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INTERPOLATION FOR CURVES OF LARGE DEGREE*

LAWRENCE EINT AND WENBO NIU#

Dedicated to Professor Ngaiming Mok on the occasion of his sixtieth birthday

Abstract. In this paper, we establish an interpolation result involving higher-order conormal
bundles of curves embedded by linear systems of large degree. As a consequence this gives evidence
for the semistability conjecture due to Ein-Lazarsfeld.
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1. Introduction. Throughout this paper we work over an algebraically closed
field of characteristic zero. Let C' be a nonsingular irreducible projective curve of genus
g > 0 embedded by a complete linear system of a line bundle L into a projective space

¢:C—P" =P(HL)).

For each nonnegative integer k, denote by P*(L) the bundle of k-th order principal
part of L. When k < deg L — 2g, lifting global sections of L to P¥(L) induces a short
exact sequence of vector bundles

0 — R¥(L) — H°(L)® 0 — P*(L) — 0.

The bundles R*(L) can be thought of as higher-order conormal bundles of C' governing
the geometry of the embedding ¢. For instance, R%(L)* @ L is the restricted tangent
bundle Tpn|c and R*(L)* @ L is the normal bundle N¢/pn of C in P

The vector bundle R¥(L) was studied by Lazarsfeld and the first author in [EL92],
where they raised the following conjecture.

CONJECTURE 1.1 ([EL92, 4.2]). There is an integer d(g,k) such that the conor-
mal bundle R*(L) is semistable for deg L > d(g, k).

This has only been proved for ¢ = 0,1 and, as far as we know, has no known evidence
for higher genus. Indeed, the case of g = 0 is trivial and when g = 1, R¥(L) can
be realized as the pullback of a Picard bundle under the étale morphism of C to the
Jacobian. The desired semistability then follows from the result established in [EL92]
that the Picard bundle is stable. However, this method fails for higher genus and the
conjecture is widely open even for k = 1.

Recently, a couple of notions of interpolation for vector bundles on curves were
introduced in [Ata]. Several results related to interpolation for normal bundles and
restricted tangent bundles of general curves have been proved in [ALY], [Ball7] and
[Lar]. It would be natural to understand interpolation for all R¥(L) bundles on
arbitrary curves when deg L is large. It turns out that the picture is quite clear in
this case, as shown in the following main theorem of this paper.
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THEOREM 1.2. Let L be a very ample line bundle on a nonsingular projective
curve C of genus g > 0. If there is a nonnegative integer k such that degL >
(k% + 2k + 2)g + k, then the vector bundle R*(L)* ® L satisfies interpolation.

As an immediate corollary, we have the interpolation for the restricted tangent
bundle and the normal bundle for arbitrary curves of large degree.

COROLLARY 1.3. Let L be a very ample line bundle on a nonsingular projective
curve C' of genus g > 0 and its complete linear system defines an embedding

¢:C —P"=P(H(L)).

Then one has the following.
(1) If deg L > 2g, the restricted tangent bundle Tpn|c satisfies interpolation.
(2) If deg L > 5g + 1, the normal bundle N¢ pr satisfies interpolation.

There is a connection established in [Ata] between semistability and interpolation.
Therefore, as another corollary, we obtain the following evidence for Conjecture 1.1.

COROLLARY 1.4. Let L be a very ample line bundle on a nonsingular projective
curve C' of genus g > 0. If there is a nonnegative integer k such that deg L =
(k2 + 2k + 2)g + k then the vector bundle R*(L) is semistable.

The corollary also suggests that the potential value for the bound d(g, k) in Conjecture
1.1 might be expected as d(g,k) = (k* + 2k + 2)g + k.

Acknowledgment. We are honored to dedicate this paper to Professor Ngai-
ming Mok on the occasion of his sixtieth birthday. We are very thankful to the
tremendous contributions and supports by Ngaiming to the development of the Chi-
nese algebraic geometry in the last few decades. Our thanks also go to the referee for
his/her nice suggestions which improve the paper.

2. Interpolation and principal parts of vector bundles. In this section,
we review the notion of interpolation introduced in [Ata] as well as the definition of
the principal parts of vector bundles on curves.

Given a vector bundle E on a projective nonsingular curve C, we write H*(E) for
the cohomology group H'(C, E) and h'(E) = dimy H'(E). If S =21 + -+ + x4 is an
effective divisor, we write E|gs = F'® Og as the restriction of E onto S. In particular,
if x € C'is a closed point E|, = F ® k(x) where k(z) is the residual field of z. The
slope p(F) is defined by deg E/rank E. FE is called semistable if u(F) < p(E) for any
subbundle ' C E.

DEFINITION 2.1. Let C' be a nonsingular projective curve and let E be a vector
bundle on C. Suppose that

hY(E) = q-rank E +t, with 0 <t < rank E.

E is said to satisfy interpolation if there exist ¢ + 1 distinct points z1 -+ , 24,2 and a
vector subspace V' C E|,, of codimension ¢ such that the restriction morphism

HY(E) — E|s ® E|,/V
is surjective, where S' = x1 + - -+ + z4.

REMARK 2.2. What we adopted here is called regular interpolation in [Ata, Defi-
nition 3.3]. In particular, Atanasov also proved that regular interpolation is equivalent
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to what he called strongly interpolation [Ata, Theorem 8.1]. By semicontinuity, one
can actually choose the points x; and x in the definition as general points.

REMARK 2.3. It is also easy to see that F satisfies interpolation if and only if for
every m > 1, there is a general effective divisor Z of degree m such that the restriction
morphism

HY(E) — E|z
has maximal rank.

If the vector bundle E is nonspecial, i.e., h'(FE) = 0, then one can verify interpo-
lation by the following observation proved by several authors.

PROPOSITION 2.4 ([Ball7, Lemma 1], [ALY, Proposition 4.5]). Let E be a non-
special vector bundle on a nonsingular curve C such that

hY(E) = q-rank E +t, with 0 <t < rank E.

Then E satisfies interpolation if and only if there exist general effective divisors S of
degree q and S' of degree q + 1 respectively such that

hY(E(=S)) =0 and h°(E(-S")) = 0.

Under certain conditions, the interpolation property will imply semistability of
vector bundles. More precisely, let F' be a subbundle of E and write h°(E) = ¢ -
rank F' + ¢t with 0 <t < rank F. It was showed in [Ata, Proposition 3.14] that

F) KB L f
rank F' ~ rank F "rank F rank B

Hence if F is nonspecial and ¢ = 0 one immediately deduces that

\(F) _ x(B)
rank F ~— rank F’

which implies that F is semistable. We summarize this fact in the following proposi-
tion.

PROPOSITION 2.5 ([Ata, Corollary 3.15]). Let E be a nonspecial vector bundle
on a nonsingular curve C such that rank E divides h°(E). If E satisfies interpolation
then E is semistable.

EXAMPLE 2.6. In general, interpolation does not imply semistability. For exam-
ple, consider a vector bundle F = 0¢(2P) & 0¢(3P) on an elliptic curve C, where P
is a point. Then F satisfies interpolation but is not semistable.

Next we recall the notion of the principal parts of a line bundle. Let A C C x C
be the diagonal with the ideal sheaf In. Consider the diagram

A =CxC—1sC (2.6.1)

lp

C
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where the morphism p and ¢ are natural projections. For a line bundle . on C and
an integer k > 0, the k-th order principal part of .Z is defined by

. 4
PHL) = pu(d" % ® —25T)-
A

It is easy to see that P¥(.#) is a vector bundle of rank k + 1. Directly from the
definition, we have the following simple observation.

PRrRoOPOSITION 2.7. Consider two line bundles £ and £’ on a curve, then one
has

H(P*Z)o 2L = H(PHZ) o 2)
and the natural morphisms
HY(%)® H(Z') — H(P*(Z)® £
and
HY(Z) @ H'(Z') — H'(PMZL) 0 &)
are the same.

Proof. All cohomology groups in the proposition can be seen on the product
C x C. One can identify the two natural morphisms as

%
HpLoq¢s)— Hp'Le¢L ® —Iijf)
A

But the Kuneth formula gives H'(p*.¢ ® ¢*.¢") = H°(p*.¢) @ H°(¢*£"). Then the
result follows from the projection formula. O

Recall that a line bundle .Z on a projective variety X separates k-jets at a non-
singular closed point z € X if the natural morphism

HO(L) — £ @ Ox /mkt?

is surjective, where m, C Ox is the maximal ideal defining the point x. For further
information on separation of jets, we refer to [Laz04, Chapter 5].

PROPOSITION 2.8. Let .Z be a globally generated line bundle on a curve C. Let
2 be the cokernel of the canonical morphism

HY(Z)® 0c — P*(Z).
Then one has
Supp(2) = {z € C | £ does not separate k-jets at x}

In particular, 2 = 0 if and only if £ separates k-jets at any x € C.

Proof. We use the diagram (2.6.1) in the proof. The question is local and hence
the morphism is surjective at the point x € C' if and only if the morphism

HY(Z) ® k(z) — P*(ZL) @ k(x),
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is surjective. But by base change, if we write C, = p~!(z), we see that the above
morphism is the same as

HY(YL) — £ 6c, /miH!

where m,, is the defining ideal of  in C, (cutting by the diagonal). Then the result
is clear. O

REMARK 2.9. It is clear that .Z separates O-jets if and only if it is base-point-free.
Z separates 1-jets if and only if the complete linear system |.Z| defines a unramified
morphism

¢z : C — P(H(L)).

PRrOPOSITION 2.10. Let C' be a nonsingular curve of genus g > 0. For k > 0,
one has the following results:

(1) A line bundle of degree > 2g + k separates k-jets at any point x of C.

(2) A general line bundle of degree > g+ k + 1 separates k-jets at any point x of

C.
(3) A general line bundle of degree > g+ k separates k-jets at some point x of C.

Proof. If g = 0, then the results are trivial even for arbitrary line bundles instead
of general ones. So in the sequel we assume g > 1.

(1) Let £ be a line bundle on C of degree > 2g+ k. Let # € C be a point. Since
deg Z(—(k+1)x) > 2g — 1, we see that h'(Z(—(k + 1)z)) = 0 which means that .&
separates k-jets at x.

(2) Let .Z be a general line bundle on C' of degree > g + k + 1. For a point
x € O, it is sufficient to show the vanishing H!'(Z(—(k + 1)x)) = 0, which by
duality is equivalent to the vanishing H(we ® £*((k + 1)x)) = 0. Notice that
d=degwec @ L*((k+1)z) < g — 2. We consider the following morphism

ag s Cqg x C —s Picd=k+1) ()

which maps the pair (D, x) to 0c(D — (k+1)z). Notice that the image of «y contains
all such line bundles A of degree d — (k + 1) that A((k + 1)) is effective for some
point x. But dimCy x C < g — 1. Hence a general choice of .Z will make the line
bundles we ® Z* out of the image of ay. Indeed, consider the isomorphism

B : Pic= =972 (0) — Pict 1 (C)

defined as B(#) = #* ® we for # € Picd~**+D=29=2(0) Then we can simply
choose .Z not in B~ (Im(ay)).

(3) Let Z be a general line bundle on C' of degree > g + k. If deg & > g + k,
then we can use (2). Thus in the sequel, we assume that deg.¥ = g + k. Consider
the morphism

v : Picd T (C) x ¢ — Pic?™H(C)

which maps (%, z) € Pic! ™" xC to Z(—(k + 1)x) € Pic! " '(C). Also consider the
image Im u of the canonical morphism u : Cy_1 — Picg_l(C). Clearly, dimImu < g.
Let U = Pic? ' (C) —Imwu. Then v~ (U) is an open set of Pic?* ¥ (C) x C'. We project
this open set to Pic?™¥(C) to obtain an open set W. Then if we take .2 € W, the
construction of v shows that there exists € C such that .£(—(k + 1)z) is not in the
image of . This means that H(Z(—(k+1)z)) = 0 and therefore . separates k-jets
at z. O
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3. Main theorem. In this section, we prove our main theorem. Recall that L
is a very ample nonspecial line bundle (i.e., h*(L) = 0) of degree d on a nonsingu-
lar projective curve C' of genus g > 0. The complete linear system |L| defines an
embedding

¢:C — P"=P(H"(L)), where n = d — g.

For a nonnegative integer k, the global sections of L lift canonically to the global
sections of the vector bundle P*(L). Assume that 0 < k < deg L —2g. By Proposition
2.10 such lifting of sections is surjective so one obtains a short exact sequence

0 — R¥L) — H°(L)® O0c — P*(L) — 0, (3.0.1)

where R¥(L) is defined as the kernel bundle. Taking the dual of the sequence (3.0.1)
and tensoring it with L, we obtain a surjective morphism

H(L)* ® L— R¥(L)* ® L.

Since L is nonspecial then so is the bundle R¥(L)* @ L.

PROPOSITION 3.1. As setting above, one has the following.

(1) deg P*(L) = (k +1)d + k(k + 1)(g — 1) and rank P*(L) = k + 1.

(2) deg R*(L)* ® L =k(k+1)(g— 1) + (n+ 1)d and rank R*(L)* ® L =n — k.
(3) x(RF(L)* ® L) = (n + k +2) - rank(R*(L)* ® L) + (k + 1)?g.

Proof. For (1), we need to use the canonical exact sequence
0 — SHQE)® L — P*(L) — P*Y(L) — 0.
But for C a curve, S*(Q}) = wk. Hence we deduce that
deg P*(L) = deg P*~1(L) + k(29 — 2) + d.

Then the formula comes from the induction on k and P°(L) = L.
(2) is straightforward from (1).
For (3), denote by r = rank R*(L)* ® L and apply Riemann-Roch theorem so
that
X(R*(L)* ® L) = deg R*(L)* ® L +rx(0c)
=k(k+1)(g—1)+(n+1)d+rx(0c)
=(n+k+2)r+(k+1)>3%g

as claimed. O
REMARK 3.2. We note that R¥(L)* ® L is nonspecial. Hence we can write
W(RE(L)* @ L) =q-r+t,

where ¢ = (n+k+2), r =rank R*(L)*® L =n —k and t = (k+1)2g. In oder to get
general results on interpolation of R¥(L)* ® L, we assume in the sequel that r > ¢, or
equivalently

deg L > (k* +2k +2)g + k.
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In particular, if deg L = (k% + 2k + 2)g + k, then the rank of R¥(L)* ® L divides
hO(R’“(L)* ® L).

Proof of Theorem 1.2. Recall that d = deg L and note that L is nonspecial with
n = d — g. The proof contains two steps.
Step 1. Choose S as a general effective divisor of

degS =n+k+2.

Clearly, degS > g by the assumption on d. In this step, we show that the natural
morphism

HYRM(L)* ® L) — H°(R*(L)* @ L|s)

is surjective. It is equivalent to show that H'(R*(L)* ® L(—S)) = 0. By duality, we
just need to show H(we ® R¥(L) ® L*(S)) = 0. Write

Ly = we ® L*(S).

Tensoring L1 with the short exact sequence (3.0.1), it suffices to show the canonical
morphism

H(L)® H*(L,) — H°(P*(L) ® L)

is injective. But by Proposition 2.7 this morphism is the same as the canonical
morphism

H(L)® H°(L,) — H°(P*(L,)® L). (3.2.1)

In the rest of this part, we will show the morphism in (3.2.1) is injective.

It is easy to calculate that deg Ly = g + k. The general choice of S will make L
a general line bundle of degree g + k. Hence it is base point free and nonspecial and
the canonical morphism

e1: H'(Ly) ® Oc — P*(Ly)

is generically surjective by Proposition 2.10(3). But rank P¥(L;) = h°(L;) = k +
1. Thus the morphism e; is also generically injective and therefore injective. Now
tensoring with L, we obtain an injection

0— H(L))® L — P*(L,) ® L.

Taking global sections immediately shows that the morphism in (3.2.1) is injective,
which completes Step 1.
Step 2. Choose S’ as a general effective divisor such that

degS' =n+k+3.
The goal in this step is to show that the natural morphism
HY(RF(L)* ® L) — H°(R*(L)* ® L|g)

is injective. It is equivalent to show that H°(R¥(L)* ® L(—S')) = 0. By duality, we
just need to show H'(we ® RF(L) @ L*(S")) = 0. Write

Lo =we® L*(S/)
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Tensoring Lo with the short exact sequence (3.0.1), it suffices to show the canonical
morphism

H°(L) ® H(Ly) — H°(P*(L) ® Ly)

is surjective and that H(L)® H' (L) = 0, which holds since L is a general line bundle
of degree g+ k + 1 and so has vanishing H'. By Proposition 2.7 this morphism is the
same as the canonical morphism

H°(L) ® H(Ly) — H°(P*(Lsy) ® L). (3.2.2)

We will show in the sequel that the above morphism is surjective.

Note that deg Lo = g + k + 1. The general choice of S” makes Lo a general line
bundle of degree g+ k+ 1. Hence it is base point free and nonspecial and the canonical
morphism

eg: H(Ly) ® O — P¥(Ly)

is surjective by Proposition 2.10(2). Write % as the kernel of the morphism ey and
note that J# is a line bundle. So we obtain a short exact sequence

0— H — H(Ly) ® Oc — P*(Ly) — 0.

Tensor it with L. Then, since H'(L) = 0, the surjectivity of (3.2.2) is equivalent to
the vanishing of

HY (¢ ®L)=0.

But by the assumption that deg L > (k?+2k+2)g+k, we see that deg # @ L > g—1.
The general choice of S’ also makes 2" ® L as a general line bundle of degree > g — 1.
Hence it is nonspecial. Therefore H'(.# @ L) = 0, which finishes the proof. [

REMARK 3.3. The bound of deg L > (k? + 2k + 2)g + k is crucial in the proof.
There are two reasons for this. First, if deg L is small, for instance when k£ = 0 and
deg L < 2g, then L may not be able to separate 0O-jets and therefore R°(L) may not
be defined. Secondly, even if R¥(L) is defined, if deg L is small, then the number
(k + 1)2g in Proposition 3.1 (3) may not be smaller than the rank of R*(L)* ® L so
that the degree of S in the proof should be increased.

To be more precise on the second point, we consider g = 2, k = 1 and deg L =
5-g = 10. In this case, h°(L) = 9 so we have an embedding

¢:C —P"  withn=238
and RY(L)* ® L = N is of rank 7. We can compute that
X(N) =h°(N) =12 -rank N + 1.

Thus the degrees of the effective divisors involved to check interpolation are 12 and
13, instead of 11 and 12 as indicated by Proposition 3.1 (3).

REMARK 3.4. If ¢ = 0, i.e., C is a rational normal curve, one can actually
compute R¥(L)* ® L. Precisely, suppose C' = P! < P? is embedded by the complete
linear system of L = Op1(d). For d > max(k, 1), one has

d—k
REL) @ L=EP Opi(d+k+1),
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which is semistable and satisfies interpolation.

Proof of Corollary 1.4. Under the assumption that deg L = (k? + 2k +2)g + k,
we see that rank R¥(L)* ® L divides h°(R*(L)* ® L) (see Remark 3.2). Then by
Proposition 2.5, R¥(L)* ® L is semistable and therefore so is R¥(L). O

REMARK 3.5. It was pointed out by the referee that one of possible geometric
consequences of interpolation for R?(L)* @ L is to determine how many general lines
a curve of degree d and genus g in P" is tangent to. We hope that the method we
developed in the paper would be useful for this direction of the study.
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