function to choose
action a which generates maximum reward. Critic network
uses the value function to calculate the Q-value, Qo(s, a) of
the selected action. As discussed in [32], the critic network
computes the loss as the Mean-Squared Error between the
TD-Target and the Q-value estimate of s and a. The TD-
Target v’ utilizes the target networks. The next state s’ and the

VOLUME 4, 2023

IEEE Access

J. Mhatre et al.: MP-DDPG: Optimal Latency-Energy Dynamic Offloading Scheme in Collaborative Cloud Networks

COMPUTER

and action

EXTERNAL
ENVIRONMENT

MULTI-PERIOD

Compute reward, next
state from current state

l____________________'l
ADAM OPTIMIZER ADAM OPTIMIZER
Update Actor Ukt @it
Network Parameters Network Parameters
z il
o =
s 2 £
g S & Lo

CRITIC NETWORK \

ACTOR NETWORK

Calculate action a for
received state s, obtain
reward r and next state s’

Calculate Q-value for
actor’s action

1) Actor network receives state s from external
environment, for finding offloading ratios in form
of action a.

2) Process is carried in multiple iterations, by
evaluating states in parts (intermediate states s”)
and finding corresponding intermediate action .

3) Multi-period computer computes intermediate
rewards ’ for each s "and a .

4) The final state is said to be achieved (all task
computation completed) when Y, s" = s .

5) Final action is series of a’ generated for
intermediate states.

and store in event replay Calculate loss function LQ

buffer
Calculate Loss function Ly

N

TARGET CRITIC NETWORK
Calculate Q" value for

next state and next action

TARGET ACTOR NETWORK
Calculate next action a’
from next state

Action Reward Next state

EVENT REPLAY BUFFER

Intermediate Action Calculator using DDPG

Iterative Multi-Period Computer for total Action

FIGURE 3. Offloading strategy optimization using MP-DDPG, formulated as MP-MDP problem.

Algorithm 2 Algorithm for MP-DDPG

Input: Randomly initialize the critic network Q(s,a
actor network by 1(s|6,,) using weights 6 and 6,,.
QOutput: Initialize Replay buffer R_buff

f¢g) and

1: forepisode = 1...Mdo
2 Initialize random noise Ny for action exploration
3 Receive initial observation state s1 with task size B
4: while B < 0 do
5: air = p(s¢]0,) + No
6 calculate reward r;; by executing a;; on state s;;
7 end while
8 A= Z At
9: R= Z Tt
10: St+1 = Sit
11: St =sl
12: Store transition(S;, A, Ry, S¢+1) in buffer R_buf f
13: Sample minibatch of K transitions from R_bu f f
14: Sety’ =r(s¢,ar) +v x Q'(8'141, 1/ (s'141))
15: Update critic by minimizing loss L

16: Update actor policy using policy gradient Vg, Ly,
17: Update target networks ¢, and 0
18: end for

associated action predicted by the target actor 1’ are provided
as input to the target critic Q’, can be formulated as:

Y =r(s,a) +vxQ'(s, 1 (s), (24)

where r(s, a) is reward obtained when actor network chose
action a in state s, 7 is discount factor and Q'(s’, u'(s"))

VOLUME 4, 2023

is maximum future return of the next state. DDPG uses a
buffer to sample minibatch of size m, for calculating the loss
function of critic and then learning by minimizing the loss
function given by,

L3 (s — Qs 10 (5))2,

i=1

Lo =

(25)

m

where Q(s, pg(s)) is Q-value estimate of the current state and
corresponding action at time t. For Actor-network, we need to
maximize the) value. Since the action space is continuous,
we cannot calculate the max of (Q-value for a set of actions.
For continuous values, maximizing a function is the same as
minimizing the negative value of that function. Hence loss
function of actor-network is as

L,=-Q(s,a). (26)

Here loss function is in terms of () and not in terms of 6,
hence we apply the chain rule to optimize it.

m

VoL = 5 3 (V0 @ulss1(5) Vapo).

=1

27

The parameters of the actor and critic network are updated
using optimized loss functions in (30) and (32). Finally, the
DDPG agent uses a small constant ¢ to update the critic target
network and actor target network softly:

O =0, + (1=)by

28
9@/:9Q+(1—C)9Q/. (28)

IEEE Access

J. Mhatre et al.: MP-DDPG: Optimal Latency-Energy Dynamic Offloading Scheme in Collaborative Cloud Networks

C. MULTI-PERIOD DEEP DETERMINISTIC POLICY
GRADIENT ALGORITHM

MP-DDPG algorithm (Algorithm 2) is designed to reevaluate
the resources of our network at the beginning of each time
slot and take offloading decisions based on the current state.
At the beginning of time slot £, the actor-network evaluates
the current state containing the remaining task B(t) and uses
deterministic policy function pg(s) to choose action a;. Critic
network uses the value function to calculate the Q-value,
Qo(st,az) of the selected action. After computation of task
B(t), i.e. after D(t) time, network parameters as learned.
Fig. 3 shows the working of the MP-DDPG algorithm. It
has two modules, the outer module is a multi-period iterative
computer and the inner module is an intermediate action
calculator. For every intermediate state s;, which is executed
in consecutive time slots, the actor in the inner module
generates intermediate actions a; using the policy function.
These actions define the offloading decisions taken at that
time slot. This action is forwarded to the outer module to
calculate the reward for the action. Next remaining state and
calculated intermediate reward are again given as input to
the inner module. The inner module evaluates the rewards
and adjusts the parameters of policy to generate the next
reward. This process continues until it completes the given
task of B bytes by executing a part of it B, at each time {.
At each intermediate step, parameters are learned by actor
and critic networks. Actor and Critic are two Temporal-
Difference (TD) versions of policy gradient. The actor takes
action and the critic tells how good the action was and how
to adjust it or we can say, how to learn the parameters to
adjust the action. The learning of the actor is based on the
policy gradient approach. The TD-Target ¢’ utilizes the target
networks. The next state s’;11 and the associated action
predicted by the target actor y’ are provided as input to the
target critic ', can be formulated as:

Y =7r(se,a0) + x Q' (8 141, 1/ (5'141)), (29)

where 7(s;,a;) is reward obtained when actor network
chose action a; in state sg; < is discount factor and
Q'(8't41, 1/ (8't41)) is maximum future return of the next
state. Loss function at critic is given by,

- Q) GO)

i=1

Lo =

where Q(s¢, 1o(s¢)) is Q-value estimate of the current state
and corresponding action at time t. For Actor-network, we
need to maximize the @) value. Since the action space is
continuous, we cannot calculate the max of (J-value for a set
of actions. For continuous values, maximizing a function is
the same as minimizing the negative value of that function.
Hence loss function of actor-network is as

L# = _Q(stvat)‘ 3D

Here loss function is in terms of () and not in terms of 6,
hence we apply the chain rule to optimize it.

1o
VQLM = % Z(vy(s)Qu(ShM(s))veu’e(s)) (32)

i=1
The parameters of the actor and critic network are updated
using optimized loss functions in (30) and (32). The critic-
target-network and actor-target network are updated softly as

discussed in (28).

V. RESULTS AND ANALYSIS

We carried out reinforcement learning with parameters and
optimized hyperparameters as discussed in [24]. We use
learning rate ap g, ,,,. = 0.0001 and o g = 0.002. The
summary of our simulation parameters is shown in Table 2.
For comparison with the DDPG algorithm proposed in [24],
we have used 3 variations in architecture with the MP-DDPG

critic

TABLE 2. Simulation Parameters

Symbol Description Value
N Number of mobile devices 4
M Number of edge servers 2
C Number of Centralized Cloud 1
R[] Range in Miles for M 3] 50, 75 miles
AT Time slot 5 ms
el Computation cycles for per | 0.0001 (local), 0.00001
byte (EC)
B Task size list [2,140] MB
DJ] Accepted delay list Random (5 ms, 11 ms)
Qll Cache at each user 1GB
Wi Channel bandwidth b/w for | From UE to EC - 106
user ¢ and EC j MBps
Prn Transmission power for usern | 0.1 W
to ECm
No Noise -100 dBm
hmn Channel gain for channel be- | 6 x 10710
tween user n to EC m
fd Frequency of local processor 0.5 Ghz
fm Frequency of EC processor 5 Ghz
fe Frequency of cloud processor 10 Ghz
z Energy consumption per cycle 4/3 x pidle
Ty Energy consumption per cycle | 15 mJ
by local when idle
TNr Energy consumption per cycle | 75 m]
by edge server when idle
zo Energy consumption per cycle | 0.37J
by cloud server when idle
E[] Battery capacity list 5000 J
Lgl] Location of User devices random ((0,0) (101,101))
ns_area | Network simulation area 500 x 500
L] Location of EC servers [50, 50], [100, 100]

VOLUME 4, 2023

IEEE Access

J. Mhatre et al.: MP-DDPG: Optimal Latency-Energy Dynamic Offloading Scheme in Collaborative Cloud Networks

150
——DDPG_IT_IEC
——MPDDPG_IT_IEC
MPDDPG 2T _IEC
oo I==MPDDPG 2T 2EC
-~
E
)
o
o
8 50
0
25 20 40 60 80 100 120 140

Task Size (MB)

FIGURE 4. Comparisons of computation latency for varying task sizes based
on our testing models shown in Table 3.

——MPDDPG_2T 2EC
——MPDDPG_IT_1EC
MPDDPG 2T IEC

Energy consumed (J)
o

5
20 40 60 80 100 120 140

Task size (MB)

FIGURE 5. Comparisons of computation energy consumption for varying task
sizes based on our testing models shown in Table 3.

algorithm deployed on the controller. They are described in
Table 3.

Fig. 4 shows the latency as a function of the task size of
each model discussed in Table 3. MP-DDPG outperforms
[24] by finding offloading strategy which exhibits lower
latency. Using a multi-period strategy to offload has lower
latency as compared to single-slot offloading. When we use
2-tier model (cloud + edge computing), performance is fur-
ther improved as compared to /-tier model (edge computing).

TABLE 3. Model description

Model Algorithm | Number Number

of ES of Cloud
1_TIER_DDPG_1EC DDPG [24] 1 0
1_TIER_MP-DDPG_1EC | MP-DDPG 1 0
2_TIER_MP-DDPG_I1EC | MP-DDPG 1 1
2_TIER_MP-DDPG_2EC | MP-DDPG 2 1

VOLUME 4, 2023

100

Il Mobile Device
I Edge Server 1
[CTIFdge Server 2
B Cloud

o0

80

0

60

500

40

Task Distribution (%)

30

20

10

[5K, 5K, 5K] [500, 5K, 5K] [50,5K, SK] [SK, 500,5K] [5K, 50, 5K]
Battery Capacity (K.J) [MD, ES, CC]

FIGURE 6. Comparisons of task distributions for varying battery capacity.

100
I Mobile Device
20 [N Edge Server 1
80 I:ll;’dgc Server 2
I Cloud

70
60

Task Distribution (%)
n
=1

2.5 10 60 80 100 120 140
Task Size (MB)

FIGURE 7. Comparisons of task distributions for varying task size.

100
B Mobile Device
I Edge Server 1
80 [Edge Server 2
\? I Cloud
=
£ 60
E]
=)
h=]
z
a 40
2
£
=
20
0
5 7 9 10 11
Accepted Delay (s)

FIGURE 8. Comparisons of task distributions for varying deadlines.

An increasing number of ESs improve performance but that
improvement pertains to computation from MDs which lie
in overlapping areas of the range of adjacent base stations.
Fig. 5 shows a comparison of drainage levels of MD batteries

9

IEEE Access

J. Mhatre et al.: MP-DDPG: Optimal Latency-Energy Dynamic Offloading Scheme in Collaborative Cloud Networks

100

B Mobile Device
I Edge Server 1
so t |[[C_JEdge Server 2
Il Cloud

90

70

60

50

40

Energy Distribution (%)

30

20

10

il
[SK, 5K, SK] [500, 5K, 5K] [S0, 5K, SK] [SK, 500, 5K] [SK. 50, 5K]
Battery Capacity (KI) [MD. ES.CC]

FIGURE 9. Comparisons of energy consumption distributions for varying
battery capacity.

100
I Mobile Device
-Ldgc Server |
— 80 [TEdge Server 2
é I Cloud
5
S 60
]
E
]
B 40
2
20
(5]
=
)|
0
235 10 60 80 100 120 140

Task Size (MB)

FIGURE 10. Comparisons of energy consumption distributions for varying
task size.

100
I Mobile Device
I Edge Server 1
30 [Edge Server 2
& ECloud
8
2 60
B
E
=
[}
y 40
£
5
=]
=

Accepted Delay (s)

FIGURE 11. Comparisons of energy consumption distributions for varying
deadlines.

(energy consumption) for varying task sizes on different
models using MP-DDPG-based algorithms. Initially, when
task sizes are small, the task is executed locally on MD, hence

10

=20

Reward

] 2000 4000 6000 8000 10000 12000
Episodes

FIGURE 12. Learning lterations taken by MP-DDPG algorithm to optimize the
results.

energy consumed in all three cases is the same. But as the task
size increases, MD battery consumption increase and there
arises a need to offload the tasks. The first and best option
is always ESs. Hence we see a drop in battery consump-
tion between 60-80 MB task sizes. Moreover, 2_TIER_MP-
DDPG_2EC provides two ESs, and hence drop is more and
battery consumption remains low for higher task sizes as
well. Further increase in task sizes involves offloading to CC.
This increases to-cloud transmission overhead in addition to
increased local computation at MD. Hence we observe that
the rate of battery usage decreases when we resort to offload-
ing strategy as compared to local computation. Though the
rate of energy consumption increases for offloading to the
cloud, it remains less as compared to the non-offloading case.

We have further shown task distribution and energy dis-
tribution for 2_TIER_MP-DDPG_2EC. Task Distributions in
Figs. 6, 7, and 8 give a detailed view of what percentage
of tasks are offloaded to ESs and CC, and what part of
the task is computed locally in various scenarios. Similarly
Energy distributions in Figs. 9, 10, and 11 explain how much
energy is consumed by each computation site for transmis-
sion and computation. Figs. 6 and 9 are about offloading
strategy results when the batteries of the computation site
change. The Y-axis gives the battery levels as (MD, ES, and
CC) in KJ. In Fig. 6, we observe that ESs are utilized to
the fullest. When the device battery is reduced, the excess
computation which is not sufficed by MD is offloaded to the
cloud. Whereas, when the battery capacity of ESs is reduced,
excess computation is distributed to MD and then to CC. It is
observed that the system always tries to lessen the offloading
to CC since it consumes more time for transmission due to its
distance. In Fig. 9 we observe that total energy consumed at
both ESs and energy consumed at MDs is more compared to
the cloud since first priority for task offloading is ES and then
local or the CC. As per our parameters, (delay + energy) for
computation and transmission to CC is more as compared to
computation in MD. But as the battery capacity of the device
decreases, the computation is switched to CC.

VOLUME 4, 2023

IEEE Access

J. Mhatre et al.: MP-DDPG: Optimal Latency-Energy Dynamic Offloading Scheme in Collaborative Cloud Networks

Figs. 7 and 10 give task and energy distribution for varying
task sizes. Fig. 7 shows how the tasks are distributed when
task size increases. We observe that once the capacity of ESs
and MD is reached, the task is offloaded to CC. It is observed
that for larger task sizes, even with a multi-period offloading
strategy, the percentage of computation on the cloud is higher
as compared to local MDs or ESs. Even though we see the
percentage of task distributed is less for larger task sizes,
Fig. 10 confirms that the cloud offloading takes place only
after energy requirements are satisfied by ESs and devices.
We observe that as the task size increases, energy utilization
of local MD and ES increases but after the limit, as attained
there comes a need to offload the task to CC.

Each task has some tolerable delay specified by its applica-
tion. The task is required to complete within that delay limit.
Figs. 8 and 11 give us details of how our system behaves
when accepted delay for each task changes. We observe from
Fig. 8 that MD can suffice tasks faster so the first choice
of task computation is always MD then ES and CC due to
its transmission cost. But when the delay tolerance value
increases, the CC resources are utilized so that low tolerance
tasks could utilize local and ESs. Fig. 11 gives insight that
local energy is mostly used when an acceptable delay is at
stake. As the tolerance threshold is increased, ES and CC
resources are used.

Fig.12 shows learning in our proposed MP-DDPG algo-
rithm using parameters shown in Table 2. We used 12000
iterations to optimize our parameters. We see that around
6000 iterations were required to increase the reward which
reduced energy and time shown in (22).

VI. CONCLUSION

Our paper aims to design an algorithm for finding optimal of-
floading strategies in collaborative edge and cloud computing
networks. We have designed a multi-period deep determin-
istic reinforcement learning (MP-DDPG) algorithm which
gives an optimal offloading policy and utilizes maximum
network resources so as to minimize latency and energy in the
network system. We have compared our proposed MP-DDPG
algorithm to the existing DDPG algorithm [24] in terms of
latency for offloading. MP-DDPG algorithm achieves about
71% improvement as compared to the DDPG algorithm for
1-tier architecture. We further show improvement in latency
and energy consumption for higher architectures of MP-
DDPG described in table 3. Furthermore, we have shown the
distribution of tasks over ESs, CC, and MD for computation.
We observe that larger task sizes offload their major share
to the cloud and conserve the energy of MD. But real-time
computation prefers computation on MD than offloading to
the cloud. This makes our algorithm more useful in a real-
time environment in high-speed next-generation collabora-
tive networks. Our algorithm also conserves the energy of
both MD and ESs.

VOLUME 4, 2023

ACKNOWLEDGEMENTS
This research was supported in part by US NSF grants CNS-
2103405 and AMPS-2229073.

REFERENCES

[1] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-
based cloudlets in mobile computing,” IEEE pervasive Computing, vol. 8,
no. 4, pp. 14-23, Oct 2009.

[2] Z.Liao, W. Hu, J. Huang, and J. Wang, “Joint multi-user dnn partitioning
and task offloading in mobile edge computing,” Ad Hoc Networks, vol.
144, p. 103156, 2023.

[3] H. Wu, W. Knottenbelt, K. Wolter, and Y. Sun, “An optimal offloading
partitioning algorithm in mobile cloud computing,” in Quantitative Evalu-
ation of Systems: 13th International Conference, QEST 2016, Quebec City,
QC, Canada, August 23-25, 2016, Proceedings 13. Springer, 2016, pp.
311-328.

[4] W. L. Cooper and B. Rangarajan, “Performance guarantees for empirical
markov decision processes with applications to multiperiod inventory
models,” Operations Research, vol. 60, no. 5, pp. 1267-1281, 2012.

[S] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks for
computation-intensive applications in mobile cloud computing,” in 2014
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). 1EEE, 2014, pp. 352-357.

[6] B.Li,Y.Pei, H. Wu, and B. Shen, “Heuristics to allocate high-performance
cloudlets for computation offloading in mobile ad hoc clouds,” The Journal
of Supercomputing, vol. 71, no. 8, pp. 3009-3036, 2015.

[7]1 T. Verbelen, T. Stevens, F. De Turck, and B. Dhoedt, “Graph partitioning
algorithms for optimizing software deployment in mobile cloud comput-
ing,” Future Generation Computer Systems, vol. 29, no. 2, pp. 451-459,
2013.

[8] J. Ren, G. Yu, Y. Cai, and Y. He, “Latency optimization for resource
allocation in mobile-edge computation offloading,” IEEE Transactions on
Wireless Communications, vol. 17, no. 8, pp. 5506-5519, 2018.

[9]1 Y. Liu, C. Liu, J. Liu, Y. Hu, K. Li, and K. Li, “Mobility-aware and
code-oriented partitioning computation offloading in multi-access edge
computing,” Journal of Grid Computing, vol. 20, no. 2, pp. 1-15, 2022.

[10] R. Yadav, W. Zhang, I. A. Elgendy, G. Dong, M. Shafig, A. A. Laghari,
and S. Prakash, “Smart healthcare: Rl-based task offloading scheme for
edge-enable sensor networks,” IEEE Sensors Journal, vol. 21, no. 22, pp.
24910-24918, 2021.

[11] A. A. A. Ateya, A. Muthanna, R. Kirichek, M. Hammoudeh, and
A. Koucheryavy, “Energy-and latency-aware hybrid offloading algorithm
for vavs,” IEEE Access, vol. 7, pp. 37 587-37 600, 2019.

[12] Z. Cheng, M. Min, M. Liwang, L. Huang, and Z. Gao, “Multiagent
ddpg-based joint task partitioning and power control in fog computing
networks,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 104-116,
2021.

[13] W. Fan, J. Han, L. Yao, F. Wu, and Y. Liu, “Latency-energy optimization
for joint wifi and cellular offloading in mobile edge computing networks,”
Computer Networks, vol. 181, p. 107570, 2020.

[14] P. Lagabka, A. Lee, K. Suo, and D. Kim, “Seamless communication
techniques in mobile cloud computing: A survey,” ITU Journal
on Future and Evolving Technologies, 2021. [Online]. Available:
https://www.itu.int/pub/S-JNL-VOL2.ISSUE2-2021-A01

[15] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile edge

computing: Task allocation and computational frequency scaling,” IEEE

Transactions on Communications, vol. 65, no. 8, pp. 3571-3584, 2017.

L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, “Deep reinforcement

learning-based joint task offloading and bandwidth allocation for multi-

user mobile edge computing,” Digital Communications and Networks,

vol. 5, no. 1, pp. 10-17, 2019.

[17] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet of Things Journal, vol. 6,
no. 3, pp. 4005-4018, 2018.

[18] D.Li, S. Xu, and P. Li, “Deep reinforcement learning-empowered resource
allocation for mobile edge computing in cellular v2x networks,” Sensors,
vol. 21, no. 2, p. 372, 2021.

[19] X.Chen, H. Ge, L. Liu, S. Li, J. Han, and H. Gong, “Computing offloading
decision based on ddpg algorithm in mobile edge computing,” in 2021
IEEE 6th International Conference on Cloud Computing and Big Data
Analytics (ICCCBDA). IEEE, 2021, pp. 391-399.

[16

11

IEEE Access

J. Mhatre et al.: MP-DDPG: Optimal Latency-Energy Dynamic Offloading Scheme in Collaborative Cloud Networks

[20] Z. Liao, J. Peng, B. Xiong, and J. Huang, “Adaptive offloading in mobile-
edge computing for ultra-dense cellular networks based on genetic algo-
rithm,” Journal of Cloud Computing, vol. 10, no. 1, pp. 1-16, 2021.

[21] H. Zhang, Y. Yang, X. Huang, C. Fang, and P. Zhang, “Ultra-low latency
multi-task offloading in mobile edge computing,” IEEE Access, vol. 9, pp.
32569-32581, 2021.

[22] H.-J.Jeong, C. H. Shin, K. Y. Shin, H.-J. Lee, and S.-M. Moon, “Seamless
offloading of web app computations from mobile device to edge clouds via
htmlS web worker migration,” in Proceedings of the ACM Symposium on
Cloud Computing, 2019, pp. 38—49.

[23] H. Gao, X. Wang, X. Ma, W. Wei, and S. Mumtaz, “Com-ddpg: A
multiagent reinforcement learning-based offloading strategy for mobile
edge computing,” arXiv preprint arXiv:2012.05105, 2020.

[24] Y. Wang, W. Fang, Y. Ding, and N. Xiong, “Computation offloading
optimization for uav-assisted mobile edge computing: a deep deterministic
policy gradient approach,” Wireless Networks, vol. 27, no. 4, pp. 2991—
3006, 2021.

[25] Y. Xie, Z. Xu, Y. Zhong, J. Xu, S. Gong, and Y. Wang, “Backscatter-
assisted computation offloading for energy harvesting iot devices via
policy-based deep reinforcement learning,” in 2019 IEEE/CIC Interna-
tional Conference on Communications Workshops in China (ICCC Work-
shops). 1EEE, 2019, pp. 65-70.

[26] Z. Xue, C. Liu, C. Liao, G. Han, and Z. Sheng, “Joint service caching
and computation offloading scheme based on deep reinforcement learning
in vehicular edge computing systems,” IEEE Transactions on Vehicular
Technology, 2023.

[27] L. Liao, Y. Lai, F. Yang, and W. Zeng, “Online computation offloading
with double reinforcement learning algorithm in mobile edge computing,”
Journal of Parallel and Distributed Computing, vol. 171, pp. 28-39, 2023.

[28] X. Yao, N. Chen, X. Yuan, and P. Ou, “Performance optimization of
serverless edge computing function offloading based on deep reinforce-
ment learning,” Future Generation Computer Systems, vol. 139, pp. 74-86,
2023.

[29] A. Qadeer and M. J. Lee, “Hrl-edge-cloud: Multi-resource allocation in
edge-cloud based smart-streetscape system using heuristic reinforcement
learning,” Information Systems Frontiers, pp. 1-17, 2023.

[30] B. Gong, X. Jiang et al., “Dependent task-offloading strategy based on
deep reinforcement learning in mobile edge computing,” Wireless Com-
munications and Mobile Computing, vol. 2023, 2023.

[31] X. Huang, S. Leng, S. Maharjan, and Y. Zhang, “Multi-agent deep rein-
forcement learning for computation offloading and interference coordina-
tion in small cell networks,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 9, pp. 9282-9293, 2021.

[32] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International conference on
machine learning. PMLR, 2014, pp. 387-395.

JUI MHATRE (Member, IEEE) (M’76-SM’81—
F’87) is currently pursuing her second Master’s
degree in Computer Science with Thesis from
Kennesaw State University, Marietta, Georgia,
USA. The First Masters’s degree was obtained
from VIJTI, Mumbai, Maharashtra, India, 2017.
Since 2021, she is currently a Research Assistant
with the Kennesaw State University under the
supervision of Dr. Ahyoung Lee in the Intelligent
Computing & Networking (ICN) Laboratory and a
part of the Vertically Integrated Project (VIP) team in the L3BN: Low-Power
Low-Cost Long-Range Broadband Networking Lab. Currently working in
IoT, Al, and Wireless network optimization domains, she has industry
experience as a Software Engineer in the banking domain. She has also
done research in the field of data mining in geoinformation Systems for
spatiotemporal data.

AHYOUNG LEE (Senior Member, IEEE) re-
ceived her M.S., and Ph.D. degrees in computer
science and engineering from the University of
Colorado, Denver, in 2006 and 2011, respectively.
she was a Postdoctoral Fellow at Georgia Institute
of Technology in the Broadband Wireless Net-
working Laboratory (BWN Lab) under the super-
vision of Prof. Ian F. Akyildiz with a research
project focused on Software Defined Networking
(SDN). Currently, she is an Assistant Professor
w1th the Department of Computer Science at Kennesaw State University; the
Director of the Intelligent Computing & Networking (ICN) Laboratory and
the VIP team in the L3BN: Low-Power Low-Cost Long-Range Broadband
Networking Lab. Her main research interests include algorithm design
and analysis in SDN, mobile wireless networks, sensor networks, cyber-
physical systems, and LoRa networks; optimal computing and networking in
edge/cloud/quantum computing; applied data science with machine learning
in network communications.

TU N. NGUYEN (Senior Member, IEEE) is cur-
rently an assistant professor of Computer Sci-
ence at Kennesaw State University, USA. Prior to
joining the KSU, he was an assistant professor
of computer science at Purdue University Fort
Wayne. He earned a Ph.D. degree in electronic
engineering from the National Kaohsiung Univer-
sity of Science and Technology (formerly, Na-
tional Kaohsiung University of Applied Sciences)
in 2016. He was a Postdoctoral Associate in the
Department of Computer Science Engineering, University of Minnesota -
Twin Cities in 2017. Prior to joining the University of Minnesota, he worked
at the Missouri University of Science and Technology as a Postdoctoral
Researcher in the Intelligent Systems Center in 2016. His research focuses
on developing fundamental mathematical tools and principles to design and
develop smart, secure, and self-organizing systems, with applications to
network systems, cyber-physical systems, quantum networks, and quantum
computing. His research has resulted in more than 100 publications in
leading academic journals as well as conferences. Dr. Nguyen has engaged
in many professional activities, including serving as Editor/Guest Editor for
academic journals such as an Associate Editor of IEEE Systems Journal,
Associate Editor of Journal of Combinatorial Optimization, Associate Editor
of IEEE Access, leading guest editor of IEEE Transaction on Computational
Social Systems, IEEE Internet of Things Magazine, and IEEE Journal of
Biomedical and Health Informatics, and he is also a Technical Editor of
Computer Communication. He is the Co-Editor-in-Chief of the book series:
IET Advances in Distributed Computing and Block-chain Technologies. He
has been in different Organizing Committees such as being TPC-chairs and
general chairs for several IEEE/ACM/Springer flagship conferences. He has
also served as a technical program committee (TPC) member for several
international conferences. He is an US NSF CRII Award recipient of 2021,
a member of ACM, and a senior member of IEEE.

VOLUME 4, 2023

