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ON BLOWUP OF SECANT VARIETIES OF CURVES
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Abstract. In this paper, we show that for a nonsingular projective curve and

a positive integer k, the k-th secant bundle is the blowup of the k-th secant

variety along the (k − 1)-th secant variety. This answers a question raised in
the recent paper of the authors on secant varieties of curves.

1. Introduction. Throughout the paper, we work over an algebraically closed field
k of characteristic zero. Let C be a nonsingular projective curve of genus g ≥ 0,
and L be a very ample line bundle on C. The complete linear system |L| embeds
C into a projective space Pr := P(H0(C,L)). For an integer k ≥ 0, the k-th secant
variety

Σk = Σk(C,L) ⊆ Pr

of C in Pr is the Zariski closure of the union of (k + 1)-secant k-planes to C.
Assume that degL ≥ 2g+2k+1. Then the k-th secant variety Σk can be defined

by using the secant sheaf Ek+1,L and the secant bundle Bk(L) as follows. Denote
by Cm the m-th symmetric product of C. Let

σk+1 : Ck × C −→ Ck+1

be the morphism sending (ξ, x) to ξ + x, and p : Ck × C → C the projection to C.
The secant sheaf Ek+1,L on Ck+1 associated to L is defined by

Ek+1,L := σk+1,∗p
∗L,

which is a locally free sheaf of rank k + 1. Notice that the fiber of Ek+1,L over
ξ ∈ Ck+1 can be identified with H0(ξ, L|ξ). The secant bundle of k-planes over
Ck+1 is

Bk(L) := P(Ek+1,L)

equipped with the natural projection πk : Bk(L)→ Ck+1. We say that a line bundle
L on a variety X separates m+ 1 points if the natural restriction map H0(X,L)→
H0(ξ,L|ξ) is surjective for any effective zero-cycle ξ ⊆ X with length(ξ) = m + 1.
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Notice that a line bundle L is globally generated if and only if L separates 1 point,
and L is very ample if and only if L separates 2 points. Since degL ≥ 2g + k, it
follows from Riemann–Roch that L separates k + 1 points. Then the tautological
bundle OBk(L)(1) is globally generated. We have natural identifications

H0(Bk(L),OBk(L)(1)) = H0(Ck+1, Ek+1,) = H0(C,L),

and therefore, the complete linear system |OBk(L)(1)| induces a morphism

βk : Bk(L) −→ Pr = P(H0(C,L)).

The k-th secant variety Σk = Σk(C,L) of C in Pr can be defined to be the image
βk(Bk(L)). Bertram proved that βk : Bk(L) → Σk is a resolution of singularities
(see [1, Section 1]).

It is clear that there are natural inclusions

C = Σ0 ⊆ Σ1 ⊆ · · · ⊆ Σk−1 ⊆ Σk ⊆ Pr.

The preimage of Σk−1 under the morphism βk is actually a divisor on Bk(L).
Thus there exits a natural morphism from Bk(L) to the blowup of Σk along Σk−1.
Vermeire proved that B1(L) is indeed the blowup of Σ1 along Σ0 = C ([3, Theorem
3.9]). In the recent work [2], we showed that Bk(L) is the normalization of the
blowup of Σk along Σk−1 ([2, Proposition 5.13]), and raised the problem asking
whether Bk(L) is indeed the blowup itself ([2, Problem 6.1]). The purpose of this
paper is to give an affirmative answer to this problem by proving the following:

Theorem 1.1. Let C be a nonsingular projective curve of genus g, and L be a line
bundle on C. If degL ≥ 2g + 2k + 1 for an integer k ≥ 1, then the morphism
βk : Bk(L)→ Σk(C,L) is the blowup of Σk(C,L) along Σk−1(C,L).

To prove the theorem, we utilize several line bundles defined on symmetric prod-
ucts of the curve. Let us recall the definitions here and refer the reader to [2] for
further details. Let

Ck+1 = C × · · · × C︸ ︷︷ ︸
k + 1 times

be the (k + 1)-fold ordinary product of the curve C, and pi : C
k+1 → C be the

projection to the i-th component. The symmetric group Sk+1 acts on p∗1L⊗ · · · ⊗
p∗k+1L in a natural way: a permutation µ ∈ Sk sends a local section s1⊗ · · ·⊗ sk+1

to sµ(1) ⊗ · · · ⊗ sµ(k+1). Then p∗1L ⊗ · · · ⊗ p∗k+1L is invariant under the action of
Sk+1, so it descends to a line bundle Tk+1(L) on the symmetric product Ck+1 via
the quotient map q : Ck+1 → Ck+1. We have q∗Tk+1(L) = p∗1L ⊗ · · · ⊗ p∗k+1L.
Define a divisor δk+1 on Ck+1 such that the associated line bundle OCk+1

(δk+1) =

det
(
σk+1,∗(OCk×C)

)∗
. Let

Ak+1,L := Tk+1(L)(−2δk+1)

be a line bundle on Ck+1. When k = 0, we use the convention that T1(L) = E1,L =
L and δ1 = 0.

The main ingredient in the proof of Theorem 1.1 is to study the positivity of
the line bundle Ak+1,L. Some partial results and their geometric consequences have
been discussed in [2, Lemma 5.12 and Proposition 5.13]. Along this direction, we
establish the following proposition to give a full picture in a general result describing
the positivity of the line bundle Ak+1,L. This may be of independent interest.
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Proposition 1.2. Let C be a nonsingular projective curve of genus g, and L be a
line bundle on C. If degL ≥ 2g + 2k + ` for integers k, ` ≥ 0, then the line bundle
Ak+1,L on Ck+1 separates `+ 1 points.

In particular, if degL ≥ 2g + 2k, then Ak+1,L is globally generated, and if
degL ≥ 2g + 2k + 1, then Ak+1,L is very ample.

2. Proof of the main theorem. In this section, we prove Theorem 1.1. We begin
with showing Proposition 1.2.

Proof of Proposition 1.2. We proceed by induction on k and `. If k = 0, then
A1,L = L and degL ≥ 2g + `. It immediately follows from Riemann–Roch that L
separates `+ 1 points. If ` = 0, then degL ≥ 2g + 2k. By [2, Lemma 5.12], Ak+1,L

separates 1 point.
Assume that k ≥ 1 and ` ≥ 1. Let z be a length `+1 zero-dimensional subscheme

of Ck+1. We aim to show that the natural restriction map

rz,k+1,L : H0(Ck+1, Ak+1,L) −→ H0(z,Ak+1,L|z)
is surjective. We can choose a point p ∈ C such that Xp contains a point in the
support of z, where Xp is the divisor on Ck+1 defined by the image of the morphism
Ck → Ck+1 sending ξ to ξ+p. Let y := z∩Xp be the scheme-theoretic intersection,
and Ix := (Iz : IXp

), which defines a subscheme x of z in Ck+1, where Iz and
IXp

are ideal sheaves of z and Xp in Ck+1, respectively. We have the following
commutative diagram

0 0 0y y y
0 −−−−→ Ix(−Xp) −−−−→ Iz −−−−→ Iz · OXp

−−−−→ 0y y y
0 −−−−→ OCk+1

(−Xp) −−−−→ OCk+1
−−−−→ OXp

−−−−→ 0y y y
0 −−−−→ Ox(−Xp) −−−−→ Oz −−−−→ Oy −−−−→ 0y y y

0 0 0

where all rows and columns are short exact sequences. By tensoring with Ak+1,L

and taking the global sections of last two rows, we obtain the commutative diagram
with exact sequences

0 −−−−−→ H0(Ak+1,L(−Xp)) −−−−−→ H0(Ak+1,L) −−−−−→ H0(Ak+1,L|Xp ) −−−−−→ 0yrx,k+1,L(−p)

yrz,k+1,L

yry,k,L(−2p)

0 −−−−−→ H0(Ak+1,L(−Xp)|x) −−−−−→ H0(Ak+1,L|z) −−−−−→ H0(Ak+1,L|y) −−−−−→ 0,

in which we use the fact that H1(Ak+1,L(−Xp)) = 0 (see the proof of [2, Lemma
5.12]). Note that Ak+1,L(−Xp) = Ak+1,L(−p) and Ak+1,L|Xp

∼= Ak,L(−2p), where
we identify Xp = Ck.

Since length(y) ≤ length(z) = ` + 1 and degL(−2p) ≥ 2g + 2(k − 1) + `, the
induction hypothesis on k implies that ry,k,L(−2p) is surjective. On the other hand,
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if x = ∅, which means that z is a subscheme of Xp, then trivially rx,k+1,L(−p) is
surjective. Otherwise, suppose that x 6= ∅. By the choice of Xp, we know that y is
not empty, and therefore, we have length(x) ≤ length(z)−1 = `. Now, degL(−p) ≥
2g + 2k + (` − 1), so the induction hypothesis on ` implies that L(−p) separates
` points. In particular, rx,k+1,L(−p) is surjective. Hence rz,k+1,L is surjective as
desired.

Lemma 2.1. Let ϕ : X → Y be a finite surjective morphism between two varieties.
If ϕ−1(q) is scheme theoretically a reduced point for each closed point q ∈ Y , then
ϕ is an isomorphism.

Proof. Note that ϕ is proper, injective, and unramifield. Then it is indeed a classical
result that ϕ is an isomorphism. Here we give a short proof for reader’s convenience.
The problem is local. We may assume that X = SpecB and Y = SpecA for some
rings A,B. We may regard A as a subring of B. For any q ∈ Y , let p := ϕ−1(q) ∈
X. It is enough to show that the localizations A′ := Amq and B′ := Bmp are
isomorphic. Let m′q,m

′
p be the maximal ideals of the local rings A′, B′, respectively.

The assumption says that m′qB
′ = m′p. We have

B′/A′ ⊗A′ A′/m′q = B′/(m′qB
′ +A′) = B′/(m′p +A′) = 0.

By Nakayama lemma, we obtain B′/A′ = 0.

We keep using the notations used in the introduction. Recall that C is a non-
singular projective curve of genus g ≥ 0, and L is a very ample line bundle on C.
Consider ξk ∈ Ck and x ∈ C, and let ξ := ξk + x ∈ Ck+1. The divisor ξk spans a
k-secant (k− 1)-plane P(H0(ξk, L|ξk)) to C in P(H0(C,L)), and it is naturally em-
bedded in the (k + 1)-secant k-plane P(H0(ξ, L|ξ)) spanned by ξ. This observation
naturally induces a morphism

αk,1 : Bk−1(L)× C −→ Bk(L).

To see it in details, we refer to [1, p.432, line –5]. We define the relative secant
variety Z = Zk−1 of (k− 1)-planes in Bk(L) to be the image of the morphism αk,1.
The relative secant variety Z is a divisor in the secant bundle Bk(L), and it is the
preimage of (k − 1)-th secant variety Σk−1 under the morphism βk. It plays the
role of transferring the codimension two situation (Σk,Σk−1) into the codimension
one situation (Bk(L), Z). We collect several properties of Z.

Proposition 2.2 ([2, Proposition 3.15, Theorem 5.2, and Proposition 5.13]). Recall
the situation described in the diagram

Z � � // Bk(L)

πk

��

βk // Σk ⊆ Pr = P(H0(C,L))

Ck+1.

Let H be the pull back of a hyperplane divisor of Pr by βk, and let IΣk−1|Σk
be the

ideal sheaf on Σk defining the subvariety Σk−1. Then one has

1. OBk(L)((k + 1)H − Z) = π∗kAk+1,L.

2. Riβk,∗OBk(L)(−Z) =

{
IΣk−1|Σk

if i = 0

0 if i > 0.

3. IΣk−1|Σk
· OBk(L) = OBk(L)(−Z).
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As a direct consequence of the above proposition, we have an identification

H0(Ck+1, Ak+1,L) = H0(Σk, IΣk−1|Σk
(k + 1)).

We are now ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let

b : Σ̃k := BlΣk−1
Σk −→ Σk

be the blowup of Σk along Σk−1 with exceptional divisor E. As IΣk−1|Σk
·OBk(L) =

OBk(L)(−Z) (see Proposition 2.2), there exists a morphism α from Bk(L) to the

blowup Σ̃k fitting into the following commutative diagram

Bk(L)
α //

βk ""

Σ̃k

b

��
Σk.

We shall show that α is an isomorphism.
Write V := H0(Σk, IΣk−1|Σk

(k+1)). As proved in [2, Theorem 5.2], IΣk−1|Σk
(k+

1) is globally generated by V . This particularly implies that on the blowup Σ̃k one
has a surjective morphism V ⊗OΣ̃k

→ b∗OΣk
(k+1)(−E), which induces a morphism

γ : Σ̃k −→ P(V ).

On the other hand, one has an identification V = H0(Ck+1, Ak+1,L) by Proposition
2.2. Recall from Proposition 1.2 that Ak+1,L is very ample. So the complete linear
system |V | = |Ak+1,L| on Ck+1 induces an embedding

ψ : Ck+1 −→ P(V ).

Also note that α∗(b∗OΣk
(k+ 1)(−E)) = β∗kOΣk

(k+ 1)(−Z) = π∗kAk+1,L by Propo-
sition 2.2. Hence we obtain the following commutative diagram

Bk(L)
α //

πk

��

Σ̃k

γ

��
Ck+1

ψ // P(V ).

Take an arbitrary closed point x ∈ Σ̃k, and consider its image x′ := b(x) on Σk.
There is a nonnegative integer m ≤ k such that x′ ∈ Σm \Σm−1 ⊆ Σk. In addition,
the point x′ uniquely determines a degree m + 1 divisor ξm+1,x′ on C in such a
way that ξm+1,x′ = Λ ∩ C, where Λ is a unique (m + 1)-secant m-plane to C with

x′ ∈ Λ (see [2, Definition 3.12]). By [2, Proposition 3.13], β−1
k (x′) ∼= Ck−m and

πk(β−1
k (x′)) = ξm+1,x′ + Ck−m ⊆ Ck+1. Consider also x′′ := γ(x) which lies in the

image of ψ. As ψ is an embedding, we may think x′′ as a point of Ck+1. Now,
through forming fiber products, we see scheme-theoretically

α−1(x) ⊆ π−1
k (x′′) ∩ β−1

k (x′).

However, the restriction of the morphism πk on β−1
k (x′) gives an embedding of

Ck−m into Ck+1. This suggests that π−1
k (x′′) ∩ β−1

k (x′) is indeed a single reduced
point, and so is α−1(x). Finally by Lemma 2.1, α is an isomorphism as desired.
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