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Abstract
We compute global sections of tensor products and symmetric products of several secant bun-
dles of a nonsingular projective curve. We closely follow the approach of Gentiana Danila’s
work on the similar problem for nonsingular projective surfaces.
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1 Introduction

Throughout this paper, we work over the field C of complex numbers. In the recent work
[2] on secant varieties of curves, we use a result [2, Theorem 3.8] on symmetric products of
secant bundles of curves without including a proof because one can easily adapt the proof
given by Danila in [1] for the same result for surface case. However, it would be helpful to
work out the details of the proof of [2, Theorem 3.8] in order to complete the literature even
though the original idea is certainly due to Danila. We also slightly generalize this result to
allow the mixed case involving several secant bundles.

Let X be a nonsingular projective curve, and fix an integer n ≥ 1. Write H := Hilbn X
to be the Hilbert scheme parameterizing length n subschemes of X . Although H is the same
as the n-th symmetric product Xn of the curve X , we use the notation Hilbn X in this paper
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164 L. Ein et al.

to be consistent with the notation used in [1]. Let Z be the universal family over H so that Z
is the incidence subscheme in the product H × X . One has the following diagram

Z

α

β
X

H

where the morphisms α and β are the restriction onto Z of the projections of H × X to the
components, respectively. For a line bundle L on X , the secant bundle EL associated to L is
defined by

EL := α∗(β∗L)

which is a rank n locally free sheaf on the Hilbert scheme H . For any ξ ∈ H , the fiber EL

over ξ is H0(ξ, L|ξ ). Note also that H0(H , EL) = H0(X , L).
Let L = {L1, . . . , Lk} be a collection of (not necessarily distinct) k line bundles Li on

X with k ≥ 1, and P = {S1, . . . , Sm} be a partition of the set {1, . . . , k} of length m with
m ≥ 1. For each 1 ≤ i ≤ m, we set

L Si :=
⊗

α∈Si
Lα

which is a line bundle on X . The following is the main theorem of this paper, generalizing
[2, Theorem 3.8].

Theorem 1.1 Let X be a nonsingular projective curve, and H := Hilbn X be the Hilbert
scheme of n points on X with n ≥ 1. LetL = {L1, . . . , Lk} be a collection of (not necessarily
distinct) k line bundles Li on X with k ≥ 1, and P = {S1, . . . , Sm} be a partition of the set
{1, . . . , k} of length m with m ≥ 1. If m ≤ n, then one has

H0(H , EL S1 ⊗ · · · ⊗ EL Sm ) = H0(X ,L S1) ⊗ · · · ⊗ H0(X ,L Sm ).

In particular, for a line bundle L on X and for 1 ≤ k ≤ n, one has

H0(H , E⊗k
L ) = H0(X , L)⊗k .

Here we state a useful consequence of the theorem. A special case of the following
corollary is used in [2] to show the projectively normality of secant varieties of nonsingular
projective curves.

Corollary 1.2 Let L1, . . . , Lm be line bundles on a nonsingular projective curve X with
m ≥ 1, and H := Hilbn X be the Hilbert scheme of n points on X with n ≥ 1. For integers
k1, . . . , km ≥ 1 with

∑m
i=1 ki ≤ n, one has

H0(H , Sk1EL1 ⊗ · · · ⊗ Skm ELm ) = Sk1H0(X , L1) ⊗ · · · ⊗ Skm H0(X , Lm).

In particular, for a line bundle L on X and for 1 ≤ k ≤ n, one has

H0(H , Sk EL) = Sk H0(X , L).

The proofs of the main theorem and its corollary are given in the next section.
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2 Proof of themain results

Let X be a nonsingular projective curve, H := Hilbn X be the Hilbert scheme of n points on
X with n ≥ 1, and α : Z → H be the universal family with the projection β : Z → X . For
an integer k ≥ 1, let

Xk := X × · · · × X︸ ︷︷ ︸
k times

be the k-th ordinary product of X with projection pi : Xk → X to the i-th component of Xk

for each 1 ≤ i ≤ k. Define the k-th fiber product

(Z/H)k := Z ×H · · · ×H Z︸ ︷︷ ︸
k times

.

with projection qi : (Z/H)k → Z to the i-th component of (Z/H)k for each 1 ≤ i ≤ k. We
may regard (Z/H)k as the incidence subscheme of H × Xk , and we have set-theoretically

(Z/H)k = {(ξ, x1, . . . , xk) | xi ∈ ξ, ξ ∈ H} ⊆ H × Xk .

One obtains a diagram

(Z/H)k

αk

βk
Xk

H

where αk and βk are induced by α and β respectively in natural way. Notice that αk and βk

are surjective.

Proposition 2.1 One has the following:

(1) The map αk is finite, flat, and generically smooth.
(2) The scheme (Z/H)k is Cohen-Macaulay and reduced.
(3) For k line bundles L1, . . . , Lk on X, one has

αk,∗
(
β∗
k (p∗

1L1 ⊗ · · · ⊗ p∗
k Lk)

)
= EL1 ⊗ · · · ⊗ ELk .

Proof (1) When k = 1, clearly α1 = α : Z → H is flat and generically smooth. For any
k ≥ 2, we have a commutative diagram

(Z/H)k

qk

γk

αk

(Z/H)k−1

αk−1

Z
α

H

where γk : (Z/H)k → (Z/H)k−1 is the projection to the first k − 1 components of (Z/H)k .
Note that (Z/H)k = (Z/H)k−1 ×H Z . By induction, we may assume that αk−1 is finite,
flat, and generically smooth. By base change, qk is finite, flat, and generically smooth, and
so is αk = α ◦ qk .
(2) The assertion (1) immediately implies that (Z/H)k is Cohen-Macaulay. In particular,
(Z/H)k satisfies S1 condition. The generic smoothness of αk implies that (Z/H)k satisfies
the condition R0 so that it is reduced.
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(3) This is a direct consequence of Künneth formula. Alternatively, one can prove it by
induction as follows. When k = 1, it is trivial. We assume that k ≥ 2 and

αk−1,∗β∗
k−1(p

∗
1L1 ⊗ · · · ⊗ p∗

k−1Lk−1) = EL1 ⊗ · · · ⊗ ELk−1 .

We have

β∗
k (p∗

1L1 ⊗ · · · ⊗ p∗
k−1Lk−1 ⊗ p∗

k Lk) = γ ∗
k β∗

k−1(p
∗
1L1 ⊗ · · · ⊗ p∗

k−1Lk−1) ⊗ q∗
k β∗Lk

Note that qk,∗γ ∗
k F = α∗αk−1,∗F for any coherent sheaf F on (Z/H)k−1 by base change.

By the projection formula, we have

αk,∗
(
β∗
k (p∗

1L1 ⊗ · · · ⊗ p∗
k−1Lk−1 ⊗ p∗

k Lk)
)

= α∗qk,∗
(
γ ∗
k β∗

k−1(p
∗
1L1 ⊗ · · · ⊗ p∗

k−1Lk−1) ⊗ q∗
k β∗Lk

)

= α∗
(
qk,∗γ ∗

k β∗
k−1(p

∗
1L1 ⊗ · · · ⊗ p∗

k−1Lk−1) ⊗ β∗Lk

)

= α∗
(
α∗αk−1,∗β∗

k−1(p
∗
1L1 ⊗ · · · ⊗ p∗

k−1Lk−1) ⊗ β∗Lk

)

= αk−1,∗β∗
k−1(p

∗
1L1 ⊗ · · · ⊗ p∗

k−1Lk−1) ⊗ α∗β∗Lk

= EL1 ⊗ · · · ⊗ ELk−1 ⊗ ELk .

as desired. 
�
Definition 2.2 Let P and Q be two partitions of a set. We say that P is a refinement of Q
and we write P ≺ Q if P can be obtained by splitting sets in Q by finitely many steps.
Equivalently, P ≺ Q if every set in P is a subset of a set in Q. In this case, we also say that
Q is a coarsening of P .

Example 2.3 Consider a partition P = {{1, 2}, {3}, {4}} of the set {1, 2, 3, 4}. We list all
coarsening of P as follows:

{{1, 2, 3}, {4}}
≺

P = {{1, 2}, {3}, {4}} ≺

≺

≺
{{1, 2, 4}, {3}} ≺ {{1, 2, 3, 4}}

{{1, 2}, {3, 4}}

≺

In the rest of this section, we use the following notations. For an integer k ≥ 1, let

L = {L1, . . . , Lk}
be a collection of (not necessarily distinct) line bundles Li on X , and

P = {S1, . . . , Sm}
be a partition of Nk := {1, 2, . . . , k} of length m ≤ n so that Si are pairwise disjoint subsets
of Nk and S1 ∪ · · · ∪ Sm = Nk . For a set S, we denote by |S| the number of elements in S.
For each 1 ≤ i ≤ m, we set L Si := ⊗

α∈Si Lα, which is a line bundle on X .
The partition P = {S1, . . . , Sm} of Nk can be used to define a subscheme of the variety

Xk . All such subschemes arose from partitions induce a stratification of Xk , which further
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induces a stratification of the reduced scheme (Z/H)k . To see this, for each Si ∈ P , we
define the following closed subscheme of Xk :

�Si :=
{
Xk if |Si | = 1,
{(x1, . . . , xk) | xa = xb if a, b ∈ Si } if |Si | ≥ 2.

Then we define a closed subscheme �P of Xk associated to the partition P as

�P := �S1 ∩ · · · ∩ �Sm .

We also define an open subscheme �◦
P of �P as

�◦
P := {(x1, · · · , xk) ∈ �P | xa �= xb if a ∈ Si , b ∈ S j and i �= j}.

It is clear that �P ∼= Xm and �◦
P is isomorphic to (Xm)◦ that has closed points with distinct

coordinates. Then the family

{�P | P is a partition of Nk}
gives a stratification of Xk . It is easy to see that for a partition Q, if P ≺ Q, then �Q ⊆ �P .

Example 2.4 Consider X3 with k = 3. We have four partitions of N3: P1 = {{1}, {2}, {3}},
P2 = {{1, 2}, {3}}, P3 = {{1, 3}, {2}}, P4 = {{2, 3}, {1}}, P5 = {{1, 2, 3}}. Then we have
�P1 = X3,�P2 = �1,2, �P3 = �1,3, �P4 = �2,3, �P5 = �1,2,3.

Now,we showhow the stratification of Xk induces a stratification of (Z/H)k , onwhich our
cohomological computation will be done. For any partition P of Nk , we define subschemes
of (Z/H)k :

W ◦
P := β−1

k (�◦
P ) and WP := W ◦

P .

Then the family

{WP | P is a partition of Nk}
gives a stratification of (Z/H)k .

Proposition 2.5 One has the following:

(1) The restriction morphism

βk |W ◦
P

: W ◦
P −→ �◦

P

has fibers set-theoretically equal to Hilbn−m X.
(2) WP is irreducible of dimension n, and βk(WP ) = �P .
(3) βP,∗OWP = O�P where βP := βk |WP .

Proof Recall P = {S1, . . . , Sm}. Let x = (x1, . . . , xk) ∈ �◦
P be a closed point so that

each xa is a closed point of X and xa �= xb if a ∈ Si , b ∈ S j and i �= j . Take m dis-
tinct points on X in the coordinates of x to form a degree m divisor ξx ∈ Hilbm X . Now,
αk |(βk |W0

P
)−1(x) : (βk |W 0

P
)−1(x) → H is an injective map, and

αk
(
(βk |W 0

P
)−1(x)

) = {δ + ξx | δ ∈ Hilbn−m X}.
This proves (1). Thus W ◦

P is irreducible of dimension n, and then, (2) follows immediately.
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To prove (3), we consider the Stein factorization WP
f→ �′ h→ �P of the morphism

βP . Then f∗OWp = O�′ , and h is a finite morphism. As we showed above that a generic
fiber of βP is connected, the morphism h is birational and finite. But �P is nonsingular, and
therefore, h must be an isomorphism. This proves (3). 
�

Remark 2.6 One should note that the fibers of the morphism βP : WP → �P are not all
equal to Hilbn−m X . Fibers over the points in �P − �◦

P could have different dimensions.

Proposition 2.5 says that the partition P = {S1, . . . , Sm} of Nk gives an irreducible
component WP of (Z/H)k . Let

W+
P :=

⋃

P≺Q

WQ and β+
P := βk |W+

P
.

It is easy to see that both morphisms

β+
P : W+

P −→ �P and βP : WP −→ �P

are surjective. We define a function lP for the partition P by

lP : {1, . . . , k} −→ {1, . . . ,m}
such that l(i) = j if i ∈ S j . Certainly the function l p depends on the ordering of the sets S j

in P . But it should be clear in the rest of the paper that this is not essential. Then we obtain
a closed embedding

ψP : Xm −→ Xk, (x1, . . . , xm) �−→ (xl(1), . . . , xl(k)).

The map ψP : Xm → ψP (Xm) = �P is an isomorphism. Then ψP induces a closed
embedding

	P : H × Xm −→ H × Xk, (ξ, x1, . . . , xm) �−→ (ξ, xl(1), . . . , xl(k)).

Proposition 2.7 One has the following:

(1) 	P |(Z/H)m : (Z/H)m → 	P ((Z/H)m) = W+
P is an isomorphism, and it fits into the

following commutative diagram:

W+
P

β+
P

αk |W+
P

�P

(Z/H)m
βm

αm

	P
Xm

ψP

H

H

(2) There is a one-to-one correspondence between the coarsenings of P and the irreducible
components of W+

P .
(3) One has

αk |W+
P ,∗((β

∗
k (p∗

1L1 ⊗ · · · ⊗ p∗
k Lk))|W+

P
) = EL S1 ⊗ · · · ⊗ EL Sm .
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(4) One has

βP,∗
(
β∗
k (p∗

1L1 ⊗ · · · ⊗ p∗
k Lk)

)|WP = (p∗
1L1 ⊗ · · · ⊗ p∗

k Lk)|�P

= p∗
1L

S1 ⊗ · · · ⊗ p∗
mL

Sm

where we identify �P with Xm via the morphism ψP in the second identification.

Proof (1) and (2): Observe that any coarsening Q of P can be obtained by combining finitely
many sets in P . In this way, there is a one-to-one correspondence between the coarsenings
of P and the partitions of the set Nm = {1, . . . ,m}. To prove the results (1) and (2), it is
sufficient to establish that there is a one-to-one correspondence between the partitions ofNm

and the irreducible components of (Z/H)m .
Let P ′ be a partition of Nm . Applying Proposition 2.5 (2) with k = m, we see that the

subvariety WP ′ of (Z/H)m is an irreducible component of (Z/H)m . It is clear that different
partitions give rise to different irreducible components. Conversely, let W be an irreducible
component of (Z/H)m . Since (Z/H)m has only dimension n irreducible components, there
exists a dense open subset U of W such that αm(U ) is dense in H and U does not touch any
other irreducible component of (Z/H)m . Let ξ ∈ H be a general point so that it consists of
n distinct points of X . Take any (ξ, x1, . . . , xm) ∈ α−1

m (ξ) ∩ U . We then obtain a partition
P ′ by the rule that i and j belong to the same subset of Nm if and only if xi = x j . Observe
that βm(ξ, x1, . . . , xm) = (x1, . . . , xm) ∈ �◦

P ′ . This shows that the point (ξ, x1, . . . , xm) ∈
WP ′ . Since U is an open subset of an irreducible component W of (Z/H)m , it follows that
W = WP ′ .
(3) By (1) and Proposition 2.1 (3), we have

αk |W+
P ,∗((β∗

k (p∗
1L1 ⊗ · · · ⊗ p∗

k Lk))|W+
P
) = αk |W+

P ,∗β
+,∗
P ((p∗

1L1 ⊗ · · · ⊗ p∗
k Lk)|�P )

= αm,∗β∗
mψ∗

P

(
(p∗

1L1 ⊗ · · · ⊗ p∗
k Lk)|�P

)

= αm,∗β∗
m(p∗

1L
S1 ⊗ · · · ⊗ p∗

mL
Sm )

= EL S1 ⊗ · · · ⊗ EL Sm .

(4) By considering the commutative diagram

(Z/H)k
βk

Xk

WP
βP

�P

we have
(
β∗
k (p∗

1L1 ⊗ · · · ⊗ p∗
k Lk)

)|WP = β∗
P

(
(p∗

1L1 ⊗ · · · ⊗ p∗
k Lk)|�P

)
.

Since βP,∗OWP = O�P by Proposition 2.5 (3), the first identification follows. Now, the
second identification is clear. 
�

Proposition 2.8 Let s ∈ H0(W+
P , (β∗

k (p∗
1L1 ⊗ · · · ⊗ p∗

k Lk))|W+
P
) be a section. If s|WP = 0,

then for any coarsening Q of P, one has s|WQ = 0. In particular, the restriction map

H0(W+
P , (β∗

k (p∗
1L1 ⊗ · · · ⊗ p∗

k Lk))|W+
P
) −→ H0(WP , (β∗

k (p∗
1L1 ⊗ · · · ⊗ p∗

k Lk))|WP )

is injective.
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Proof Wehave q := |Q| ≤ m = |P|.We proceed by the reverse induction on q. It is clear that
if q = m, then Q = P and the result holds. We assume that q < |P|. Possibly by reordering
indices, we may assume that Q = {S′

1, . . . , S
′
q} such that at least two subsets S1, S2 in P

are contained in S′
1. By splitting S′

1 into two subsets S′′
1 , S′′

2 such that S1 ⊆ S′′
1 , S2 ⊆ S′′

2 , we
obtain a refinement Q′ = {S′′

1 , S′′
2 , . . . , S′′

q+1} of Q with S′′
i+1 = S′

i for all 2 ≤ i ≤ q. Note
that Q′ is a coarsening of P . By the induction hypothesis, s|WQ′ = 0.

Claim 2.8.1 There is a subvariety C ⊆ WQ ∩ WQ′ such that βk(C) = �Q .

We consider a morphism

fQ′ : Xn −→ H × Xk, (x1, . . . , xn) �−→ 	Q′(x1 + · · · + xn, x1, . . . , xq+1).

Note that fQ′(Xn) = WQ′ . Now consider �1,2 ⊆ Xn . Let C := fQ′(�1,2) ⊆ WQ′ . Then
one can check that βk(C) = �Q and C ⊆ WQ . We have shown the claim.

We have the following commutative diagram induced by restriction maps on global sec-
tions

H0(W+
P , (β∗

k (p∗
1L1 ⊗ · · · ⊗ p∗

k Lk))|W+
P
) H0(WQ′ , (β∗

k (p∗
1L1 ⊗ · · · ⊗ p∗

k Lk))|WQ′ )

H0(WQ, (β∗
k (p∗

1L1 ⊗ · · · ⊗ p∗
k Lk))|WQ ) H0(C, (β∗

k (p∗
1L1 ⊗ · · · ⊗ p∗

k Lk))|C )

where the bottom map is injective by Proposition 2.7 (4) and Claim 2.8.1. Since s|WQ′ = 0,
it follows that s|WQ = 0, completing the proof. 
�

We are ready to prove the main theorem and its corollary.

Proof of Theorem 1.1 For simplicity, wewrite L1�· · ·�Lk = p∗
1L1⊗· · ·⊗ p∗

k Lk . First of all,
consider the subvariety WP and the subscheme W+

P of (Z/H)k with the induced surjective
morphisms β+

P : W+
P → �P and βP : WP → �P . Since there is a natural injective map

O�P → β+
P,∗OW+

P
, we obtain an injective map

(L1 � · · · � Lk)|�P −→ β+
P,∗β

+,∗
P ((L1 � · · · � Lk)|�P ) = β+

P,∗((β
∗
k (L1 � · · · � Lk))|W+

P
).

(1)
Then we have the following commutative diagram on the global sections

H0(�P , (L1 � · · · � Lk)|�P )

w

H0(W+
P , (β∗

k (L1 � · · · � Lk))|W+
P
)

v
H0(WP , (β∗

k (L1 � · · · � Lk))|WP )

u

where w is an injection since (1) is an injection, u is an isomorphism by Proposition 2.7 (4),
and v is an injection by Proposition 2.8. Hence the following three groups are all the same

H0(W+
P , (β∗

k (L1 � · · · � Lk))|W+
P
) = H0(WP , (β∗

k (L1 � · · · � Lk))|WP )

= H0(�P , (L1 � · · · � Lk)|�P ).

On the other hand, by Proposition 2.7 (3), we have

H0(W+
P , (β∗

k (L1 � · · · � Lk))|W+
P
) = H0(H , EL S1 ⊗ · · · ⊗ EL Sm ),
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and we have

H0(�P , (L1 � · · · � Lk)|�P ) = H0(X ,L S1) ⊗ · · · ⊗ H0(X ,L Sm ).

The theorem then follows immediately. 
�
Proof of Corollary 1.2 Let k := ∑m

i=1 ki , and take the partition P = {{1}, {2}, · · · , {k}}. Let
L := {L1, . . . , L1︸ ︷︷ ︸

k1 times

, . . . , Lm, . . . , Lm︸ ︷︷ ︸
km times

}.

By Theorem 1.1, we have

H0(H , E⊗k1
L1

⊗ · · · ⊗ E⊗km
Lm

) = H0(X , L1)
⊗k1 ⊗ · · · ⊗ H0(X , Lm)⊗km . (2)

Now, consider the action of G := Sk1 × · · · × Skm on the tensor product E⊗k1
L1

⊗ · · · ⊗ E⊗km
Lm

in the natural way. Notice that the identification in (2) is G-equivariant. Thus we obtain

H0(H , Sk1EL1 ⊗ · · · ⊗ Skm ELm ) = Sk1H0(X , L1) ⊗ · · · ⊗ Skm H0(X , Lm)

as desired. 
�
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