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INTERPOLATION FOR CURVES OF LARGE DEGREE∗

LAWRENCE EIN† AND WENBO NIU‡

Dedicated to Professor Ngaiming Mok on the occasion of his sixtieth birthday

Abstract. In this paper, we establish an interpolation result involving higher-order conormal
bundles of curves embedded by linear systems of large degree. As a consequence this gives evidence
for the semistability conjecture due to Ein-Lazarsfeld.
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1. Introduction. Throughout this paper we work over an algebraically closed
field of characteristic zero. Let C be a nonsingular irreducible projective curve of genus
g ≥ 0 embedded by a complete linear system of a line bundle L into a projective space

φ : C ↪−→ P
n = P(H0(L)).

For each nonnegative integer k, denote by P k(L) the bundle of k-th order principal
part of L. When k ≤ degL− 2g, lifting global sections of L to P k(L) induces a short
exact sequence of vector bundles

0 −→ Rk(L) −→ H0(L)⊗ OC −→ P k(L) −→ 0.

The bundles Rk(L) can be thought of as higher-order conormal bundles of C governing
the geometry of the embedding φ. For instance, R0(L)∗ ⊗L is the restricted tangent
bundle TPn |C and R1(L)∗ ⊗ L is the normal bundle NC/Pn of C in P

n.

The vector bundle Rk(L) was studied by Lazarsfeld and the first author in [EL92],
where they raised the following conjecture.

Conjecture 1.1 ([EL92, 4.2]). There is an integer d(g, k) such that the conor-

mal bundle Rk(L) is semistable for degL ≥ d(g, k).

This has only been proved for g = 0, 1 and, as far as we know, has no known evidence
for higher genus. Indeed, the case of g = 0 is trivial and when g = 1, Rk(L) can
be realized as the pullback of a Picard bundle under the étale morphism of C to the
Jacobian. The desired semistability then follows from the result established in [EL92]
that the Picard bundle is stable. However, this method fails for higher genus and the
conjecture is widely open even for k = 1.

Recently, a couple of notions of interpolation for vector bundles on curves were
introduced in [Ata]. Several results related to interpolation for normal bundles and
restricted tangent bundles of general curves have been proved in [ALY], [Bal17] and
[Lar]. It would be natural to understand interpolation for all Rk(L) bundles on
arbitrary curves when degL is large. It turns out that the picture is quite clear in
this case, as shown in the following main theorem of this paper.
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Theorem 1.2. Let L be a very ample line bundle on a nonsingular projective

curve C of genus g ≥ 0. If there is a nonnegative integer k such that degL ≥
(k2 + 2k + 2)g + k, then the vector bundle Rk(L)∗ ⊗ L satisfies interpolation.

As an immediate corollary, we have the interpolation for the restricted tangent
bundle and the normal bundle for arbitrary curves of large degree.

Corollary 1.3. Let L be a very ample line bundle on a nonsingular projective

curve C of genus g ≥ 0 and its complete linear system defines an embedding

φ : C ↪−→ P
n = P(H0(L)).

Then one has the following.

(1) If degL ≥ 2g, the restricted tangent bundle TPn |C satisfies interpolation.

(2) If degL ≥ 5g + 1, the normal bundle NC/Pn satisfies interpolation.

There is a connection established in [Ata] between semistability and interpolation.
Therefore, as another corollary, we obtain the following evidence for Conjecture 1.1.

Corollary 1.4. Let L be a very ample line bundle on a nonsingular projective

curve C of genus g ≥ 0. If there is a nonnegative integer k such that degL =
(k2 + 2k + 2)g + k then the vector bundle Rk(L) is semistable.

The corollary also suggests that the potential value for the bound d(g, k) in Conjecture
1.1 might be expected as d(g, k) = (k2 + 2k + 2)g + k.

Acknowledgment. We are honored to dedicate this paper to Professor Ngai-
ming Mok on the occasion of his sixtieth birthday. We are very thankful to the
tremendous contributions and supports by Ngaiming to the development of the Chi-
nese algebraic geometry in the last few decades. Our thanks also go to the referee for
his/her nice suggestions which improve the paper.

2. Interpolation and principal parts of vector bundles. In this section,
we review the notion of interpolation introduced in [Ata] as well as the definition of
the principal parts of vector bundles on curves.

Given a vector bundle E on a projective nonsingular curve C, we write Hi(E) for
the cohomology group Hi(C,E) and hi(E) = dimk H

i(E). If S = x1 + · · ·+ xq is an
effective divisor, we write E|S = E⊗OS as the restriction of E onto S. In particular,
if x ∈ C is a closed point E|x = E ⊗ k(x) where k(x) is the residual field of x. The
slope μ(E) is defined by degE/ rankE. E is called semistable if μ(F ) ≤ μ(E) for any
subbundle F ⊆ E.

Definition 2.1. Let C be a nonsingular projective curve and let E be a vector
bundle on C. Suppose that

h0(E) = q · rankE + t, with 0 ≤ t < rankE.

E is said to satisfy interpolation if there exist q+1 distinct points x1 · · · , xq, x and a
vector subspace V ⊆ E|x of codimension t such that the restriction morphism

H0(E) −→ E|S ⊕ E|x/V

is surjective, where S = x1 + · · ·+ xq.

Remark 2.2. What we adopted here is called regular interpolation in [Ata, Defi-
nition 3.3]. In particular, Atanasov also proved that regular interpolation is equivalent
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to what he called strongly interpolation [Ata, Theorem 8.1]. By semicontinuity, one
can actually choose the points xi and x in the definition as general points.

Remark 2.3. It is also easy to see that E satisfies interpolation if and only if for
everym ≥ 1, there is a general effective divisor Z of degree m such that the restriction
morphism

H0(E) −→ E|Z

has maximal rank.

If the vector bundle E is nonspecial, i.e., h1(E) = 0, then one can verify interpo-
lation by the following observation proved by several authors.

Proposition 2.4 ([Bal17, Lemma 1], [ALY, Proposition 4.5]). Let E be a non-

special vector bundle on a nonsingular curve C such that

h0(E) = q · rankE + t, with 0 ≤ t ≤ rankE.

Then E satisfies interpolation if and only if there exist general effective divisors S of

degree q and S′ of degree q + 1 respectively such that

h1(E(−S)) = 0 and h0(E(−S′)) = 0.

Under certain conditions, the interpolation property will imply semistability of
vector bundles. More precisely, let F be a subbundle of E and write h0(E) = q ·
rankE + t with 0 ≤ t < rankE. It was showed in [Ata, Proposition 3.14] that

h0(F )

rankF
≤

h0(E)

rankE
+min

{
1,

t

rankF

}
−

t

rankE
.

Hence if E is nonspecial and t = 0 one immediately deduces that

χ(F )

rankF
≤

χ(E)

rankE
,

which implies that E is semistable. We summarize this fact in the following proposi-
tion.

Proposition 2.5 ([Ata, Corollary 3.15]). Let E be a nonspecial vector bundle

on a nonsingular curve C such that rankE divides h0(E). If E satisfies interpolation

then E is semistable.

Example 2.6. In general, interpolation does not imply semistability. For exam-
ple, consider a vector bundle E = OC(2P )⊕OC(3P ) on an elliptic curve C, where P
is a point. Then E satisfies interpolation but is not semistable.

Next we recall the notion of the principal parts of a line bundle. Let Δ ⊂ C × C
be the diagonal with the ideal sheaf IΔ. Consider the diagram

Δ �
�

�� C × C

p

��

q
�� C

C

(2.6.1)
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where the morphism p and q are natural projections. For a line bundle L on C and
an integer k ≥ 0, the k-th order principal part of L is defined by

P k(L ) = p∗(q
∗
L ⊗

OC×C

Ik+1
Δ

).

It is easy to see that P k(L ) is a vector bundle of rank k + 1. Directly from the
definition, we have the following simple observation.

Proposition 2.7. Consider two line bundles L and L ′ on a curve, then one

has

H0(P k(L )⊗ L
′) = H0(P k(L ′)⊗ L )

and the natural morphisms

H0(L )⊗H0(L ′) −→ H0(P k(L )⊗ L
′)

and

H0(L )⊗H0(L ′) −→ H0(P k(L ′)⊗ L )

are the same.

Proof. All cohomology groups in the proposition can be seen on the product
C × C. One can identify the two natural morphisms as

H0(p∗L ⊗ q∗L ′) −→ H0(p∗L ⊗ q∗L ′ ⊗
OC×C

Ik+1
Δ

)

But the Kuneth formula gives H0(p∗L ⊗ q∗L ′) = H0(p∗L )⊗H0(q∗L ′). Then the
result follows from the projection formula.

Recall that a line bundle L on a projective variety X separates k-jets at a non-
singular closed point x ∈ X if the natural morphism

H0(L ) −→ L ⊗ OX/mk+1
x

is surjective, where mx ⊂ OX is the maximal ideal defining the point x. For further
information on separation of jets, we refer to [Laz04, Chapter 5].

Proposition 2.8. Let L be a globally generated line bundle on a curve C. Let

Q be the cokernel of the canonical morphism

H0(L )⊗ OC −→ P k(L ).

Then one has

Supp(Q) = {x ∈ C | L does not separate k-jets at x}

In particular, Q = 0 if and only if L separates k-jets at any x ∈ C.

Proof. We use the diagram (2.6.1) in the proof. The question is local and hence
the morphism is surjective at the point x ∈ C if and only if the morphism

H0(L )⊗ k(x) −→ P k(L )⊗ k(x),
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is surjective. But by base change, if we write Cx = p−1(x), we see that the above
morphism is the same as

H0(L ) −→ L ⊗ OCx
/mk+1

x

where mx is the defining ideal of x in Cx (cutting by the diagonal). Then the result
is clear.

Remark 2.9. It is clear that L separates 0-jets if and only if it is base-point-free.
L separates 1-jets if and only if the complete linear system |L | defines a unramified
morphism

φ|L | : C −→ P(H0(L )).

Proposition 2.10. Let C be a nonsingular curve of genus g ≥ 0. For k ≥ 0,
one has the following results:

(1) A line bundle of degree ≥ 2g + k separates k-jets at any point x of C.

(2) A general line bundle of degree ≥ g + k+1 separates k-jets at any point x of

C.

(3) A general line bundle of degree ≥ g+k separates k-jets at some point x of C.

Proof. If g = 0, then the results are trivial even for arbitrary line bundles instead
of general ones. So in the sequel we assume g ≥ 1.

(1) Let L be a line bundle on C of degree ≥ 2g+ k. Let x ∈ C be a point. Since
degL (−(k + 1)x) ≥ 2g − 1, we see that h1(L (−(k + 1)x)) = 0 which means that L

separates k-jets at x.
(2) Let L be a general line bundle on C of degree ≥ g + k + 1. For a point

x ∈ C, it is sufficient to show the vanishing H1(L (−(k + 1)x)) = 0, which by
duality is equivalent to the vanishing H0(ωC ⊗ L ∗((k + 1)x)) = 0. Notice that
d = degωC ⊗ L ∗((k + 1)x) ≤ g − 2. We consider the following morphism

αd : Cd × C −→ Picd−(k+1)(C)

which maps the pair (D, x) to OC(D−(k+1)x). Notice that the image of αd contains
all such line bundles A of degree d − (k + 1) that A((k + 1)x) is effective for some
point x. But dimCd × C ≤ g − 1. Hence a general choice of L will make the line
bundles ωC ⊗ L ∗ out of the image of αd. Indeed, consider the isomorphism

β : Picd−(k+1)−(2g−2)(C) −→ Picd−(k+1)(C)

defined as β(R) = R∗ ⊗ ωC for R ∈ Picd−(k+1)−(2g−2)(C). Then we can simply
choose L not in β−1(Im(αd)).

(3) Let L be a general line bundle on C of degree ≥ g + k. If degL > g + k,
then we can use (2). Thus in the sequel, we assume that degL = g + k. Consider
the morphism

v : Picg+k(C)× C −→ Picg−1(C)

which maps (R, x) ∈ Picg+k ×C to R(−(k + 1)x) ∈ Picg−1(C). Also consider the
image Imu of the canonical morphism u : Cg−1 −→ Picg−1(C). Clearly, dim Imu < g.

Let U = Picg−1(C)− Im u. Then v−1(U) is an open set of Picg+k(C)×C. We project
this open set to Picg+k(C) to obtain an open set W . Then if we take L ∈ W , the
construction of v shows that there exists x ∈ C such that L (−(k+1)x) is not in the
image of u. This means that H0(L (−(k+1)x)) = 0 and therefore L separates k-jets
at x.
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3. Main theorem. In this section, we prove our main theorem. Recall that L
is a very ample nonspecial line bundle (i.e., h1(L) = 0) of degree d on a nonsingu-
lar projective curve C of genus g ≥ 0. The complete linear system |L| defines an
embedding

φ : C ↪−→ P
n = P(H0(L)), where n = d− g.

For a nonnegative integer k, the global sections of L lift canonically to the global
sections of the vector bundle P k(L). Assume that 0 ≤ k ≤ degL−2g. By Proposition
2.10 such lifting of sections is surjective so one obtains a short exact sequence

0 −→ Rk(L) −→ H0(L)⊗ OC −→ P k(L) −→ 0, (3.0.1)

where Rk(L) is defined as the kernel bundle. Taking the dual of the sequence (3.0.1)
and tensoring it with L, we obtain a surjective morphism

H0(L)∗ ⊗ L−� Rk(L)∗ ⊗ L.

Since L is nonspecial then so is the bundle Rk(L)∗ ⊗ L.

Proposition 3.1. As setting above, one has the following.

(1) degP k(L) = (k + 1)d+ k(k + 1)(g − 1) and rankP k(L) = k + 1.
(2) degRk(L)∗ ⊗ L = k(k + 1)(g − 1) + (n+ 1)d and rankRk(L)∗ ⊗ L = n− k.
(3) χ(Rk(L)∗ ⊗ L) = (n+ k + 2) · rank(Rk(L)∗ ⊗ L) + (k + 1)2g.

Proof. For (1), we need to use the canonical exact sequence

0 −→ Sk(Ω1
C)⊗ L −→ P k(L) −→ P k−1(L) −→ 0.

But for C a curve, Sk(Ω1
C) = ωk

C . Hence we deduce that

degP k(L) = degP k−1(L) + k(2g − 2) + d.

Then the formula comes from the induction on k and P 0(L) = L.
(2) is straightforward from (1).
For (3), denote by r = rankRk(L)∗ ⊗ L and apply Riemann-Roch theorem so

that

χ(Rk(L)∗ ⊗ L) = degRk(L)∗ ⊗ L+ rχ(OC)

= k(k + 1)(g − 1) + (n+ 1)d+ rχ(OC)

= (n+ k + 2)r + (k + 1)2g

as claimed.

Remark 3.2. We note that Rk(L)∗ ⊗ L is nonspecial. Hence we can write

h0(Rk(L)∗ ⊗ L) = q · r + t,

where q = (n+ k+2), r = rankRk(L)∗ ⊗L = n− k and t = (k+1)2g. In oder to get
general results on interpolation of Rk(L)∗ ⊗L, we assume in the sequel that r ≥ t, or
equivalently

degL ≥ (k2 + 2k + 2)g + k.
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In particular, if degL = (k2 + 2k + 2)g + k, then the rank of Rk(L)∗ ⊗ L divides
h0(Rk(L)∗ ⊗ L).

Proof of Theorem 1.2. Recall that d = degL and note that L is nonspecial with
n = d− g. The proof contains two steps.

Step 1. Choose S as a general effective divisor of

degS = n+ k + 2.

Clearly, degS ≥ g by the assumption on d. In this step, we show that the natural
morphism

H0(Rk(L)∗ ⊗ L) −→ H0(Rk(L)∗ ⊗ L|S)

is surjective. It is equivalent to show that H1(Rk(L)∗ ⊗ L(−S)) = 0. By duality, we
just need to show H0(ωC ⊗Rk(L)⊗ L∗(S)) = 0. Write

L1 = ωC ⊗ L∗(S).

Tensoring L1 with the short exact sequence (3.0.1), it suffices to show the canonical
morphism

H0(L)⊗H0(L1) −→ H0(P k(L)⊗ L1)

is injective. But by Proposition 2.7 this morphism is the same as the canonical
morphism

H0(L)⊗H0(L1) −→ H0(P k(L1)⊗ L). (3.2.1)

In the rest of this part, we will show the morphism in (3.2.1) is injective.
It is easy to calculate that degL1 = g + k. The general choice of S will make L1

a general line bundle of degree g + k. Hence it is base point free and nonspecial and
the canonical morphism

e1 : H0(L1)⊗ OC −→ P k(L1)

is generically surjective by Proposition 2.10(3). But rankP k(L1) = h0(L1) = k +
1. Thus the morphism e1 is also generically injective and therefore injective. Now
tensoring with L, we obtain an injection

0 −→ H0(L1)⊗ L −→ P k(L1)⊗ L.

Taking global sections immediately shows that the morphism in (3.2.1) is injective,
which completes Step 1.

Step 2. Choose S′ as a general effective divisor such that

deg S′ = n+ k + 3.

The goal in this step is to show that the natural morphism

H0(Rk(L)∗ ⊗ L) −→ H0(Rk(L)∗ ⊗ L|S′)

is injective. It is equivalent to show that H0(Rk(L)∗ ⊗ L(−S′)) = 0. By duality, we
just need to show H1(ωC ⊗Rk(L)⊗ L∗(S′)) = 0. Write

L2 = ωC ⊗ L∗(S′).
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Tensoring L2 with the short exact sequence (3.0.1), it suffices to show the canonical
morphism

H0(L)⊗H0(L2) −→ H0(P k(L)⊗ L2)

is surjective and thatH0(L)⊗H1(L2) = 0, which holds since L2 is a general line bundle
of degree g+ k+1 and so has vanishing H1. By Proposition 2.7 this morphism is the
same as the canonical morphism

H0(L)⊗H0(L2) −→ H0(P k(L2)⊗ L). (3.2.2)

We will show in the sequel that the above morphism is surjective.
Note that degL2 = g + k + 1. The general choice of S′ makes L2 a general line

bundle of degree g+k+1. Hence it is base point free and nonspecial and the canonical
morphism

e2 : H0(L2)⊗ OC −→ P k(L2)

is surjective by Proposition 2.10(2). Write K as the kernel of the morphism e2 and
note that K is a line bundle. So we obtain a short exact sequence

0 −→ K −→ H0(L2)⊗ OC −→ P k(L2) −→ 0.

Tensor it with L. Then, since H1(L) = 0, the surjectivity of (3.2.2) is equivalent to
the vanishing of

H1(K ⊗ L) = 0.

But by the assumption that degL ≥ (k2+2k+2)g+k, we see that degK ⊗L ≥ g−1.
The general choice of S′ also makes K ⊗L as a general line bundle of degree ≥ g−1.
Hence it is nonspecial. Therefore H1(K ⊗ L) = 0, which finishes the proof.

Remark 3.3. The bound of degL ≥ (k2 + 2k + 2)g + k is crucial in the proof.
There are two reasons for this. First, if degL is small, for instance when k = 0 and
degL < 2g, then L may not be able to separate 0-jets and therefore R0(L) may not
be defined. Secondly, even if Rk(L) is defined, if degL is small, then the number
(k + 1)2g in Proposition 3.1 (3) may not be smaller than the rank of Rk(L)∗ ⊗ L so
that the degree of S in the proof should be increased.

To be more precise on the second point, we consider g = 2, k = 1 and degL =
5 · g = 10. In this case, h0(L) = 9 so we have an embedding

φ : C −→ P
n, with n = 8

and R1(L)∗ ⊗ L = N is of rank 7. We can compute that

χ(N) = h0(N) = 12 · rankN + 1.

Thus the degrees of the effective divisors involved to check interpolation are 12 and
13, instead of 11 and 12 as indicated by Proposition 3.1 (3).

Remark 3.4. If g = 0, i.e., C is a rational normal curve, one can actually
compute Rk(L)∗ ⊗ L. Precisely, suppose C = P

1 ↪→ P
d is embedded by the complete

linear system of L = OP1(d). For d ≥ max(k, 1), one has

Rk(L)∗ ⊗ L =

d−k⊕
OP1(d+ k + 1),
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which is semistable and satisfies interpolation.

Proof of Corollary 1.4. Under the assumption that degL = (k2 + 2k + 2)g + k,
we see that rankRk(L)∗ ⊗ L divides h0(Rk(L)∗ ⊗ L) (see Remark 3.2). Then by
Proposition 2.5, Rk(L)∗ ⊗ L is semistable and therefore so is Rk(L).

Remark 3.5. It was pointed out by the referee that one of possible geometric
consequences of interpolation for R2(L)∗ ⊗ L is to determine how many general lines
a curve of degree d and genus g in P

r is tangent to. We hope that the method we
developed in the paper would be useful for this direction of the study.
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