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ON BLOWUP OF SECANT VARIETIES OF CURVES
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ABSTRACT. In this paper, we show that for a nonsingular projective curve and
a positive integer k, the k-th secant bundle is the blowup of the k-th secant
variety along the (k — 1)-th secant variety. This answers a question raised in
the recent paper of the authors on secant varieties of curves.

1. Introduction. Throughout the paper, we work over an algebraically closed field
k of characteristic zero. Let C be a nonsingular projective curve of genus g > 0,
and L be a very ample line bundle on C. The complete linear system |L| embeds
C into a projective space P" := P(H°(C, L)). For an integer k > 0, the k-th secant
variety
Y =%k(C,L) CP"

of C in P" is the Zariski closure of the union of (k 4 1)-secant k-planes to C.

Assume that deg L > 2g+2k+1. Then the k-th secant variety ¥j can be defined
by using the secant sheaf Ey.1 1 and the secant bundle B¥(L) as follows. Denote
by C,, the m-th symmetric product of C. Let

Ok+1" Ck x C — Ok+1

be the morphism sending (£, x) to £ + z, and p: C}, x C — C the projection to C.
The secant sheaf Eii1,;, on Cri1 associated to L is defined by

Eii,n = 0p1,+0" L,
which is a locally free sheaf of rank k£ + 1. Notice that the fiber of Ej;1  over
¢ € Cy41 can be identified with H?(&, L|¢). The secant bundle of k-planes over
Ck+1 is

B*(L) :=P(Ey11.1)
equipped with the natural projection my: Bk(L) — Ck41. We say that a line bundle
L on a variety X separates m + 1 points if the natural restriction map H°(X, £) —
HO(¢, L]e) is surjective for any effective zero-cycle &€ C X with length(§) = m + 1.
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Notice that a line bundle £ is globally generated if and only if £ separates 1 point,
and £ is very ample if and only if £ separates 2 points. Since deg L > 2¢g + k, it
follows from Riemann—Roch that L separates k + 1 points. Then the tautological
bundle Opx(1)(1) is globally generated. We have natural identifications

H°(B*(L), Opr(1)(1)) = H*(Ciy1, Bxyar,) = HY(C, L),
and therefore, the complete linear system |0k (1) (1)| induces a morphism
Br: B¥(L) — P" =P(H°(C, L)).

The k-th secant variety X = Xk (C, L) of C in P" can be defined to be the image
Br(B*(L)). Bertram proved that 8: BF(L) — ¥, is a resolution of singularities
(see [1, Section 1]).

It is clear that there are natural inclusions

C=%CX C---CN 1 CE CP".

The preimage of ¥,_; under the morphism (3 is actually a divisor on B¥(L).
Thus there exits a natural morphism from B*(L) to the blowup of ¥, along ¥ _;.
Vermeire proved that B(L) is indeed the blowup of 31 along ¥ = C ([3, Theorem
3.9]). In the recent work [2], we showed that B¥(L) is the normalization of the
blowup of ¥ along 31 ([2, Proposition 5.13]), and raised the problem asking
whether B¥(L) is indeed the blowup itself ([2, Problem 6.1]). The purpose of this
paper is to give an affirmative answer to this problem by proving the following:

Theorem 1.1. Let C' be a nonsingular projective curve of genus g, and L be a line
bundle on C. If degL > 2g + 2k + 1 for an integer k > 1, then the morphism
Br: B¥(L) — X% (C, L) is the blowup of ¥1(C, L) along ¥p_1(C, L).

To prove the theorem, we utilize several line bundles defined on symmetric prod-
ucts of the curve. Let us recall the definitions here and refer the reader to [2] for
further details. Let

cCHl=Cx...xC
—_——
k + 1 times

be the (k + 1)-fold ordinary product of the curve C, and p;: C**1 — C be the
projection to the ¢-th component. The symmetric group G4 actson pjL® -+ ®
D1 L in a natural way: a permutation p € Gy sends a local section $1 ® - -+ ® Sg41
to 8,(1) ® - @ Syk41)- Then piL & -+ @ py | L is invariant under the action of
Sk+1, so it descends to a line bundle Tj41(L) on the symmetric product Ciy; via
the quotient map ¢: C**! — Cjyy. We have ¢*Tpi 1 (L) = piL® - ® Pry L
Define a divisor dg41 on Cyy1 such that the associated line bundle O¢, ., (dx11) =

det (O'kJrL*(ﬁCkxc))*. Let
Ap1,n = Thq1 (L) (—20341)

be a line bundle on Cj41. When k = 0, we use the convention that T7(L) = E; j, =
L and §; = 0.

The main ingredient in the proof of Theorem 1.1 is to study the positivity of
the line bundle Aj41,r. Some partial results and their geometric consequences have
been discussed in [2, Lemma 5.12 and Proposition 5.13]. Along this direction, we
establish the following proposition to give a full picture in a general result describing
the positivity of the line bundle Ay1,. This may be of independent interest.
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Proposition 1.2. Let C' be a nonsingular projective curve of genus g, and L be a
line bundle on C. If deg L > 2g + 2k + £ for integers k,£ > 0, then the line bundle
A1, on Cryq separates £+ 1 points.

In particular, if deg L > 2g + 2k, then Ajiq ; is globally generated, and if
deg L > 2g + 2k + 1, then Ay, 1 is very ample.

2. Proof of the main theorem. In this section, we prove Theorem 1.1. We begin
with showing Proposition 1.2.

Proof of Proposition 1.2. We proceed by induction on k and ¢. If & = 0, then
A;p =L and deg L > 2g + £. It immediately follows from Riemann-Roch that L
separates £ + 1 points. If £ = 0, then deg L > 2g + 2k. By [2, Lemma 5.12], Ap11 1,
separates 1 point.

Assume that £ > 1 and £ > 1. Let z be a length £+ 1 zero-dimensional subscheme
of Cky1. We aim to show that the natural restriction map

0 0
Tokt1,0: H (Cryt1, Apt1,0) — HO (2, Apt11

=)

is surjective. We can choose a point p € C such that X, contains a point in the
support of z, where X, is the divisor on Cj; defined by the image of the morphism
Cr — Ci41 sending € to £ +p. Let y := 2N X, be the scheme-theoretic intersection,
and S, = (4, : Jx,), which defines a subscheme x of z in Cy1, where .#, and
Ix, are ideal sheaves of 2z and X, in Cjy1, respectively. We have the following
commutative diagram

0 0 0

l l l

0 —— S(-X,) —— S — I.-0x, — 0

l l l

0 ﬁck+1(_Xp) ﬁC}g+1 ﬁXp > 0

l l l

0 — 0O,(-Xp,) —— 0. —— Oy — 0
| | |
0 0 0

where all rows and columns are short exact sequences. By tensoring with Agy; 1
and taking the global sections of last two rows, we obtain the commutative diagram
with exact sequences

0 —— H°(Apt1,0(-Xp)) ——— H°(App1,) ——— H(Apq1rlx,) —— 0
l’“z,k+1,L(7p) sz,kJrl,L J/Ty,k:,L(72p)
0 —— H°(Apy1,0(=Xp)la) —— H°(Aps1,rlz) ——— H°(Apy1,zly) —— 0,

in which we use the fact that H'(Ay41,.(—X,)) = 0 (see the proof of [2, Lemma
5.12]). Note that Apy1,0(—Xp) = Apy1,0(—p) and Apy1nlx, = Ak r(—2p), Where
we identify X, = Cj.

Since length(y) < length(z) = ¢+ 1 and deg L(—2p) > 2g + 2(k — 1) + ¢, the
induction hypothesis on & implies that 7, . 1(—2p) is surjective. On the other hand,
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if = (), which means that z is a subscheme of X,,, then trivially Twk4+1,L(—p) 1S
surjective. Otherwise, suppose that = # (). By the choice of X,,, we know that y is
not empty, and therefore, we have length(z) < length(z)—1 = ¢. Now, deg L(—p) >
2g + 2k + (¢ — 1), so the induction hypothesis on ¢ implies that L(—p) separates
¢ points. In particular, 7, p41 1(—p) is surjective. Hence 7, 41,1 is surjective as
desired. O

Lemma 2.1. Let p: X = Y be a finite surjective morphism between two varieties.
If ¢=1(q) is scheme theoretically a reduced point for each closed point q¢ € Y, then
@ is an isomorphism.

Proof. Note that ¢ is proper, injective, and unramifield. Then it is indeed a classical
result that ¢ is an isomorphism. Here we give a short proof for reader’s convenience.
The problem is local. We may assume that X = Spec B and Y = Spec A for some
rings A, B. We may regard A as a subring of B. For any ¢ € Y, let p := ¢~ !(q) €
X. It is enough to show that the localizations A" := Ay, and B’ := By, are
isomorphic. Let mg, m;, be the maximal ideals of the local rings A’, B’, respectively.
The assumption says that m; B’ = m;,. We have

B'JA" @ A'Jmi, = B'/(m;, B' + A") = B'/(m}, + A’) = 0.
By Nakayama lemma, we obtain B'/A’ = 0. O

We keep using the notations used in the introduction. Recall that C is a non-
singular projective curve of genus g > 0, and L is a very ample line bundle on C.
Consider & € Cf and = € C, and let £ := £, + « € Ciy1. The divisor & spans a
k-secant (k — 1)-plane P(H° (&, L¢, ) to C in P(H(C, L)), and it is naturally em-
bedded in the (k + 1)-secant k-plane P(H?(&, L|¢)) spanned by £. This observation
naturally induces a morphism

a1: BFHL) x C — B*(L).
To see it in details, we refer to [1, p.432, line —5]. We define the relative secant
variety Z = Zy_1 of (k—1)-planes in B¥(L) to be the image of the morphism ay ;.
The relative secant variety Z is a divisor in the secant bundle B¥(L), and it is the
preimage of (k — 1)-th secant variety X;_; under the morphism 8. It plays the

role of transferring the codimension two situation (X, Xx—1) into the codimension
one situation (B¥(L), Z). We collect several properties of Z.

Proposition 2.2 ([2, Proposition 3.15, Theorem 5.2, and Proposition 5.13]). Recall
the situation described in the diagram

2 BF(L) -2~ 5, C P = P(HO(C, L))

iw

Crt1-
Let H be the pull back of a hyperplane divisor of P" by By, and let Is, s, be the
ideal sheaf on Xy defining the subvariety X_1. Then one has
L. Opry(k+1)H — Z) = m; Agq1,L-
2 o= o 110
3. Is, |z, - Oprry = Opr)(—2).
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As a direct consequence of the above proposition, we have an identification
H®(Crsr, Apsr,n) = HO (S, I,y (K + 1))

We are now ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let

b: ¥y :=Blg, |, 3 — 5y
be the blowup of ¥ along ¥ with exceptional divisor E. As Iy, |5, - Opk) =
Opr1y(—Z) (see Proposition 2.2), there exists a morphism a from B¥(L) to the

blowup fitting into the following commutative diagram

B*(L) %73,

RN

Sk

We shall show that « is an isomorphism.

Write V := H(3y, I, s, (k+1)). As proved in [2, Theorem 5.2], Iy, |5, (k+
1) is globally generated by V. This particularly implies that on the blowup ik one
has a surjective morphism V® 0y — b* Oy, (k+1)(—E), which induces a morphism

v Sy — P(V).

On the other hand, one has an identification V = H?(C41, Ag41,1) by Proposition
2.2. Recall from Proposition 1.2 that Ay, is very ample. So the complete linear
system |V| = |Ag+1,.] on Ci41 induces an embedding

P Crpr — P(V).

Also note that a*(b* Oy, (k+ 1)(—F)) = 8;0s, (k+1)(—Z) = 7} Ag+1,1. by Propo-
sition 2.2. Hence we obtain the following commutative diagram

BR(L) —2—= %,

Csr — 2= P(V).

Take an arbitrary closed point = € ik, and consider its image =’ := b(z) on Xj.
There is a nonnegative integer m < k such that 2’ € ¥,,, \ ¥,,—1 C X. In addition,
the point 2’ uniquely determines a degree m + 1 divisor &,,41, on C in such a
way that &,41, = AN C, where A is a unique (m + 1)-secant m-plane to C' with
2’ € A (see [2, Definition 3.12]). By [2, Proposition 3.13], 5; '(2') = Ck_p, and
wk(ﬁk_l(x’)) =&m+1,00 + Ck—m C Ciy1. Consider also z” := v(z) which lies in the
image of ¥. As ¢ is an embedding, we may think 2’ as a point of Cry1. Now,
through forming fiber products, we see scheme-theoretically

a Nz) St (@) N B ().
However, the restriction of the morphism 7 on 3, l(m/ ) gives an embedding of

Cl—m into Cii1. This suggests that 7, '(z”) N B, '(2') is indeed a single reduced
point, and so is a~!(z). Finally by Lemma 2.1, o is an isomorphism as desired. [
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