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Abstract In recent years, the equations defining secant varieties and their
syzygies have attracted considerable attention. The purpose of the present
paper is to conduct a thorough study on secant varieties of curves by settling
several conjectures and revealing interaction between singularities and syzy-
gies. The main results assert that if the degree of the embedding line bundle
of a nonsingular curve of genus g is greater than 2g 4+ 2k + p for nonnega-
tive integers k and p, then the k-th secant variety of the curve has normal Du
Bois singularities, is arithmetically Cohen—Macaulay, and satisfies the prop-
erty Nii2,p. In addition, the singularities of the secant varieties are further
classified according to the genus of the curve, and the Castelnuovo—Mumford
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regularities are also obtained as well. As one of the main technical ingredients,
we establish a vanishing theorem on the Cartesian products of the curve, which
may have independent interests and may find applications elsewhere.
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1 Introduction

Throughout the paper, we work over an algebraically closed field k of charac-
teristic zero. Let

c cPHC,L) =P
be a nonsingular projective curve of genus g > 0 embedded by the complete
linear system of a very ample line bundle L on C. For an integer k > 0, the
k-th secant variety

Tp=%(C, L) P

to the curve C is defined to be the Zariski closure of the union of (k+ 1)-secant
k-planes to C in P". One has the natural inclusions

C=%C¥C---CX 1S5 CP.
Ifdeg L > 2g + 2k + 1, then

dim X =2k +1 and Sing(Xy) = Xj_1.
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Secant varieties of nonsingular projective curves 617

Note that ¥;_1 has codimension two in X;. The geometric consequence of
the condition deg L > 2g + 2k + 1 is that any effective divisor on C of degree
k + 1 spans a k-plane in P".

There has been a great deal of work on the secant varieties in the last three
decades. The major part of the research focused on local properties, defining
equations, and syzygies. Recently, classical questions on secant varieties find
interesting applications to algebraic statistics and algebraic complexity theory.
However, a lot of problems in this area are still widely open, and not much is
known about general pictures. For the first secant variety of a curve, investiga-
tion has been conducted in a series of work by Vermeire [22—-25] and the work
with his collaborator Sidman [17,18]. Among other things, the issue whether
secant varieties are normal attracted special attention, as normality is criti-
cal in establishing many other important properties. Only for the first secant
variety, the normality problem was settled by Ullery [21] fairly recently for
a nonsingular projective variety of any dimension under suitable conditions
on the embedding line bundle. Soon afterwards Chou and Song [2] further
showed that the first secant variety has Du Bois singularities under the setting
of Ullery’s study.

On the other hand, the classical questions on the projective normality and
the defining equations of secant varieties are the initial case of a more general
picture involving higher syzygies, under the frame of Green’s pioneering work
[10]. Keeping in mind that the curve can be viewed as its zeroth secant variety,
the fundamental Green’s (2g + 1 + p)-theorem (see [10,11]) asserts that if the
embedding line bundle L hasdeg L > 2g+ 1+ p,then C C P" is projectively
normal and satisfies the property N p, i.e., the curve is cut out by quadrics and
the first p steps of its minimal graded free resolution are linear (see Sect. 2.2 for
relevant definitions on syzygies). This result sheds the lights on understanding
the full picture of syzygies of arbitrary order secant varieties.

In this paper, we give a thorough study on singularities and syzygies of the
k-th secant variety X of the curve C for arbitrary integer K > 0. The general
philosophy guiding our research can be summarized as that singularities and
syzygies interact each other in the way that the singularities of Xy determine its
syzygies while the syzygies of X;_; determine the singularities of X, and so
on and so forth. It turns out that all the sufficient conditions that guarantee each
basic property of secant varieties are satisfied if the embedding line bundle is
positive enough beyond an effective bound.

The first main result of the paper describes that the possible singularities of
secant varieties are mild ones naturally appearing in birational geometry. We
refer to Sect. 2.1 for the definitions of singularities.
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Theorem 1.1 Let C be a nonsingular projective curve of genus g, and L be a
line bundle on C. For an integer k > 0, suppose that

degL >2g + 2k + 1.

Then ¥ = Xk (C, L) has normal Du Bois singularities. Furthermore, one has
the following:

(1) g =0ifand only if ¥y is a Fano variety with log terminal singularities.

(2) ¢ = 1 if and only if Ty is a Calabi-Yau variety with log canonical
singularities but not log terminal singularities.

(3) g = 2ifand only ifthere is no boundary divisor I" on Xy such that (X, I')
is a log canonical pair.

The theorem therefore completely solves the normality problems mentioned
above (see Ullery’s conjecture [20, Conjecture E]), and answers Chou—Song’s
question [2, Question 1.6] for curves.

The second main result gives a description on syzygies of the k-th secant
variety. It reveals one full picture hiding in the Green’s (2g + 1 4+ p)-theorem
aforementioned.

Theorem 1.2 Let C C P(HY(C, L)) =P bea nonsingular projective curve
of genus g embedded by the complete linear system of a very ample line bundle
L on C. For integers k, p > 0, suppose that

degL >2g+2k+ 1+ p.

Then one has the following:

(1) ¢ = 2k (C, L) C P is arithmetically Cohen—Macaulay.

(2) X € P" satisfies the property Niy2, p.

() reg(Os,) = 2k + 2 unless g = 0, in which case reg(Ox,) =k + 1.
@) h(ws,) = dim K, _gx—1 2642(Zk, Og, (1) = (§73).

The results in the theorem were conjectured by Sidman—Vermeire [18, Con-
jecture 1.3], [24, Conjectures 5 and 6]. The conjectures were quite wide open.
For g < 1, the conjectures were settled by Graf von Bothmer—Hulek [26]
and Fisher [8]. By work of Vermeire [23-25], Sidman—Vermeire [18], and
Yang [27], the question about N3 , was finally settled for the first secant vari-
ety .

Theorem 1.2 gives a complete picture for syzygies of arbitrary order secant
varieties of curves. If deg L > 2¢+2k+1, then £; C P isindeed projectively
normal. If deg L > 2g + 2k + 2, then Xy is ideal-theoretically cut out by the
hypersurfaces of degree k + 2, as it cannot be contained in a smaller degree
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Secant varieties of nonsingular projective curves 619

hypersurface. Furthermore, if deg L > 2g + 2k + 1 4 p, then the first p steps
of the minimal graded free resolution of X are linear.

We mention here several quick examples to show that the degree bounds
on the line bundle L in the theorems are optimal. (i) Assume C has genus
g = 4 and take general points p, g, r, and s on C. The line bundle L =
wc(p+q+r—+s)embeds C in P8 *2 Then the first secant variety X is neither
normal nor Cohen—Macaulay. See Example 5.14 for non-normal higher secant
varieties ¥ with k > 2. (ii) If C is an elliptic curve and deg L = 2k + 3, then
the k-th secant variety % in P?*2 is a hypersurface of degree 2k + 3. (iii) If
C has genus 2 and degree 12 in P10, then X, satisfies N3 5 but fails N3 6, and
3, satisfies Ny 3 but fails N4 4. The last two examples are taken from [17,26],
and one may find more examples there.

To prove the main results of the paper, we utilize Bertram’s construction
[1] to realize secant varieties as the images of projectivized vector bundles. To
be more precise, we consider the k-th symmetric product Cy41 of C. We have
a canonical morphism oy41: Cx x C — Ci41 defined by sending (&, x) to
& + x and the projection p: Cy x C — C. One defines the secant sheaf

Ert1,L : =0k41,+(p"L),
which is a vector bundle on Cy4 of rank k£ 4 1, and the secant bundle
BM(L) : =P(Ex11.1).

Notice that Ej41 7 parameterizes (k 4+ 1)-secant k-planes, i.e., the fiber of
Ey41,1 overé € Ci4q can be identified with H O, L l¢). The complete linear
system of the tautological line bundle of B¥(L) determines a natural morphism
to the projective space IP" such that the image is 2. It gives rise to a resolution
of singularities

B: BX(L) — =4.

We then consider the (k — 1)-th relative secant variety Zj_, which is actually
a divisor in the smooth variety B¥(L). Our strategy is to pass computation
for codimension two situation X;_; € X to the codimension one situation
Zi—1 € B*(L). The picture for the first secant variety is rather simple, and
Zy is just C x C. Thus one can easily transfer cohomological computation
from ¥ to C, through B'(L). However, for higher secant varieties, such
method does not work directly in that Z;_; is singular. Fortunately, after
blowup consecutively along the stratification induced by the inclusions C
¥ € ¥ € ... C Xr_1, as exhibited in [1], we then arrive at a birational
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620 L. Ein et al.

morphism
by ble(BX(L)) — B*(L),

which we prove to be a log resolution of the log pair (BX(L), Zix_1). Based
on this setup, in Theorem 1.1, for instance, to prove the normality of X at a
point x, we adapt the strategy of Ullery in [21] to consider the unique minimal
m-secant plane containing x. It cuts the curve along a degree m + 1 divisor &.
By the formal function theorem, the normality of the k-th secant variety X
at x follows from the normality and projective normality of the smaller order
secant variety Xx_,,—1 in the space P(H 0w, L (—2£))). This leads us to study
a general question on the property N2, , or higher syzygies of .

Turning to the proof of Theorem 1.2, we assume deg L > 2g 4+ 2k + 1+ p,
and consider the kernel bundle My, in the exact sequence

0 — Ms, — H%C.,L)® 05, — 05, (1) — 0,

induced by the evaluation map on the global sections of O, (1). The critical
observation we made here is that in order to establish the property N2 p,
one only needs cohomology vanishing involving the wedge product of My,
tensored with Iy, |z, (k + 1). More precisely, it is sufficient to show the
following cohomology vanishing

H (Zp, AN Ms, @ Is, 5, (k+1)) =0 fori > j—p,i >1,j>0. (l.1)

The next important technical step is to prove the following Du Bois type con-
ditions:
Izk—l\zk for i = 0,

1.2
0 for i > 0. (1.2)

R B.Os, (k +1)(—Zs_1) =

Then the cohomology groups in (1.1) can be calculated on B¥(L) by involving
the sheaf B*0s, (k + 1)(—Zk—1). We observe that in fact this sheaf is the
pullback of a line bundle A1, on the symmetric product Cy of the curve
C. Therefore, once we use the exact sequence

0— Mk+1,L — HO(C, L)® ﬁCkH — Ek+1,L — 0,

induced by the evaluation map on the global sections of Ey1 1, we are able to
further connect vanishing (1.1) with the following cohomological vanishing

H'(Ciy1, NN Mis1,L ® Agg1,L) =0 for i > j—p,i>1, j>0, (1.3)
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Secant varieties of nonsingular projective curves 621

on the symmetric product Cy41. As the final ingredient of the proof, inspired
by Rathmann’s vanishing results in [16], we show the following vanishing

i (k41 j _
HY (C* A g My, ® (LE - R L)(=A)) =0
k+1 times
for i=j—p,i=1,j=0, (1.4)

on the Cartesian product C¥*! of the curve C, where ¢ : C¥*1 — Cy4 is the
natural quotient map and A is the sum of all pairwise diagonals. Now, (1.4)
implies (1.3), and hence, we finally obtain (1.1). The vanishing result (1.4)
may have independent interests, and we hope that it will find other applications
somewhere in the future.

This paper is organized as follows. We begin in Sect. 2 with recalling basic
definitions and properties of singularities and syzygies of algebraic varieties.
In Sect. 3, we introduce several vector bundles on symmetric products of
curves, review Bertram’s blowup constructions for secant bundles, and show
some useful results for the main results of the paper. In Sect. 4, one of the main
technical ingredients, a vanishing theorem on the Cartesian products of curves,
is established. Section 5 is then devoted to the proofs of the main results of the
paper. Finally, we discuss some open problems on secant varieties in Sect. 6.

2 Preliminaries

We recall relevant definitions and properties of singularities and syzygies of
algebraic varieties.

2.1 Singularities

The Deligne—Du Bois complex €25 for a singular variety X is a generalization
of the de Rham complex for a nonsingular variety (see [13, Chapter 6] for
detail). There is a natural map

Ox — Q())( = Grf(i)th;('

We say that X has Du Bois singularities if the above map is a quasi-
isomorphism.

Let X be a normal projective variety, and A be a boundary divisor on X so
that Ky + A is Q-Cartier. Take a log resolution f: Y — X of the pair (X, A).
We may write

Ky = f*(Kx + A) + > a(E; X, AE,

E: prime divisor on Y
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622 L. Ein et al.

where a(E; X, A) is the discrepancy of the prime divisor E over X. It is easy
to check that the discrepancy is independent of the choice of log resolutions.
We say that (X, A) is a kit (resp. log canonical) pair if a(E; X, A) > —1
(resp. a(E; X, A) > —1) for every prime divisor E over X. We say that X
has log terminal (resp. log canonical) singularities if (X, 0) is a klt (resp. log
canonical) pair. Note that log terminal singularities are rational singularities
and (semi-)log canonical singularities are Du Bois singularities. We refer to
[13] for more details of the various notions of singularities and log pairs.

2.2 Syzygies

Let X € P(HY(X, L)) = P’ be aprojective variety embedded by the complete
linear system of a very ample line bundle L on X. Let S be the homogeneous
coordinate ring of P", and

R=R(X,L):= @ HO(X, mL)

m=>0

be the graded section ring associated to L, viewed as an S-module. Then R
has a minimal graded free resolution E4(X, L):

0—— R+—— @B S(-ao) «—— DS(-a1j)) «— - —— D S(-a,) «<—0.

Eo E; E,
We define the Koszul cohomology group
Kpg(X, L) : =Tory (R, S/S4) piq,

where S C § denotes the irrelevant maximal ideal. Then we have

Ey=EPKpyX.L) @k S(—p—q).
q

Notice that X C PP" is projectively normal if and only if Ko ; (X, L) = O for
all j > 1. The Castelnuovo—Mumford regularity of R, denoted by reg(R), is
defined to be the minimal positive integer g such that K, ;(X, L) = 0 for all
p > 0and j > g + 1. We say that R satisfies the property Ny , for some
integer d > 2 if

K;j(X,L)=0 for i <p and j=>d.
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Secant varieties of nonsingular projective curves 623

Assume that X € P is projectively normal. Then R is the homogeneous
coordinate ring of X so that R satisfies the property Ny, if and only if X C P"
satisfies the property Ny , in the sense of [7]. In this case, it satisfies the
property Ny 1 if and only if the defining ideal of X in P is generated in
degrees < d. In general, the property Ny, , means that up to p stage, the i-th
syzygy of the minimal graded free resolution E4 (X, L) is generated in degrees
<i—1+d.
Consider now the evaluation map

ev: H(X,L)® Ox — L,

which is surjective since L is base point free. Denote by My, the kernel sheaf
of the map ev, then one obtains a short exact sequence of vector bundles

0— M, — HX,L)® Oy — L —> 0.

We use the following result to compute the Koszul cohomology group.

Proposition 2.1 (cf. [5, Proposition 3.2]) Assume that H X, L™ =0 for
i > 0andm > 0. Then one has

Kpq(X.L)y=H' X, AP"'M @ LI™Y) for q > 2.

We conclude this section by reviewing Castelnuovo—Mumford regularity for
a projective subscheme X C P". We say that Oy (resp. X C P") is m-regular
if H'(X, Ox(m —1i)) = 0 (resp. H'(P", Ixjpr (m —i)) = 0) fori > 0. We say
that X € P" is m-normal if the natural restriction map H°(P", Opr (m)) —
HY(X, Ox(m)) is surjective. Note that X C P is (m + 1)-regular if and only if
O is m-regular and X C P" is m-normal. By Mumford’s regularity theorem,
if Ox (resp. X C IP") is m-regular, then so is (m + 1)-regular. We denote by
reg(O) (resp. reg(X)) the smallest integer m such that Oy (resp. X C P")
is m-regular. Notice that reg(0x) = reg(R(X, Ox(1))). We refer to [4,5,10]
for more details on syzygies and Koszul cohomology of algebraic varieties.

3 Symmetric products, secant bundles, and secant varieties

In this section, we review relevant facts on symmetric products and basic
constructions of secant bundles and secant varieties. We also show some useful
results on secant bundles, which play important roles in proving the main
results of the paper. The reader may also look Bertram’s original paper [1,
Sections 1 and 2] for more details.

Throughout the section, we fix a nonsingular projective curve C of genus
g > 0 and a line bundle L on C. For an integer k > 1, we write the k-th
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624 L. Ein et al.

symmetric product of the curve C as Cy and the k-th Cartesian (or ordinary)
product of the curve C as CF. We set C = Cy = #J. Denote by

qr ck Cr

the quotient morphism from C* to Cy. It is a finite flat surjective morphism of
degree k!. We have the canonical morphism

Of+1: Ck x C — Ck—H

defined by sending (£, x) to & + x. It is a finite flat surjective morphism of
degree k + 1.

3.1 Lemmas on symmetric products

We begin with defining the secant sheaf on Cy4; associated to a line bundle
on C.

Definition 3.1 For an integer k > 1, let p: Cx x C — C be the projection to
C. For a line bundle L on C, we define the secant sheaf on Cy1 associated
to L to be

Eixs1,0 : =0k+1,x(p*L) = 0k41,+(0c, K L).

Notice that E41 1 is a locally free sheaf on Cy4 of rank £ 4 1 and the
fiber of Ey41,1 over & € Cy41 can be identified with Ho(s, Llg).

Next, we introduce several line bundles on the symmetric product Ci41,
which play a central role in this paper (see also [6,16] for the importance in
the gonality conjecture).

Definition 3.2 Let k > 1 be an integer.
: Xk . k .k
(1) Write L** : =L X.-.- XL = p{L®---Q p{L onC*, where p;: C* —

k times

C is the projection to the i-th component. The symmetric group &y, acts
on L¥ in a natural way: u € G sends a local section 5| ® - - - ® s; to
Su(l) ® -+ - ® S, (k- Then L¥* is invariant under the action, so descends
to a line bundle on Cy, denoted by Ty (L).

(2) Define &;41 to be a divisor on Ciy1 such that O¢,, (8k41) @ =
det (0k+1,*(ﬁcXck))*-

(3) Define Ni41.1 : =det Ex41, on Ciq.

(4) Define Agy1, * =Tk+1(L)(—=28k+1) on Cg1.

When k = 0, we use the convention that 7;(L) = E; 1, = L and 6; = 0.
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Secant varieties of nonsingular projective curves 625

Remark 3.3 Due to the lack of reference, we list several basic properties of
the line bundles defined above. Those are well known to experts, and are not
hard to prove. Let k > 1 be an integer.

(1) Nit1.L = Ti1 (L) (—8k+1)-

(2) H(Crp1, Tis1 (L)) = SMTHO(C, L) and H(Cri1, Niti (L)) =
AFTHO(C, L).

3) ‘];+1ﬁck+1(5k+l) = Oci+1(Ag41), where A, @ ={(x1,...,x¢) €
C*' | x, = x,} is the pairwise diagonal on C*¥*! and Ay
=D l<u<v<kt1 Dup- Whenk =1, we let Ay = 0.

4 07 10¢,, Bk+1) = (O¢ (8k) B Oc)(Dy), where Dy is the divisor on
Ci x C defined to be the image of the morphism C;_; x C — Cy x C
sending (&, p) to (§ + p, p).

5) ¢;Ti(L) = piL® --Q p;L = L%k Since gk« OUck contains O¢, as a
direct summand, 7 (L) is a direct summand of qk,*ka.

(6) For any two line bundles L and L» on C, one has T (L1) ® Tx(L2) =
Ti(L1 ® L).

(7) Given a point p € C, the divisor X, on Ciy is defined to be the
image of the morphism Cy — Ci41 sending &€ to & 4 p. It is ample,
and Oc,,,(Xp) = Tx41(Oc(p)). For any line bundle L on C, we have
Ti+1(L)|x, = Tk (L). (See the proof of Lemma 3.4.)

(8) The canonical bundle of Cyy is given by wc,,, = Tiy1(wc)(—8k+1) =
Niet+1,0c-

We now prove some useful lemmas.

Lemma 3.4 Let k > 1,m > 0 be integers. Fix a degree m + 1 divisor &,,+1
on C, and consider Cy_,, as a subscheme of Cy41 embedded by sending a
divisor & to & + &,,+1. Then one has

Ar+1.LlCem = Ak—m,L(=28p41)-

Proof Fix a point p € &,,11 so that we can write &,,+1 = &, + p for some
degree m divisor &, on C. Consider the embeddings Cr_,, C Cx € Ci41,
where C; € Ci41 is embedded by sending adivisor & to& + p and Cr_,,, € Ck
is embedded by sending a divisor & to & + &,,. Thus, inductively, we only need
to show that

Ar+1.Llcy = Ak,L(-2p)- (3.1)

Regard X, = Cj as a divisor in Ciy1. Recall by definition that Ay, =
Ti4+1(L)(—28k+1). Thus it suffices to prove the following: (1) Tj41(L) |X,, =
T (L) and (2) 5k+1|X,, = 8 + Tx(p). To see (1), we use the commutative
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626 L. Ein et al.

diagram
ck——ckxc
Clkl lffkﬂ
Xp(—> Ck-H ,
where the upper horizontal map is given by sending (xy, ..., x¢) to (xg, ...,

Xi, p). We can check that g’ (Tk+1,L1x,) = L%k which proves (1) as g}’ is an
injection on Picard groups. To see (2), we use the adjunction formula Ky, =
(Kce +Xplx,- Since K¢y | = Tiy1(Kc) — k41 and Kx, = T (K¢) — &,
we deduce that 5k+1|X,, = & + Xp|Xp. Note that Xplxp = Tk+1(p)|Xp =
Tx(p). Thus (2) is proved. O

Lemma 3.5 For any integer k > 1, the line bundle Oc,_ ,(—0y+1) is a direct
summand of the locally free sheaf qi1 .+ Ock+1.

Proof We prove the lemma by the induction on k. For k = 1, it is well known
that g2 + O 2 splits as O, ® O, (—85). Since the quotient map g4 1 : C*! —
Ci+1 factors through C x C, one only needs to show that O¢, | (—8k+1) is
a direct summand of oy 11,+(0c, (=) X Oc). Observe that O¢,_, (—8k+1)
is a direct summand of (04+1,+0c, xc)*(—8k+1). By the relative duality with
the relative canonical line bundle wc,xc/c,.; = Ocyxc(Dy), one obtains

(Ok+1,40¢,xC)* = 0k41,50¢, xc (D), s0
(011,500, ) (—8k+1) = Ok41,40¢, xc (D) ® Oc, (—8k41).

Recall that o/, Oy, (=8k+1) = (O, (—8k) ¥ Oc)(—Dy). By the projection
formula, we have

Ok+1,x0C,xc (D) @ Oc, (=8k+1) = 0k+1,x(Oc, (=) K O¢),
and thus, the lemma is proved. O

Remark 3.6 We give an alternative proof of Lemma 3.5 by group actions,
which may be of independent interest. Write the divisor § = 81 and the struc-
ture sheaf & = O, . Let 2y be the alternating subgroup of the symmetric
group Sy, 1, and f: C**! — Y be the quotient morphism under the natural
induced action of ;4 on C*¥*!. There is a natural degree two morphism
g: Y — (i, through which the quotient map ¢ = giq1: CKt! — Ciyg
factors, i.e., ¢ = g o f. Note that Y has quotient singularities, which are
rational singularities. Thus Y is Cohen—Macaulay, so the map g is flat and
g+Oy splits as 0 @ O(—8') for some divisor 8’ on Ciy1. We claim that §
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Secant varieties of nonsingular projective curves 627

is actually linearly equivalent to §. To see this, notice that f is unramified at
codimension one points. Then ¢g*0'(—28) = ¢* €' (—26§’), which means that
8 — & is a 2-torsion divisor. So if the genus of C is zero, then Ciy has no
nontrivial torsion line bundle and therefore &'(§ — ') = 0. If the genus of C
is positive, then since H*(€'(8)) = 0 and g.(g*0(8)) = OB) & O — &),
we see that 0(§ — 8') = ¢ if and only if H(g*&(8)) # 0. But this follows
from the fact that the section defining ¢*8 = A is invariant under the group
A+1, and therefore, it gives a nonzero global section of g*&'(§). Thus the
claim is proved. Finally, note that Oy is a direct summand of f,Ock+1. The
lemma then follows.

The following seems to be well known to experts, but we include the proof.

Lemma 3.7 For any integers k > 1 and i > 0, one has
H'(Cry1. Tip1 (L) = ST HO(C, L) @ AH'(C, L).
In particular, the following hold:

HO(Ciy1, Tesr1(we)) = SKFTHO(C, we),
H'(Crr1, Tir1(@c) = SFHO(C, we),
H'(Ciy1, Tiy1(wc)) =0 for i =>2.

Proof By [14, Proposition 1.1], we have
H (Ciq1, Tis1 (L)) = H(C*!, LBHSk1 forany i > 0,

where the right-hand-side is the invariant subspace under the action of Gy 1.
By Kiinneth formula, the vector space V : =H! (C*T!, L®¥*1) is a direct sum
of the subspace W : =Tk+t1-1g0(C, L) ® T'H'(C, L) with some other iso-
morphic summands, where the notation 7% means the a-times tensor products.
Write & = Gpy1-; X &; as the subgroup of &4 fixing the subspace W.
Then one has the following commutative diagram

WL>WQ5

|,k

V2 vk,

where @(x) = gy Xgee,., 800 and () = g X gew (). Since
every invariant cohomological class must be of the form

S+ 810+ g2(s) + -
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where s € W and g; are suitable elements in Gy 1, it follows that the right-
hand-side vertical map o.: W® — VSk+1 in the above diagram is surjective.
Hence W® = VSk+1_ But note that the action of the subgroup & is symmetric
on T¥1=1HO(C, L) part but alternating on T*H'(C, L) part of the space
W. Therefore, the invariant subspace H!(Ck+1, LB*+1)Skt1 is jsomorphic to
SKH=IHO(C, Ly ® AHY(C, L). O

The following theorem will be applied to checking the projective normality
of higher secant varieties of curves. Danila [3] considers the Hilbert schemes
of points on surfaces, but the proof smoothly works for the symmetric products
of curves.

Theorem 3.8 (Danila [3]) For integersk > 1 and 1 < £ < k + 1, one has
HO(Crs1. EZY, ) = HY(C, L)®",
where the isomorphism is Sy1-equivariant. In particular,

HO(Crs1, S*Exy1,1) = S'HY(C, L).

3.2 Secant varieties via secant bundles

We first recall the following definition.

Definition 3.9 We say that a line bundle L on C separates k points (or equiv-
alently, L is (k — 1)-very ample) for an integer k > 1 if the restriction map

HY(C, L) — HE, L|e)

is surjective for all § € Cy.

For instance, L separates 1 point if and only if L is globally generated, and L
separates 2 points if and only if L is very ample. By Riemann—Roch theorem,
it is elementary to see that if deg L > 2g + k, then L separates k + 1 points.
It can be also shown that if B is an effective line bundle and x1, ..., xg 42k 41
are general points on C, then B ( Zf:lz kol x,-) separates k + 1 points.

Directly from the definition of secant sheaves, one has H O(CH] s Ers1,L) =
HO(C, L). Recall that the fiber of Ex41, over £ € Cyy1is HO(&, L|s). We
then see that if L separates k + 1 points, then E,1 ;1 is globally generated.
Thus one obtains a short exact sequence of vector bundles

0 —> Myy1L — HYC,L)® OCis = Epy1p — 0,

where My 1,1 is the kernel bundle of the evaluation map ev: H O(C , L) ®
Ociyy — Ei+1,L on the global sections of Ex11,r.
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Definition 3.10 For an integer k > 0, define the secant bundle of k-planes
over Cy1 to be

BX(L) : =P(Exs1.1)

equipped with the natural projection g : BX(L) — Cpy1.

Suppose that L separates k + 1 points. Then the tautological bundle
OP(Eysy.1)(1) of B*(L) is also globally generated, and therefore, it induces
a morphism

B: BX(L) — P(H(C, L)).

Definition 3.11 For k > 0, assume that a line bundle L on the curve C sepa-
rates k+ 1 points. The k-th secant variety Xy = 2 (C, L) of C in P(HY(C, L))
is the image of the morphism g : BX(L) — P(H%(C, L)). We have a mor-
phism

Bi: BX(L) — %

We use the convention that B~!(L) = £_; = 0.

Geometrically, if the curve C is embedded by the complete linear system
|L| in the projective space P(H 0(C, L)), then the k-th secant variety X is
nothing but the variety swept out by the (k + 1)-secant k-planes of C. If L
separates k 4+ 1 points, then a (k 4 1)-secant k-plane of C is spanned by a
divisor & on C of degree k + 1.

Definition 3.12 Assume that a line bundle L on the curve C separates 2k + 2
points for an integer k > 0. Let m be an integer with 0 < m < k, and
X € X\ X;—1 be apoint. Since L also separates 2m + 2 points, the morphism
Bm: B™(L) — X, is an isomorphism over U (L). Hence x can be viewed
as a point in B™(L). Then projecting x by m,,: B™(L) — Cy,+1, one gets a
divisor &, 41, on C of degree m + 1. It is uniquely determined by x. We call
En+1.x the degree m + 1 divisor on C determined by x.

The above definition can be interpreted geometrically. The m-plane in
P(H(C, L)) spanned by &,41 x is the unique (m + 1)-secant m-plane of
C containing x.

Let x € X be a general point so that &, , contains distinct k 4 1 general
points of C. The classical Terracini’s lemma asserts that the projective tangent
space of X at x in P” is spanned by the projective tangent lines of C at the
points of &1, .. Hence the conormal space of X in [P at x is isomorphic to
HO(C, L(—2&k+1.x)). We will prove a more general version of this statement
in Proposition 3.13 below.
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For 0 < m < k, there is a natural morphism
et B™(L) x Cy—m —> BN(L)

defined in [1, p. 432, line-5], which we recall here. For any &,,+1 € Cy41
and &— € Cir—pm, let & @ =£,41 + &—m € Ciy1. Note that the (m +
1)-secant m-plane P(H O(ngm +1)) spanned by &,,11 is naturally embedded
in the (k + 1)-secant k-plane IP’(HO(L%)) spanned by &. Fiberwisely, ok m
maps IP’(HO(L|$mH)) X Ex—m into P(H”(L|g)). Next, we define the relative
secant variety Z,’; of m-planes in B¥(L) to be the image of the morphism
Qkm: B"(L) X Cr—ypy — Bk(L). If the number £ is clear from the context,
then we simply write Z,, instead of Z ,’jl Define

ukLy : =BHL\zf_ |,

which is the complement of the largest relative secant variety (see [1, p. 434])
The morphism «_,, is compatible with the morphisms B and B,,, i.e., one
has a commutative diagram

B"™(L) X Cp—py —2% s BR(L)

7T gm (L)J/ lﬁk

B"(L) —— P(HO(L)),

where 7 gm (1) is the projection.

It has been showed in [1, Lemma 1.4(a) and Corollary followed] that if
L separates 2k + 2 points, the morphism g : BX(L) — X is birational. In
particular, the restricted morphism

Belykry: UML) — P(HO(C, L))

is an immersion. Especially, %,,\ %,,_1 is isomorphic to U™ (L) for 0 <m <
k. It is clear that B;(Z,;,) = X,,, so one has a commutative diagram

Zy¢ AR -G Zi—1© BX(L)
Lk
Cc ¢ e Y16 PIAS P(HO(L))~

Itis easy to check that set-theoretically 8, ! (X)) = Z,,. The set of secant vari-
eties {X; }f.:(} gives a stratification of X, which in turn induces a stratification
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by relative secant varieties {Z; }f.‘:_é for B¥(L). Therefore, for a point x € Xy,
there exists a unique integer m with 0 < m < k such that x € ¥,,\%,,_1.

The following is the main result of this subsection. It plays an important
role in proving the normality of higher secant varieties of curves. The crucial
point is the computation of the conormal sheat N ;’;x JBR(L) The obstruction lies
on the fact that Z,, is quite singular. To overcome this difficulty, we work on
suitable nonsingular open subset of Z,,,.

Proposition 3.13 Fix an integer k > 1, and suppose that a line bundle L on
the curve C separates 2k + 2 points. Let m be an integer with 0 < m < k.
Then the following hold true:

(1) The commutative diagram

U™(L) X Cpoy —— . BR(L)

Tym (L)J Jﬂk

U™ (L) — P(HO(C, L)) =P

is a fiber product diagram.

(2) Let x € X,,\X—1 be apoint, &,,11 x be the unique degree m 4 1 divisor
determined by x, and F : =ﬂk_1 (x) be the fiber over x. Then one has the
following:

@) Fy = Ci_m-
(b) Ny, pr ®k(x) = HO(C, L(=28p+1,x).

© N7 sk, = Ekom L 2n41.0-

) Nj gy = OF" @ Erom(<2601.0)

(e) The natural morphism

0
TIP" —> H(Fy, N;x/Bk(L))
is surjective, and is an isomorphism if m #* k.
Proof (1) Let U : =P(H'(C, L))\X,,—1 which is an open subset of
P(H(C, L)), and V : =ﬁk_1 (U). Then we obtain a commutative diagram

U™(L) X Cpm —5 v

T[Um(L)J/ J/ﬂk

U™(L) ﬂ—>
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in which «;, x and B, are closed immersions by [1, Lemma 1.2]. Write Z :
=,3k_l(Um (L)). Then we see that U™ (L) x Cy—,, € Z. First, we claim that
set-theoretically, U" (L) x Cy_,, = Z. To see this, let x € ¥,;, € X; be a
point. Then every (m + 1)-secant m-plane containing x is spanned by a unique
degree m + 1 divisor &,41 on C. By letting &_,, run through all points in
Ck—m, one creates all possible (k 4 1)-secant k-plane containing x spanned by
&m+1+E&k—m. But such (m + 1)-secant m-planes are parameterized by 8, 1 (x).
Hence B, 1(x) is the image of ,, L(x) x Cy_,, under am k as sets. This proves
the claim. Next, we shall show that scheme-theoretically, U" (L) x Cx—,, = Z.
To this end, it is enough to show the natural morphism

Bt (Ngmeryy0) — Nomyxcym/v

of conormal sheaves is surjective. Take x € U"(L). By base change, it is
enough to show that

7TZM(L)(NEM(L)/U R k(x)) — Nt?M(L)ka,m/vhx}xck_m (3.2)

is surjective. Following notation in [1, Lemmas 1.3 and 1.4], we have

Nim(ryxCo /v 1063xChm = N, (X} x Ci—p) and

The morphism in (3.2) is the same as
P it Tgm()Ng, (x) —> Ng  ({x} X Cr—m) (3.3)

Hence by [1, Lemma 1.4(c)], p « is surjective, which completes the proof.
(2) (a) This follows directly from (1).
(b) We identify U™ (L) = ¥,,\X,—1. Recall that if x is a general point of
U™ (L) and &,,+1  contains distinct m+ 1 general points of C, then the classical
Terracini’s lemma implies that N;,,,/IP” Qkx) = HOC, L(—2&,41.%))-
Next write ¢ and mc,,,, to be the projections from C,,11 X C to the
indicated factors. Let Dy, 11 € Cy,+1 X C be the universal divisor over Cj,+1.
Consider the sheaf .# = 7¢,, | «(7w-(L)(=2Dy11)) on Cpy1. We have

o M \Uum (L)
\
0 —— N5 pr Dlgm@wy —— HO(C, L) ® Oymy — P (Os, W))|yn@wy — O,
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where P! (Os,, (1)) is the first principal part bundle. As the map 7 is generically
zero, it is zero. This implies that 7, . #Z = N;m /Pr(l)lum(L), and the result
follows.

(c) This is included in the proof of [1, Lemma 1.3] implicitly. For reader’s
convenience, we outline the proof here. For a positive integer i, write

Di;1=CxC; CCxCiyg
to be the universal family of divisors of degree i 4+ 1, embedded via (x, &) —
(x, x + &). In the space C x Cp41 X Cx—pm, we define two divisors Z,+1 and
D—m as follows
Dm+1 > =Dmy1 X Cr—py, and Zg_py 1 =Cryp1 X Dg—py.

They are nonsingular and meet transversally. Let 7¢, ¢, ,,» 7¢,_, be the
projections of C x Cj,41 X Cg_,, to the indicated factors, and 7€, gCm1,
7w Cm be the projections to the complement of the indicated factors. Then

B™(L) x Cr_,, can be realized as a projectivized vector bundle over C,, 1| X
Ck—n, with a projection 7, i.e.,

7: B"(L) X Ch—p = P(n*c(néL ® ﬁ@m+l)) —> Cipa1 X Cr—pi.

Let Opm(1)xc,_,, (1) be the tautological line bundle on P(n*c (i L®0g,,, )) .
Consider the vector bundle

H =1l (TEL ® Ogy_, (—2Dm1).
The key point proved in [1, p. 439] is that
Ny piylvmwxciy = TH @ Opn(1yxciy (= Dlum@)x i
Thus we obtain
N;m/Bk(L) F = ”*% ® ﬁBm(L)XCk_m (_1)|FX
as Fy S U™(L) X Cx—p. Since Opn(1yxc,_,,(—DIF, = Of, and n* 5 |F, =
Ek—m,L(~2¢,, ) Dy base change, the result follows immediately.
(d) By (1), we see the morphism

Br: Um(L) X Ck—m = Zi\Zim—-1 —> Um(L) = Zm\Em-1
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is a smooth morphism with fibers C_,,. Thus we have
N}z, = TiEn ® OF, = 62"

since X, is nonsingular at x and has dimension 2m + 1. In particular,
H O(N;X / Zm) = T Z,,. Consider the short exact sequence

*

*
0— N Fe/BK(L)

Zussryl e = N

— Ni,z — 0. (34

We claim that the above short exact sequence splits. To this end, consider the
diagram

TP(HY(C, L)) ————» T} %,

| I

HO(Fy, N ey — HO(Fy, N}, 17,)-
We see that the morphism HO(F,, N; /B"(L)) — HYF,, N;X/Zm) is surjec-

tive. Thus the short exact sequence (3.4) splits because NI”;X 7 is a direct sum
of OF,. Hence, we obtain

— _ D2m+1
Itx/Bk(L) - N;m/Bk(L)lFX ® N;f“x/zm = Ek—m, L(~211.0 © OF, S

as desired.
(e) Now we use (b), (d) and the sequence (3.4) to form the commutative diagram

0 ———— H%(C, L(—2&n11.1)) TP T S, — 0
0 —— H(Chom. Etmm L(=261.0) — H'(Fe. N} i) —— TFE — 0.
The result then follows immediately. O

Remark 3.14 In the proposition above, it is worth noting that Z,,\Z,,,—1 =
U™(L) X Cg—y and U™(L) = X,;\Z;—1. Therefore, we actually obtain a
fiber product diagram

Z\Zm—1—— B¥(L)

T

E\Zmo1—— P(HO(C, L))

which means that Z,,\ Z,,,— is the scheme-theoretical preimage of X,,\X,,,—1.
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3.3 Blowup construction of secant bundles

We keep assuming thatk > 1 anddeg L > 2g-+2k-+1. We use the blowup con-
struction of secant bundles established in [1, Propostitions 2.2, 2.3 and Corol-
lary 2.4]. For each 0 < m < k, we will consecutively blowup B” (L) along
smooth centers m-times to obtain smooth varieties

bl (B™ (L)), blo(B™(L)), ..., bl,,(B™(L)).

If m = 0, then there is nothing to blowup. We simply set blo(B%(L)) :
=B%(L) = C. Thus we now start with constructing bl (B™ (L)) form > 1.
Notice that the natural morphism o, o: BY%(L) x C,, — B™(L) is a closed
embedding for m > 1. We then define

bl;(B™(L)) : = blowup of B™(L) along B’(C) x Cy,.

If m = 1, then we are done. Otherwise, if m > 2, then suppose thatbl; (B" (L))
has been defined for any 1 <i < m — 1. By [1, Proposition 2.2] and its proof
(for instance, the claim in the last two lines on page 444 of [1]), we see that the
natural morphism bl; (Bi (L)) x Cp—i — bl;(B™ (L)) is a closed embedding.
We then define

bli+1(B™(L)) : = blowup of bl;(B" (L)) along bl; (B’ (C)) x Cp,_;.
This construction works for any integer m with 0 < m < k. We write
by : bl (B™(L)) —> B™(L)
the composition map of blowups. Denote by E; for 0 < i < m — 1 the
exceptional divisor on bl,,, (B"()) which is from the (i 4 1)-th blowup. Note
that B, (b, (E;)) = X;. Ithas been showed in [1] that in each stage of blowups,
the exceptional divisors always meet transversally with the center of the next

blowup. Therefore, the divisor Eg + - - - + E,;—1 on bl,,,(B™ (L)) has a simple
normal crossing support. As proved in [1], we have

EiNEjiz1N--NEp_1 =bli(BY(L)) x C"™" for 0<i<m~—1.
For example, E,_; = bl,_1(B" (L)) x C and Eg N --- N Ep_| =
blo(BY(L)) x C™ = C™*+! In particular, for m = k we get the following

diagram describing blowups of B¥(L):
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bl (BX(L))

bli—1 (B (L)) x CC—3 bl (B (L))

1 1

bla(B2(L)) x Crr— -y by (i N DL (BH(L))

bly (B (L)) x C—1C by (22)C . bl (Zg—1) ——— bl (BF (L))
BU(L) x ¢, C z,C z,C .C e BE(L)
| | | I8
C ¥ p3) Yi—1 k.

where bl; (Z;) is the strict transform of the variety Z; in bl; (BX(L)). The variety
on the left end of each row in the diagram is the center of the blowup for the

next step. If we focus on the final step of blowups of B¥(L), we obtain the
following digram

EogN---N Ej_1 EyN---NEp; EyN -+ N Ep_

blo(BO(L)) x C*C—3 bl (B! (L)) x A" bl (B2(L)) x k22— ... bl (B (1)) x € bl(BF(L))

N A

Ex—1

BO(L) x ¢, € z,C z,C 24 C BY(L)
c bl PN o k.

The following is the main result of this subsection. It plays a crucial role in
the proofs of the main theorems of the paper.

Proposition 3.15 Fix an integer k > 1, and let L be a line bundle on the curve
C withdeg L > 2g + 2k + 1. Recall that my, Bk(L) —> Cy41 is the canonical
projection. Then the following hold true:

(1) Zg—1 is flat over Cy4 1.
(2) Let H be the tautological divisor on BX(L) = P(Ek+1,L) so that
Ogrry(H) : =B Oz, (1). Then one has

Opgrry((k+ DH — Zg—1) = 7 Ak+1.L,

. 0 for i>0,0<t<k
Rits s Oy (CH = Zi-1) = {0 for i >0, £>k+1.
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(3) bi: blp(BX(L)) - BX(L)isa log resolution of the pair (BR(L), Zi—1)
such that

Ky (st 1y = bi(Kgiry + Zk-1) — Eo — E1 — - -+ — Eg1,
b{Z-1 =kEo+ (k= DEy + -+ Ex_1.

Proof We keep using the blowup construction of secant varieties.

(1) Recall that Z;_; is the image of the map ox—1 ¢ : Bk-1 (LyxC — Bk(L)
and og_1 x is birational to Z;_1 since L separates 2k + 2 points (see
[1, Lemma 1.2]). Hence Z;_; is an irreducible divisor in Bk(L), and
therefore, is Cohen—Macaulay. Now for any point & € Cy1, the fiber of
the map Zy_1 — Ci41 over &, at least set-theoretically, is the union of
the linear spaces spanned by the length k£ subschemes of £. Hence the
fiber over £ has dimension k — 1. By [15, 23.1], we see that Z;_ is flat
over Ck+1 .

(2) Take a general pointé € Cy41. Without loss of generality, we may assume
that & = x1 4+ - - - + xx41 is a sum of distinct £ + 1 points on C. Write
Fe i =m ! (&) the fiber over &. Note that F = IP¥, which can be regarded
as a linear subspace of P(H°(C, L)) spanned by xp, ..., Xk41- In other
words, Fr is the k-plane secant to C along x1, . . ., xx41. Write Fg the strict
transform of F¢ under the birational morphism by. Write A; = Fz N Z;
forO<i<k-—1.

We note that

Ao = F:NZy=F: N BYL) x Cr = {x1, X2, ..., X1},
Ay =F;nZ =%,
i#]j

A1 =FeNZp = U Xiy Xiy =+ Xig -
i1FiF e Fik

To obtain ﬁg, we blowup F¢ along Ao and then blowup along the strict trans-
form of A1, and so on. Now, the number of irreducible components of Ag_1
containing X;, - - - x;,, is (k Zi:nm ) forall 1 < m < k. This allows us to calculate
the total transform of A;_; in Fg, which in turn implies that

N k k—1 1
biZi = P Eo + P Ey/+. -+ 0 Er—q

=kEo+ (k—DE| + -+ Ex— (3.5)
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because I?,g meets all the divisors Ey, ..., Ex_ transversally and 175 NE,_1
is the union of strict transforms of the exceptional divisors over A, for all
1<m<k.

For a coherent sheaf .% (resp. a subscheme Z) on BX(L) and for a point
&' € Ciy1, we denote by F; (resp. Zg/) the fiber over £'. In this notation,
Zi—1,6 = Ag—1isaunionof k+1 distinct linear spaces Pk—1lin Bk(L)g = PPk,
Therefore Zy_1 ¢ is a degree k + 1 divisor in Bk (L)g. By the result (1), Zx_
is flat over Cy1, so the degree of Z;_ ¢ in Bk(L)g/ isk+1forallé’ € Cr.
This implies that

Ogipy(H — Zi—1)gr = Ope (€ — (k+ 1)) forall £ €Z.

Hence the function ho(ﬁBk(L)((k + 1DH — Z;_1)g) = 1 for all & € Cry1.
Thus

A: :nk,*ﬁBk(L)((k + 1)H — Zk,l)

is a line bundle on Cy 1. Since 7y : P(Ek+1,2) — Ck41 is the natural projec-
tion, we have

TEA Z Oy (k+ DH — Zi_y).

Similarly, if 0 < £ < k, then hi(ﬁBk(L)(EH — Zi—1)gr) = 0foralli > 0, and
if € > k+1,then h' Ok (LH — Z;_1)g) = Oforalli > 0. Thus we obtain
the second result in (2).

Next, we show that A = A1 1. We focus on the following commutative
diagram

CH1C_ bl (BY(L)) x C2C—— bly(B3(L)) x C—— bl (B*(L))

We have
b,f(r[;:A)|Ck+1 =q*A,
b;:((k +1DH — Zi—1)|cr+1
=k+1)H — (kEg+ (k—1DE; + -+ Ex—1)|ck+1,

@ Springer



Secant varieties of nonsingular projective curves 639

where by abuse of notation we write H = b} H|c«+1. Hence, on CK1 we
have

(k+1)H — (kEog+ (k — 1)E1 + -+ + Ex—1)| k1 ~1in ¢*A.

Recall that C¥*1isa complete intersection in bl (B*(L)) cut out by the divisors
Eo, Eq, ..., Ex_1. Thus we have

det N

Ck+1/b1, (BK(L)) = ﬁck‘Fl(_EO - El — Ek—l)-

: ~1
Using the formula det Nz"‘“/blk(Bk(L)) = Wy, (B (L)) k1 ® Wppys We get
— (E() + El + -4 Ek_l)lck-H = Kblk(Bk(L))|Ck+1 - ch+1. (36)

Recall that bl_k(Bk(L)) is obtained by consecutively blowing up the smooth
centers bl; (B' (L)) x Cj—; which has codimension k — i. Thus we find

— ((k— 1)E()+ : + 1 'Ek72 +O'Ek71) = _Kblk(Bk(L))+bl>ckKBk(L)‘ (37)
Combining (3.6) and (3.7), we obtain
—(kEy+k—-—DE; +---+ Ek_1)|ck+] = —Kck+1 + bZKBk(L)|Ck+1.

Recall that B¥ (L) = P(Ek+1.1) is a projectivized vector bundle over Cy1.
Thus we have

Kpepy = —(k+ 1)H + mj det Ex 1.1 + 77 Ky
= —(k+ DH + 7 T 1 (L) (—8k+1) + 70 T (K ) (=841

Finally, we compute

(k+1DH — (kEg+ (k= DEy + -+ - + Ex—1)|cik+1
=((k+1)H — Kci+1 + JT;:KBk(L)|Ck+1
= (k+1H — Kcirr + [—(k + D H + ¢ Tjy1 (L) (=8k+1)
+¢" Tir1(Kc)(=8k+1)]
= q" (Ti31(L)(—28k41)).

Thus ¢*A = ¢*(Tis41(L)(—28k41)). Since ¢*: PicCxyy — PicCF! s

injective, one gets A = Tjy1(L)(—28k+1) = Ak+1,1. This proves the first
result of (2).
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(3) Recall that Eg + - - - + Ej has a simple normal crossing support. Thus
the birational morphism by : bl (B¥(L)) — BX(L)isa log resolution of the
pair (BX(L), Zi_1). The remaining assertions follow from (3.5) and (3.7). O

4 A vanishing theorem on Cartesian products of curves

The aim of this section is to establish a vanishing theorem on the product of
a curve. It is inspired by Rathmann’s vanishing results in [16, Section 3]. A
similar result on C? has been proved by Yang [27].

Let us keep the notations introduced in previous sections. Let £k > 0 be
an integer. Recall that given a line bundle L on the curve C separating k + 1
points, there is a short exact sequence

00— Mk-i-l,L —> HO(C, L) X ﬁckﬂ —> Ek+l,L — 0
on C41 (see Sect. 3.2). Recall also the quotient morphism gj41: CKt1 —

Ci+1, the pairwise diagonal A, , @ ={(x1,...,xx) € Ccktl | x4, = x} on
CH 1 and Agyy = > t1<u<v<kt1Duw. We define the locally free sheaf

OQk+1,L * =@ 1 Mi41,L-

on the Cartesian product C¥*! of the curve C. Note that

k+1
Ok+1,L = D« ((ﬁckﬂ X L) (- Z Au,k+2>> .
u=1

where p: Ckt2 — Ck+1 s the projection to the first k + 1 components.

Theorem 4.1 Let C be a nonsingular projective curve of genus g, and L be

a line bundle on C. For an integer k > 0, let B = B'( Zf:lzﬂl x;) be a line

bundle on C, where B’ is an effective line bundle and xi, . . ., Xgi2k+1 are
general points on C. For integersi > 0 and j > 0, suppose that

degL >2g+2k+1—1i+4j.
Then one has
H(C* A Qs p @ L (= Agir)) = 0. 4.1

Proof Suppose that B' # O¢ so that b : =deg B’ > 0. We can write B’ =
Oc( Zf?: , x!), where x1, ..., x} are (possibly non-distinct) points on C. We
set By : =6"C(Zf:lzk+l x,-) and By : =B0(Zf=1 xl/) for1 < £ < b. Then By
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separates k + 1 points for each 0 < ¢ < b,and B, = B.For0 < ¢ < b — 1,
we have an exact sequence

/ Mk+1
0 — Ok+1,B, —> Qk+1,Biy) — Oc(—xy4 1) — 0,
which induces an exact sequence

0 — A Qky1,8, —> N Qk41,Bps

i1 ®k+1
— N7 k1,8, ® Oc(—x) ) — 0.

Then we see that the cohomology vanishing
Hi (Ck+1, /\] Qk+1,Bg+1 ® L‘Z’k+1( _ Ak+l)) — O
follows from the cohomology vanishing

H'(C*Y AT Qpr g, @ L (= Api1)) =0,
H: (Ck+1, /\]_le—l-l,B[ X L(—xé+1)|zlk+l( —_ Ak+1)) =0.

Note that deg L > 2¢ + 2k + 1 — i + j and deg L(—x; ) > 2g + 2k +
1 —i + (j — 1). For each k, by the induction on £, we can conclude that the
cohomology vanishing (4.1) for B = By (or equivalently, B’ = O¢) implies
the cohomology vanishing (4.1) for arbitrary B.

We now proceed by the induction on k. First, we consider the case thatk = 0
and B’ = O¢. Since B = ﬁc( ‘ig:ll xi) is base point free, we have an exact
sequence

0— Q1.3 — H%C,B)® 6c — B — 0.

By Riemann—Roch theorem, we find ho(C, B) =2, s0 O1.B= B~ lisaline
bundle. In this case, the required cohomology vanishing (4.1) for B = By is
nothing but

H'(C,L)y=0 when i=1, j =0, degL > 2g,
H' (C,L®B™')=0 when i=1, j=1, degL >2g + 1.

The first vanishing is trivial, and the second vanishing follows from thatdeg L ®
B~! > g. Thus the cohomology vanishing (4.1) holds for B = By, and so
does for arbitrary B when k = 0.

Suppose now that £ > 0. By the induction on k, for smaller k, we assume
that the cohomology vanishing (4.1) holds for arbitrary B. We consider the

case that B = By = (Zg+2k+1 )
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Assume that j = rank(Qky1,8) = k + 1. Note that det Qx4+1.5 =
(B~H®K+1(Ar41). Then the desired cohomology vanishing (4.1) is nothing
but

H (' (L@ B H™+y =0 for i > 0.
Sincedeg L > 2g +2k+1—i+ (k+ 1), we have
degL®B ' >2g4+3k+2—i—(g+2k+1)=g+k+1—i>g.
Thus H'(C, L ® B~') = 0. By Kiinneth formula, the above vanishing holds.

Assumethat j < rank(Qg+1,p). From the definition of Oy ;, one can deduce
a short exact sequence

k
0 —> Qk+1,B — Qk,B @ ﬁc — (ﬁck & B) <— Z Au,k—f—l) —> 0.
u=1

The Koszul complex then gives rise to a resolution of A/ Q1 p:

k
> (NP p R BT (2 > Au,m)

u=1
k

— (N0 p R BT (Z Au,kH) — A Qry1p = 0

u=1

(see also [16, Proposition 3.1]). Thus to show the required cohomology van-
ishing (4.1), it suffices to check that

Hitt (Ck—l—l’ ((/\HHle,B ® LR (L ® B—E—l))

k
((z +D) Aukgr — Ak+1>> =0 (4.2)

u=1
for £ > 0. In the sequel, we establish (4.2) under the assumption deg L >

2¢+2k+1—i+jand B =By = 0c(X57 x).
Consider the case thati + ¢ < 1,1.e.,i = 1, £ = 0. In this case, we have

deg L@ B ' >2g4+2k+1—14+j—(g+2k+D)=g—1+j>g—1
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so that H'(C, L ® B~!) = 0. Note that
k

DAkt =A== Y Ay =—A

u=1 I<u<v<k
Since we have
degL >2g+2k+ j>2g+2k—1+j=2g+2(k—-D+1-14+G +1),
it follows from the induction on k that

H'(C*, AT Qr g @ L (—Ap)) = 0.
By Kiinneth formula, we obtain the desired vanishing (4.2)
H' (CH (A Qs @ LB (—Ap) K (L ® B™Y) =0.

Consider the case thati + ¢ > 2. Let pry . : CK+1 — C be the projection
to the (k + 1)-th component. The fiber of

R'prr (M0 p @ LR (L@ BT4)

k
((z + DY Aupyr — Akﬂ))

u=1
overx € Cis
HY (C*, N 01 3 @ L0)®K (= Ap)). (4.3)

By considering the Leray spectral sequence for pry ,, to show the desired
vanishing (4.2)

gitt (Ck—i—l, ((/\jHHQk,B ® ka) X (L ® B—e—l))

k
((z +1)) Aukrr — Ak+1>> =0,

u=1

itis enough to prove that the cohomology (4.3) vanishes fori’ = i+£¢—1, i +¢.
For this i’, we have i’ > i — 1, so we find

deg L(bx)>2g +2k+1—i+ j+€>2g+2(k—1)+1—i'"+(+L+1).
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By the induction on k, we see that the cohomology (4.3) vanishes for i’ =
i +¢—1,i 4+ £. Thus we obtain the desired vanishing (4.2). Therefore, the
cohomology vanishing (4.1) for B = By follows, and so does for arbitrary B.
We complete the proof. O

5 Properties of secant varieties of curves

This section is devoted to the study of various properties of secant varieties
of curves. In particular, we prove the main results of the paper; Theorem 1.1
follows from Theorem 5.2 and Proposition 5.4, and Theorem 1.2 follows from
Theorems 5.2, 5.8, and Corollary 5.10.

We keep using notations introduced before. Recall that C is a nonsingular
projective curve of genus g embedded by a very ample line bundle L in the
space P(H(C, L)) = P". Consider the k-th secant variety Xy = Xx(C, L) in
P". As Oy, (1) is globally generated by the linear forms of IP", the evaluation
map on the global sections of s, (1) induces an short exact sequence

0 — My, — H%C,L)® 05, — 05, (1) — 0, (5.1)

where My, is the kernel bundle. Moreover, we also need to consider the (k—1)-
th secant variety >;_1 = X;_1(C, L), and use the following exact sequence

0— Izk—l\Ek —> ﬁgk —> ﬁgk_l —> 0, (52)

where Iy, |5, is the defining ideal sheaf of X;_; in X;. Recall the birational
morphism Sy : B¥(L) — % and the relative secant variety Zy_1 on BX(L).
Suppose that X is normal. By Zariski’s main theorem, Sk « O Bh(L) = Os,,
and hence,

ﬁk’*ﬁBk(L)(_Zk—l) = 12k71|2k'

The following lemma is a consequence of the vanishing theorem established
in Sect. 4.

Lemma 5.1 Let k > 0 and p > 0 be integers, and L be a line bundle on C.
Assume that

degL >2g+2k+ 1+ p.
Consider the k-th secant variety Ly = i (C, L) in the space P(HY(C, L)) =
P". If Ly is normal and Rlﬁk,*ﬁBk(L)(—Zk_l) = Oforalli > 0, then one

has

H (%, N M5, @ Iy, 5,k + 1) =0 for i >j—p,i>1, j>0.
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Proof Recallthat B¥(L) = P(Ek+1,1) with the natural projection 7y : BX(L) >
Ci+1. Let H be the tautological divisor on B¥(L) so that Opry(H) =
Opry(1) = BfOs,(1). One can identify HY(BX(L), Opi(1)(H)) =
HO(Cry1, Ext1,1) = HO(C, L). Write My : =B} My, By the snake lemma,
one can form the following commutative diagram

OHTF: ](—i—l,LHHO(CvL)®ﬁBk(L)*>T[Z<Ek+LL *}O

0 My HYC, L) ® Opkpy — Oy (H) —— 0
K 0
0,
(5.3)

in which the right-hand-side vertical exact sequence is the relative Euler
sequence. By Bott’s formula on projective spaces, we obtain

R'mi« A K =0 foralli >0andj > 0. (5.4)

Since X is normal and Riﬁk’*ﬁBk(L)(—Zk_l) = Oforalli > 0, we have

H (S, N M3, ® I, 5, (k + 1))
= H'(BY(L), NN My ® Opi(y(k+ DH — Z-1))  (5.5)

fori > 0 and j > 0. Now, the left-hand-side vertical exact sequence of (5.3)
induces a filtration

ANMy=F'>F 2>...0F/ DF/iTl =0
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such that F*/F = 7 A Myy1 0 ® AJTEK for 0 < € < j. By (5.4) and
the projection formula, we find

H'(BM(L), 7 A M1, ® ATEK)
= H (Crp1, AMy 1L @ s AMNVTEK) =0

fori >0, j >0and0 < ¢ < j — 1. We have ﬁBk(L)((k +1)H —Z;_1) =
) Ag+1,. by Proposition 3.15 (2). Thus we see that

H'(Cit, N Myg1,L ® Ags1,1) =0 fori = j—p, i =1, j =0, (5.6)
implies the cohomology vanishing

H' (BX(L), N\ My @ Opgr (1) ((k + DH — Zi_1)) =0
fori >j—p,i>1,j>0.

Hence by (5.5), to prove the lemma, it suffices to show the cohomology van-
ishing (5.6).

To this end, we consider the natural quotient map g4 1: C**! — Ciy1.
Note that

af 1 (N M1, ® Neqr,n) = A Qi ® L (= Aggr).

By projection formula, we have

/\'/Mk+1,L ® Nit1,L @ qkt1,5 0kt
= Qk+1,*( A Qkt1,L ® Lk ( - Ak+1))-

Recall that Ay41.1 = Nk+1,L(—§k+1). Lemma 3.5 implies that /\iMk+1’L ®
A1,z 1s adirect summand of A My 1,1 ® Ni41,1 ® Gk+1.%0cr+1. Thus the
desired cohomology vanishing (5.6) follows from

Hi(ck-‘rl’/\ijH’L ®L®"+1(—Ak+1)) =0 fori>j—p,i>1, j>0.

which is nothing but Theorem 4.1 because L( — ;g:]z kot xi) is effective for

general points xp, ..., Xg 12k +1 on C. We finish the proof. m]

5.1 Normality, projective normality, and property Ny,
The following is the main result of the paper. It is worth noting that all of the

claimed properties in the theorem are proved at the same time to make the
induction work.
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Theorem 5.2 Let k > 0 and p > 0 be integers, and L be a line bundle on C.
Assume that

degL >2g+2k+1+4 p.

Consider the k-th secant variety Xy = X (C, L) in the space P(HY(C, L)) =
P". Then one has the following:

(1) X is normal.

(2) R'BixOpi(py(—Zi—1) =0 foralli > 0.

(3) H (Zk, I, 5, (0) = H (2, Ox,(£)) =0 foralli > 0,¢ > 0.
(4) Xy C P is projectively normal, and satisfies the property Ni42 p.

Proof We proceed by the induction on the number k. The statements (1), (2),
(3) in the theorem are trivial for the case k = 0 while the statement (4) is
Green’s theorem. Thus, in the sequel, we assume that £ > 1 and the theorem
holds for smaller k. For anumber m withO < m < k,welet X, : =%,,(C, L).

(1) The proof here follows the proofs of Lemma 2.1 and Theorems D of
[21]. The question is local. For a closed point x € X, it is enough to
show that Xy is normal at x. As X\ Xx— is nonsingular, we assume that
x € Zpy\Zy—1 forsome 0 <m < k—1 Let§ : =£,11x € Cpy1
be the degree m + 1 divisor on C determined by x. The morphism g =
Bi: B¥(L) — = induces the morphisms for sheaves

ﬁ[pr ﬁzk( IB*ﬁBk(L)‘

Thus it suffices to prove that the natural morphism Opr — B Opk ;) is surjec-
tiveatx € X,,\X,—1. Let F : =,8_1(x) be the fiber over x. Then F = Cj_,,

(Proposition 3.13 (2.a)). By the formal function theorem, it is sufficient to
show that the induced morphism

, {iLn(ﬁ’]pr/me) — lim H(Opger)/15)

is surjective, where m = m, is the ideal sheaf of x € P" and I is the ideal
sheaf of F in B¥(L). Using the commutative diagram

0— —smém+ — o /mit G mt———0

| J |

0—— HOUL/ I —— HO Oy /1) —— HY(Oge ) /15 — -+
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and the induction on £, we further reduce to show that the map
ae: mé/m*t — HOUL 15
is surjective for all £ > 0. Note that

mé/m* = S4TFPY) and If 10T =S¢ /BN L)

The map o factors as follows

¢ Sar e 10
SYTP") — S'H (N;/Bk(L))

T, P

HO(S'NY g )

But Proposition 3.13 (2.e) says that the map «1: 7;P" — H*(N;/Bk(L)) is
an isomorphism. Thus in order to show that «, is surjective, it suffices to show
that the morphism 6, is surjective. To this end, we use Proposition 3.13 (2.d),

which says that

~ »®2m+1
Fipiy = OF @ EnomL-2)-

Thus the surjectivity of 6, would follow from the surjectivity of the morphism
S"HY(Ex—m,1.(—26)) —> H(S'Eg—m,1.(—2¢)) for0 <i <¢.

But this follows from the inductive hypothesis because deg L(—2&) > 2g +
2(k —m — 1) + 1 + p and therefore the secant variety X_,,—1(C, L(—2£))
in the space P(H O, L(—2¢&))) is normal and projective normality.

(2) The question is local. For a closed point x € X, we shall show that
R'B.Opipy(—=Zk—1)x = O foralli > 0. Since B: BX(L) — % is
isomorphic over x € ¥\ X;_1, we may assume x € X\ X,,_1 for some
0<m<k—1.Let&:=&,4+1, € Cpt1 bethe degree m + 1 divisor on
C determined by x. Let F : =8 ~1(x) be the fiber of B over x, and Ir be
the ideal sheaf of F in B¥(L). Recall that F = Cy_,, (Proposition 3.13
(2.a)). By the formal function theorem, it suffices to show that

lim H'(F, Opi(1)(~Zk-1) ® O/ 1p) = 0 fori > 0.
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To this end, we need to prove that
H'(F, Opt1y(=Zk1) ® Opipy/1f) =0 fori > 0and € > 1.
which can be deduced from the vanishing
H'(F, Oge1y(—Zic) ® I5 /15T =0 fori > 0and € > 0. (5.7)

One can calculate that Opi 1) (—=Zk—1)|F = Akt1.LlF = Ak—m,L(—2¢) by
Lemma 3.4 and that If;/lf,+1 = SZN;;/B,((L) for £ > 0, where N;/Bk(L) =
ﬁ;‘?zmﬂ @ Ek—m,1L(—2¢) by Proposition 3.13 (2.d). Thus vanishing (5.7) can
be reduced further to show

H' (Cr—m, Ak—m.L(—26) ® S Ek—m.1(—26)) =0 fori > 0and £ > 0. (5.8)

Now, as deg L(—2§) > 2g + 2(k — m — 1) + 1 + p, the line bundle
L(—2£)is very ample. Accordingly, we consider the secant varieties %, _, :
=%—m-1(C,L(=2§)) and %;  , : =X, ,(C, L(=2§)) in the space
HO(C, L(—2¢&)). By inductive hypothesis, the proposition holds for DA
Recall that B¥—"~1(L(—2¢)) = P(Ek—m,1(—2¢)) with the projection g, 1
to Cix—; and there is a birational morphism By_;,—1: Bk_’"_l(L(—Zs)) —
p ,/C_m_l. Write H to be the tautological divisor on Bk-—m—1 (L(—2£)). Notice
that

ﬂk—m—l,*ﬁBk*"ﬁl(L(—ZE))((k — m)H - Zk—m—Z) = Ak—m,L(—ZS)s
Bk—m—15O0pi-m-1(1(—28y)(=Zk-m—2) = Iy, s .

/

By applying the inductive hypothesis for ¥, ,, we have

Hi(Ck—m, S L(—28) ® Ak—m.L(~2¢))
= H{(Bk_m_l(L(—%))» O gh-m=1((—28y)LH — Zg—m—2))
=H' (S o Iz, iz, O

foralli > 0 and £ € Z. Hence, vanishing (5.8) follows from the vanishing for
Iy s which holds by the inductive hypothesis. This completes the

proof of (2).

(3) By the inductive hypothesis, we have H (Zp_1, Os, ,(£)) =0fori >0
and ¢ > 0. Grant for the time being the following claim:

H' (g, I, |15, (€)) =0foralli >0and 1 <€ <2k+2—i. (59)
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Chasing through the associated long exact sequence to the short exact sequence
(5.2), we obtain

H' (34, Os,(£)) =0foralli >0and 1 < ¢ <2k +2—1i.

In particular, Oy, is (2k 4 2)-regular, so the assertion (3) follows.
We next turn to the proof of the claim (5.9). Let H be the tautological divisor
on BXK(L) = P(Ex+1.1)- By (1), ¥k is normal. Thus we have

B« Oty (—Zk=1) = Iy 13, and 7 Opipy((k+ DH — Zg—1) = Ak41,L.
By (2), R' B« Opry(—Zk—1) = 0 for i > 0, so we obtain

H' (3, I, 5,(0) = H (BN(L), O (1) (LH — Z—1))
= H (Cry1, S Epy1.L ® Apyr1).

Thus (5.9) holds automatically wheni > k + 2 or 1 < £ < k. It only remains
toconsider thecasethat ] <i <k+landk+1 <€ <2k+2—1.
Now, the short exact sequence (5.1) induces a short exact sequence

0 — ATIMy, — AMTTHY(C, L) ® Os, — AN My, @ O5, (1) — 0.
Tensoring with Iy, | |x,, we obtain a short exact sequence

0— /\j+1M2k ® Isy_y1z — /\j—HHO(Ca L)® Iy, 5

—> /\jMz;k (034 12k7||zk(1) —> 0.
This gives a long exact sequence of cohomology groups

o — AMTTHO(C, L) @ H (54, Iz, 13, (0)
— H (i, ANV My, @ Iy, 15, (£ + 1))

— HTY (S, AT My, ® Is, 5, (0) — - -
It follows that the statement
H' (S, NN Mz, @ Iy y5,(0) =0 for i > 1, j=0andi > j—p  (x)

implies the corresponding statement ()¢ 1. Since Lemma 5.1 says that (s)z41
is true, we conclude that (), holds for £ > k + 1, i.e.,

H (Zp, N My, ®I5,_,5,(0)) =0 fori =1, j>0,i> j—pand £ > k+1.
(5.10)
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When j = 0, this implies (5.9) for i > 1 and £ > k + 1. This finishes the
proof of (3).

(4) We first show that X; € P" is projectively normal. By Danila’s theorem
(Theorem 3.8),

HO(P", 0pr (0)) = S'HO(C, L) = H'(BX(L), Ope 1))
= HO(Z, Ox,(0) for0 <€ <k+1.

For 0 < ¢ < k + 1, this implies that H*(P", I5, (¢)) = H' (P, I, (£)) = 0,
where Iy, = Ix,, pr is the defining ideal sheaf of X, in P" for 0 < m < k.
We have a short exact sequence

0— Iy, — Iny — Inyme — 0. (5.11)

We then obtain HO(P", Iy, _, (0)) = HO(Z, I, 5, (€)) for0 < € <k + 1.
For ¢ > k + 1, consider the following commutative diagram

SCTHO(C, L) @ HO (%, I, (k4 1)) ——— HO(Z, Is,_, (£))

J

SHTHOC, L) © HO (B, Iy sk + D) —— HO (S, I3, (0).

(5.12)
By (5.10), H' (%, Mg, ® Is,_,5,(£)) = O for £ > k + 1. Then the
multiplication map in the bottom of (5.12) is surjective, and hence, the
right vertical map of (5.12) is surjective. We then conclude that the map
HO(P", I, _,(£)) — HO(X, Is,_,|x, (0)) is surjective for £ > 0. By induc-
tion, Xx—1 € P” is projectively normal, so H (P, Is, ,(£)) =0forf > 0.
Therefore, by considering (5.11), we obtain H'!(P", Is,(£)) = 0for ¢ > 0,
which means that ¥; C IP” is projectively normal.

Next we show that ¥y C P satisfies Niq2 ,. Recall from (3) that
H' (%, Ox,(£)) =0fori > 1 and ¢ > 1. By Proposition 2.1, we only need to
show that H!'(Zy, A/Ms, ® Ox,(£)) =0for >k+land1 <j < p+1.
Consider the short exact sequence

00— /\jMEk ® IE/H\Ek —> /\jMEk —> /\]]\42](7l — 0.

Since degL > 2g + 14+ 2(k — 1) + 1 + p + 2, we may assume by induc-
tion that X1 C P" satisfies Ni41,p42. So by Proposition 2.1, we have
H' (Zk—1, A Mx, (£)) = 0for ¢ > kand 1 < j < p + 3. Combine
this with (5.10), we get H'(Z, /\ngk(E)) =0forl <j < p+1and
£ > k + 1 as desired. O
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Remark 5.3 We have seen in the above proof that Danila’s theorem (Theo-
rem 3.8) shows HO(P", Opr (£)) = HO(Zg, Os, (¢)) forall 1 < € < k + 1.
This in particular implies that the defining ideal of the k-th secant variety i
in P" has no forms of degree < k + 1.

5.2 Singularities

Proposition 5.4 Letk > 0 be an integer, and L be a line bundle on C. Assume
that

degL >2g + 2k + 1.

Consider the k-th secant variety ¥y = i (C, L) in the space P(H°(C, L)).
Then one has the following:

(1) Xk has normal Du Bois singularities.

(2) g = 0 if and only if there exists a boundary divisor I on Xy such that
(g, ') is a kit pair. In this case, X is a Fano variety with log terminal
singularities and of Picard rank one.

(3) g = 1 if and only if there exists a boundary divisor I on Xy such that
(Zg, ') is a log canonical pair but it cannot be a klt pair. In this case, X
is a Calabi—Yau variety with log canonical singularities.

In particular, g > 2 if and only if there is no boundary divisor I" on Xy such
that (X, ') is a log canonical pair.

Proof (1) By Theorem 5.2 (1), we know that X is normal. By proceeding by
the induction on k, we show that X; has Du Bois singularities. If k = 0, then
Yo = C so that the assertion is trivial. In the sequel, we assume that k > 1 and
the assertion (1) holds for kK — 1. By [13, Corollary 6.28], it suffices to check
the following:

(a) 2k—1 has Du Bois singularities.

(b) Zj_1 has Du Bois singularities. _

(©) Br«Opkr)(—Zk—1) = Iz, _y |5, and R' B «Opi () (—Zk—1) = O fori >
0.

By inductive hypothesis, (a) holds. For (b), consider the composition map
by: blp(BX(L)) — BX(L) of blowups (see Sect. 3.3). Recall from Proposi-
tion 3.15 (3) that

Ky, sy = b (Kpeery + Zi—1) — (Eo + -+ + Ex—1).
Thus the log pair (B¥(L), Zx—1) is log canonical, and hence, Z;_ has semi-

log canonical singularities. Then, by [13, Corollary 6.32], Z;_1 has Du Bois
singularities, i.e., (b) holds. Finally, (c) holds by Theorem 5.2.
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(2), (3) Recall that By : B¥(L) — ¥} is a resolution of singularities and X
is normal. For a general point x € ¥;_1\X;_2, we denote by Fy : =ﬁk_1(x)
the fiber of By over x. Note that F, = C. Let H be the tautological divisor
on BX(L) = P(Ej41.1). i-e., Opr(y(H) = Opip)(1). Recall from Proposi-
tion 3.15 (2) that Zy 1 ~jin (k + 1)H — 7 (T -1 (L) — 28¢41). We can easily
check that

Kpery + Zi—1 ~tin 73 (K + 8kv1) = 7 T 1 (K 0. (5.13)

We first prove (2). Suppose that C = P!, Itis well known that C,,, | = P+
For a sufficiently small rational number € > 0, by (5.13), we have

—(Kpky + (I —€)Zk—1) ~qlin €(k + DH
+70; (Tep1(—Kc — €L) + 2€8541).

We may assume that Tj1(—K¢c — €L) + 2€8,4+1 is ample on Ci41. Now,
BK(L) has Picard rank two, and the nef cone of BX(L) is generated by H and
¢ (Ti+1(—Kc — €L) + 2€8k+1). Thus —(Kpi(r) + (1 — €)Z¢—1) is ample.
By considering the log resolution of (BK(L), (1—€)Zy—1) in Proposition 3.15
(3), we see that (BX(L), (1 — €)Zx_1) is a klt pair. Hence B*(L) is of Fano
type. By [9, Theorem 5.1], ¥y is also of Fano type. Now, X has Picard rank
one. Therefore, it is a Fano variety with log terminal singularities. For the
converse, suppose that there exists a boundary divisor I' such that (3¢, I') is
a klt pair. By [12, Corollary 1.5], Fx = C is rationally chain connected, so C
is a rational curve.

We finally prove (3). Suppose that C is an elliptic curve. By (5.13), we have

Kpi(ry + Zi—1 ~iin 7 Te1(Ke) = 0.
Then the ‘only if’ direction immediately follows from [9, Lemma 1.1]. In
this case, we actually have Ky, = ﬁk’*(KBk(L) + Zr—1) = 0. Thus Xy is a
Calabi—Yau variety with log canonical singularities. For the converse, suppose

that there exists a boundary divisor I' such that (3, I') is a log canonical pair.
We have

Kpipy + Zk—1 + B 'T = Bi (Kg, + ) + (1 + @) Zg—1.

where a = a(Zy_1; X, I') > —1 is the discrepancy of the Bi-exceptional
divisor Zy_1. By restricting the above divisor to Fy = C, we obtain

Kc+ (B 'D)lc = —(1 +a)(L — 28),
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where & : =& , is the degree k divisor on C determined by x. Then

—Kc = (1+a)(L—28)+ B 'Dlc

is effective so that C is either a rational curve or an elliptic curve. This proves
the converse direction, and hence, we complete the proof. O

Remark 5.5 1t is easy to check that g = 0 if and only if X; has rational
singularities (cf. [24, Proposition 9]).

Remark 5.6 When g = 1, we see that X is Gorenstein with wy, = Oy,
(this is also proved in [26, 8.14]). In the next subsection, we show that X3 C
P(HY(C, L)) is arithmetically Cohen—-Macaulay, and therefore, its cone is
Gorenstein. For instance, one can deduce that the k-th secant variety X; of
an elliptic curve embedded by a degree 2k + 4 line bundle is a complete
intersection in P23,

Remark 5.7 In contrast to the smaller genus case, if g > 2, then ¥ is not
Q-Gorenstein, i.e., Ky, is not Q-Cartier. To show this, suppose that Ky,
is Q-Cartier. For a sufficiently divisible integer m > 0, we have mKgi ) —
maZi_1 ~in Bf (mKx,), wherea = a(Zy_1; Xg, 0) < —11is the discrepancy
of Zy_1. By restricting to ﬁ,:l(x) = Cy for any point x € C C X, we see
that

m(Ti(Ke + (1 —a)L —2(1 —a)x) — 2(1 — a)8 ~1in 0.

Thus we obtain 2m (1 — a)x ~yip 2m(1 — a)y for any points x, y € C, but it
is impossible.

5.3 Arithmetic Cohen—Macaulayness and Castelnuovo—Mumford

regularity

Theorem 5.8 Let k > 0 be an integer, and L be a line bundle on C. Assume
that

degL >2g + 2k + 1.

Consider the k-th secant variety Sy = Xx(C, L) in the space P(H(C, L)) =
P". Then one has the following:

(1) H (X, Ox, (=) =0for1 <i <2k and £ > 0.
(2) H*\(%y, 05,) = ST HO(C, we)*.

In particular, ¥y C P is arithmetically Cohen—Macaulay.
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Proof We firstrecall from Proposition 5.4 (1) that X has Du Bois singularities.
By [13, Theorem 10.42], we have

h (Zk, Os, (=) = h' (I, Og, (—1)) for 1 <i <2k and £ > 1.
Therefore, the result (1) is equivalent to the cohomology vanishing
H (%, Os,(—=€)) =0 for 1 <i <2k and £ =0, 1.
We now proceed by the induction on k. Note that the case with k = 0
is trivial. For k¥ > 1, we assume that X;_; C P" has results (1) and (2).

Concerning the cohomological long exact sequence associated to the short
exact sequence (5.2), we make the following:

Claim 5.9 (a) H' (X, I, |5, (—0)) =0for1 <i <2k —land ¢ =0, 1.
(b) The connection map t, of the cohomological groups

o — H* Y05, (—0) =5 H*(Is,_15,(—) —> -~

is an isomorphism for £ = 0, 1.

Granted the claim for the moment, using inductive hypothesis on ¥;_1 and
chasing through the long exact sequence associated to (5.2), we immediately
obtain from (a) that

H (%, Os,(=€)) =0 for 1 <i<2k—2 and ¢£=0,1.

Furthermore, we arrive at an exact sequence involving the connection map ty
as follows

0 —> sz—l(ﬁ):k(—ﬁ)) —> H2k_1(ﬁzk,l(—£)) = H2k(12k7]|2k(_£))
— H* (05, (—0) — 0.

The statement (b) then implies that
H (%, Os,(—0)) =0 for 2k —1<i <2k and £=0,1,

which proves (1).
For the result (2), chasing through the long exact sequence would yield

H* (3, 05,) = B (S, Ig, 150)-
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By Theorem 5.2 (2) and Serre duality, for any i and ¢, we have

H' (I, 5, (—0) = H (Opi (1, (—CH — Zr_1))
= H2k+1_i(ﬁ3k(L)(KBk(L) + Zk—l + EH))*,

where H is the tautological divisor on Bk (L) = P(Ek+1,1)-Recall from (5.13)
that

Kpiry + Zi—1 ~1in 73 (Kcpyy + 8kv1) = 7 Ty 1 (K ).

Thus we obtain

H Sk, Iy g5, (=) = ¥ (Crat, S“Errnr ® Tir1(@0)*. (5.14)
In particular, when i = 2k + 1, we find

H* N (Zy, O5) = H*H (5, 15,150 = HY(Cipr, Tirn (@)™

By Lemma 3.7, we get the result (2).

We now prove Claim 5.9 (a). Assume that £ = 0. As calculated in (5.14),
we have

H (S, Iy, 5) = HF 7 (Crgr, Tir1 (00))*.

Then Lemma 3.7 implies Claim 5.9 (a) for £ = 0. Assume that £ = 1. By
(5.14), we have

H (S, Iy 5, (1)) = H¥T (Cpit, Exgr.n ® Tig1 (00)™

Recall that we have a canonical morphism oy41: Cy X C — Cy41. We observe
that

Ok+1,4(Tk(@wc) M (0 ® L)) = Egy1,L ® Tit1(wc)-
Then we find
HY* 17 (Crpr, E1,180Tiki1 (00) = H¥H7H(Cex C, Ti(we)R(we®L)).
For1 <i <2k —1, wehave 2k +1 —i > 2. By Lemma 3.7 and Kll(Ifnlefl')l

formula, we get

H* 1= (Cp x C, Ti(we) R (we @ L)) = 0.
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This implies Claim 5.9 (a) for £ = 1.
We next turn to the proof of Claim 5.9 (b). By Theorem 5.2 (2) for both X
and X;_1 and calculation in (5.14), we recall that

H*(Is, 15, (=0)* = H (wpt(1)(Zk—1 + LH)) = H' (S Ex 1.1 ® Tig1(o)),
H*~ (05, (=0)* = HY(wpi-11)(Ze—2 + LH)) = H(SEy L ® Ti(wc)).

For £ = 0,by Lemma 3.7, we have h** (2, I, ,15,) = W2~ 1(Zk_1, O, ).
For ¢ = 1, by (5.15) and Kiinneth formula, we see that

HY (Ex11,1 ® Tit1(o0)) = H (Ti(we) K (we ® L))
= H (T (o)) ® H(wc ® L),

HY(Ey 1 ® Tr(oc)) = H)(Ti—1(wc) B (wc ® L))
= H%Ti—1(oc)) ® H(wc ® L).

(5.16)

Lemma 3.7 then implies that h2% (X, Iz, |5, (—0)) = h*~1(Zk_y, O,
(—£)). Thus, to show Claim 5.9 (b), it is sufficient to show that 7, is injective
for ¢ =0, 1.

To this end, recall that we have the following commutative diagram

Ok+1

Cy xC Cr+1

nkXidCT Tﬂk

B*1(L)y x ¢ 247N 70 BR(L)

Br |Zk—1 J/ J,Bk

Yi_ 11— .

Note that oz,’:’k_ 107 = ©pk-1(1)(Zk—2) Xwc and there is a natural injection

H(B¥"N(L), wgi-1(1)(Zk— + €H)) — H'(B¥" (L)
xC, wpr—1py(Zr—2 + LH)) K we).

Then we obtain the following commutative diagram

H'(S'Ey, ® Tiy1 (o)) HY(SYEx,L ® Ti(we) R wc)

HY g1y (Zi—1 + €H)) ——— HY(wz,_,(tH)) ———— HY (o1, (Ze—2 + LH)) K wc)

J

H¥* (I, |15, (—0)* ———— H* (05, | (—0)*

Hwpi-1(1)(Zi—2 + LH)).
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Itis enough to check that the map on the top is injective. This is clear for £ = 0.
For £ = 1, by (5.16) and Lemma 3.7, we have the following injection

HY (Ery1 ® Tiy1 (o)) = H(Er.L ® Ti(we)) < H'(Erp ® Tr(oc) K wc).

Thus the map on the top for £ = 1 is injective as required.
Finally, recall the well known fact that a projective variety X < P is
arithmetically Cohen—Macaulay if and only if the following hold:

(i) X < P" is projectively normal.
(i) H'(X, 0x(£)) =0for0 <i < dim X and ¢ € Z.

By Theorem 5.2 (3), (4) and the vanishing property (1) imply that X3 < P is
arithmetically Cohen—Macaulay. We complete the proof. O

Corollary 5.10 Let k > 0 be an integer, and L be a line bundle on C. Assume
that

degL >2g + 2k + 1.

Consider the secant variety Xy = X (C, L) in the space P(HY(C, L)) = P".
Then one has the following:

(1) h%(ws,) = dim K, _ox—1.2642(Zx, O, (1) = (§77).
(2) If g =0, thenreg(Ox,) =k + 1 and reg(Xy) = k + 2.
(3) If g = 1, thenreg(Ox,) = 2k + 2 and reg(Xy) = 2k + 3.

Proof (1) As Zy C P(H 0c, L)) =P is arithmetically Cohen—Macaulay by
Theorem 5.8, dualizing the minimal graded free resolution of R(X, Oy, (1))
and shifting by —r — 1 gives the minimal graded free resolution of the canonical
module. This implies that

dim K, o1 2k12(Zx, Oz, (1)) = h°(Zp, w5,).

By the Serre duality and Theorem 5.8, we obtain

k
W (g, wz,) = W (%, 05,) = dim ST HO(C, ) = (‘i i 1).

(2), (3) By Theorem 5.2 (3), (4), we see that
reg(Xy) =reg(Oyx,) + 1 <2k + 3.
By Theorem 5.2 (3) and Theorem 5.8 (1), we know that Hi(Zy, Osx,(0)) =0

for 1 <i <2k and £ € Z. Thus we only have to consider the (non)vanishing
of H* (2, O, (0)).
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For (2), suppose that g = 0. It is enough to show that H***1 (%, Os, (—k))
= 0 and H*T(Z, 05, (—k — 1)) # 0. By Proposition 5.4 (2), %
has log terminal singularities, and hence, it has rational singularities, i.e.,
R' By «Ogi(ry = 0 for i > 0. Then we obtain

H* (5, 05, (0) = H¥THBY(L), Opi ) (0) = HO(BX(L), wp (1) (—0)*.

Itis elementary to see that HO(B¥(L), wpe 1, (k)) = 0 but HO(BX(L), wpi(y)
(k+1)) #0.

For (3), suppose that g > 1. Itis enough to prove that H*+1(x,, Os,) # 0.
By Theorem 5.8 (2), we find H**+1 (2, 0x,) = S*TTHO(C, wc) # 0. We
finish the proof. O

5.4 Further properties of secant varieties

We have shown the main theorems of the paper. In this subsection, we discuss
further properties of secant varieties of curves.

Proposition 5.11 Letk > 0be aninteger, and L be a line bundle on C. Assume
that

degL >2g + 2k + 1.

Consider the k-th secant variety Sy = Yx(C, L) in the space P(H(C, L)) =
P". Then one has the following:

(1) The degree of Xy < P" is given by
min(k+1,g) R
degL —g—k—1i\/[g
deg ¥y = .
o8 Sk ; ( k+1—i )<z)

(2) The multiplicity of X at a point x € X, \Zy—1 with0 < m < k is given
by

mult, X = deg Xr——1(C, L(_2§m+1,x))
_mm(kz_:m’g) deglL—g—m—1—k—i\/(g
- k—m—i i)
i=0

Proof (1) follows from [19, Proposition 1]. In fact, deg X is the Segre class
Sk+1(El>ck+1,L)‘ For (2), notice that mult, X is the Segre class so({x}, Xr),

which is invariant under a birational morphism. Recall that F' : =8, ! x) =
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Cr—m and Np, piy = @’?2’”“ ® E{_y 1(-26,,,, ., (Proposition 3.13 (2.a,
2.d)). Thus we have

multy X = sk—m (F, Bk(L)) = Sk—m(Np k) = Sk—m(E;_m,L(_znger))-

Consider the secant variety Xx_,—1(C, L(—2&,+1x)) in the space
P(H(C, L(—=2&,,41.¢))). Then we obtain

sk—m(E]jfm,L(fzgmH’x)) = deg Yk—m-1(C, L(_zsm—&-l,x)),

which completes the proof by (1) since deg L(—2&,+1.x) > 2g +2(k —m —
1)+ 1. O

Next, we show that BX(L) is the normalization of the blowup of ¥ along
Y—1. For this purpose, we prove the following lemma.

Lemma 5.12 For any integer k > 0, one has the following:

(1) Ak, is globally generated if deg L > 2g + 2k.
(2) Ak, is globally generated and ample if deg L > 2g + 2k + 1.

Proof For a point p € C, consider the short exact sequence
0 — Apy1,0(=Xp) — Akt1,L — Ak+1,Llx, — 0.

Note that Agt1,.lx, = Ak.L(-2p) and Ag+1,0(=Xp) = Akt1,L(-p)- By
induction on k, we only need to show H! (Ck+1, Ak+1,L(—p)) = 0. Pulling
back the involved line bundle to C¥*! and applying Lemma 3.5, we can reduce
the problem to prove the following cohomology vanishing

HY(CH, L% (A1) =0 if degL > 2g + 2k — 1. (5.17)

If kK = 0, then (5.17) is clear. Assume k > 1. Then L separates k points. Let
p: CH1 — C* be the projection to the first kK components. Then

LT (A1) = Ok ® LB (—A)

so that H'(CK1 LB+ Ar ) = HY(CK, Qi ® L (—Ap). As
deglL > 2g + 2k —1 = 2g + 2(k — 1) + 1, the desired cohomology
vanishing (5.17) follows from Theorem 4.1, proving (1). For (2), notice that
Akt1,L = Aks1,L(—p) ® Tir1(Oc(p)). By (1), Agy1,L(—p) is globally gener-
ated, and we know that T4 1(O¢c(p)) is ample. Hence (2) follows. O
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Proposition 5.13 Letk > 0be aninteger, and L be a line bundle on C. Assume
that

degL >2g + 2k + 1.

Consider the k-th secant variety ¥ = % (C, L) in the space P(H(C, L)) =
P". Then one has the following:

(1) Bx: BX(L) — 3 factors through the blowup Bly, | ¥k of i along
Yk_1.

(2) BX(L) is the normalization of Bly,_, %i.

(3) B« Opk()(—mZi—1) = ng_llzkform > (0, where a denotes the integral
closure of an ideal sheaf a.

Proof Recall the projection 73 : BX(L) — Cjy1. We write Oprry(H) to be
the tautological bundle of B¥(L), which also equals to 4 Opr (1). For simplic-
ity, weset I : =Iy,|5,_, and Y : =Blyg, | %i.

(1) It is enough to show that the natural morphism 81 — Opk (1) (—Zk-1)
is surjective. Thus we only have to show I - Opk 1y = Opip)(—Zk—1).
As we have seen in Proposition 3.15 (2) that Ogi () ((k+ 1) H — Zy—1) =
7 Ax+1,L, we can form the following commutative diagram

HO(I (k + 1)) === H"(Opi(1,((k + DH — Zi_1))

| |

I Ogry((k+DH) —————— nfAgy1.L -

But Ag41,. is globally generated by Lemma 5.12. Therefore I -
Opry((k + 1)H) = 7" Ay1,1, which implies I - Opi(p) = Opi(y,
(—Zj—1) as desired.

(2) We have the following factorization

Y =Bly, | Xk

>

BX(L) — k.

Let E be the exceptional divisor on Y. As I (k + 1) is globally generated,
¢*Ox, (k + 1)(—E) is globally generated, and ¢*Ox, (k + 2)(—E) is
very ample. For any point x € X,,\%,,_1, the fiber ﬂ,;l(x) = Crim
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(Proposition 3.13 (2.a)). Let oy, : ,Bk_l(x) — (p_l(x) be the induced
morphism on fibers. We see that

(9" Os (k +2)(=E)) = Akp1,lcp = Ak—m—1, L(=28m41,2),

where &,,11 x 18 the unique degree m 4+ 1 divisor on C determined by x.
But the last line bundle is ample by Lemma 5.12. So oy  is finite, and
therefore, «, is finite. Hence BX(L) is the normalization of Y.

(3) This is a direct consequence of (2).

Finally, we construct secant varieties of curves which are neither normal
nor Cohen—Macaulay when deg L = 2g + 2k < 2g + 2k + 1. This shows
that the degree bounds on embedding line bundle in Theorems 1.1 and 1.2 are
optimal.

Example 5.14 Let k > 1 be an integer, and C be a nonsingular projective
curve of genus g > 2k + 2. Take an effective divisor D consisting of 2k + 2
general points of C such that 1°(C, &¢ (D)) = 1. Consider a very ample line
bundle

L =wc(D) with degL =2g + 2k.

Observe that L separates 2k + 1 points, and L separates 2k + 2 points except
of D. We show that the k-th secant variety

¥ = %k(C, L) S P(HY(C, L)) = Pst2*

is neither normal nor Cohen—Macaulay.

For any effective divisor £ on C, we denote by A¢ the linear space spanned
by & in the space P8 2k Let D; and D5 be two effective divisors of degree
k+ 1 such that D; 4+ D> = D. By Riemann—Roch, h°(C, L(—D — D»)) = g.
Thus Dy + D span a linear space A p, 4 p, of dimension 2k. This means that
Ap, and Ap, span Ap,1p, and intersect at a single point ¢ € ¥;\C. Let
Z be an effective divisor of degree k + 1, and suppose D1 + Z # D. Then
L separates Dy + Z, and therefore, the space A p,4z has dimension 2k + 1.
Hence Ap, N Az = . This implies that g € X\ ¥;_ and except of A p, and
A p,, there is no any other (k + 1)-secant k-plane of C passing through ¢. For
any two degree k + 1 effective divisors D} and D) such that D] 4+ D} = D, the
k-secant planes A D] and A D} intersect at a single point in X\ X;_;. Let Q
be the set of all such intersection points. Then Q contains only finitely many
points.

Consider the morphism S : B¥(L) — Zj. Letx € Yi\Zk—1. If x € Q,
then the fiber 8, ! (x) contains two points. If x ¢ Q, then the fiber 8, ! (x)
contains only one point y. In this case, we can show that the induced morphism
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#. 2
’Bk . TX*IP)r —> mBk(L)’y/mBk(L)’y

Bk 1s unramified at y, so it is isomorphic over x. In conclusion, B is an
isomorphism over 3\ (Zx—1 U Q). Then we have the short exact sequence

on cotangent spaces is surjective. Therefore

0— 05, — ﬁk,*ﬁgk@) — 2 — 0,

where the support of the quotient sheaf 2 has zero-dimensional components
supported on Q. This means that X is not normal at any pointin Q. Moreover,
H' (%, Os,(=£)) # O for all £ > 0, so X is not Cohen—Macaulay.

6 Open problems

To conclude this paper, we present a number of open problems. We keep using
notations introduced before; thus C is a nonsingular projective curve of genus
g embedded by a very ample line bundle L in the space P(H°(C, L)) = P".

One of critical steps in the proof of the main results is to establish the Du
Bois type condition (1.2). We have shown that B*(L) is the normalization of
the blowup of Xj along X;_;. For better understanding of the geometry of
B*(L), one observes thatif k = 1, then the variety BY(L) isindeed the blowup
of ¥ along the curve C. This leads us to ask the following:

Problem 6.1 Can the secant bundle B¥(L) be realized as the blowup of X
along ¥ _1?

The Danila’s theorem (Theorem 3.8) handles the initial steps of projec-
tively normality of secant varieties. It gives precise values of global sections
of the symmetric products of the secant bundle E;11 ;. On the other hand,
the techniques used in Sect. 4 may offer an alternative approach to compute
cohomology groups of the symmetric products of E41 1. As an independent
question, we wonder if one can deal with the following:

Problem 6.2 Compute cohomology groups of the symmetric products of the
secant bundle E41 1 on Cg41.

If we view the classic theorem of Ein—Lazarsfeld [4] as a higher dimen-
sional generalization of Green’s result in [10], then we may ask a similar
generalization of the results of the present paper to higher dimensional vari-
eties. For a nonsingular projective variety X, consider the adjoint line bundle
L = Kx + dA where A is an ample line bundle and d is a natural number.
For d sufficiently large, L embeds X into a projective space. We expect that
in this case the secant varieties of X would have nice geometric and algebraic
properties.
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Problem 6.3 Extend the results of present paper to secant varieties of a non-
singular projective variety X embedded in a projective space by a sufficiently
positive line bundle.

This problem has two major essential difficulties. First of all, there is no a
good construction involving secant bundles as the one in Bertram’s work [1].
Secondly, the projectively normality of X embedded by the adjoint line bundle
is still unsolved. One may further impose the condition that A is very ample
s0 [4] can be applied or may follow the idea in [5] to study the asymptotic
behavior of secant varieties. However, the surface case seems a reasonable
starting point toward the arbitrary dimensional case.

Problem 6.4 Study secant varieties of a surface X embedded by the adjoint
line bundle Ky + d A where A is ample and d is a large integer.
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