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Abstract In recent years, the equations defining secant varieties and their
syzygies have attracted considerable attention. The purpose of the present
paper is to conduct a thorough study on secant varieties of curves by settling
several conjectures and revealing interaction between singularities and syzy-
gies. The main results assert that if the degree of the embedding line bundle
of a nonsingular curve of genus g is greater than 2g + 2k + p for nonnega-
tive integers k and p, then the k-th secant variety of the curve has normal Du
Bois singularities, is arithmetically Cohen–Macaulay, and satisfies the prop-
erty Nk+2,p. In addition, the singularities of the secant varieties are further
classified according to the genus of the curve, and the Castelnuovo–Mumford
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regularities are also obtained as well. As one of the main technical ingredients,
we establish a vanishing theorem on the Cartesian products of the curve, which
may have independent interests and may find applications elsewhere.
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1 Introduction

Throughout the paper, we work over an algebraically closed field k of charac-
teristic zero. Let

C ⊆ P(H0(C, L)) = P
r

be a nonsingular projective curve of genus g ≥ 0 embedded by the complete
linear system of a very ample line bundle L on C . For an integer k ≥ 0, the
k-th secant variety

�k = �k(C, L) ⊆ P
r

to the curveC is defined to be the Zariski closure of the union of (k +1)-secant
k-planes to C in Pr . One has the natural inclusions

C = �0 ⊆ �1 ⊆ · · · ⊆ �k−1 ⊆ �k ⊆ P
r .

If deg L ≥ 2g + 2k + 1, then

dim�k = 2k + 1 and Sing(�k) = �k−1.
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Secant varieties of nonsingular projective curves 617

Note that �k−1 has codimension two in �k . The geometric consequence of
the condition deg L ≥ 2g + 2k + 1 is that any effective divisor on C of degree
k + 1 spans a k-plane in Pr .

There has been a great deal of work on the secant varieties in the last three
decades. The major part of the research focused on local properties, defining
equations, and syzygies. Recently, classical questions on secant varieties find
interesting applications to algebraic statistics and algebraic complexity theory.
However, a lot of problems in this area are still widely open, and not much is
known about general pictures. For the first secant variety of a curve, investiga-
tion has been conducted in a series of work by Vermeire [22–25] and the work
with his collaborator Sidman [17,18]. Among other things, the issue whether
secant varieties are normal attracted special attention, as normality is criti-
cal in establishing many other important properties. Only for the first secant
variety, the normality problem was settled by Ullery [21] fairly recently for
a nonsingular projective variety of any dimension under suitable conditions
on the embedding line bundle. Soon afterwards Chou and Song [2] further
showed that the first secant variety has Du Bois singularities under the setting
of Ullery’s study.

On the other hand, the classical questions on the projective normality and
the defining equations of secant varieties are the initial case of a more general
picture involving higher syzygies, under the frame of Green’s pioneering work
[10]. Keeping in mind that the curve can be viewed as its zeroth secant variety,
the fundamental Green’s (2g +1+ p)-theorem (see [10,11]) asserts that if the
embedding line bundle L has deg L ≥ 2g +1+ p, then C ⊆ P

r is projectively
normal and satisfies the property N2,p, i.e., the curve is cut out by quadrics and
the first p steps of itsminimal graded free resolution are linear (see Sect. 2.2 for
relevant definitions on syzygies). This result sheds the lights on understanding
the full picture of syzygies of arbitrary order secant varieties.

In this paper, we give a thorough study on singularities and syzygies of the
k-th secant variety �k of the curve C for arbitrary integer k ≥ 0. The general
philosophy guiding our research can be summarized as that singularities and
syzygies interact each other in theway that the singularities of�k determine its
syzygies while the syzygies of �k−1 determine the singularities of �k , and so
on and so forth. It turns out that all the sufficient conditions that guarantee each
basic property of secant varieties are satisfied if the embedding line bundle is
positive enough beyond an effective bound.

The first main result of the paper describes that the possible singularities of
secant varieties are mild ones naturally appearing in birational geometry. We
refer to Sect. 2.1 for the definitions of singularities.
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618 L. Ein et al.

Theorem 1.1 Let C be a nonsingular projective curve of genus g, and L be a
line bundle on C. For an integer k ≥ 0, suppose that

deg L ≥ 2g + 2k + 1.

Then �k = �k(C, L) has normal Du Bois singularities. Furthermore, one has
the following:

(1) g = 0 if and only if �k is a Fano variety with log terminal singularities.
(2) g = 1 if and only if �k is a Calabi–Yau variety with log canonical

singularities but not log terminal singularities.
(3) g ≥ 2 if and only if there is no boundary divisor � on �k such that (�k, �)

is a log canonical pair.

The theorem therefore completely solves the normality problemsmentioned
above (see Ullery’s conjecture [20, Conjecture E]), and answers Chou–Song’s
question [2, Question 1.6] for curves.

The second main result gives a description on syzygies of the k-th secant
variety. It reveals one full picture hiding in the Green’s (2g + 1+ p)-theorem
aforementioned.

Theorem 1.2 Let C ⊆ P(H0(C, L)) = P
r be a nonsingular projective curve

of genus g embedded by the complete linear system of a very ample line bundle
L on C. For integers k, p ≥ 0, suppose that

deg L ≥ 2g + 2k + 1 + p.

Then one has the following:

(1) �k = �k(C, L) ⊆ P
r is arithmetically Cohen–Macaulay.

(2) �k ⊆ P
r satisfies the property Nk+2,p.

(3) reg(O�k ) = 2k + 2 unless g = 0, in which case reg(O�k ) = k + 1.
(4) h0(ω�k ) = dim Kr−2k−1,2k+2(�k,O�k (1)) = (g+k

k+1

)
.

The results in the theoremwere conjectured by Sidman–Vermeire [18, Con-
jecture 1.3], [24, Conjectures 5 and 6]. The conjectures were quite wide open.
For g ≤ 1, the conjectures were settled by Graf von Bothmer–Hulek [26]
and Fisher [8]. By work of Vermeire [23–25], Sidman–Vermeire [18], and
Yang [27], the question about N3,p was finally settled for the first secant vari-
ety �1.

Theorem 1.2 gives a complete picture for syzygies of arbitrary order secant
varieties of curves. If deg L ≥ 2g+2k+1, then�k ⊆ P

r is indeed projectively
normal. If deg L ≥ 2g + 2k + 2, then �k is ideal-theoretically cut out by the
hypersurfaces of degree k + 2, as it cannot be contained in a smaller degree
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Secant varieties of nonsingular projective curves 619

hypersurface. Furthermore, if deg L ≥ 2g + 2k + 1+ p, then the first p steps
of the minimal graded free resolution of �k are linear.

We mention here several quick examples to show that the degree bounds
on the line bundle L in the theorems are optimal. (i) Assume C has genus
g = 4 and take general points p, q, r , and s on C . The line bundle L =
ωC(p+q +r +s) embedsC inPg+2. Then the first secant variety�1 is neither
normal nor Cohen–Macaulay. See Example 5.14 for non-normal higher secant
varieties �k with k ≥ 2. (ii) If C is an elliptic curve and deg L = 2k + 3, then
the k-th secant variety �k in P2k+2 is a hypersurface of degree 2k + 3. (iii) If
C has genus 2 and degree 12 in P10, then �1 satisfies N3,5 but fails N3,6, and
�2 satisfies N4,3 but fails N4,4. The last two examples are taken from [17,26],
and one may find more examples there.

To prove the main results of the paper, we utilize Bertram’s construction
[1] to realize secant varieties as the images of projectivized vector bundles. To
be more precise, we consider the k-th symmetric product Ck+1 of C . We have
a canonical morphism σk+1 : Ck × C → Ck+1 defined by sending (ξ, x) to
ξ + x and the projection p : Ck × C → C . One defines the secant sheaf

Ek+1,L : =σk+1,∗(p∗L),

which is a vector bundle on Ck+1 of rank k + 1, and the secant bundle

Bk(L) : =P(Ek+1,L).

Notice that Ek+1,L parameterizes (k + 1)-secant k-planes, i.e., the fiber of
Ek+1,L over ξ ∈ Ck+1 can be identified with H0(ξ, L|ξ ). The complete linear
system of the tautological line bundle of Bk(L) determines a natural morphism
to the projective space Pr such that the image is�k . It gives rise to a resolution
of singularities

β : Bk(L) −→ �k .

We then consider the (k − 1)-th relative secant variety Zk−1, which is actually
a divisor in the smooth variety Bk(L). Our strategy is to pass computation
for codimension two situation �k−1 ⊆ �k to the codimension one situation
Zk−1 ⊆ Bk(L). The picture for the first secant variety is rather simple, and
Z0 is just C × C . Thus one can easily transfer cohomological computation
from �1 to C2 through B1(L). However, for higher secant varieties, such
method does not work directly in that Zk−1 is singular. Fortunately, after
blowup consecutively along the stratification induced by the inclusions C ⊆
�1 ⊆ �2 ⊆ · · · ⊆ �k−1, as exhibited in [1], we then arrive at a birational
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620 L. Ein et al.

morphism

bk : blk(Bk(L)) −→ Bk(L),

which we prove to be a log resolution of the log pair (Bk(L), Zk−1). Based
on this setup, in Theorem 1.1, for instance, to prove the normality of �k at a
point x , we adapt the strategy of Ullery in [21] to consider the unique minimal
m-secant plane containing x . It cuts the curve along a degree m + 1 divisor ξ .
By the formal function theorem, the normality of the k-th secant variety �k
at x follows from the normality and projective normality of the smaller order
secant variety�k−m−1 in the space P(H0(C, L(−2ξ))). This leads us to study
a general question on the property Nk+2,p or higher syzygies of �k .

Turning to the proof of Theorem 1.2, we assume deg L ≥ 2g + 2k + 1+ p,
and consider the kernel bundle M�k in the exact sequence

0 −→ M�k −→ H0(C, L) ⊗ O�k −→ O�k (1) −→ 0,

induced by the evaluation map on the global sections of O�k (1). The critical
observation we made here is that in order to establish the property Nk+2,p,
one only needs cohomology vanishing involving the wedge product of M�k

tensored with I�k−1|�k (k + 1). More precisely, it is sufficient to show the
following cohomology vanishing

Hi (�k, ∧ j M�k ⊗ I�k−1|�k (k + 1)) = 0 for i ≥ j − p, i ≥ 1, j ≥ 0. (1.1)

The next important technical step is to prove the following Du Bois type con-
ditions:

Riβ∗O�k (k + 1)(−Zk−1) =
{

I�k−1|�k for i = 0,

0 for i > 0.
(1.2)

Then the cohomology groups in (1.1) can be calculated on Bk(L) by involving
the sheaf β∗O�k (k + 1)(−Zk−1). We observe that in fact this sheaf is the
pullback of a line bundle Ak+1,L on the symmetric product Ck+1 of the curve
C . Therefore, once we use the exact sequence

0 −→ Mk+1,L −→ H0(C, L) ⊗ OCk+1 −→ Ek+1,L −→ 0,

induced by the evaluation map on the global sections of Ek+1,L , we are able to
further connect vanishing (1.1) with the following cohomological vanishing

Hi (Ck+1, ∧ j Mk+1,L ⊗ Ak+1,L) = 0 for i ≥ j − p, i ≥ 1, j ≥ 0, (1.3)

123



Secant varieties of nonsingular projective curves 621

on the symmetric product Ck+1. As the final ingredient of the proof, inspired
by Rathmann’s vanishing results in [16], we show the following vanishing

Hi(Ck+1, ∧ j q∗Mk+1,L ⊗ (L � · · · � L︸ ︷︷ ︸
k+1 times

)(−�)
) = 0

for i ≥ j − p, i ≥ 1, j ≥ 0, (1.4)

on the Cartesian product Ck+1 of the curve C , where q : Ck+1 → Ck+1 is the
natural quotient map and � is the sum of all pairwise diagonals. Now, (1.4)
implies (1.3), and hence, we finally obtain (1.1). The vanishing result (1.4)
may have independent interests, andwe hope that it will find other applications
somewhere in the future.

This paper is organized as follows. We begin in Sect. 2 with recalling basic
definitions and properties of singularities and syzygies of algebraic varieties.
In Sect. 3, we introduce several vector bundles on symmetric products of
curves, review Bertram’s blowup constructions for secant bundles, and show
some useful results for the main results of the paper. In Sect. 4, one of the main
technical ingredients, a vanishing theorem on the Cartesian products of curves,
is established. Section 5 is then devoted to the proofs of the main results of the
paper. Finally, we discuss some open problems on secant varieties in Sect. 6.

2 Preliminaries

We recall relevant definitions and properties of singularities and syzygies of
algebraic varieties.

2.1 Singularities

The Deligne–Du Bois complex	•
X for a singular variety X is a generalization

of the de Rham complex for a nonsingular variety (see [13, Chapter 6] for
detail). There is a natural map

OX −→ 	0
X = Gr0filt	

•
X .

We say that X has Du Bois singularities if the above map is a quasi-
isomorphism.

Let X be a normal projective variety, and � be a boundary divisor on X so
that K X +� isQ-Cartier. Take a log resolution f : Y → X of the pair (X, �).
We may write

KY = f ∗(K X + �) +
∑

E : prime divisor on Y

a(E; X, �)E,
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622 L. Ein et al.

where a(E; X, �) is the discrepancy of the prime divisor E over X . It is easy
to check that the discrepancy is independent of the choice of log resolutions.
We say that (X, �) is a klt (resp. log canonical) pair if a(E; X, �) > −1
(resp. a(E; X, �) ≥ −1) for every prime divisor E over X . We say that X
has log terminal (resp. log canonical) singularities if (X, 0) is a klt (resp. log
canonical) pair. Note that log terminal singularities are rational singularities
and (semi-)log canonical singularities are Du Bois singularities. We refer to
[13] for more details of the various notions of singularities and log pairs.

2.2 Syzygies

Let X ⊆ P(H0(X, L)) = P
r be a projective variety embedded by the complete

linear system of a very ample line bundle L on X . Let S be the homogeneous
coordinate ring of Pr , and

R = R(X, L) : =
⊕

m≥0

H0(X, mL)

be the graded section ring associated to L , viewed as an S-module. Then R
has a minimal graded free resolution E•(X, L):

0 R
⊕

S(−a0, j )
⊕

S(−a1, j ) · · · ⊕
S(−ar, j ) 0.

E0 E1 Er

We define the Koszul cohomology group

K p,q(X, L) : =TorS
p(R, S/S+)p+q ,

where S+ ⊆ S denotes the irrelevant maximal ideal. Then we have

E p =
⊕

q

K p,q(X, L) ⊗k S(−p − q).

Notice that X ⊆ P
r is projectively normal if and only if K0, j (X, L) = 0 for

all j ≥ 1. The Castelnuovo–Mumford regularity of R, denoted by reg(R), is
defined to be the minimal positive integer q such that K p, j (X, L) = 0 for all
p ≥ 0 and j ≥ q + 1. We say that R satisfies the property Nd,p for some
integer d ≥ 2 if

Ki, j (X, L) = 0 for i ≤ p and j ≥ d.
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Secant varieties of nonsingular projective curves 623

Assume that X ⊆ P
r is projectively normal. Then R is the homogeneous

coordinate ring of X so that R satisfies the property Nd,p if and only if X ⊆ P
r

satisfies the property Nd,p in the sense of [7]. In this case, it satisfies the
property Nd,1 if and only if the defining ideal of X in P

r is generated in
degrees ≤ d. In general, the property Nd,p means that up to p stage, the i-th
syzygy of the minimal graded free resolution E•(X, L) is generated in degrees
≤ i − 1 + d.

Consider now the evaluation map

ev : H0(X, L) ⊗ OX −→ L ,

which is surjective since L is base point free. Denote by ML the kernel sheaf
of the map ev, then one obtains a short exact sequence of vector bundles

0 −→ ML −→ H0(X, L) ⊗ OX
ev−→ L −→ 0.

We use the following result to compute the Koszul cohomology group.

Proposition 2.1 (cf. [5, Proposition 3.2]) Assume that Hi (X, Lm) = 0 for
i > 0 and m > 0. Then one has

K p,q(X, L) = H1(X, ∧p+1ML ⊗ Lq−1) for q ≥ 2.

Weconclude this section by reviewingCastelnuovo–Mumford regularity for
a projective subscheme X ⊆ P

r . We say that OX (resp. X ⊆ P
r ) is m-regular

if Hi (X,OX (m − i)) = 0 (resp. Hi (Pr , IX |Pr (m − i)) = 0) for i > 0. We say
that X ⊆ P

r is m-normal if the natural restriction map H0(Pr ,OPr (m)) →
H0(X,OX (m)) is surjective. Note that X ⊆ P

r is (m+1)-regular if and only if
OX is m-regular and X ⊆ P

r is m-normal. By Mumford’s regularity theorem,
if OX (resp. X ⊆ P

r ) is m-regular, then so is (m + 1)-regular. We denote by
reg(OX ) (resp. reg(X)) the smallest integer m such that OX (resp. X ⊆ P

r )
is m-regular. Notice that reg(OX ) = reg(R(X,OX (1))). We refer to [4,5,10]
for more details on syzygies and Koszul cohomology of algebraic varieties.

3 Symmetric products, secant bundles, and secant varieties

In this section, we review relevant facts on symmetric products and basic
constructions of secant bundles and secant varieties.We also show some useful
results on secant bundles, which play important roles in proving the main
results of the paper. The reader may also look Bertram’s original paper [1,
Sections 1 and 2] for more details.

Throughout the section, we fix a nonsingular projective curve C of genus
g ≥ 0 and a line bundle L on C . For an integer k ≥ 1, we write the k-th
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624 L. Ein et al.

symmetric product of the curve C as Ck and the k-th Cartesian (or ordinary)
product of the curve C as Ck . We set C0 = C0 = ∅. Denote by

qk : Ck −→ Ck

the quotient morphism from Ck to Ck . It is a finite flat surjective morphism of
degree k!. We have the canonical morphism

σk+1 : Ck × C −→ Ck+1

defined by sending (ξ, x) to ξ + x . It is a finite flat surjective morphism of
degree k + 1.

3.1 Lemmas on symmetric products

We begin with defining the secant sheaf on Ck+1 associated to a line bundle
on C .

Definition 3.1 For an integer k ≥ 1, let p : Ck × C → C be the projection to
C . For a line bundle L on C , we define the secant sheaf on Ck+1 associated
to L to be

Ek+1,L : =σk+1,∗(p∗L) = σk+1,∗(OCk � L).

Notice that Ek+1,L is a locally free sheaf on Ck+1 of rank k + 1 and the
fiber of Ek+1,L over ξ ∈ Ck+1 can be identified with H0(ξ, L|ξ ).

Next, we introduce several line bundles on the symmetric product Ck+1,
which play a central role in this paper (see also [6,16] for the importance in
the gonality conjecture).

Definition 3.2 Let k ≥ 1 be an integer.

(1) Write L�k : = L � · · · � L︸ ︷︷ ︸
k times

= p∗
1L ⊗· · ·⊗ p∗

k L onCk , where pi : Ck →
C is the projection to the i-th component. The symmetric group Sk acts
on L�k in a natural way: μ ∈ Sk sends a local section s1 ⊗ · · · ⊗ sk to
sμ(1) ⊗ · · · ⊗ sμ(k). Then L�k is invariant under the action, so descends
to a line bundle on Ck , denoted by Tk(L).

(2) Define δk+1 to be a divisor on Ck+1 such that OCk+1(δk+1) : =
det

(
σk+1,∗(OC×Ck )

)∗
.

(3) Define Nk+1,L : = det Ek+1,L on Ck+1.
(4) Define Ak+1,L : =Tk+1(L)(−2δk+1) on Ck+1.

When k = 0, we use the convention that T1(L) = E1,L = L and δ1 = 0.
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Secant varieties of nonsingular projective curves 625

Remark 3.3 Due to the lack of reference, we list several basic properties of
the line bundles defined above. Those are well known to experts, and are not
hard to prove. Let k ≥ 1 be an integer.

(1) Nk+1,L = Tk+1(L)(−δk+1).
(2) H0(Ck+1, Tk+1(L)) = Sk+1H0(C, L) and H0(Ck+1, Nk+1(L)) =

∧k+1H0(C, L).

(3) q∗
k+1OCk+1(δk+1) = OCk+1(�k+1), where �u,v : ={(x1, . . . , xk) ∈

Ck+1 | xu = xv} is the pairwise diagonal on Ck+1 and �k+1 :
= ∑

1≤u<v≤k+1 �u,v . When k = 1, we let �1 = 0.
(4) σ ∗

k+1OCk+1(δk+1) = (OCk (δk) � OC )(Dk), where Dk is the divisor on
Ck × C defined to be the image of the morphism Ck−1 × C → Ck × C
sending (ξ, p) to (ξ + p, p).

(5) q∗
k Tk(L) = p∗

1L ⊗ · · · ⊗ p∗
k L = L�k . Since qk,∗OCk contains OCk as a

direct summand, Tk(L) is a direct summand of qk,∗L�k .
(6) For any two line bundles L1 and L2 on C , one has Tk(L1) ⊗ Tk(L2) =

Tk(L1 ⊗ L2).
(7) Given a point p ∈ C , the divisor X p on Ck+1 is defined to be the

image of the morphism Ck → Ck+1 sending ξ to ξ + p. It is ample,
and OCk+1(X p) = Tk+1(OC (p)). For any line bundle L on C , we have
Tk+1(L)|X p = Tk(L). (See the proof of Lemma 3.4.)

(8) The canonical bundle of Ck+1 is given by ωCk+1 = Tk+1(ωC)(−δk+1) =
Nk+1,ωC .

We now prove some useful lemmas.

Lemma 3.4 Let k ≥ 1, m ≥ 0 be integers. Fix a degree m + 1 divisor ξm+1
on C, and consider Ck−m as a subscheme of Ck+1 embedded by sending a
divisor ξ to ξ + ξm+1. Then one has

Ak+1,L |Ck−m = Ak−m,L(−2ξm+1).

Proof Fix a point p ∈ ξm+1 so that we can write ξm+1 = ξm + p for some
degree m divisor ξm on C . Consider the embeddings Ck−m ⊆ Ck ⊆ Ck+1,
whereCk ⊆ Ck+1 is embedded by sending a divisor ξ to ξ + p andCk−m ⊆ Ck
is embedded by sending a divisor ξ to ξ + ξm . Thus, inductively, we only need
to show that

Ak+1,L |Ck = Ak,L(−2p). (3.1)

Regard X p = Ck as a divisor in Ck+1. Recall by definition that Ak+1,L =
Tk+1(L)(−2δk+1). Thus it suffices to prove the following: (1) Tk+1(L)|X p =
Tk(L) and (2) δk+1|X p = δk + Tk(p). To see (1), we use the commutative
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626 L. Ein et al.

diagram

Ck

qk

Ck × C

σk+1

X p Ck+1,

where the upper horizontal map is given by sending (x1, . . . , xk) to (x1, . . . ,
xk, p). We can check that q∗

k (Tk+1,L |X p) = L�k , which proves (1) as q∗
k is an

injection on Picard groups. To see (2), we use the adjunction formula K X p =
(KCk+1 + X p)|X p . Since KCk+1 = Tk+1(KC)−δk+1 and K X p = Tk(KC)−δk ,
we deduce that δk+1|X p = δk + X p|X p . Note that X p|X p = Tk+1(p)|X p =
Tk(p). Thus (2) is proved. ��
Lemma 3.5 For any integer k ≥ 1, the line bundle OCk+1(−δk+1) is a direct
summand of the locally free sheaf qk+1,∗OCk+1 .

Proof We prove the lemma by the induction on k. For k = 1, it is well known
that q2,∗OC2 splits asOC2 ⊕OC2(−δ2). Since the quotient map qk+1 : Ck+1 →
Ck+1 factors through Ck × C , one only needs to show that OCk+1(−δk+1) is
a direct summand of σk+1,∗(OCk (−δk) � OC ). Observe that OCk+1(−δk+1)

is a direct summand of (σk+1,∗OCk×C)∗(−δk+1). By the relative duality with
the relative canonical line bundle ωCk×C/Ck+1 = OCk×C(Dk), one obtains
(σk+1,∗OCk×C)∗ = σk+1,∗OCk×C(Dk), so

(σk+1,∗OCk×C)∗(−δk+1) = σk+1,∗OCk×C(Dk) ⊗ OCk+1(−δk+1).

Recall that σ ∗
k+1OCk+1(−δk+1) = (OCk (−δk)�OC )(−Dk). By the projection

formula, we have

σk+1,∗OCk×C(Dk) ⊗ OCk+1(−δk+1) = σk+1,∗(OCk (−δk) � OC ),

and thus, the lemma is proved. ��
Remark 3.6 We give an alternative proof of Lemma 3.5 by group actions,
whichmay be of independent interest.Write the divisor δ = δk+1 and the struc-
ture sheafO = OCk+1 . Let Ak+1 be the alternating subgroup of the symmetric
group Sk+1, and f : Ck+1 → Y be the quotient morphism under the natural
induced action of Ak+1 on Ck+1. There is a natural degree two morphism
g : Y → Ck+1 through which the quotient map q = qk+1 : Ck+1 → Ck+1
factors, i.e., q = g ◦ f . Note that Y has quotient singularities, which are
rational singularities. Thus Y is Cohen–Macaulay, so the map g is flat and
g∗OY splits as O ⊕ O(−δ′) for some divisor δ′ on Ck+1. We claim that δ′
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Secant varieties of nonsingular projective curves 627

is actually linearly equivalent to δ. To see this, notice that f is unramified at
codimension one points. Then q∗O(−2δ) ∼= q∗O(−2δ′), which means that
δ − δ′ is a 2-torsion divisor. So if the genus of C is zero, then Ck+1 has no
nontrivial torsion line bundle and therefore O(δ − δ′) = O . If the genus of C
is positive, then since H0(O(δ)) = 0 and g∗(g∗O(δ)) = O(δ) ⊕ O(δ − δ′),
we see that O(δ − δ′) = O if and only if H0(g∗O(δ)) �= 0. But this follows
from the fact that the section defining q∗δ = � is invariant under the group
Ak+1, and therefore, it gives a nonzero global section of g∗O(δ). Thus the
claim is proved. Finally, note that OY is a direct summand of f∗OCk+1 . The
lemma then follows.

The following seems to be well known to experts, but we include the proof.

Lemma 3.7 For any integers k ≥ 1 and i ≥ 0, one has

Hi (Ck+1, Tk+1(L)) ∼= Sk+1−i H0(C, L) ⊗ ∧i H1(C, L).

In particular, the following hold:

H0(Ck+1, Tk+1(ωC)) ∼= Sk+1H0(C, ωC),

H1(Ck+1, Tk+1(ωC)) ∼= Sk H0(C, ωC),

Hi (Ck+1, Tk+1(ωC)) = 0 for i ≥ 2.

Proof By [14, Proposition 1.1], we have

Hi (Ck+1, Tk+1(L)) = Hi (Ck+1, L�k+1)Sk+1 for any i ≥ 0,

where the right-hand-side is the invariant subspace under the action ofSk+1.
By Künneth formula, the vector space V : =Hi (Ck+1, L�k+1) is a direct sum
of the subspace W : =T k+1−i H0(C, L) ⊗ T i H1(C, L) with some other iso-
morphic summands, where the notation T a means the a-times tensor products.
Write G = Sk+1−i × Si as the subgroup of Sk+1 fixing the subspace W .
Then one has the following commutative diagram

W
β

WG

α

V α VSk+1,

where α(x) = 1
(k+1)!

∑
g∈Sk+1

g(x) and β(x) = 1
(k+1−i)!i !

∑
g∈G g(x). Since

every invariant cohomological class must be of the form

s + g1(s) + g2(s) + · · ·
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628 L. Ein et al.

where s ∈ W and gi are suitable elements in Sk+1, it follows that the right-
hand-side vertical map α : WG → VSk+1 in the above diagram is surjective.
Hence WG = VSk+1 . But note that the action of the subgroupG is symmetric
on T k+1−i H0(C, L) part but alternating on T i H1(C, L) part of the space
W . Therefore, the invariant subspace Hi (Ck+1, L�k+1)Sk+1 is isomorphic to
Sk+1−i H0(C, L) ⊗ ∧i H1(C, L). ��
The following theorem will be applied to checking the projective normality

of higher secant varieties of curves. Danila [3] considers the Hilbert schemes
of points on surfaces, but the proof smoothly works for the symmetric products
of curves.

Theorem 3.8 (Danila [3]) For integers k ≥ 1 and 1 ≤ � ≤ k + 1, one has

H0(Ck+1, E⊗�
k+1,L

) ∼= H0(C, L)⊗�,

where the isomorphism is Sk+1-equivariant. In particular,

H0(Ck+1, S�Ek+1,L
) ∼= S�H0(C, L).

3.2 Secant varieties via secant bundles

We first recall the following definition.

Definition 3.9 We say that a line bundle L on C separates k points (or equiv-
alently, L is (k − 1)-very ample) for an integer k ≥ 1 if the restriction map

H0(C, L) −→ H0(ξ, L|ξ )
is surjective for all ξ ∈ Ck .

For instance, L separates 1 point if and only if L is globally generated, and L
separates 2 points if and only if L is very ample. By Riemann–Roch theorem,
it is elementary to see that if deg L ≥ 2g + k, then L separates k + 1 points.
It can be also shown that if B is an effective line bundle and x1, . . . , xg+2k+1

are general points on C , then B
( ∑g+2k+1

i=1 xi
)
separates k + 1 points.

Directly from the definition of secant sheaves, one has H0(Ck+1, Ek+1,L) =
H0(C, L). Recall that the fiber of Ek+1,L over ξ ∈ Ck+1 is H0(ξ, L|ξ ). We
then see that if L separates k + 1 points, then Ek+1,L is globally generated.
Thus one obtains a short exact sequence of vector bundles

0 −→ Mk+1,L −→ H0(C, L) ⊗ OCk+1

ev−→ Ek+1,L −→ 0,

where Mk+1,L is the kernel bundle of the evaluation map ev : H0(C, L) ⊗
OCk+1 → Ek+1,L on the global sections of Ek+1,L .
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Secant varieties of nonsingular projective curves 629

Definition 3.10 For an integer k ≥ 0, define the secant bundle of k-planes
over Ck+1 to be

Bk(L) : =P(Ek+1,L)

equipped with the natural projection πk : Bk(L) → Ck+1.

Suppose that L separates k + 1 points. Then the tautological bundle
OP(Ek+1,L )(1) of Bk(L) is also globally generated, and therefore, it induces
a morphism

βk : Bk(L) −→ P(H0(C, L)).

Definition 3.11 For k ≥ 0, assume that a line bundle L on the curve C sepa-
rates k+1 points. The k-th secant variety �k = �k(C, L) ofC inP(H0(C, L))

is the image of the morphism βk : Bk(L) → P(H0(C, L)). We have a mor-
phism

βk : Bk(L) −→ �k .

We use the convention that B−1(L) = �−1 = ∅.
Geometrically, if the curve C is embedded by the complete linear system

|L| in the projective space P(H0(C, L)), then the k-th secant variety �k is
nothing but the variety swept out by the (k + 1)-secant k-planes of C . If L
separates k + 1 points, then a (k + 1)-secant k-plane of C is spanned by a
divisor ξ on C of degree k + 1.

Definition 3.12 Assume that a line bundle L on the curve C separates 2k + 2
points for an integer k ≥ 0. Let m be an integer with 0 ≤ m ≤ k, and
x ∈ �m\�m−1 be a point. Since L also separates 2m +2 points, the morphism
βm : Bm(L) → �m is an isomorphism over U m(L). Hence x can be viewed
as a point in Bm(L). Then projecting x by πm : Bm(L) → Cm+1, one gets a
divisor ξm+1,x on C of degree m + 1. It is uniquely determined by x . We call
ξm+1,x the degree m + 1 divisor on C determined by x .

The above definition can be interpreted geometrically. The m-plane in
P(H0(C, L)) spanned by ξm+1,x is the unique (m + 1)-secant m-plane of
C containing x .

Let x ∈ �k be a general point so that ξk+1,x contains distinct k + 1 general
points of C . The classical Terracini’s lemma asserts that the projective tangent
space of �k at x in P

r is spanned by the projective tangent lines of C at the
points of ξk+1,x . Hence the conormal space of �k in P

r at x is isomorphic to
H0(C, L(−2ξk+1,x )). We will prove a more general version of this statement
in Proposition 3.13 below.
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630 L. Ein et al.

For 0 ≤ m ≤ k, there is a natural morphism

αk,m : Bm(L) × Ck−m −→ Bk(L)

defined in [1, p. 432, line-5], which we recall here. For any ξm+1 ∈ Cm+1
and ξk−m ∈ Ck−m , let ξ : =ξm+1 + ξk−m ∈ Ck+1. Note that the (m +
1)-secant m-plane P(H0(L|ξm+1)) spanned by ξm+1 is naturally embedded
in the (k + 1)-secant k-plane P(H0(L|ξ )) spanned by ξ . Fiberwisely, αk,m
maps P(H0(L|ξm+1)) × ξk−m into P(H0(L|ξ )). Next, we define the relative
secant variety Zk

m of m-planes in Bk(L) to be the image of the morphism
αk,m : Bm(L) × Ck−m → Bk(L). If the number k is clear from the context,
then we simply write Zm instead of Zk

m . Define

U k(L) : =Bk(L)\Zk
k−1,

which is the complement of the largest relative secant variety (see [1, p. 434])
The morphism αk,m is compatible with the morphisms βk and βm , i.e., one

has a commutative diagram

Bm(L) × Ck−m

πBm (L)

αm,k
Bk(L)

βk

Bm(L)
βm

P(H0(L)),

where πBm(L) is the projection.
It has been showed in [1, Lemma 1.4(a) and Corollary followed] that if

L separates 2k + 2 points, the morphism βk : Bk(L) → �k is birational. In
particular, the restricted morphism

βk |U k(L) : U k(L) −→ P(H0(C, L))

is an immersion. Especially, �m\�m−1 is isomorphic to U m(L) for 0 ≤ m ≤
k. It is clear that βk(Zm) = �m , so one has a commutative diagram

Z0 Z1 · · · Zk−1 Bk(L)

βk

C �1 · · · �k−1 �k P(H0(L)).

It is easy to check that set-theoretically β−1
k (�m) = Zm . The set of secant vari-

eties {�i }k−1
i=0 gives a stratification of �k , which in turn induces a stratification
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Secant varieties of nonsingular projective curves 631

by relative secant varieties {Zi }k−1
i=0 for Bk(L). Therefore, for a point x ∈ �k ,

there exists a unique integer m with 0 ≤ m ≤ k such that x ∈ �m\�m−1.
The following is the main result of this subsection. It plays an important

role in proving the normality of higher secant varieties of curves. The crucial
point is the computation of the conormal sheaf N∗

Fx/Bk(L)
. The obstruction lies

on the fact that Zm is quite singular. To overcome this difficulty, we work on
suitable nonsingular open subset of Zm .

Proposition 3.13 Fix an integer k ≥ 1, and suppose that a line bundle L on
the curve C separates 2k + 2 points. Let m be an integer with 0 ≤ m ≤ k.
Then the following hold true:

(1) The commutative diagram

U m(L) × Ck−m

πUm (L)

αm,k
Bk(L)

βk

U m(L)
βm

P(H0(C, L)) = P
r

is a fiber product diagram.
(2) Let x ∈ �m\�m−1 be a point, ξm+1,x be the unique degree m + 1 divisor

determined by x, and Fx : =β−1
k (x) be the fiber over x. Then one has the

following:
(a) Fx

∼= Ck−m.
(b) N∗

�m/Pr ⊗ k(x) ∼= H0(C, L(−2ξm+1,x )).

(c) N∗
Zm/Bk(L)

∣
∣∣
Fx

= Ek−m,L(−2ξm+1,x ).

(d) N∗
Fx/Bk(L)

∼= O⊕2m+1
Fx

⊕ Ek−m,L(−2ξm+1,x ).
(e) The natural morphism

T ∗
x P

r −→ H0(Fx , N∗
Fx/Bk(L)

)

is surjective, and is an isomorphism if m �= k.

Proof (1) Let U : =P(H0(C, L))\�m−1 which is an open subset of
P(H0(C, L)), and V : =β−1

k (U ). Then we obtain a commutative diagram

U m(L) × Ck−m

πUm (L)

αm,k
V

βk

U m(L)
βm

U
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632 L. Ein et al.

in which αm,k and βm are closed immersions by [1, Lemma 1.2]. Write Z :
=β−1

k (U m(L)). Then we see that U m(L) × Ck−m ⊆ Z . First, we claim that
set-theoretically, U m(L) × Ck−m = Z . To see this, let x ∈ �m ⊆ �k be a
point. Then every (m +1)-secant m-plane containing x is spanned by a unique
degree m + 1 divisor ξm+1 on C . By letting ξk−m run through all points in
Ck−m , one creates all possible (k +1)-secant k-plane containing x spanned by
ξm+1+ξk−m . But such (m +1)-secant m-planes are parameterized by β−1

m (x).
Hence β−1

k (x) is the image of β−1
m (x)× Ck−m under αm,k as sets. This proves

the claim.Next, we shall show that scheme-theoretically,U m(L)×Ck−m = Z .
To this end, it is enough to show the natural morphism

β∗
k (N∗

U m(L)/U ) −→ N∗
U m(L)×Ck−m/V

of conormal sheaves is surjective. Take x ∈ U m(L). By base change, it is
enough to show that

π∗
Bm(L)(N∗

U m(L)/U ⊗ k(x)) −→ N∗
U m(L)×Ck−m/V |{x}×Ck−m (3.2)

is surjective. Following notation in [1, Lemmas 1.3 and 1.4], we have

N∗
U m(L)×Ck−m/V |{x}×Ck−m = N∗

αk,m
({x} × Ck−m) and

N∗
U m(L)/U ⊗ k(x) = N∗

βm
(x).

The morphism in (3.2) is the same as

μm,k : π∗
Bm(L)N∗

βm
(x) −→ N∗

αm,k
({x} × Ck−m) (3.3)

Hence by [1, Lemma 1.4(c)], μm,k is surjective, which completes the proof.
(2) (a) This follows directly from (1).
(b) We identify U m(L) = �m\�m−1. Recall that if x is a general point of
U m(L) and ξm+1,x contains distinctm+1general points ofC , then the classical
Terracini’s lemma implies that N∗

�m/Pr ⊗ k(x) ∼= H0(C, L(−2ξm+1,x )).
Next write πC and πCm+1 to be the projections from Cm+1 × C to the

indicated factors. Let Dm+1 ⊆ Cm+1 × C be the universal divisor over Cm+1.
Consider the sheafM = πCm+1,∗(π∗

C(L)(−2Dm+1)) on Cm+1. We have

π∗
mM |U m (L)

η

0 N∗
�m/Pr (1)|U m (L) H0(C, L) ⊗ OU m (L) P1(O�m (1))|U m (L) 0,
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where P1(O�m (1)) is the first principal part bundle.As themap η is generically
zero, it is zero. This implies that π∗

mM
∼= N∗

�m/Pr (1)|U m(L), and the result
follows.
(c) This is included in the proof of [1, Lemma 1.3] implicitly. For reader’s
convenience, we outline the proof here. For a positive integer i , write

Di+1 = C × Ci ⊆ C × Ci+1

to be the universal family of divisors of degree i + 1, embedded via (x, ξ) �→
(x, x + ξ). In the space C × Cm+1 × Ck−m , we define two divisorsDm+1 and
Dk−m as follows

Dm+1 : =Dm+1 × Ck−m, and Dk−m : =Cm+1 × Dk−m .

They are nonsingular and meet transversally. Let πC , πCm+1 , πCk−m be the
projections of C × Cm+1 × Ck−m to the indicated factors, and πC , πCm−1 ,
πCk−m be the projections to the complement of the indicated factors. Then
Bm(L) × Ck−m can be realized as a projectivized vector bundle over Cm+1 ×
Ck−m with a projection π , i.e.,

π : Bm(L) × Ck−m = P

(
πC∗ (π∗

C L ⊗ ODm+1)
)

−→ Cm+1 × Ck−m .

LetOBm(L)×Ck−m (1) be the tautological line bundle onP
(
πC∗ (π∗

C L⊗ODm+1)
)
.

Consider the vector bundle

H = πC∗ (π∗
C L ⊗ ODk−m (−2Dm+1)).

The key point proved in [1, p. 439] is that

N∗
Zm/Bk(L)

|U m(L)×Ck−m
∼= π∗H ⊗ OBm(L)×Ck−m (−1)|U m(L)×Ck−m .

Thus we obtain

N∗
Zm/Bk(L)

∣∣
∣
Fx

= π∗H ⊗ OBm(L)×Ck−m (−1)|Fx

as Fx ⊆ U m(L)× Ck−m . SinceOBm(L)×Ck−m (−1)|Fx = OFx and π∗H |Fx =
Ek−m,L(−2ξm+1,x ) by base change, the result follows immediately.
(d) By (1), we see the morphism

βk : U m(L) × Ck−m = Zm\Zm−1 −→ U m(L) = �m\�m−1
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is a smooth morphism with fibers Ck−m . Thus we have

N∗
Fx/Zm

= T ∗
x �m ⊗ OFx = O⊕2m+1

Fx

since �m is nonsingular at x and has dimension 2m + 1. In particular,
H0(N∗

Fx/Zm
) = T ∗

x �m . Consider the short exact sequence

0 −→ N∗
Zm/Bk(L)

|Fx −→ N∗
Fx/Bk(L)

−→ N∗
Fx/Zm

−→ 0. (3.4)

We claim that the above short exact sequence splits. To this end, consider the
diagram

T ∗
x P(H0(C, L)) T ∗

x �m

=

H0(Fx , N∗
Fx/Bk(L)

) H0(Fx , N∗
Fx/Zm

).

We see that the morphism H0(Fx , N∗
Fx/Bk(L)

) → H0(Fx , N∗
Fx/Zm

) is surjec-

tive. Thus the short exact sequence (3.4) splits because N∗
Fx/Zm

is a direct sum
of OFx . Hence, we obtain

N∗
Fx/Bk(L)

= N∗
Zm/Bk(L)

|Fx ⊕ N∗
Fx/Zm

= Ek−m,L(−2ξm+1,x ) ⊕ O⊕2m+1
Fx

,

as desired.
(e)Nowweuse (b), (d) and the sequence (3.4) to form the commutative diagram

0 H0(C, L(−2ξm+1,x ))

=

T ∗
x P

r T ∗
x �m

=

0

0 H0(Ck−m , Ek−m,L(−2ξm+1,x )) H0(Fx , N∗
Fx /Bk (L)

) T ∗
x �m 0.

The result then follows immediately. ��
Remark 3.14 In the proposition above, it is worth noting that Zm\Zm−1 =
U m(L) × Ck−m and U m(L) = �m\�m−1. Therefore, we actually obtain a
fiber product diagram

Zm\Zm−1 Bk(L)

βk

�m\�m−1 P(H0(C, L))

whichmeans that Zm\Zm−1 is the scheme-theoretical preimage of�m\�m−1.
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3.3 Blowup construction of secant bundles

Wekeep assuming that k ≥ 1 and deg L ≥ 2g+2k+1.We use the blowup con-
struction of secant bundles established in [1, Propostitions 2.2, 2.3 and Corol-
lary 2.4]. For each 0 ≤ m ≤ k, we will consecutively blowup Bm(L) along
smooth centers m-times to obtain smooth varieties

bl1(Bm(L)), bl2(Bm(L)), . . . , blm(Bm(L)).

If m = 0, then there is nothing to blowup. We simply set bl0(B0(L)) :
=B0(L) = C . Thus we now start with constructing bl1(Bm(L)) for m ≥ 1.
Notice that the natural morphism αm,0 : B0(L) × Cm → Bm(L) is a closed
embedding for m ≥ 1. We then define

bl1(Bm(L)) : = blowup of Bm(L) along B0(C) × Cm .

Ifm = 1, thenwe are done. Otherwise, ifm ≥ 2, then suppose that bli (Bm(L))

has been defined for any 1 ≤ i ≤ m − 1. By [1, Proposition 2.2] and its proof
(for instance, the claim in the last two lines on page 444 of [1]), we see that the
natural morphism bli (Bi (L)) × Cm−i → bli (Bm(L)) is a closed embedding.
We then define

bli+1(Bm(L)) : = blowup of bli (Bm(L)) along bli (Bi (C)) × Cm−i .

This construction works for any integer m with 0 ≤ m ≤ k. We write

bm : blm(Bm(L)) −→ Bm(L)

the composition map of blowups. Denote by Ei for 0 ≤ i ≤ m − 1 the
exceptional divisor on blm(Bm(l)) which is from the (i + 1)-th blowup. Note
that βm(bm(Ei )) = �i . It has been showed in [1] that in each stage of blowups,
the exceptional divisors always meet transversally with the center of the next
blowup. Therefore, the divisor E0 + · · · + Em−1 on blm(Bm(L)) has a simple
normal crossing support. As proved in [1], we have

Ei ∩ Ei+1 ∩ · · · ∩ Em−1 = bli (Bi (L)) × Cm−i for 0 ≤ i ≤ m − 1.

For example, Em−1 = blm−1(Bm−1(L)) × C and E0 ∩ · · · ∩ Em−1 =
bl0(B0(L)) × Cm = Cm+1. In particular, for m = k we get the following
diagram describing blowups of Bk(L):
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blk (Bk (L))

∼=

blk−1(Bk−1(L)) × C blk−1(Bk (L))

.

.

.

.

.

.

bl2(B2(L)) × Ck−2 · · · bl2(Zk−1) bl2(Bk (L))

bl1(B1(L)) × Ck−1 bl1(Z2) · · · bl1(Zk−1) bl1(Bk (L))

B0(L) × Ck Z1 Z2 · · · Zk−1 Bk (L)

βk

C �1 �2 · · · �k−1 �k .

where bli (Zl) is the strict transform of the variety Zl in bli (Bk(L)). The variety
on the left end of each row in the diagram is the center of the blowup for the
next step. If we focus on the final step of blowups of Bk(L), we obtain the
following digram

E0 ∩ · · · ∩ Ek−1 E1 ∩ · · · ∩ Ek−1 E2 ∩ · · · ∩ Ek−1 · · · Ek−1

bl0(B0(L)) × Ck bl1(B1(L)) × Ck−1 bl2(B2(L)) × Ck−2 · · · blk−1(Bk−1(L)) × C blk (Bk (L))

bk

B0(L) × Ck Z1 Z2 · · · Zk−1 Bk (L)

βk

C �1 �2 · · · �k−1 �k .

The following is the main result of this subsection. It plays a crucial role in
the proofs of the main theorems of the paper.

Proposition 3.15 Fix an integer k ≥ 1, and let L be a line bundle on the curve
C with deg L ≥ 2g +2k +1. Recall that πk : Bk(L) → Ck+1 is the canonical
projection. Then the following hold true:

(1) Zk−1 is flat over Ck+1.
(2) Let H be the tautological divisor on Bk(L) = P(Ek+1,L) so that

OBk(L)(H) : =β∗
k O�k (1). Then one has

OBk(L)((k + 1)H − Zk−1) = π∗
k Ak+1,L ,

Riπk,∗OBk(L)(�H − Zk−1) =
{
0 for i ≥ 0, 0 < � ≤ k
0 for i > 0, � ≥ k + 1.
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(3) bk : blk(Bk(L)) → Bk(L) is a log resolution of the pair (Bk(L), Zk−1)

such that

Kblk(Bk(L)) = b∗
k (K Bk(L) + Zk−1) − E0 − E1 − · · · − Ek−1,

b∗
k Zk−1 = k E0 + (k − 1)E1 + · · · + Ek−1.

Proof We keep using the blowup construction of secant varieties.

(1) Recall that Zk−1 is the image of the map αk−1,k : Bk−1(L)×C → Bk(L)

and αk−1,k is birational to Zk−1 since L separates 2k + 2 points (see
[1, Lemma 1.2]). Hence Zk−1 is an irreducible divisor in Bk(L), and
therefore, is Cohen–Macaulay. Now for any point ξ ∈ Ck+1, the fiber of
the map Zk−1 → Ck+1 over ξ , at least set-theoretically, is the union of
the linear spaces spanned by the length k subschemes of ξ . Hence the
fiber over ξ has dimension k − 1. By [15, 23.1], we see that Zk−1 is flat
over Ck+1.

(2) Take a general point ξ ∈ Ck+1.Without loss of generality, wemay assume
that ξ = x1 + · · · + xk+1 is a sum of distinct k + 1 points on C . Write
Fξ : =π−1

k (ξ) the fiber over ξ . Note that Fξ = P
k , which can be regarded

as a linear subspace of P(H0(C, L)) spanned by x1, . . . , xk+1. In other
words, Fξ is the k-plane secant toC along x1, . . . , xk+1.Write F̃ξ the strict
transform of Fξ under the birational morphism bk . Write �i = Fξ ∩ Zi
for 0 ≤ i ≤ k − 1.

We note that

�0 = Fξ ∩ Z0 = Fξ ∩ B0(L) × Ck = {x1, x2, . . . , xk+1},
�1 = Fξ ∩ Z1 =

⋃

i �= j

xi x j ,

...

�k−1 = Fξ ∩ Zk−1 =
⋃

i1 �=i2 �=···�=ik

xi1xi2 · · · xik .

To obtain F̃ξ , we blowup Fξ along �0 and then blowup along the strict trans-
form of �1, and so on. Now, the number of irreducible components of �k−1
containing xi1 · · · xim is

(k+1−m
k−m

)
for all 1 ≤ m ≤ k. This allows us to calculate

the total transform of �k−1 in F̃ξ , which in turn implies that

b∗
k Zk−1 =

(
k

k − 1

)
E0 +

(
k − 1

k − 2

)
E1 + · · · +

(
1

0

)
Ek−1

= k E0 + (k − 1)E1 + · · · + Ek−1 (3.5)
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because F̃ξ meets all the divisors E0, . . . , Ek−1 transversally and F̃ξ ∩ Em−1
is the union of strict transforms of the exceptional divisors over �m−1 for all
1 ≤ m ≤ k.

For a coherent sheaf F (resp. a subscheme Z ) on Bk(L) and for a point
ξ ′ ∈ Ck+1, we denote by Fξ ′ (resp. Zξ ′) the fiber over ξ ′. In this notation,
Zk−1,ξ = �k−1 is a union of k+1 distinct linear spacesPk−1 in Bk(L)ξ = P

k .
Therefore Zk−1,ξ is a degree k + 1 divisor in Bk(L)ξ . By the result (1), Zk−1
is flat over Ck+1, so the degree of Zk−1,ξ ′ in Bk(L)ξ ′ is k +1 for all ξ ′ ∈ Ck+1.
This implies that

OBk(L)(�H − Zk−1)ξ ′ ∼= OPk (� − (k + 1)) for all � ∈ Z.

Hence the function h0(OBk(L)((k + 1)H − Zk−1)ξ ′) = 1 for all ξ ′ ∈ Ck+1.
Thus

A : =πk,∗OBk(L)((k + 1)H − Zk−1)

is a line bundle on Ck+1. Since πk : P(Ek+1,L) → Ck+1 is the natural projec-
tion, we have

π∗
k A ∼= OBk(L)((k + 1)H − Zk−1).

Similarly, if 0 < � ≤ k, then hi (OBk(L)(�H − Zk−1)ξ ′) = 0 for all i ≥ 0, and
if � ≥ k +1, then hi (OBk(L)(�H − Zk−1)ξ ′) = 0 for all i > 0. Thus we obtain
the second result in (2).

Next, we show that A = Ak+1,L . We focus on the following commutative
diagram

Ck+1

q:=qk+1

bl1(B1(L)) × C2 bl2(B2(L)) × C blk(Bk(L))

bk

Bk(L)

πk

Ck+1.

We have

b∗
k (π

∗
k A)|Ck+1 = q∗ A,

b∗
k ((k + 1)H − Zk−1)|Ck+1

= (k + 1)H − (k E0 + (k − 1)E1 + · · · + Ek−1)|Ck+1,
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where by abuse of notation we write H = b∗
k H |Ck+1 . Hence, on Ck+1, we

have

(k + 1)H − (k E0 + (k − 1)E1 + · · · + Ek−1)|Ck+1 ∼lin q∗ A.

Recall thatCk+1 is a complete intersection in blk(Bk(L)) cut out by the divisors
E0, E1, . . . , Ek−1. Thus we have

det N∗
Ck+1/ blk(Bk(L))

= OCk+1(−E0 − E1 − · · · − Ek−1).

Using the formula det N∗
Ck+1/ blk(Bk(L))

= ωblk(Bk(L))|Ck+1 ⊗ ω−1
Ck+1 , we get

− (E0 + E1 + · · · + Ek−1)|Ck+1 = Kblk(Bk(L))|Ck+1 − KCk+1 . (3.6)

Recall that blk(Bk(L)) is obtained by consecutively blowing up the smooth
centers bli (Bi (L)) × Ck−i which has codimension k − i . Thus we find

−((k −1) · E0+· · ·+1 · Ek−2+0 · Ek−1) = −Kblk(Bk(L))+b∗
k K Bk(L). (3.7)

Combining (3.6) and (3.7), we obtain

−(k E0 + (k − 1)E1 + · · · + Ek−1)|Ck+1 = −KCk+1 + b∗
k K Bk(L)|Ck+1 .

Recall that Bk(L) = P(Ek+1,L) is a projectivized vector bundle over Ck+1.
Thus we have

K Bk(L) = −(k + 1)H + π∗
k det Ek+1,L + π∗

k KCk+1

= −(k + 1)H + π∗
k Tk+1(L)(−δk+1) + π∗

k Tk+1(KC )(−δk+1).

Finally, we compute

(k + 1)H − (k E0 + (k − 1)E1 + · · · + Ek−1)|Ck+1

= (k + 1)H − KCk+1 + π∗
k K Bk(L)|Ck+1

= (k + 1)H − KCk+1 + [−(k + 1)H + q∗Tk+1(L)(−δk+1)

+q∗Tk+1(KC)(−δk+1)]
= q∗(Tk+1(L)(−2δk+1)).

Thus q∗ A ∼= q∗(Tk+1(L)(−2δk+1)). Since q∗ : PicCk+1 → PicCk+1 is
injective, one gets A ∼= Tk+1(L)(−2δk+1) = Ak+1,L . This proves the first
result of (2).
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(3) Recall that E0 + · · · + Ek has a simple normal crossing support. Thus
the birational morphism bk : blk(Bk(L)) → Bk(L) is a log resolution of the
pair (Bk(L), Zk−1). The remaining assertions follow from (3.5) and (3.7). ��

4 A vanishing theorem on Cartesian products of curves

The aim of this section is to establish a vanishing theorem on the product of
a curve. It is inspired by Rathmann’s vanishing results in [16, Section 3]. A
similar result on C2 has been proved by Yang [27].

Let us keep the notations introduced in previous sections. Let k ≥ 0 be
an integer. Recall that given a line bundle L on the curve C separating k + 1
points, there is a short exact sequence

0 −→ Mk+1,L −→ H0(C, L) ⊗ OCk+1 −→ Ek+1,L −→ 0

on Ck+1 (see Sect. 3.2). Recall also the quotient morphism qk+1 : Ck+1 →
Ck+1, the pairwise diagonal �u,v : ={(x1, . . . , xk) ∈ Ck+1 | xu = xv} on
Ck+1, and �k+1 : = ∑

1≤u<v≤k+1 �u,v . We define the locally free sheaf

Qk+1,L : =q∗
k+1Mk+1,L .

on the Cartesian product Ck+1 of the curve C . Note that

Qk+1,L = p∗

(

(OCk+1 � L)

(

−
k+1∑

u=1

�u,k+2

))

,

where p : Ck+2 → Ck+1 is the projection to the first k + 1 components.

Theorem 4.1 Let C be a nonsingular projective curve of genus g, and L be
a line bundle on C. For an integer k ≥ 0, let B = B ′( ∑g+2k+1

i=1 xi
)

be a line
bundle on C, where B ′ is an effective line bundle and x1, . . . , xg+2k+1 are
general points on C. For integers i > 0 and j ≥ 0, suppose that

deg L ≥ 2g + 2k + 1 − i + j.

Then one has

Hi(Ck+1, ∧ j Qk+1,B ⊗ L�k+1( − �k+1
)) = 0. (4.1)

Proof Suppose that B ′ �= OC so that b : =deg B ′ > 0. We can write B ′ =
OC

(∑b
i=1 x ′

i

)
, where x ′

1, . . . , x ′
b are (possibly non-distinct) points on C . We

set B0 : =OC
( ∑g+2k+1

i=1 xi
)
and B� : =B0

( ∑�
i=1 x ′

i

)
for 1 ≤ � ≤ b. Then B�
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separates k + 1 points for each 0 ≤ � ≤ b, and Bb = B. For 0 ≤ � ≤ b − 1,
we have an exact sequence

0 −→ Qk+1,B�
−→ Qk+1,B�+1 −→ OC (−x ′

�+1)
�k+1 −→ 0,

which induces an exact sequence

0 −→ ∧ j Qk+1,B�
−→ ∧ j Qk+1,B�+1

−→ ∧ j−1Qk+1,B�
⊗ OC (−x ′

�+1)
�k+1 −→ 0.

Then we see that the cohomology vanishing

Hi(Ck+1, ∧ j Qk+1,B�+1 ⊗ L�k+1( − �k+1
)) = 0

follows from the cohomology vanishing

Hi
(
Ck+1, ∧ j Qk+1,B�

⊗ L�k+1
( − �k+1

)) = 0,
Hi

(
Ck+1, ∧ j−1Qk+1,B�

⊗ L(−x ′
�+1)

�k+1
( − �k+1

)) = 0.

Note that deg L ≥ 2g + 2k + 1 − i + j and deg L(−x ′
�+1) ≥ 2g + 2k +

1 − i + ( j − 1). For each k, by the induction on �, we can conclude that the
cohomology vanishing (4.1) for B = B0 (or equivalently, B ′ = OC ) implies
the cohomology vanishing (4.1) for arbitrary B.

We now proceed by the induction on k. First, we consider the case that k = 0
and B ′ = OC . Since B = OC

( ∑g+1
i=1 xi

)
is base point free, we have an exact

sequence

0 −→ Q1,B −→ H0(C, B) ⊗ OC −→ B −→ 0.

By Riemann–Roch theorem, we find h0(C, B) = 2, so Q1,B = B−1 is a line
bundle. In this case, the required cohomology vanishing (4.1) for B = B0 is
nothing but

H1(C, L) = 0 when i = 1, j = 0, deg L ≥ 2g,

H1(C, L ⊗ B−1) = 0 when i = 1, j = 1, deg L ≥ 2g + 1.

Thefirst vanishing is trivial, and the secondvanishing follows from that deg L⊗
B−1 ≥ g. Thus the cohomology vanishing (4.1) holds for B = B0, and so
does for arbitrary B when k = 0.

Suppose now that k > 0. By the induction on k, for smaller k, we assume
that the cohomology vanishing (4.1) holds for arbitrary B. We consider the
case that B = B0 = OC

(∑g+2k+1
i=1 xi

)
.
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Assume that j = rank(Qk+1,B) = k + 1. Note that det Qk+1,B =
(B−1)�k+1(�k+1). Then the desired cohomology vanishing (4.1) is nothing
but

Hi (Ck+1, (L ⊗ B−1)�k+1) = 0 for i > 0.

Since deg L ≥ 2g + 2k + 1 − i + (k + 1), we have

deg L ⊗ B−1 ≥ 2g + 3k + 2 − i − (g + 2k + 1) = g + k + 1 − i ≥ g.

Thus H1(C, L ⊗ B−1) = 0. By Künneth formula, the above vanishing holds.
Assume that j < rank(Qk+1,B). From the definition of Qk,L one can deduce

a short exact sequence

0 −→ Qk+1,B −→ Qk,B � OC −→ (OCk � B)

(

−
k∑

u=1

�u,k+1

)

−→ 0.

The Koszul complex then gives rise to a resolution of ∧ j Qk+1,B :

· · · → (∧ j+2Qk,B � B−2)

(

2
k∑

u=1

�u,k+1

)

→ (∧ j+1Qk,B � B−1)

(
k∑

u=1

�u,k+1

)

→ ∧ j Qk+1,B → 0

(see also [16, Proposition 3.1]). Thus to show the required cohomology van-
ishing (4.1), it suffices to check that

Hi+�
(

Ck+1,
(
(∧ j+�+1Qk,B ⊗ L�k) � (L ⊗ B−�−1)

)

(

(� + 1)
k∑

u=1

�u,k+1 − �k+1

))

= 0 (4.2)

for � ≥ 0. In the sequel, we establish (4.2) under the assumption deg L ≥
2g + 2k + 1 − i + j and B = B0 = OC

(∑g+2k+1
i=1 xi

)
.

Consider the case that i + � ≤ 1, i.e., i = 1, � = 0. In this case, we have

deg L ⊗ B−1 ≥ 2g + 2k + 1 − 1 + j − (g + 2k + 1) = g − 1 + j ≥ g − 1
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so that H1(C, L ⊗ B−1) = 0. Note that

k∑

u=1

�u,k+1 − �k+1 = −
∑

1≤u<v≤k

�u,v = −�k .

Since we have

deg L ≥ 2g + 2k + j ≥2g + 2k − 1 + j =2g + 2(k − 1) + 1 − 1 + ( j + 1),

it follows from the induction on k that

H1(Ck, ∧ j+1Qk,B ⊗ L�k(−�k)
) = 0.

By Künneth formula, we obtain the desired vanishing (4.2)

H1(Ck+1,
( ∧ j+1 Qk,B ⊗ L�k(−�k)

)
� (L ⊗ B−1)

) = 0.

Consider the case that i + � ≥ 2. Let prk+1 : Ck+1 → C be the projection
to the (k + 1)-th component. The fiber of

Ri ′prk+1,∗
((

(∧ j+�+1Qk,B ⊗ L�k) � (L ⊗ B−�−1)
)

(

(� + 1)
k∑

u=1

�u,k+1 − �k+1

))

over x ∈ C is

Hi ′(Ck, ∧ j+�+1Qk,B ⊗ L(�x)�k(−�k)
)
. (4.3)

By considering the Leray spectral sequence for prk+1,∗, to show the desired
vanishing (4.2)

Hi+�
(

Ck+1,
(
(∧ j+�+1Qk,B ⊗ L�k) � (L ⊗ B−�−1)

)

(

(� + 1)
k∑

u=1

�u,k+1 − �k+1

))

= 0,

it is enough to prove that the cohomology (4.3) vanishes for i ′ = i +�−1, i +�.
For this i ′, we have i ′ ≥ i − 1, so we find

deg L(�x)≥2g + 2k + 1 − i + j +� ≥ 2g + 2(k − 1) + 1 − i ′+( j +� + 1).
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By the induction on k, we see that the cohomology (4.3) vanishes for i ′ =
i + � − 1, i + �. Thus we obtain the desired vanishing (4.2). Therefore, the
cohomology vanishing (4.1) for B = B0 follows, and so does for arbitrary B.
We complete the proof. ��

5 Properties of secant varieties of curves

This section is devoted to the study of various properties of secant varieties
of curves. In particular, we prove the main results of the paper; Theorem 1.1
follows from Theorem 5.2 and Proposition 5.4, and Theorem 1.2 follows from
Theorems 5.2, 5.8, and Corollary 5.10.

We keep using notations introduced before. Recall that C is a nonsingular
projective curve of genus g embedded by a very ample line bundle L in the
space P(H0(C, L)) = P

r . Consider the k-th secant variety �k = �k(C, L) in
P

r . As O�k (1) is globally generated by the linear forms of Pr , the evaluation
map on the global sections of O�k (1) induces an short exact sequence

0 −→ M�k −→ H0(C, L) ⊗ O�k −→ O�k (1) −→ 0, (5.1)

where M�k is the kernel bundle.Moreover,we also need to consider the (k−1)-
th secant variety �k−1 = �k−1(C, L), and use the following exact sequence

0 −→ I�k−1|�k −→ O�k −→ O�k−1 −→ 0, (5.2)

where I�k−1|�k is the defining ideal sheaf of �k−1 in �k . Recall the birational
morphism βk : Bk(L) → �k and the relative secant variety Zk−1 on Bk(L).
Suppose that �k is normal. By Zariski’s main theorem, βk,∗OBk(L) = O�k ,
and hence,

βk,∗OBk(L)(−Zk−1) = I�k−1|�k .

The following lemma is a consequence of the vanishing theorem established
in Sect. 4.

Lemma 5.1 Let k ≥ 0 and p ≥ 0 be integers, and L be a line bundle on C.
Assume that

deg L ≥ 2g + 2k + 1 + p.

Consider the k-th secant variety �k = �k(C, L) in the space P(H0(C, L)) =
P

r . If �k is normal and Riβk,∗OBk(L)(−Zk−1) = 0 for all i > 0, then one
has

Hi (�k, ∧ j M�k ⊗ I�k−1|�k (k + 1)) = 0 for i ≥ j − p, i ≥ 1, j ≥ 0.
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Proof Recall that Bk(L) = P(Ek+1,L)with thenatural projectionπk : Bk(L) →
Ck+1. Let H be the tautological divisor on Bk(L) so that OBk(L)(H) =
OBk(L)(1) = β∗

k O�k (1). One can identify H0(Bk(L),OBk(L)(H)) =
H0(Ck+1, Ek+1,L) = H0(C, L). Write MH : =β∗

k M�k . By the snake lemma,
one can form the following commutative diagram

0

0 K

0 π∗
k Mk+1,L H0(C, L) ⊗ OBk(L) π∗

k Ek+1,L 0

0 MH H0(C, L) ⊗ OBk(L) OBk(L)(H) 0

K 0

0,
(5.3)

in which the right-hand-side vertical exact sequence is the relative Euler
sequence. By Bott’s formula on projective spaces, we obtain

Riπk,∗ ∧ j K = 0 for all i ≥ 0 and j > 0. (5.4)

Since �k is normal and Riβk,∗OBk(L)(−Zk−1) = 0 for all i > 0, we have

Hi (�k, ∧ j M�k ⊗ I�k−1|�k (k + 1))

= Hi (Bk(L), ∧ j MH ⊗ OBk(L)((k + 1)H − Zk−1)) (5.5)

for i ≥ 0 and j ≥ 0. Now, the left-hand-side vertical exact sequence of (5.3)
induces a filtration

∧ j MH = F0 ⊇ F1 ⊇ · · · ⊇ F j ⊇ F j+1 = 0
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such that F�/F�+1 = π∗
k ∧� Mk+1,L ⊗ ∧ j−�K for 0 ≤ � ≤ j . By (5.4) and

the projection formula, we find

Hi (Bk(L), π∗
k ∧� Mk+1,L ⊗ ∧ j−�K )

= Hi (Ck+1, ∧�Mk+1,L ⊗ πk,∗ ∧ j−� K ) = 0

for i ≥ 0, j > 0 and 0 ≤ � ≤ j − 1. We have OBk(L)((k + 1)H − Zk−1) =
π∗

k Ak+1,L by Proposition 3.15 (2). Thus we see that

Hi (Ck+1, ∧ j Mk+1,L ⊗ Ak+1,L) = 0 for i ≥ j − p, i ≥ 1, j ≥ 0, (5.6)

implies the cohomology vanishing

Hi (Bk(L), ∧ j MH ⊗ OBk(L)((k + 1)H − Zk−1)) = 0

for i ≥ j − p, i ≥ 1, j ≥ 0.

Hence by (5.5), to prove the lemma, it suffices to show the cohomology van-
ishing (5.6).

To this end, we consider the natural quotient map qk+1 : Ck+1 → Ck+1.
Note that

q∗
k+1(∧ j Mk+1,L ⊗ Nk+1,L) = ∧ j Qk+1,L ⊗ L�k+1( − �k+1).

By projection formula, we have

∧ j Mk+1,L ⊗ Nk+1,L ⊗ qk+1,∗OCk+1

= qk+1,∗
( ∧ j Qk+1,L ⊗ L�k+1( − �k+1

))
.

Recall that Ak+1,L = Nk+1,L(−δk+1). Lemma 3.5 implies that ∧i Mk+1,L ⊗
Ak+1,L is a direct summand of ∧ j Mk+1,L ⊗ Nk+1,L ⊗ qk+1,∗OCk+1 . Thus the
desired cohomology vanishing (5.6) follows from

Hi(Ck+1, ∧ j Qk+1,L ⊗ L�k+1(−�k+1)
) = 0 for i ≥ j − p, i ≥ 1, j ≥ 0.

which is nothing but Theorem 4.1 because L
( − ∑g+2k+1

i=1 xi
)
is effective for

general points x1, . . . , xg+2k+1 on C . We finish the proof. ��

5.1 Normality, projective normality, and property Nk+2, p

The following is the main result of the paper. It is worth noting that all of the
claimed properties in the theorem are proved at the same time to make the
induction work.
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Theorem 5.2 Let k ≥ 0 and p ≥ 0 be integers, and L be a line bundle on C.
Assume that

deg L ≥ 2g + 2k + 1 + p.

Consider the k-th secant variety �k = �k(C, L) in the space P(H0(C, L)) =
P

r . Then one has the following:

(1) �k is normal.
(2) Riβk,∗OBk(L)(−Zk−1) = 0 for all i > 0.
(3) Hi (�k, I�k−1|�k (�)) = Hi (�k,O�k (�)) = 0 for all i > 0, � > 0.
(4) �k ⊆ P

r is projectively normal, and satisfies the property Nk+2,p.

Proof We proceed by the induction on the number k. The statements (1), (2),
(3) in the theorem are trivial for the case k = 0 while the statement (4) is
Green’s theorem. Thus, in the sequel, we assume that k ≥ 1 and the theorem
holds for smaller k. For a numberm with 0 ≤ m ≤ k, we let�m : =�m(C, L).

(1) The proof here follows the proofs of Lemma 2.1 and Theorems D of
[21]. The question is local. For a closed point x ∈ �k , it is enough to
show that �k is normal at x . As �k\�k−1 is nonsingular, we assume that
x ∈ �m\�m−1 for some 0 ≤ m ≤ k − 1. Let ξ : =ξm+1,x ∈ Cm+1
be the degree m + 1 divisor on C determined by x . The morphism β =
βk : Bk(L) → �k induces the morphisms for sheaves

OPr O�k β∗OBk(L).

Thus it suffices to prove that the natural morphismOPr → β∗OBk(L) is surjec-
tive at x ∈ �m\�m−1. Let F : =β−1(x) be the fiber over x . Then F ∼= Ck−m
(Proposition 3.13 (2.a)). By the formal function theorem, it is sufficient to
show that the induced morphism

�x : lim←−(OPr /m�) −→ lim←− H0(OBk(L)/I �
F )

is surjective, where m = mx is the ideal sheaf of x ∈ P
r and IF is the ideal

sheaf of F in Bk(L). Using the commutative diagram

0 m�/m�+1

α�

OPr /m�+1 OPr /m� 0

0 H0(I �
F/I �+1

F ) H0(OBk (L)/I �+1
F ) H0(OBk (L)/I �

F ) · · ·
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and the induction on �, we further reduce to show that the map

α� : m�/m�+1 −→ H0(I �
F/I �+1

F )

is surjective for all � ≥ 0. Note that

m�/m�+1 = S�(T ∗
x P

r ) and I �
F/I �+1

F
∼= S�N∗

F/Bk(L)
.

The map α� factors as follows

S�(T ∗
x P

r )

α�

S�α1 S�H0
(
N∗

F/Bk(L)

)

θl

H0
(
S�N∗

F/Bk(L)

)
.

But Proposition 3.13 (2.e) says that the map α1 : T ∗
x P

r → H∗(N∗
F/Bk(L)

) is
an isomorphism. Thus in order to show that α� is surjective, it suffices to show
that the morphism θ� is surjective. To this end, we use Proposition 3.13 (2.d),
which says that

N∗
F/Bk(L)

∼= O⊕2m+1
F ⊕ En−m,L(−2ξ).

Thus the surjectivity of θ� would follow from the surjectivity of the morphism

Si H0(Ek−m,L(−2ξ)) −→ H0(Si Ek−m,L(−2ξ)) for 0 ≤ i ≤ �.

But this follows from the inductive hypothesis because deg L(−2ξ) ≥ 2g +
2(k − m − 1) + 1 + p and therefore the secant variety �k−m−1(C, L(−2ξ))

in the space P(H0(C, L(−2ξ))) is normal and projective normality.

(2) The question is local. For a closed point x ∈ �k , we shall show that
Riβ∗OBk(L)(−Zk−1)x = 0 for all i > 0. Since β : Bk(L) → �k is
isomorphic over x ∈ �k\�k−1, we may assume x ∈ �m\�m−1 for some
0 ≤ m ≤ k − 1. Let ξ : =ξm+1,x ∈ Cm+1 be the degree m + 1 divisor on
C determined by x . Let F : =β−1(x) be the fiber of β over x , and IF be
the ideal sheaf of F in Bk(L). Recall that F ∼= Ck−m (Proposition 3.13
(2.a)). By the formal function theorem, it suffices to show that

lim←− Hi (F,OBk(L)(−Zk−1) ⊗ OBk(L)/I �
F ) = 0 for i > 0.

123



Secant varieties of nonsingular projective curves 649

To this end, we need to prove that

Hi (F,OBk(L)(−Zk−1) ⊗ OBk(L)/I �
F ) = 0 for i > 0 and � ≥ 1.

which can be deduced from the vanishing

Hi (F,OBk(L)(−Zk−1) ⊗ I �
F/I �+1

F ) = 0 for i > 0 and � ≥ 0. (5.7)

One can calculate that OBk(L)(−Zk−1)|F = Ak+1,L |F = Ak−m,L(−2ξ) by

Lemma 3.4 and that I �
F/I �+1

F = S�N∗
F/Bk(L)

for � ≥ 0, where N∗
F/Bk(L)

∼=
O⊕2m+1

F ⊕ Ek−m,L(−2ξ) by Proposition 3.13 (2.d). Thus vanishing (5.7) can
be reduced further to show

Hi (Ck−m, Ak−m,L(−2ξ) ⊗ S�Ek−m,L(−2ξ)) = 0 for i > 0 and � ≥ 0. (5.8)

Now, as deg L(−2ξ) ≥ 2g + 2(k − m − 1) + 1 + p, the line bundle
L(−2ξ) is very ample. Accordingly, we consider the secant varieties�′

k−m−1 :
=�k−m−1(C, L(−2ξ)) and �′

k−m−2 : =�′
k−m−2(C, L(−2ξ)) in the space

H0(C, L(−2ξ)). By inductive hypothesis, the proposition holds for �′
k−m−1.

Recall that Bk−m−1(L(−2ξ)) = P(Ek−m,L(−2ξ)) with the projection πk−m−1
to Ck−m and there is a birational morphism βk−m−1 : Bk−m−1(L(−2ξ)) →
�′

k−m−1. Write H to be the tautological divisor on Bk−m−1(L(−2ξ)). Notice
that

πk−m−1,∗OBk−m−1(L(−2ξ))((k − m)H − Zk−m−2) = Ak−m,L(−2ξ),

βk−m−1,∗OBk−m−1(L(−2ξ))(−Zk−m−2) = I�′
k−m−2|�′

k−m−1
.

By applying the inductive hypothesis for �′
k−m−1, we have

Hi (Ck−m, S�−k+m Ek−m,L(−2ξ) ⊗ Ak−m,L(−2ξ))

= Hi (Bk−m−1(L(−2ξ)),OBk−m−1(L(−2ξ))(�H − Zk−m−2))

= Hi (�′
k−m−1, I�′

k−m−2|�′
k−m−1

(�))

for all i ≥ 0 and � ∈ Z. Hence, vanishing (5.8) follows from the vanishing for
I�′

k−m−2|�′
k−m−1

, which holds by the inductive hypothesis. This completes the
proof of (2).

(3) By the inductive hypothesis, we have Hi (�k−1,O�k−1(�)) = 0 for i > 0
and � > 0. Grant for the time being the following claim:

Hi (�k, I�k−1|�k (�)) = 0 for all i > 0 and 1 ≤ � ≤ 2k + 2 − i. (5.9)
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Chasing through the associated long exact sequence to the short exact sequence
(5.2), we obtain

Hi (�k,O�k (�)) = 0 for all i > 0 and 1 ≤ � ≤ 2k + 2 − i.

In particular, O�k is (2k + 2)-regular, so the assertion (3) follows.
We next turn to the proof of the claim (5.9). Let H be the tautological divisor

on Bk(L) = P(Ek+1,L). By (1), �k is normal. Thus we have

βk,∗OBk (L)(−Zk−1) = I�k−1|�k and πk,∗OBk (L)((k + 1)H − Zk−1) = Ak+1,L .

By (2), Riβk,∗OBk(L)(−Zk−1) = 0 for i > 0, so we obtain

Hi (�k, I�k−1|�k (�)) = Hi (Bk(L),OBk(L)(�H − Zk−1))

= Hi (Ck+1, S�−k−1Ek+1,L ⊗ Ak+1,L).

Thus (5.9) holds automatically when i ≥ k + 2 or 1 ≤ � ≤ k. It only remains
to consider the case that 1 ≤ i ≤ k + 1 and k + 1 ≤ � ≤ 2k + 2 − i .

Now, the short exact sequence (5.1) induces a short exact sequence

0 −→ ∧ j+1M�k −→ ∧ j+1H0(C, L) ⊗ O�k −→ ∧ j M�k ⊗ O�k (1) −→ 0.

Tensoring with I�k−1|�k , we obtain a short exact sequence

0 −→ ∧ j+1M�k ⊗ I�k−1|�k −→ ∧ j+1H0(C, L) ⊗ I�k−1|�k

−→ ∧ j M�k ⊗ I�k−1|�k (1) −→ 0.

This gives a long exact sequence of cohomology groups

· · · −→ ∧ j+1H0(C, L) ⊗ Hi (�k, I�k−1|�k (�))

−→ Hi (�k, ∧ j M�k ⊗ I�k−1|�k (� + 1))

−→ Hi+1(�k, ∧ j+1M�k ⊗ I�k−1|�k (�)) −→ · · · .

It follows that the statement

Hi (�k, ∧ j M�k ⊗ I�k−1|�k (�)) = 0 for i ≥ 1, j ≥ 0 and i ≥ j − p (∗)�

implies the corresponding statement (∗)�+1. Since Lemma 5.1 says that (∗)k+1
is true, we conclude that (∗)� holds for � ≥ k + 1, i.e.,

Hi (�k, ∧ j M�k ⊗I�k−1|�k (�)) = 0 for i ≥ 1, j ≥ 0, i ≥ j−p and � ≥ k+1.
(5.10)
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When j = 0, this implies (5.9) for i ≥ 1 and � ≥ k + 1. This finishes the
proof of (3).

(4) We first show that �k ⊆ P
r is projectively normal. By Danila’s theorem

(Theorem 3.8),

H0(Pr ,OPr (�)) = S�H0(C, L) = H0(Bk(L),OBk(L)(�))

= H0(�k,O�k (�)) for 0 ≤ � ≤ k + 1.

For 0 ≤ � ≤ k + 1, this implies that H0(Pr , I�k (�)) = H1(Pr , I�k (�)) = 0,
where I�m = I�m |Pr is the defining ideal sheaf of �m in P

r for 0 ≤ m ≤ k.
We have a short exact sequence

0 −→ I�k −→ I�k−1 −→ I�k−1|�k −→ 0. (5.11)

We then obtain H0(Pr , I�k−1(�)) = H0(�k, I�k−1|�k (�)) for 0 ≤ � ≤ k + 1.
For � ≥ k + 1, consider the following commutative diagram

S�−k−1H0(C, L) ⊗ H0(�k, I�k−1(k + 1)) H0(�k, I�k−1(�))

S�−k−1H0(C, L) ⊗ H0(�k, I�k−1|�k (k + 1)) H0(�k, I�k−1|�k (�)).

(5.12)
By (5.10), H1(�k, M�k ⊗ I�k−1|�k (�)) = 0 for � ≥ k + 1. Then the
multiplication map in the bottom of (5.12) is surjective, and hence, the
right vertical map of (5.12) is surjective. We then conclude that the map
H0(Pr , I�k−1(�)) → H0(�k, I�k−1|�k (�)) is surjective for � ≥ 0. By induc-
tion, �k−1 ⊆ P

r is projectively normal, so H1(Pr , I�k−1(�)) = 0 for � ≥ 0.
Therefore, by considering (5.11), we obtain H1(Pr , I�k (�)) = 0 for � ≥ 0,
which means that �k ⊆ P

r is projectively normal.
Next we show that �k ⊆ P

r satisfies Nk+2,p. Recall from (3) that
Hi (�k,O�k (�)) = 0 for i ≥ 1 and � ≥ 1. By Proposition 2.1, we only need to
show that H1(�k, ∧ j M�k ⊗ O�k (�)) = 0 for � ≥ k + 1 and 1 ≤ j ≤ p + 1.
Consider the short exact sequence

0 −→ ∧ j M�k ⊗ I�k−1|�k −→ ∧ j M�k −→ ∧ j M�k−1 −→ 0.

Since deg L ≥ 2g + 1 + 2(k − 1) + 1 + p + 2, we may assume by induc-
tion that �k−1 ⊆ P

r satisfies Nk+1,p+2. So by Proposition 2.1, we have
H1(�k−1, ∧ j M�k−1(�)) = 0 for � ≥ k and 1 ≤ j ≤ p + 3. Combine
this with (5.10), we get H1(�k, ∧ j M�k (�)) = 0 for 1 ≤ j ≤ p + 1 and
� ≥ k + 1 as desired. ��
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Remark 5.3 We have seen in the above proof that Danila’s theorem (Theo-
rem 3.8) shows H0(Pr ,OPr (�)) = H0(�k,O�k (�)) for all 1 ≤ � ≤ k + 1.
This in particular implies that the defining ideal of the k-th secant variety �k
in Pr has no forms of degree ≤ k + 1.

5.2 Singularities

Proposition 5.4 Let k ≥ 0 be an integer, and L be a line bundle on C. Assume
that

deg L ≥ 2g + 2k + 1.

Consider the k-th secant variety �k = �k(C, L) in the space P(H0(C, L)).
Then one has the following:

(1) �k has normal Du Bois singularities.
(2) g = 0 if and only if there exists a boundary divisor � on �k such that

(�k, �) is a klt pair. In this case, �k is a Fano variety with log terminal
singularities and of Picard rank one.

(3) g = 1 if and only if there exists a boundary divisor � on �k such that
(�k, �) is a log canonical pair but it cannot be a klt pair. In this case, �k
is a Calabi–Yau variety with log canonical singularities.

In particular, g ≥ 2 if and only if there is no boundary divisor � on �k such
that (�k, �) is a log canonical pair.

Proof (1) By Theorem 5.2 (1), we know that �k is normal. By proceeding by
the induction on k, we show that �k has Du Bois singularities. If k = 0, then
�0 = C so that the assertion is trivial. In the sequel, we assume that k ≥ 1 and
the assertion (1) holds for k − 1. By [13, Corollary 6.28], it suffices to check
the following:

(a) �k−1 has Du Bois singularities.
(b) Zk−1 has Du Bois singularities.
(c) βk,∗OBk(L)(−Zk−1) = I�k−1|�k and Riβk,∗OBk(L)(−Zk−1) = 0 for i >

0.

By inductive hypothesis, (a) holds. For (b), consider the composition map
bk : blk(Bk(L)) → Bk(L) of blowups (see Sect. 3.3). Recall from Proposi-
tion 3.15 (3) that

Kblk(Bk(L)) = b∗
k (K Bk(L) + Zk−1) − (E0 + · · · + Ek−1).

Thus the log pair (Bk(L), Zk−1) is log canonical, and hence, Zk−1 has semi-
log canonical singularities. Then, by [13, Corollary 6.32], Zk−1 has Du Bois
singularities, i.e., (b) holds. Finally, (c) holds by Theorem 5.2.
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(2), (3) Recall that βk : Bk(L) → �k is a resolution of singularities and �k
is normal. For a general point x ∈ �k−1\�k−2, we denote by Fx : =β−1

k (x)

the fiber of βk over x . Note that Fx
∼= C . Let H be the tautological divisor

on Bk(L) = P(Ek+1,L), i.e., OBk(L)(H) = OBk(L)(1). Recall from Proposi-
tion 3.15 (2) that Zk−1 ∼lin (k + 1)H − π∗

k (Tk+1(L) − 2δk+1). We can easily
check that

K Bk(L) + Zk−1 ∼lin π∗
k (KCk+1 + δk+1) = π∗

k Tk+1(KC). (5.13)

We first prove (2). Suppose thatC = P
1. It is well known thatCn+1 ∼= P

n+1.
For a sufficiently small rational number ε > 0, by (5.13), we have

−(K Bk(L) + (1 − ε)Zk−1) ∼Q-lin ε(k + 1)H

+π∗
k (Tk+1(−KC − εL) + 2εδk+1).

We may assume that Tk+1(−KC − εL) + 2εδk+1 is ample on Ck+1. Now,
Bk(L) has Picard rank two, and the nef cone of Bk(L) is generated by H and
π∗

k (Tk+1(−KC − εL) + 2εδk+1). Thus −(K Bk(L) + (1 − ε)Zk−1) is ample.
By considering the log resolution of (Bk(L), (1−ε)Zk−1) in Proposition 3.15
(3), we see that (Bk(L), (1 − ε)Zk−1) is a klt pair. Hence Bk(L) is of Fano
type. By [9, Theorem 5.1], �k is also of Fano type. Now, �k has Picard rank
one. Therefore, it is a Fano variety with log terminal singularities. For the
converse, suppose that there exists a boundary divisor � such that (�k, �) is
a klt pair. By [12, Corollary 1.5], Fx

∼= C is rationally chain connected, so C
is a rational curve.

We finally prove (3). Suppose thatC is an elliptic curve. By (5.13), we have

K Bk(L) + Zk−1 ∼lin π∗
k Tk+1(KC) = 0.

Then the ‘only if’ direction immediately follows from [9, Lemma 1.1]. In
this case, we actually have K�k = βk,∗(K Bk(L) + Zk−1) = 0. Thus �k is a
Calabi–Yau variety with log canonical singularities. For the converse, suppose
that there exists a boundary divisor � such that (�k, �) is a log canonical pair.
We have

K Bk(L) + Zk−1 + β−1
k � = β∗

k (K�k + �) + (1 + a)Zk−1,

where a = a(Zk−1; �k, �) ≥ −1 is the discrepancy of the βk-exceptional
divisor Zk−1. By restricting the above divisor to Fx

∼= C , we obtain

KC + (β−1
k �)|C = −(1 + a)(L − 2ξ),
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where ξ : =ξk,x is the degree k divisor on C determined by x . Then

−KC = (1 + a)(L − 2ξ) + (β−1
k �)|C

is effective so that C is either a rational curve or an elliptic curve. This proves
the converse direction, and hence, we complete the proof. ��
Remark 5.5 It is easy to check that g = 0 if and only if �k has rational
singularities (cf. [24, Proposition 9]).

Remark 5.6 When g = 1, we see that �k is Gorenstein with ω�k
∼= O�k

(this is also proved in [26, 8.14]). In the next subsection, we show that �k ⊆
P(H0(C, L)) is arithmetically Cohen–Macaulay, and therefore, its cone is
Gorenstein. For instance, one can deduce that the k-th secant variety �k of
an elliptic curve embedded by a degree 2k + 4 line bundle is a complete
intersection in P

2k+3.

Remark 5.7 In contrast to the smaller genus case, if g ≥ 2, then �k is not
Q-Gorenstein, i.e., K�k is not Q-Cartier. To show this, suppose that K�k

is Q-Cartier. For a sufficiently divisible integer m > 0, we have mK Bk(L) −
maZk−1 ∼lin β∗

k (mK�k ), where a = a(Zk−1; �k, 0) < −1 is the discrepancy
of Zk−1. By restricting to β−1

k (x) ∼= Ck for any point x ∈ C ⊆ �k , we see
that

m
(
Tk(KC + (1 − a)L − 2(1 − a)x

) − 2(1 − a)δk ∼lin 0.

Thus we obtain 2m(1 − a)x ∼lin 2m(1 − a)y for any points x, y ∈ C , but it
is impossible.

5.3 Arithmetic Cohen–Macaulayness and Castelnuovo–Mumford
regularity

Theorem 5.8 Let k ≥ 0 be an integer, and L be a line bundle on C. Assume
that

deg L ≥ 2g + 2k + 1.

Consider the k-th secant variety �k = �k(C, L) in the space P(H0(C, L)) =
P

r . Then one has the following:

(1) Hi (�k,O�k (−�)) = 0 for 1 ≤ i ≤ 2k and � ≥ 0.
(2) H2k+1(�k,O�k ) = Sk+1H0(C, ωC )∗.

In particular, �k ⊆ P
r is arithmetically Cohen–Macaulay.
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Proof Wefirst recall fromProposition 5.4 (1) that�k hasDuBois singularities.
By [13, Theorem 10.42], we have

hi (�k,O�k (−�)) = hi (�k,O�k (−1)) for 1 ≤ i ≤ 2k and � ≥ 1.

Therefore, the result (1) is equivalent to the cohomology vanishing

Hi (�k,O�k (−�)) = 0 for 1 ≤ i ≤ 2k and � = 0, 1.

We now proceed by the induction on k. Note that the case with k = 0
is trivial. For k ≥ 1, we assume that �k−1 ⊆ P

r has results (1) and (2).
Concerning the cohomological long exact sequence associated to the short
exact sequence (5.2), we make the following:

Claim 5.9 (a) Hi (�k, I�k−1|�k (−�)) = 0 for 1 ≤ i ≤ 2k − 1 and � = 0, 1.
(b) The connection map τ� of the cohomological groups

· · · −→ H2k−1(O�k−1(−�))
τ�−→ H2k(I�k−1|�k (−�)) −→ · · ·

is an isomorphism for � = 0, 1.

Granted the claim for the moment, using inductive hypothesis on �k−1 and
chasing through the long exact sequence associated to (5.2), we immediately
obtain from (a) that

Hi (�k,O�k (−�)) = 0 for 1 ≤ i ≤ 2k − 2 and � = 0, 1.

Furthermore, we arrive at an exact sequence involving the connection map τ�

as follows

0 −→ H2k−1(O�k (−�)) −→ H2k−1(O�k−1(−�))
τ�−→ H2k(I�k−1|�k (−�))

−→ H2k(O�k (−�)) −→ 0.

The statement (b) then implies that

Hi (�k,O�k (−�)) = 0 for 2k − 1 ≤ i ≤ 2k and � = 0, 1,

which proves (1).
For the result (2), chasing through the long exact sequence would yield

H2k+1(�k,O�k ) = H2k+1(�k, I�k−1|�k ).
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By Theorem 5.2 (2) and Serre duality, for any i and �, we have

Hi (I�k−1|�k (−�)) = Hi (OBk(L)(−�H − Zk−1))

= H2k+1−i (OBk(L)(K Bk(L) + Zk−1 + �H))∗,

where H is the tautological divisor on Bk(L) = P(Ek+1,L). Recall from (5.13)
that

K Bk(L) + Zk−1 ∼lin π∗
k (KCk+1 + δk+1) = π∗

k Tk+1(KC).

Thus we obtain

Hi (�k, I�k−1|�k (−�)) = H2k+1−i (Ck+1, S�Ek+1,L ⊗ Tk+1(ωC))∗. (5.14)

In particular, when i = 2k + 1, we find

H2k+1(�k,O�k ) = H2k+1(�k, I�k−1|�k ) = H0(Ck+1, Tk+1(ωC))∗.

By Lemma 3.7, we get the result (2).
We now prove Claim 5.9 (a). Assume that � = 0. As calculated in (5.14),

we have

Hi (�k, I�k−1|�k ) = H2k+1−i (Ck+1, Tk+1(ωC))∗.

Then Lemma 3.7 implies Claim 5.9 (a) for � = 0. Assume that � = 1. By
(5.14), we have

Hi (�k, I�k−1|�k (−1)) = H2k+1−i (Ck+1, Ek+1,L ⊗ Tk+1(ωC))∗.

Recall that we have a canonicalmorphism σk+1 : Ck ×C → Ck+1.We observe
that

σk+1,∗(Tk(ωC) � (ω ⊗ L)) = Ek+1,L ⊗ Tk+1(ωC).

Then we find

H2k+1−i (Ck+1, Ek+1,L⊗Tk+1(ωC)) = H2k+1−i (Ck×C, Tk(ωC)�(ωC⊗L)).

(5.15)
For 1 ≤ i ≤ 2k − 1, we have 2k + 1 − i ≥ 2. By Lemma 3.7 and Künneth
formula, we get

H2k+1−i (Ck × C, Tk(ωC) � (ωC ⊗ L)) = 0.
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This implies Claim 5.9 (a) for � = 1.
We next turn to the proof of Claim 5.9 (b). By Theorem 5.2 (2) for both �k

and �k−1 and calculation in (5.14), we recall that

H2k(I�k−1|�k (−�))∗ = H1(ωBk (L)(Zk−1 + �H)) = H1(S�Ek+1,L ⊗ Tk+1(ωC )),

H2k−1(O�k−1(−�))∗ = H0(ωBk−1(L)(Zk−2 + �H)) = H0(S�Ek,L ⊗ Tk(ωC )).

For � = 0, by Lemma 3.7, we have h2k(�k, I�k−1|�k ) = h2k−1(�k−1,O�k−1).

For � = 1, by (5.15) and Künneth formula, we see that

H1(Ek+1,L ⊗ Tk+1(ωC)) = H1(Tk(ωC ) � (ωC ⊗ L))

= H1(Tk(ωC)) ⊗ H0(ωC ⊗ L),

H0(Ek,L ⊗ Tk(ωC)) = H0(Tk−1(ωC) � (ωC ⊗ L))

= H0(Tk−1(ωC)) ⊗ H0(ωC ⊗ L).

(5.16)

Lemma 3.7 then implies that h2k(�k, I�k−1|�k (−�)) = h2k−1(�k−1,O�k−1

(−�)). Thus, to show Claim 5.9 (b), it is sufficient to show that τ� is injective
for � = 0, 1.

To this end, recall that we have the following commutative diagram

Ck × C
σk+1

Ck+1

Bk−1(L) × C

πk×idC

αk,k−1
Zk−1

βk |Zk−1

Bk(L)

πk

βk

�k−1 �k .

Note that α∗
k,k−1ωZk−1 = ωBk−1(L)(Zk−2)�ωC and there is a natural injection

H0(Bk−1(L), ωBk−1(L)(Zk−2 + �H)) ↪→ H1(Bk−1(L)

×C, ωBk−1(L)(Zk−2 + �H)) � ωC).

Then we obtain the following commutative diagram

H1(S� Ek1 ⊗ Tk+1(ωC )) H1(S� Ek,L ⊗ Tk(ωC ) � ωC )

H1(ωBk (L)(Zk−1 + �H)) H1(ωZk−1 (�H)) H1(ωBk−1(L)(Zk−2 + �H)) � ωC )

H2k(I�k−1|�k (−�))∗
τ∗
�

H2k−1(O�k−1 (−�))∗ H0(ωBk−1(L)(Zk−2 + �H)).
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It is enough to check that themap on the top is injective. This is clear for � = 0.
For � = 1, by (5.16) and Lemma 3.7, we have the following injection

H1(Ek+1 ⊗ Tk+1(ωC)) ∼= H0(Ek,L ⊗ Tk(ωC )) ↪→ H1(Ek,L ⊗ Tk(ωC) � ωC).

Thus the map on the top for � = 1 is injective as required.
Finally, recall the well known fact that a projective variety X ⊆ P

r is
arithmetically Cohen–Macaulay if and only if the following hold:

(i) X ⊆ P
r is projectively normal.

(ii) Hi (X,OX (�)) = 0 for 0 < i < dim X and � ∈ Z.

By Theorem 5.2 (3), (4) and the vanishing property (1) imply that �k ⊆ P
r is

arithmetically Cohen–Macaulay. We complete the proof. ��
Corollary 5.10 Let k ≥ 0 be an integer, and L be a line bundle on C. Assume
that

deg L ≥ 2g + 2k + 1.

Consider the secant variety �k = �k(C, L) in the space P(H0(C, L)) = P
r .

Then one has the following:

(1) h0(ω�k ) = dim Kr−2k−1,2k+2(�k,O�k (1)) = (g+k
k+1

)
.

(2) If g = 0, then reg(O�k ) = k + 1 and reg(�k) = k + 2.
(3) If g ≥ 1, then reg(O�k ) = 2k + 2 and reg(�k) = 2k + 3.

Proof (1) As �k ⊆ P(H0(C, L)) = P
r is arithmetically Cohen–Macaulay by

Theorem 5.8, dualizing the minimal graded free resolution of R(�k,O�k (1))
and shifting by−r−1 gives theminimal graded free resolution of the canonical
module. This implies that

dim Kr−2k−1,2k+2(�k,O�k (1)) = h0(�k, ω�k ).

By the Serre duality and Theorem 5.8, we obtain

h0(�k, ω�k ) = h2k+1(�k,O�k ) = dim Sk+1H0(C, ωC) =
(

g + k

k + 1

)
.

(2), (3) By Theorem 5.2 (3), (4), we see that

reg(�k) = reg(O�k ) + 1 ≤ 2k + 3.

By Theorem 5.2 (3) and Theorem 5.8 (1), we know that Hi (�k,O�k (�)) = 0
for 1 ≤ i ≤ 2k and � ∈ Z. Thus we only have to consider the (non)vanishing
of H2k+1(�k,O�k (�)).
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For (2), suppose that g = 0. It is enough to show that H2k+1(�k,O�k (−k))

= 0 and H2k+1(�k,O�k (−k − 1)) �= 0. By Proposition 5.4 (2), �k
has log terminal singularities, and hence, it has rational singularities, i.e.,
Riβk,∗OBk(L) = 0 for i > 0. Then we obtain

H2k+1(�k,O�k (�)) = H2k+1(Bk(L),OBk(L)(�)) = H0(Bk(L), ωBk(L)(−�))∗.

It is elementary to see that H0(Bk(L), ωBk(L)(k)) = 0 but H0(Bk(L), ωBk(L)

(k + 1)) �= 0.
For (3), suppose that g ≥ 1. It is enough to prove that H2k+1(�k,O�k ) �= 0.

By Theorem 5.8 (2), we find H2k+1(�k,O�k ) = Sk+1H0(C, ωC ) �= 0. We
finish the proof. ��

5.4 Further properties of secant varieties

We have shown the main theorems of the paper. In this subsection, we discuss
further properties of secant varieties of curves.

Proposition 5.11 Let k ≥ 0 be an integer, and L be a line bundle on C. Assume
that

deg L ≥ 2g + 2k + 1.

Consider the k-th secant variety �k = �k(C, L) in the space P(H0(C, L)) =
P

r . Then one has the following:

(1) The degree of �k ⊆ P
r is given by

deg�k =
min(k+1,g)∑

i=0

(
deg L − g − k − i

k + 1 − i

)(
g

i

)
.

(2) The multiplicity of �k at a point x ∈ �m\�m−1 with 0 ≤ m ≤ k is given
by

multx �k = deg�k−m−1(C, L(−2ξm+1,x ))

=
min(k−m,g)∑

i=0

(
deg L − g − m − 1 − k − i

k − m − i

)(
g

i

)
.

Proof (1) follows from [19, Proposition 1]. In fact, deg�k is the Segre class
sk+1(E∗

k+1,L). For (2), notice that multx �k is the Segre class s0({x}, �k),

which is invariant under a birational morphism. Recall that F : =β−1
k (x) ∼=
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Ck−m and NF/Bk(L)
∼= O⊕2m+1

F ⊕ E∗
k−m,L(−2ξm+1,x ) (Proposition 3.13 (2.a,

2.d)). Thus we have

multx �k = sk−m(F, Bk(L)) = sk−m(NF/Bk(L)) = sk−m(E∗
k−m,L(−2ξm+1,x )).

Consider the secant variety �k−m−1(C, L(−2ξm+1,x )) in the space
P(H0(C, L(−2ξm+1,x ))). Then we obtain

sk−m(E∗
k−m,L(−2ξm+1,x )) = deg�k−m−1(C, L(−2ξm+1,x )),

which completes the proof by (1) since deg L(−2ξm+1,x ) ≥ 2g + 2(k − m −
1) + 1. ��

Next, we show that Bk(L) is the normalization of the blowup of �k along
�k−1. For this purpose, we prove the following lemma.

Lemma 5.12 For any integer k ≥ 0, one has the following:

(1) Ak+1,L is globally generated if deg L ≥ 2g + 2k.
(2) Ak+1,L is globally generated and ample if deg L ≥ 2g + 2k + 1.

Proof For a point p ∈ C , consider the short exact sequence

0 −→ Ak+1,L(−X p) −→ Ak+1,L −→ Ak+1,L |X p −→ 0.

Note that Ak+1,L |X p = Ak,L(−2p) and Ak+1,L(−X p) = Ak+1,L(−p). By
induction on k, we only need to show H1(Ck+1, Ak+1,L(−p)) = 0. Pulling
back the involved line bundle toCk+1 and applying Lemma 3.5, we can reduce
the problem to prove the following cohomology vanishing

H1(Ck+1, L�k+1(−�k+1)) = 0 if deg L ≥ 2g + 2k − 1. (5.17)

If k = 0, then (5.17) is clear. Assume k ≥ 1. Then L separates k points. Let
p : Ck+1 → Ck be the projection to the first k components. Then

p∗L�k+1(−�k+1) = Qk,L ⊗ L�k(−�k)

so that H1(Ck+1, L�k+1(−�k+1)) = H1(Ck, Qk,L ⊗ L�k(−�k)). As
deg L ≥ 2g + 2k − 1 = 2g + 2(k − 1) + 1, the desired cohomology
vanishing (5.17) follows from Theorem 4.1, proving (1). For (2), notice that
Ak+1,L = Ak+1,L(−p) ⊗ Tk+1(OC (p)). By (1), Ak+1,L(−p) is globally gener-
ated, and we know that Tk+1(OC (p)) is ample. Hence (2) follows. ��
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Proposition 5.13 Let k ≥ 0 be an integer, and L be a line bundle on C. Assume
that

deg L ≥ 2g + 2k + 1.

Consider the k-th secant variety �k = �k(C, L) in the space P(H0(C, L)) =
P

r . Then one has the following:

(1) βk : Bk(L) → �k factors through the blowup Bl�k−1 �k of �k along
�k−1.

(2) Bk(L) is the normalization of Bl�k−1 �k .
(3) βk,∗OBk(L)(−m Zk−1) = I m

�k−1|�k
for m ≥ 0, where a denotes the integral

closure of an ideal sheaf a.

Proof Recall the projection πk : Bk(L) → Ck+1. We write OBk(L)(H) to be
the tautological bundle of Bk(L), which also equals to β∗

k OPr (1). For simplic-
ity, we set I : =I�k |�k−1 and Y : =Bl�k−1 �k .

(1) It is enough to show that the natural morphism β∗
k I → OBk(L)(−Zk−1)

is surjective. Thus we only have to show I · OBk(L) = OBk(L)(−Zk−1).
As we have seen in Proposition 3.15 (2) thatOBk(L)((k +1)H − Zk−1) =
π∗

k Ak+1,L , we can form the following commutative diagram

H0(I (k + 1)) H0(OBk(L)((k + 1)H − Zk−1))

I · OBk(L)((k + 1)H) π∗
k Ak+1,L .

But Ak+1,L is globally generated by Lemma 5.12. Therefore I ·
OBk(L)((k + 1)H) = π∗ Ak+1,L , which implies I · OBk(L) = OBk(L)

(−Zk−1) as desired.
(2) We have the following factorization

Y = Bl�k−1 �k

ϕ

Bk(L)
βk

αk

�k .

Let E be the exceptional divisor on Y . As I (k + 1) is globally generated,
ϕ∗O�k (k + 1)(−E) is globally generated, and ϕ∗O�k (k + 2)(−E) is
very ample. For any point x ∈ �m\�m−1, the fiber β−1

k (x) ∼= Ck−m
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(Proposition 3.13 (2.a)). Let αk,x : β−1
k (x) → ϕ−1(x) be the induced

morphism on fibers. We see that

α∗
k,x (ϕ

∗O�k (k + 2)(−E)) ∼= Ak+1,L |Ck−m
∼= Ak−m−1, L(−2ξm+1,x),

where ξm+1,x is the unique degree m + 1 divisor on C determined by x .
But the last line bundle is ample by Lemma 5.12. So αk,x is finite, and
therefore, αk is finite. Hence Bk(L) is the normalization of Y .

(3) This is a direct consequence of (2).

Finally, we construct secant varieties of curves which are neither normal
nor Cohen–Macaulay when deg L = 2g + 2k < 2g + 2k + 1. This shows
that the degree bounds on embedding line bundle in Theorems 1.1 and 1.2 are
optimal.

Example 5.14 Let k ≥ 1 be an integer, and C be a nonsingular projective
curve of genus g ≥ 2k + 2. Take an effective divisor D consisting of 2k + 2
general points of C such that h0(C,OC (D)) = 1. Consider a very ample line
bundle

L = ωC(D) with deg L = 2g + 2k.

Observe that L separates 2k + 1 points, and L separates 2k + 2 points except
of D. We show that the k-th secant variety

�k = �k(C, L) ⊆ P(H0(C, L)) = P
g+2k

is neither normal nor Cohen–Macaulay.
For any effective divisor ξ on C , we denote by �ξ the linear space spanned

by ξ in the space Pg+2k . Let D1 and D2 be two effective divisors of degree
k +1 such that D1+ D2 = D. By Riemann–Roch, h0(C, L(−D1− D2)) = g.
Thus D1 + D2 span a linear space �D1+D2 of dimension 2k. This means that
�D1 and �D2 span �D1+D2 and intersect at a single point q ∈ �k\C . Let
Z be an effective divisor of degree k + 1, and suppose D1 + Z �= D. Then
L separates D1 + Z , and therefore, the space �D1+Z has dimension 2k + 1.
Hence�D1 ∩�Z = ∅. This implies that q ∈ �k\�k−1 and except of�D1 and
�D2 , there is no any other (k + 1)-secant k-plane of C passing through q. For
any two degree k +1 effective divisors D′

1 and D′
2 such that D′

1+ D′
2 = D, the

k-secant planes �D′
1
and �D′

2
intersect at a single point in �k\�k−1. Let Q

be the set of all such intersection points. Then Q contains only finitely many
points.

Consider the morphism βk : Bk(L) → �k . Let x ∈ �k\�k−1. If x ∈ Q,
then the fiber β−1

k (x) contains two points. If x /∈ Q, then the fiber β−1
k (x)

contains only one point y. In this case, we can show that the inducedmorphism
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β#
k : T ∗

x P
r −→ mBk(L),y/m

2
Bk(L),y

on cotangent spaces is surjective. Therefore
βk is unramified at y, so it is isomorphic over x . In conclusion, βk is an
isomorphism over �k\(�k−1 ∪ Q). Then we have the short exact sequence

0 −→ O�k −→ βk,∗OBk(L) −→ Q −→ 0,

where the support of the quotient sheaf Q has zero-dimensional components
supported on Q. This means that�k is not normal at any point in Q. Moreover,
H1(�k,O�k (−�)) �= 0 for all � ≥ 0, so �k is not Cohen–Macaulay.

6 Open problems

To conclude this paper, we present a number of open problems. We keep using
notations introduced before; thus C is a nonsingular projective curve of genus
g embedded by a very ample line bundle L in the space P(H0(C, L)) = P

r .
One of critical steps in the proof of the main results is to establish the Du

Bois type condition (1.2). We have shown that Bk(L) is the normalization of
the blowup of �k along �k−1. For better understanding of the geometry of
Bk(L), one observes that if k = 1, then the variety B1(L) is indeed the blowup
of �1 along the curve C . This leads us to ask the following:

Problem 6.1 Can the secant bundle Bk(L) be realized as the blowup of �k
along �k−1?

The Danila’s theorem (Theorem 3.8) handles the initial steps of projec-
tively normality of secant varieties. It gives precise values of global sections
of the symmetric products of the secant bundle Ek+1,L . On the other hand,
the techniques used in Sect. 4 may offer an alternative approach to compute
cohomology groups of the symmetric products of Ek+1,L . As an independent
question, we wonder if one can deal with the following:

Problem 6.2 Compute cohomology groups of the symmetric products of the
secant bundle Ek+1,L on Ck+1.

If we view the classic theorem of Ein–Lazarsfeld [4] as a higher dimen-
sional generalization of Green’s result in [10], then we may ask a similar
generalization of the results of the present paper to higher dimensional vari-
eties. For a nonsingular projective variety X , consider the adjoint line bundle
L = K X + d A where A is an ample line bundle and d is a natural number.
For d sufficiently large, L embeds X into a projective space. We expect that
in this case the secant varieties of X would have nice geometric and algebraic
properties.
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Problem 6.3 Extend the results of present paper to secant varieties of a non-
singular projective variety X embedded in a projective space by a sufficiently
positive line bundle.

This problem has two major essential difficulties. First of all, there is no a
good construction involving secant bundles as the one in Bertram’s work [1].
Secondly, the projectively normality of X embedded by the adjoint line bundle
is still unsolved. One may further impose the condition that A is very ample
so [4] can be applied or may follow the idea in [5] to study the asymptotic
behavior of secant varieties. However, the surface case seems a reasonable
starting point toward the arbitrary dimensional case.

Problem 6.4 Study secant varieties of a surface X embedded by the adjoint
line bundle K X + d A where A is ample and d is a large integer.

Acknowledgements Theauthorswould like to thankRobertLazarsfeld for helpful suggestions
and useful comments. The authors also wish to express their gratitude to Adam Ginensky for
bringing the problems considered in this paper to our attention and to Jürgen Rathmann for his
work in the paper [16]. The authors are very grateful to the referee for careful reading of the
paper and valuable suggestions to help improve the exposition of the paper.

References

1. Bertram, A.: Moduli of rank-2 vector bundles, theta divisors, and the geometry of curves
in projective space. J. Differ. Geom. 35(2), 429–469 (1992)

2. Chou, C.-C., Song, L.: Singularities of secant varieties. Int. Math. Res. Not. IMRN 9,
2844–2865 (2018)

3. Danila, G.: Sections de la puissance tensorielle du fibrè tautologique sur le schéma de
Hilbert des points d’une surface. Bull. Lond. Math. Soc. 39(2), 311–316 (2007)

4. Ein, L., Lazarsfeld, R.: Syzygies and Koszul cohomology of smooth projective varieties of
arbitrary dimension. Invent. Math. 111(1), 51–67 (1993)

5. Ein, L., Lazarsfeld, R.: Asymptotic syzygies of algebraic varieties. Invent. Math. 190,
603–646 (2012)

6. Ein, L., Lazarsfeld, R.: The gonality conjecture on syzygies of algebraic curves of large
degree. Publ. Math. Inst. Hautes Études Sci. 122, 301–313 (2015)

7. Eisenbud, D., Green, M., Hulek, K., Popescu, S.: Restricting linear syzygies: algebra and
geometry. Compos. Math. 141, 1460–1478 (2005)

8. Fisher, T.: The higher secant varieties of an elliptic normal curve. Preprint (2006). https://
www.dpmms.cam.ac.uk/~taf1000/papers/hsecenc.html

9. Fujino, O., Gongyo, Y.: On canonical bundle formulas and subadjunctions. Mich. Math. J.
60, 255–264 (2012)

10. Green, M.: Koszul cohomology and the geometry of projective varieties. J. Differ. Geom.
19, 125–171 (1984)

11. Green, M., Lazarsfeld, R.: Some results on the syzygies of finite sets and algebraic curves.
Compos. Math. 67, 301–314 (1988)

12. Hacon, C., McKernan, J.: On Shokurov’s rational connectedness conjecture. Duke Math.
J. 138, 119–136 (2007)

13. Kollár, J.: Singularities of the minimal model program. In: Cambridge Tracts in Mathemat-
ics, vol. 200 (2013)

123

https://www.dpmms.cam.ac.uk/~taf1000/papers/hsecenc.html
https://www.dpmms.cam.ac.uk/~taf1000/papers/hsecenc.html


Secant varieties of nonsingular projective curves 665

14. Lazarsfeld, R.: Cohomology on symmetric products, syzygies of canonical curves, and
a theorem of Kempf. In: Einstein Metrics and Yang-Mills Connections (Sanda, 1990),
Volume 145 of Lecture Notes in Pure and Appllied Mathematics, pp. 89–97. Dekker, New
York (1993)

15. Matsumura, H.: Commutative Ring Theory, Volume 8 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge (1986). Translated from the
Japanese by M. Reid

16. Rathmann, J.: An effective bound for the Gonality conjecture. arXiv:1604.06072
17. Sidman, J., Vermeire, P.:. Equations defining secant varieties: geometry and computation.

In: Combinatorial Aspects of Commutative Algebra and Algebraic Geometry, Volume 6 of
Abel Symposium, pp. 155–174. Springer, Berlin (2011)

18. Sidman, J., Vermeire, P.: Syzygies of the secant variety of a curve. Algebra Number Theory
3(4), 445–465 (2009)

19. Soulé, C.: Secant varieties and successive minima. J. Algebr. Geom. 13, 323–341 (2004)
20. Ullery, B.: Tautological Bundles on the Hilbert Scheme of Points and the Normality of

Secant Varieties. Ph.D Thesis, University of Michigan (2014)
21. Ullery, B.: On the normality of secant varieties. Adv. Math. 288, 631–647 (2016)
22. Vermeire, P.: Some results on secant varieties leading to a geometric flip construction.

Compos. Math. 125(3), 263–282 (2001)
23. Vermeire, P.: On the regularity of powers of ideal sheaves. Compos.Math. 131(2), 161–172

(2002)
24. Vermeire, P.: Regularity and normality of the secant variety to a projective curve. J. Algebra

319(3), 1264–1270 (2008)
25. Vermeire, P.: Equations and syzygies of the first secant variety to a smooth curve. Proc.

Am. Math. Soc. 140(8), 2639–2646 (2012)
26. Graf von Bothmer, H.-C., Hulek, K.: Geometric syzygies of elliptic normal curves and their

secant varieties. Manuscr. Math. 113(1), 35–68 (2004)
27. Yang, R.: A letter about syzygies of secant varieties (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

123

http://arxiv.org/abs/1604.06072

	Singularities and syzygies of secant varieties of nonsingular projective curves
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Singularities
	2.2 Syzygies

	3 Symmetric products, secant bundles, and secant varieties
	3.1 Lemmas on symmetric products
	3.2 Secant varieties via secant bundles
	3.3 Blowup construction of secant bundles

	4 A vanishing theorem on Cartesian products of curves
	5 Properties of secant varieties of curves
	5.1 Normality, projective normality, and property Nk+2,p
	5.2 Singularities
	5.3 Arithmetic Cohen–Macaulayness and Castelnuovo–Mumford regularity
	5.4 Further properties of secant varieties

	6 Open problems
	Acknowledgements
	References




