

Metal-ligand cooperativity promotes reversible capture of dilute CO₂ as a Zn(II)-methylcarbonate

*Christine A. Phipps, Dillon T. Hofsommer, Calian D. Zirilli, Bailee G. Duff, Mark S. Mashuta,
Robert M. Buchanan*, Craig A. Grapperhaus**

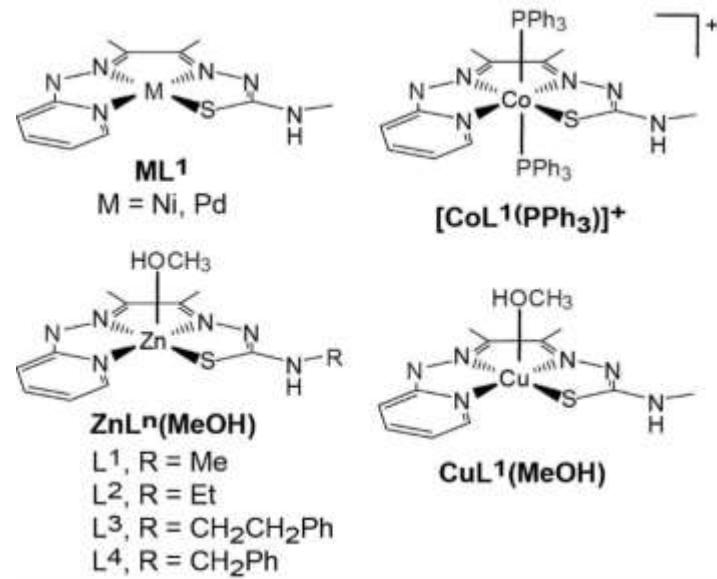
Department of Chemistry, University of Louisville, 2320 S. Brook St, Louisville, KY 40292

Corresponding Author

robert.buchanan@louisville.edu

craig.grapperhaus@louisville.edu

ABSTRACT: In this study, a series of thiosemicarbazone- hydrazinatopyridine metal complexes were evaluated as to CO₂ capture agents. The complexes incorporate a non-coordinating, basic hydrazinatopyridine in close proximity to a Lewis acidic metal ion allowing for metal-ligand cooperativity. The coordination of various metal ions with (diacetyl-2-(4-methyl-thiosemicarbazone)-3-(2-hydrazinopyridine) (H₂L¹) yielded ML¹ (M = Ni(II), Pd(II)), ML¹(CH₃OH) (M = Cu(II), Zn(II)), and [ML¹(PPh₃)₂]BF₄ (M = Co(III)) complexes. The ML¹(CH₃OH) complexes reversibly capture CO₂ with equilibrium constants of 88 ± 9 and 6900 ± 180 for Cu(II) and Zn(II), respectively. Ligand effects were evaluated with Zn(II) through variation of the 4-methyl-thiosemicarbazone with 4-ethyl (H₂L²), 4-phenethyl (H₂L³), and 4-benzyl (H₂L⁴). The equilibrium constant for CO₂ capture increased to 11,700 ± 300, 15,000 ± 400, and 35,000 ± 200 for ZnL²(MeOH), ZnL³(MeOH), and ZnL⁴(MeOH), respectively. Quantification of ligand basicity and metal ion Lewis acidity show that changes in CO₂ capture affinity are largely associated with ligand basicity upon substitution of Cu(II) with Zn(II), while variation of the thiosemicarbazone ligand enhances CO₂ affinity by tuning the metal ion Lewis acidity. Overall, the Zn(II) complexes effectively capture CO₂ from dilute sources with up to 90%, 86%, and 65% CO₂ capture efficiency from 400 ppm, 1000 ppm, and 2500 ppm CO₂ streams.


Introduction

The direct air capture (DAC) of carbon dioxide from air has been studied since the 1930s to prevent process equipment fouling¹ and to remove CO₂ from sealed vessels such as submarines² and spaceships.³ More recently, CO₂ DAC has been under intense investigation as part of the strategy to mitigate the progression of climate change resulting from global fossil fuel based economies.⁴ The DAC approach provides a means to concentrate and release CO₂ for utilization as a chemical feedstock for applications such as fuel production, agricultural usage, and the synthesis of other valuable products.⁵ The current industrial standard for CO₂ DAC is a thermal cycle, where aqueous monoethanolamine is used as a nucleophile to capture CO₂ from a mixed gas stream and is released at elevated temperatures. This process operates at a 90% capture efficiency with flue gas but utilizes environmentally hazardous chemicals. Other small molecules capable of capturing and releasing CO₂ upon heating include N-heterocyclic olefins, which also catalyze the cycloaddition reaction of CO₂ with epoxides at higher pressures.⁶ A promising alternative to aqueous amines are small molecule metal complexes that capture CO₂ by exploiting metal-ligand cooperativity (MLC). While there are many promising reports of MLC in large systems such as MOFs⁷⁻⁹ or polymers,¹⁰ this study will focus on discreet molecular compounds capable of CO₂ capture and release.

Metal-ligand cooperativity has been used in various catalysis applications such as C-C bond activation,¹¹⁻¹³ C-N bond activation,¹⁴⁻¹⁶ cycloaddition/cyclization,¹⁷⁻¹⁹ and hydrogenation.²⁰⁻²² There are four known classes of MLC: (1) the use of the metal or ligand as a Lewis base or Lewis acid to cleave the substrate bond; (3) aromatic chelating ligands where dearomatization of the ligand allows for cooperation between the metal and ligand; and (4) use of redox non-innocent ligands that act as an electron reservoir during catalysis.²³ Many studies have focused on the use

of MLC to capture and activate CO₂ during its electrocatalytic reduction.²⁴⁻²⁸ However, few studies have systematically evaluated modification of ligand structure to tune MLC in order to control CO₂ capture and release.²⁹

We recently reported the CO₂ capture and electrochemical reduction based on the MLC properties of (diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-hydrazinatopyridine))zinc(II) (ZnL¹).³⁰ The ZnL¹ complex contains a unique, non-coordinating basic nitrogen on the hydrazinatopyridine moiety in close proximity to the Lewis acidic Zn(II) metal center. The basic nitrogen and Lewis acidic metal react cooperatively to reversibly capture CO₂ as a zinc-coordinated methylcarbonate complex. In this study, we explore a series of related complexes for reversible CO₂ capture from dilute sources to evaluate the effect of metal substitution and ligand variation, Figure 1, through measurement of ligand pK_a values and CO₂ capture equilibrium constants.

Figure 1. Thiosemicarbazone-hydrazinatopyridine metal complexes in the current study.

Experimental

Materials and Methods

All solvents and materials were purchased as reagent grade from VWR or Sigma-Aldrich. H_2L^1 (diacetyl-2-(4-methyl-thiosemicarbazone)-3-(2-hydrazinopyridine)) was isolated in high yields from the procedure published by Cowley et al.³¹ and the NiL^1 , PdL^1 , $\text{CuL}^1(\text{MeOH})$, and $\text{ZnL}^1(\text{MeOH})$ complexes were synthesized using the previously reported methods.³¹⁻³³ For the other ligands, the thiosemicarbazide precursors were synthesized as described previously for 4-benzyl-3-thiosemicarbazide.³⁴ All complexes and ligands in this study are stable in air and water and did not require protection from the atmosphere.

Diacetyl mono(2-pyridyl)hydrazone: The following procedure is a modification of the reported synthesis.³⁵ 24.14 g (0.2212 mol) of 2-hydrazinopyridine was dissolved in 100 mL of hot ethanol.

21.1 mL (0.242 mol) of 2,3-butanedione was then added and the mixture was refluxed for 30 minutes. The solution was then placed at -20 °C for one hour yielding a yellow precipitate. The solution was filtered to isolate 26.58 g (0.1500 mol) of an orange crystalline solid (67.8% yield).

^1H NMR (DMSO, d_6 , 700 MHz) δ : 1.97 (3H, s), 2.35 (3H, s), 6.91 (1H, t, 6 Hz), 7.34 (1H, d, 8 Hz), 7.71 (1H, t, 8 Hz), 8.19 (1H, d, 4 Hz), 10.36 (1H, s). ^{13}C NMR (DMSO, d_6 , 176 MHz) δ : 9.13, 24.13, 107.77, 117.30, 138.39, 142.96, 147.72, 156.35, 196.54. FT-IR (ATR): 3356 (vw), 3328 (w), 3241 (w), 1595 (m), 1574 (m), 1512 (s), 1489 (s), 1439 (m), 1419 (m), 1366 (w), 1323 (m), 1296 (m), 1268 (w), 1213 (s), 1194 (m), 1176 (m), 1139 (m), 1101 (m), 1074 (m), 1027 (w), 983 (w), 961 (w), 769 (m), 751 (m), 701 (w), 673 (w), 628 (m), 591 (m), 547 (m) cm^{-1} . Elemental analysis for $\text{C}_9\text{H}_{11}\text{N}_3\text{O}$ calc: C, 61.00; H, 6.26; N, 23.71. Found: C, 61.17; H, 5.96; N, 23.64.

(diacetyl-2-(4-ethyl-thiosemicarbazone)-3-(2-hydrazinopyridine)) H₂L²: 321 mg (1.81 mmol) of diacetyl mono(2-pyridyl)hydrazone was dissolved in 60 mL of refluxing ethanol. Then 215 mg (1.80 mmol) 4-ethyl-3-thiosemicarbazide was added with 20 drops glacial acetic acid and the mixture was refluxed for two days. The round bottom was cooled to -20 °C for two hours. The resultant precipitate was filtered and washed with 20 mL of cold diethyl ether. 422 mg (1.52 mmol) of an off-white powder was isolated, 83.8%. ¹H NMR (DMSO, *d*₆, 700 MHz) δ: 1.15 (t, 3H, 7 Hz), 2.21 (d, 6 H, 2 Hz), 3.60 (t, 2H, 10 Hz), 6.84 (t, 1H, 6 Hz), 7.26 (d, 1H, 8 Hz), 7.67 (t, 1H, 8 Hz), 8.16 (d, 1H, 3 Hz), 8.33 (t, 1H, 6 Hz), 9.90 (s, 1H), 10.06 (s, 1H) ppm. ¹³C NMR (DMSO, *d*₆, 176 MHz) δ: 11.43, 14.48, 107.07, 115.89, 138.09, 144.10, 147.63, 148.79, 157.09, 177.32 ppm. FT-IR (ATR): 3353 (w), 3334 (w), 3249 (br), 2961 (w), 2360 (w), 1594 (m), 1575 (m), 1509 (s), 1481 (s), 1441 (s), 1380 (m), 1315 (m), 1294 (m), 1270 (m), 1218 (m), 1171 (s), 1133 (m), 1101 (s), 1083 (m), 823 (m), 856 (m), 830 (w), 771 (s), 738 (w), 678 (m), 629 (w), 589 (w), 551 (w) cm⁻¹. Elemental analysis for C₁₂H₁₈N₆S calc: C, 51.78; H, 6.52; N, 30.19. Found: C, 51.66; H, 6.47; N, 29.90.

(diacetyl-2-(4-phenethyl-thiosemicarbazone)-3-(2-hydrazinopyridine)) H₂L³: 591 mg (3.03 mmol) 4-phenethyl-thiosemicarbazide and 537 mg (3.03 mmol) of diacetyl mono(2-pyridyl)hydrazone were dissolved in 40 mL of refluxing ethanol. 15 drops of glacial acetic acid were added to the solution, and the mixture was refluxed for two days. The solution was then cooled to -20 °C until a white precipitate formed. The precipitate was filtered and rinsed with cold diethyl ether to obtain 808 mg (2.28 mmol) off-white solid (75.2% yield). ¹H NMR (DMSO, *d*₆, 700 MHz) δ: 2.15 (s, 3H), 2.22 (s, 3H), 2.91 (t, 2H, 7 Hz), 3.80 (q, 2H, 5 Hz), 6.84 (d, 1H, 13 Hz), 7.28 (m, 5H), 7.67 (t, 1H, 8 Hz), 8.16 (d, 1H, 6 Hz), 8.30 (t, 1H, 6 Hz), 9.91 (s, 1H), 10.22 (s, 1H) ppm. ¹³C NMR (DMSO, *d*₆, 176 MHz) δ: 10.84, 11.50, 34.65, 45.17, 107.09, 115.93, 125.24

128.49, 128.63, 138.09, 139.23, 143.93, 147.63, 148.95, 157.08, 177.58 ppm. FT-IR (ATR): 3357 (vw), 3333 (vw), 3215 (br), 2863 (vw), 2360 (w), 1595 (m), 1573 (m), 1495 (s), 1467 (s), 1439 (s), 1391 (w), 1298 (m), 1221 (m), 1173 (m), 1141 (m), 1075 (m), 1050 (w), 983 (w), 920 (w), 768 (m), 748 (m), 737 (m), 700 (w), 677 (w), 590 (m) cm^{-1} . Elemental analysis for $\text{C}_{18}\text{H}_{22}\text{N}_6\text{S}$ calc: C, 60.99; H, 6.26; N, 23.71. Found: C, 60.58; H, 5.94; N, 23.63.

(diacetyl-2-(4-benzyl-thiosemicarbazone)-3-(2-hydrazinopyridine)) H_2L^4 : 500 mg (2.76 mmol) of 4-benzyl-thiosemicbazide and 507 mg (2.86 mmol) of diacetyl mono(2-pyridyl)hydrazone were dissolved in refluxing ethanol with 20 drops of glacial acetic acid. The solution was then refluxed for two days and placed to cool in the freezer at -20 C overnight. The solution was then filtered, rinsed with diethyl ether, and 715 mg (2.10 mmol) of a yellow powder was isolated (73.4% yield). ^1H NMR (DMSO, d_6 , 700 MHz): 2.21 (s, 3H), 2.25 (s, 3H), 4.86 (d, 2H, 6 Hz), 6.64 (t, 1H, 6 Hz), 7.25 (m, 2H, 5 Hz), 7.34 (m, 4H, 5 Hz), 7.67 (t, 1H, 7 Hz), 8.16 (s, 1H), 8.85 (s, 1H), 9.90 (s, 1H), 10.27 (s, 1H). ^{13}C NMR (DMSO, d_6 , 176 MHz) δ : 10.91, 11.55, 46.81, 107.10, 115.92, 126.73, 127.17, 128.19, 138.10, 139.35, 144.06, 147.62, 149.29, 157.06, 178.25. FT-IR (ATR): 3556 (w), 3328 (w), 3241 (br), 1595 (m), 1574 (m), 1516 (m), 1489 (s), 1439 (m), 1419 (m), 1366 (w), 1296 (m), 1268 (m), 1194 (m), 1139 (m), 1074 (m), 982 (w), 769 (m), 701 (m), 628 (m), 591 (m), 547 (w). Elemental analysis for $\text{C}_{17}\text{H}_{20}\text{N}_6\text{S}$ calc: C, 59.98; H, 5.92; N, 24.69. Found: C, 59.50; H, 5.45; N, 24.43.

(diacetyl-2-(4-methyl-thiosemicarbazone)-3-(2-hydrazinatopyridine))-bis(triphenylphosphino)cobalt(III) tetrafluoroborate, $[\text{CoL}^1(\text{PPh}_3)_2]\text{BF}_4$: H_2L^1 (275 mg, 1.04 mmol) and hexaaquocobalt (II) tetrafluoroborate (360 mg, 1.05 mmol) were suspended in 10 mL of ethanol. To the brown slurry was added triethylamine (0.3 mL) and triphenylphosphine (554 mg, 2.11 mmol). The brown suspension was heated to reflux for 1 hour, cooled to room

temperature, and placed in a freezer. The resultant dark solid was filtered and washed with 5 mL of cold ethanol and 20 mL of diethyl ether and dried under vacuum to obtain 550 mg (0.650 mmol) brown solid (62.5% yield). Single crystals suitable for X-ray diffraction were obtained by vapor diffusion of a saturated MeCN solution with diethyl ether. ^1H NMR (DMSO, d_6 , 700 MHz) δ : 2.04-2.28 (9 H, br), 6.01 (br, 1H), 6.36 (br, 1H), 6.99-7.90 (38 H, br) ppm. ^{19}F NMR (DMSO, d_6 , 376 MHz) δ : -148.40 ppm. ^{31}P NMR (DMSO, d_6 , 162 MHz) δ : 15.87 ppm. FT-IR (ATR): 1608 (w), 1509 (s), 1481 (m), 1455 (w), 1432 (s), 1399 (s), 1307 (vs), 1221 (s), 1136 (w), 1049 (vs), 988 (s), 841 (w), 777 (w), 751 (s), 693 (vs), 646 (w) cm^{-1} . UV-Vis (MeCN, 10^{-4} M): 261 nm (52,400 $\text{M}^{-1}\text{cm}^{-1}$), 556 nm (6,610 $\text{M}^{-1}\text{cm}^{-1}$). Anal calc for $\text{C}_{47}\text{H}_{44}\text{BCoF}_4\text{N}_6\text{P}_2\text{S}$: C 60.53, H 4.76, N 9.01. Found C 60.29, H 5.10, N 8.94.

(diacetyl-2-(4-ethyl-3-thiosemicarbazato)-3-(2-hydrazinatopyridine))zinc(II), ZnL^2 : In a round bottom flask with 50 mL of refluxing ethanol, 212 mg (0.762 mmol) of H_2L^2 and 65 mg (1.5 mmol) of LiOH were added and the solution refluxed for 10 minutes. Then, 168 mg (0.765 mmol) of $\text{Zn}(\text{OAc})_2$ was added and the solution immediately turned orange. The solution was refluxed for an additional 4 hours and then chilled in the freezer for one hour. 185 mg (0.541 mmol) of a bright orange powder was isolated (71.0% yield). ^1H NMR (DMSO, d_6 , 700 MHz): 1.11 (t, 3H, 7 Hz) 2.12 (s, 3H), 2.15 (s, 3H), 6.24 (t, 1H, 6 Hz), 6.55 (d, 1H, 9 Hz), 6.99 (s, 1H), 7.26 (t, 1H, 8 Hz), 7.44 (d, 1H, 5 Hz). The methylene protons at 3.25 ppm are not observed in the ^1H but are observed in the COSY (Fig. S14). ^{13}C NMR (DMSO, d_6 , 176 MHz) δ : 12.14, 13.56, 14.71, 37.13, 109.79, 116.24, 135.84, 137.76, 145.34, 147.03, 164.50, 171.93, 174.78. FT-IR (ATR): 3341 (w), 2695 (w), 1602 (m), 1542 (m), 1535 (m), 1482 (m), 1419 (s), 1372 (m), 1335 (m), 1297 (s), 1253 (m), 1214 (s), 1153 (m), 1082 (m), 991 (m), 825 (m), 772 (m), 643 (m) cm^{-1} . Elemental analysis for $\text{C}_{14}\text{H}_{21}\text{N}_6\text{SOZn}$ calc: C, 40.37; H, 4.43; N, 21.73. Found: C, 39.33; H, 4.51; N, 21.66

(diacetyl-2-(4-phenethyl-3-thiosemicarbazato)-3-(2-hydrazinatopyridine))zinc(II), ZnL³: In a round bottom flask with 30 mL of refluxing ethanol, 178 mg (0.502 mmol) of H₂L³ and 45 mg (1.1 mmol) of LiOH were added. After 10 minutes, 116 mg (0.528 mmol) of Zn(OAc)₂ was added resulting in an immediate color change to orange. After refluxing for an additional 4 hours, the solution was cooled in an ice bath and filtered. 193 mg (0.462 mmol) of a bright orange powder was isolated (91.4% yield). Single crystals were isolated by slow evaporation of a saturated CO₂ sparged methanol solution. ¹H NMR (DMSO, *d*₆, 700 MHz) δ: 2.13 (s, 3H), 2.19 (s, 3H), 2.87 (d, 2H, Hz), 3.51 (d, 2H, Hz), 6.25 (s, 1H), 6.56 (d, 1H, 9 Hz), 7.11 (s, 1H), 7.19 (t, 1H, 7 Hz), 7.23-7.29 (m, 5H), 7.46 (s, 1H) ppm. ¹³C NMR (DMSO, *d*₆, 176 MHz) δ: 12.14, 13.63, 34.99, 44.32, 109.84, 116.33, 125.98, 128.35, 128.63, 135.68, 139.98, 145.36, 147.48, 164.56, 176.12, 179.86 ppm. FT-IR (ATR): 3335 (br), 2917 (w), 2858 (w), 2359 (w), 1602 (m), 1519 (m), 1476 (m), 1420 (m), 1336 (m), 1293 (m), 1229 (m), 1213 (m), 1194 (m), 1148 (m), 1093 (m), 1048 (m), 991 (m), 879 (w), 820 (m), 763 (m), 750 (m), 701 (m), 646 (m), 597 (w), 559 (w) cm⁻¹. Elemental analysis for C₁₈H₂₀N₆SZn calc: C, 51.74; H, 4.82; N, 20.11. Found: C, 51.53; H, 5.00; N, 20.17.

(diacetyl-2-(4-benzyl-3-thiosemicarbazato)-3-(2-hydrazinatopyridine))zinc(II), ZnL⁴: In a round bottom flask with 40 mL of refluxing ethanol, 170 mg (0.499 mmol) of H₂L⁴ and 42 mg (1.0 mmol) of LiOH were added. After 10 minutes, 107 mg (0.487 mmol) of Zn(OAc)₂ resulting in an immediate color change to orange. After refluxing for an additional 4 hours, the solution was cooled to room temperature and placed in a freezer overnight. Filtration yielded 104 mg (0.258 mmol) of a bright orange powder (52.9% yield). Single crystals were grown by slow evaporation in methanol. ¹H NMR (DMSO, *d*₆, 700 MHz) δ: 2.10 (s, 3H), 2.11 (s, 3H), 4.50 (d, 2H, 5 Hz), 6.25 (s, 1H), 6.54 (d, 1H, 9 Hz), 7.19 (t, 1H, 4 Hz), 7.29 (m, 3H, 4 Hz), 7.33 (d, 2H, 7 Hz), 7.45 (s, 1H), 7.57 (s, 1H) ppm. ¹³C NMR (DMSO, *d*₆, 176 MHz) δ: 12.06, 13.55, 35.01, 44.29, 109.70, 109.85,

116.26, 116.36, 125.85, 126.06, 128.50, 128.68, 135.63, 137.63, 137.82, 139.95, 145.24, 145.42, 164.57 ppm. FT-IR (ATR): 3706 (s), 3680 (s), 3335 (w), 2973 (br), 2865 (s), 2075 (w), 2053 (w), 1602 (w), 1510 (w), 1455 (m), 1346 (s), 1322 (m), 1057 (s), 1014 (s), 882 (w), 818 (m), 765 (m), 732 (m), 646 (m), 603 (w) cm^{-1} . Elemental analysis for $\text{C}_{18}\text{H}_{22}\text{N}_6\text{SOZn}$ calc: C, 49.60; H, 5.09; N, 19.28. Found: C, 50.08; H, 5.45; N, 18.71.

Physical Methods

Elemental analysis was performed by Micro-Analysis Inc. (Wilmington, DE, USA) using TCD and combustion. NMR data was collected on Varian Inova 400 MHz and 700 MHz NMR spectrometers with deuterated DMSO purchased from Cambridge Isotopes. Infrared spectra were recorded on a ThermoFisher Nicolet iS20 FT-IR with an ATR attachment (0.25 cm^{-1} resolution) for solid samples or with a Specac CaF_2 IR cell for solution samples.

pH measurements

All pH titrations used a Horiba Scientific LAQUA ion meter F-72G pH probe filled with sat. KCl in methanol. Prior to use each day, the probe was calibrated with Horiba Scientific calibration pH standards at pH 2.00 (act. pH was 1.68, model 100-2), 4.00 (act. pH was 4.01, model 100-4), 7.00 (act. pH was 7.00, model 100-7U), and 10.00 (act. pH was 10.01, model 100-10U). In a typical experiment, 10 mg of complex was added to 20 mL of methanol, which had been sparged with argon for at least 30 minutes prior to use. During the experiment, the solution was constantly stirring and sparging with argon to prevent carbon dioxide contamination (methylcarbonic acid formation). The solution was stirred until the pH reading stabilized. For compounds that were relatively acidic, titration from the neutral species to the protonated species was performed using HBF_4 as titrant. A stock solution of HBF_4 was standardized each day using sodium carbonate and

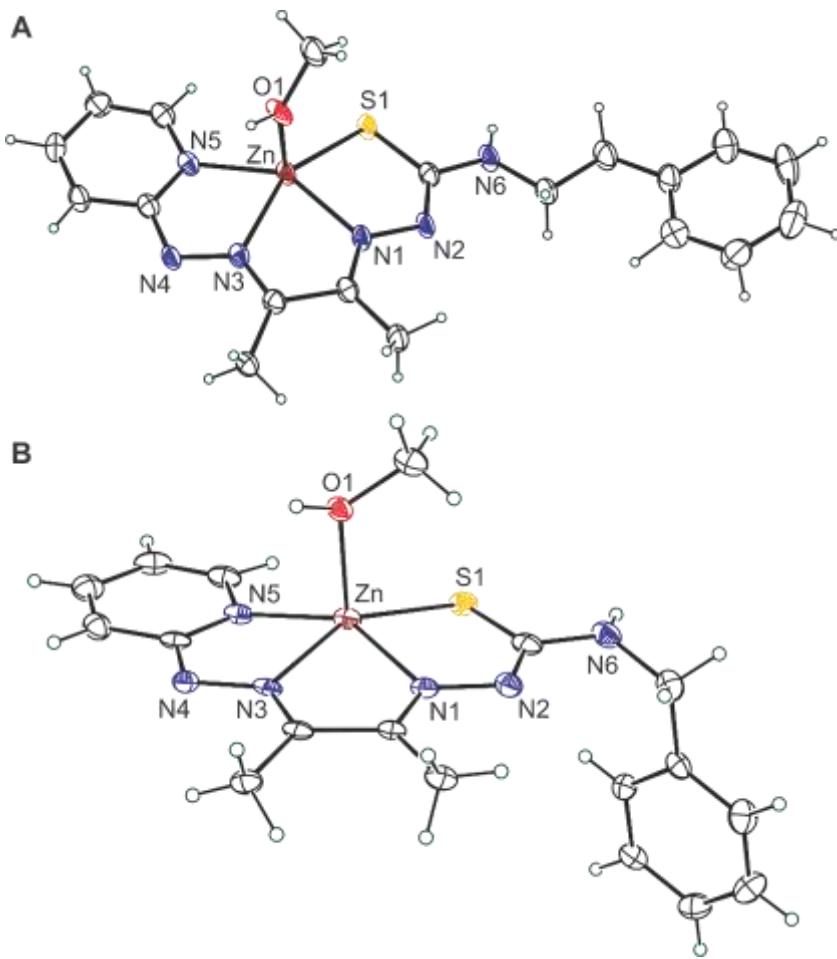
phenolphthalein as an indicator. For more basic compounds $ZnL^{1-4}(MeOH)$, the species was first protonated using an excess of the previously described standardized HBF_4 solution then titrated with KOH. KOH was standardized with KHP and phenolphthalein.

Crystallographic Studies

[CoL¹(PPh₃)₂]BF₄: The CrysAlisPro³⁶ CCD software package was used to acquire a total of 517 ten second frame ω -scan exposures of data for a purple prism crystal at 102 K to a 2θ max = 60.92° using monochromated MoK α radiation (0.71073 Å) from a sealed tube. Frame data were processed using CrysAlisPro RED to determine final unit cell parameters: $a = 12.7669(4)$ Å, $b = 15.2243(4)$ Å, $c = 24.4256(7)$ Å, $\alpha = 90^\circ$, $\beta = 102.715(3)^\circ$, $\gamma = 90^\circ$, $V = 4631.1(2)$ Å³, $D_{\text{calc}} = 1.421$ mg/m³, $Z = 4$ to produce raw hkl data that were then corrected for absorption (transmission min./max. = 0.886 /1.000; $\mu = 0.547$ mm⁻¹) using SCALE3 ABSPACK.³⁷ The structure was solved using Patterson methods in the space group P2₁/c using SHELXS³⁸ and refined by least squares methods on F² using SHELXL.³⁸ Non-hydrogen atoms were refined with anisotropic atomic displacement parameters. The BF₄ counter ion was modeled using a spinning top disorder with full one occupancy B1 and F1 atom. 0.70 occupancy F2a, F3a, F4a and 0.15 occupancy F2b, F3b, F4b, F2c, F3c, and F4c atoms were used to complete the disorder model applying 15 geometric restraints. The nitrogen H was located by difference maps and refined isotropically. Methyl and phenyl hydrogen atoms were placed in their geometrically generated positions and refined as a riding model and these atoms were respectively assigned $U(H) = 1.5$ and $1.2 \times U_{\text{eq}}$. For all 14,055 unique reflections (R(int) 0.034) the final anisotropic full matrix least-squares refinement on F² for 604 variables converged at $R_1 = 0.059$ and $wR_2 = 0.124$ with a GOF of 1.02.

ZnL³(MeOH): An orange plate 0.35 x 0.10 x 0.02 mm³ crystal grown from a solution of methanol in a round bottom flask was mounted on a CryoLoop for collection of X-ray data on an Agilent Technologies/Oxford Diffraction Gemini CCD diffractometer. The CrysAlisPro³⁶ CCD software package (v 1.171.40.67a) was used to acquire a total of 956 twenty-three second frame ω -scan exposures of data at 102 K to a 2θ max = 57.40° using monochromated MoK α radiation (0.71073 Å) from a sealed tube. Frame data were processed using CrysAlisPro³⁶ RED to determine final unit cell parameters: a = 7.4714(5) Å, b = 11.8168(7) Å, c = 11.8709(7) Å, α = 95.509(5)°, β = 98.512(5)°, γ = 106.554(5)°, V = 982.93(11) Å³, D_{calc} = 1.520 mg/m³, Z = 2 to produce raw hkl data that were then corrected for absorption (transmission min./max. = 0.736/1.00; μ = 1.379 mm⁻¹) using SCALE3 ABSPACK.³⁷ The structure was solved by Direct methods in the triclinic space group P-1 using SHELXS³⁸ and refined by least squares methods on F² using SHELXL.³⁸ Non-hydrogen atoms were refined with anisotropic atomic displacement parameters. Hydrogen atoms were placed in their geometrically generated positions and refined as a riding model and these atoms were assigned U(H) = 1.5 x Ueq for methyl H's and 1.2 x Ueq for all other H's. For all 5057 unique reflections (R(int) 0.100) the final anisotropic full matrix least-squares refinement on F² for 312 variables converged at R¹ = 0.062 and wR² = 0.109 with a GOF of 1.04.

ZnL⁴(MeOH): Crystals of ZnL⁴(MeOH) suitable for x-ray analysis were grown by slow evaporation of a CO₂ saturated methanol solution. X-ray structural analysis for ZnL⁴(MeOH) was performed on a 0.35 x 0.15 x 0.04 mm³ orange plate using an identical data acquisition strategy described above for ZnL³(MeOH) at 102 K to a $2\theta_{\text{max}}$ = 55.02°. ZnL⁴(MeOH) crystallizes in the triclinic space group P1 bar with unit cell parameters: a = 7.5571(4) Å, b = 8.4581(4) Å, c = 15.4435(9) Å, α = 75.871(5)°, β = 76.936(5)°, γ = 86.110(4)°, V = 932.41(9) Å³, Z = 2 and D_{calc} = 1.552 Mg/m³. 4267 raw independent data from 501 fifty second frames were corrected for


absorption (transmission min./max. = 0.921 / 1.000; μ = 1.451 mm⁻¹) using SCALE3 ABSPACK.³⁷ The structure was solved by Patterson methods using SHELXTL. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. NH, OH, phenyl and methylene hydrogen atoms were located by difference maps and refined isotropically. Methyl hydrogen atoms were placed in their geometrically generated positions and refined as a riding model and these atoms were assigned $U(H) = 1.5 \times U_{eq}$. For all 4,267 unique reflections ($R(int)$ 0.058) the final anisotropic full matrix least-squares refinement on F^2 for 179 variables converged at $R1 = 0.067$ and $wR2 = 0.089$ with a GOF of 1.05.

Results and Discussion

Synthesis and Characterization

A series of metal complexes of the tetradentate ligand diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-hydrazinopyridine) (H_2L_1), Figure 1, were synthesized and characterized to evaluate the effect of metal variation on CO_2 capture. The complexes NiL^1 , PdL^1 , $CuL^1(MeOH)$, $ZnL^1(MeOH)$ were prepared as previously reported in the literature.³¹⁻³³ The computationally optimized structures of the Ni(II) and Pd(II) derivatives are square planar as expected for four-coordinate d^8 metal complexes with sharp NMR signals.³³ The Cu(II) and Zn(II) are square pyramidal with methanol solvent coordinated in the apical position. The Co(III) derivative, $[CoL^1(PPh_3)_2]BF_4$, was synthesized from H_2L^1 , cobalt(II) tetrafluoroborate, and triphenylphosphine upon reflux in solution under aerobic conditions. X-ray quality crystals of $[CoL^1(PPh_3)_2]BF_4$ were isolated by vapor diffusion of a concentrated acetonitrile solution with diethyl ether. The Co(III) sits in a pseudo-octahedral environment with trans PPh_3 donors and the N_3S donors of L_1^{2-} occupying the equatorial plane (Fig. S1).

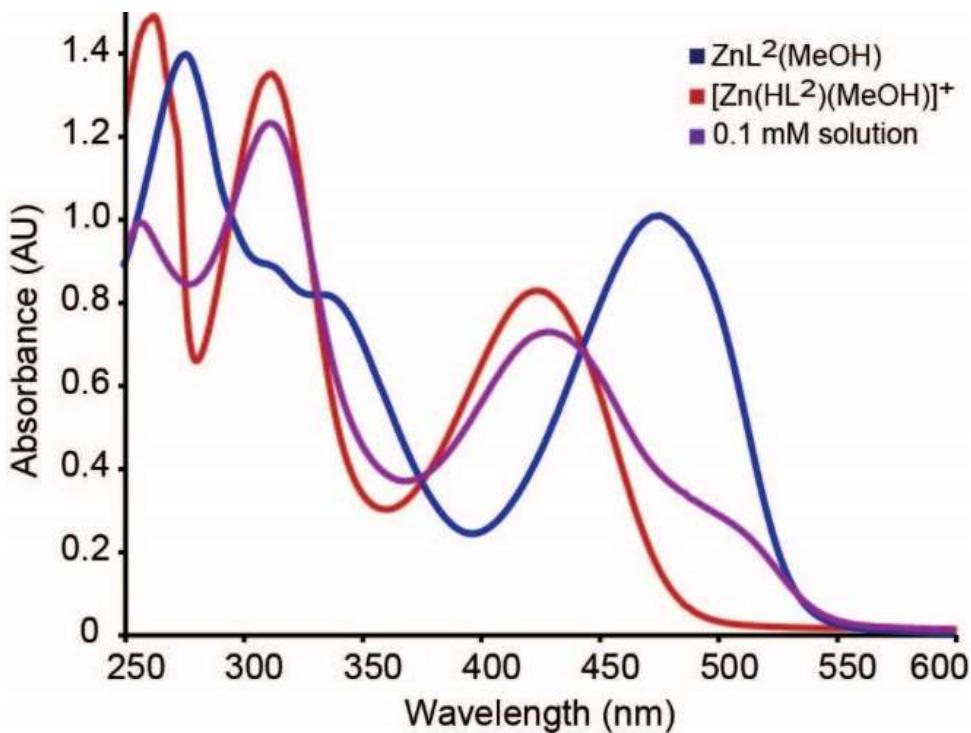

To evaluate the effect of ligand modification on CO₂ capture, a series of ligands with variation of the thiosemicarbazone pendent amine and their Zn(II) complexes were prepared, Figure 1. By variation of the thiosemicarbazide reagent in the ligand synthesis, the methyl substituent on the pendent amine of H₂L¹ was replaced with ethyl (H₂L²), phenethyl (H₂L³), and benzyl (H₂L⁴) amine. The corresponding Zn(II) complexes were prepared by refluxing a solution of the ligand with one equivalent of zinc(II) acetate and two equivalents of lithium hydroxide. All isolated zinc compounds are orange, air-stable compounds that were characterized by ¹H and ¹³C NMR and FT-IR spectroscopies. For example, the ¹H NMR spectrum of H₂L² displays pyridyl resonances at 6.84, 7.26, 7.67, and 8.16 ppm that are shifted upfield to 6.24, 6.55, 7.26, and 7.44 ppm in ZnL²(MeOH) (Fig. S13). Additionally, the IR spectrum of H₂L² displays a thioamide bend at 678 cm⁻¹, C=N thioamide stretching modes at 1509 and 1594 cm⁻¹, and an NH stretch at 3353 cm⁻¹ that shift to 643 cm⁻¹, 1535 cm⁻¹, and 3341 cm⁻¹ in ZnL²(MeOH). Similar trends are observed in the spectra of H₂L^{3,4} and their Zn(II) complexes, ZnL^{3,4}. X-ray quality crystals of ZnL³(MeOH) and ZnL⁴(MeOH) were grown from slow evaporation in methanol. In each complex, the Zn(II) ion sits in a distorted square pyramidal environment, Figure 2, similar to ZnL¹(MeOH).³⁰ A comparison of metric parameters is provided in Table S2.

Figure 2. ORTEP representations of (A) $\text{ZnL}^3(\text{MeOH})$ and (B) $\text{ZnL}^4(\text{MeOH})$.

An overview of the electronic spectra of the ML^1 complexes and $\text{ML}^n(\text{MeOH})$ derivatives in methanol is provided in Table 1. The spectra of the complexes can be divided into two groups based on the number of observed charge transfer transitions associated with the 2-hydrazinatopyridine functional group in the region from 400 – 500 nm. For $[\text{CoL}^1(\text{PPh}_3)_2]^+$, NiL^1 , PdL^1 , a single band is observed in the 400 – 500 nm region associated with charge transfer between the metal ion and hydrazinatopyridine moiety of the $[\text{L}^1]^{2-}$ ligand (Fig. S24 – S26). The band shifts to higher energy for the six-coordinate Co(III) complex relative to the square planar Ni(II) and Pd(II) complexes. For $\text{CuL}^1(\text{MeOH})$ and $\text{ZnL}^{1-4}(\text{MeOH})$, the observed spectra include a lower

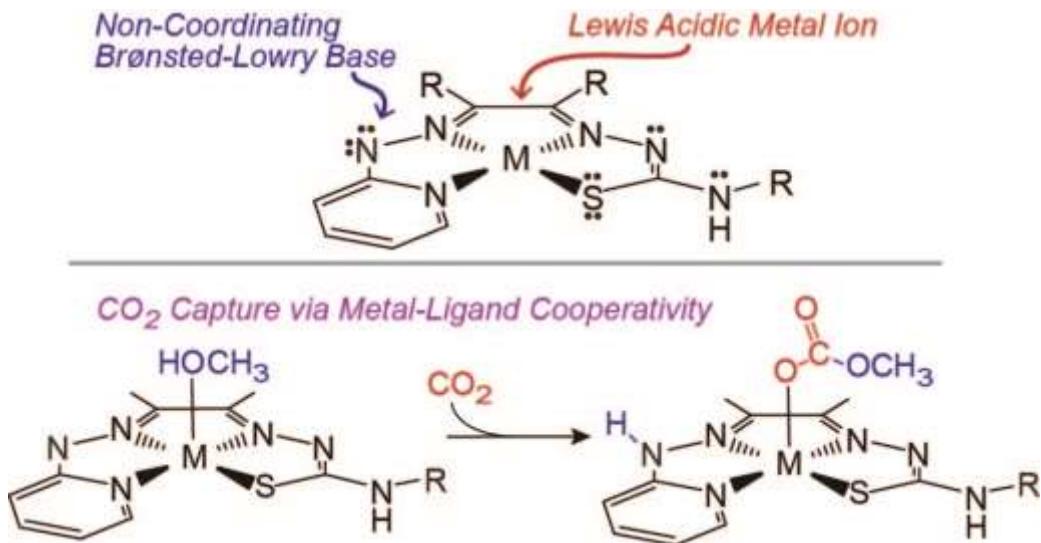
energy hydrazinatopyridine band associated with the neutral complex, $ML^n(MeOH)$, and a higher energy charge transfer band for its protonated derivative $[M(HL^n)(MeOH)]^+$. A representative spectrum of a 0.1 mM solution of $ZnL^2(MeOH)$ in methanol is shown in Figure 3. Spectra for other complexes are provided in Figures S20 – S23. The ratio of the two bands varies as a function of complex concentration as expected for acid-base equilibria. Spectra of the neutral complexes $ML^n(MeOH)$ were obtained through the addition of KOH to fully deprotonate the ligand. Similarly, the spectra for the $[M(HL^n)(MeOH)]^+$ complexes were obtained by the addition of collidinium hexafluorophosphate.

Figure 3. UV-vis spectra of 0.10 mM $ZnL^2(MeOH)$ with KOH added to shift equilibrium to $ZnL^2(MeOH)$ (blue), with collidinium hexafluorophosphate added to shift equilibrium to $[Zn(HL^2)(MeOH)]^+$ (red), and as prepared as a mixture of protonation states (purple).

Table 1. Comparison of ML^1 and $ZnL^n(MeOH)$ complexes in methanol.

Complex	Color	UV-vis $\lambda_{\text{max}} (\epsilon \text{ M}^{-1} \text{ cm}^{-1})$	pK_a $[M(HL^n)]^+$
$[CoL^1(PPh_3)_2]BF_4$	purple	568 (4150)	8.22 ± 0.15
NiL^1	green	700 (1760)	6.18 ± 0.05
PdL^1	blue	632 (5040)	5.23 ± 0.11
$CuL^1(MeOH)^a$	purple	515 (8660)	8.20 ± 0.08
$[Cu(HL^1)(MeOH)]^{+b}$	orange	471 (5100)	
$ZnL^1(MeOH)^a$	orange	478 (8570)	10.88 ± 0.09
$[Zn(HL^1)(MeOH)]^{+b}$	yellow	422 (3520)	
$ZnL^2(MeOH)^a$	orange	476 (5840)	10.99 ± 0.10
$[Zn(HL^2)(MeOH)]^{+b}$	yellow	424 (4400)	
$ZnL^3(MeOH)^a$	orange	476 (6340)	10.93 ± 0.05
$[Zn(HL^3)(MeOH)]^{+b}$	yellow	423 (4960)	
$ZnL^4(MeOH)^a$	orange	473 (4630)	10.29 ± 0.10
$[Zn(HL^4)(MeOH)]^{+b}$	yellow	421 (3250)	

^aSamples prepared by addition of KOH to a solution of $ML^n(MeOH)$ in methanol under Ar.
^bSamples prepared by addition of collidinium hexafluorophosphate to a solution of $ML^n(MeOH)$ in methanol under Ar.

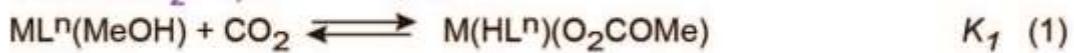

To quantify the basicity of the non-coordinating, hydrazinatopyridine nitrogen as a function of metal and ligand variation, a series of titrations was conducted to determine the pK_a of the protonated $[M(HL^n)]^+$ and $[M(HL^n)(MeOH)]^+$ complexes. All titrations were conducted in methanol under a continuous argon purge to prevent reactivity with dissolved CO_2 . As previously reported for $ZnL^1(MeOH)$, the non-coordinated, hydrazinatopyridine nitrogen is the site of protonation.³⁰ The NiL^1 and PdL^1 complexes were successfully titrated with HBF_4 with a color

change which accompanied the transition from the neutral to the protic species. For the remaining complexes, the pK_a was determined by back titration of the protonated complex due to the increased basicity of the hydrazinatopyridine nitrogen. All pK_a values are tabulated in Table 1. The square planar NiL^1 and PdL^1 complexes have the least basic hydrazinatopyridine nitrogen with associated pK_a values of 6.18 and 5.23, respectively. The complexes with coordinated methanol, $\text{CuL}^1(\text{MeOH})$ and $\text{ZnL}^{1-4}(\text{MeOH})$, are significantly more basic with observed pK_a values of 8.20 and 10.29 – 10.99, respectively. The $\text{ZnL}^{1-4}(\text{MeOH})$ complexes are more than 2 orders of magnitude more basic than $\text{CuL}^1(\text{MeOH})$ due to the greater Lewis acidity of Cu(II). For the series of Zn(II) complexes, $\text{ZnL}^4(\text{MeOH})$ is less basic than $\text{ZnL}^{1-3}(\text{MeOH})$, which have similar basicities.

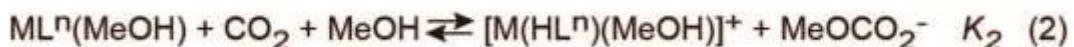
Reversible CO₂ Capture

The various metal derivatives of H_2L^1 and Zn(II) derivatives of H_2L^{2-4} (Fig. 1) were evaluated to determine their ability to capture CO₂. Methanol solutions of each complex were sparged with CO₂ (1 atm) with monitoring by UV-visible spectroscopy. The square planar NiL^1 and PdL^1 and six-coordinate $[\text{Co}(\text{L}^1)(\text{PPh}_3)_2]^+$ complexes showed no spectral changes indicating these complexes have no affinity for CO₂. Solutions of the $\text{Zn}(\text{L}^{1-4})(\text{MeOH})$ complexes, on the other hand, uniformly displayed a rapid color change from orange to yellow upon the introduction of CO₂. The color change is associated with a change in the protonation state of the hydrazinatopyridine chromophore. Sparging of the solutions with Ar changed the yellow solution back to orange as the captured CO₂ was displaced indicating a reversible process, as shown in Figure S27. Similarly, the introduction of CO₂ into purple solutions of $\text{CuL}^1(\text{MeOH})$ resulted in a color change to orange, which can be reversed upon sparging with Ar.

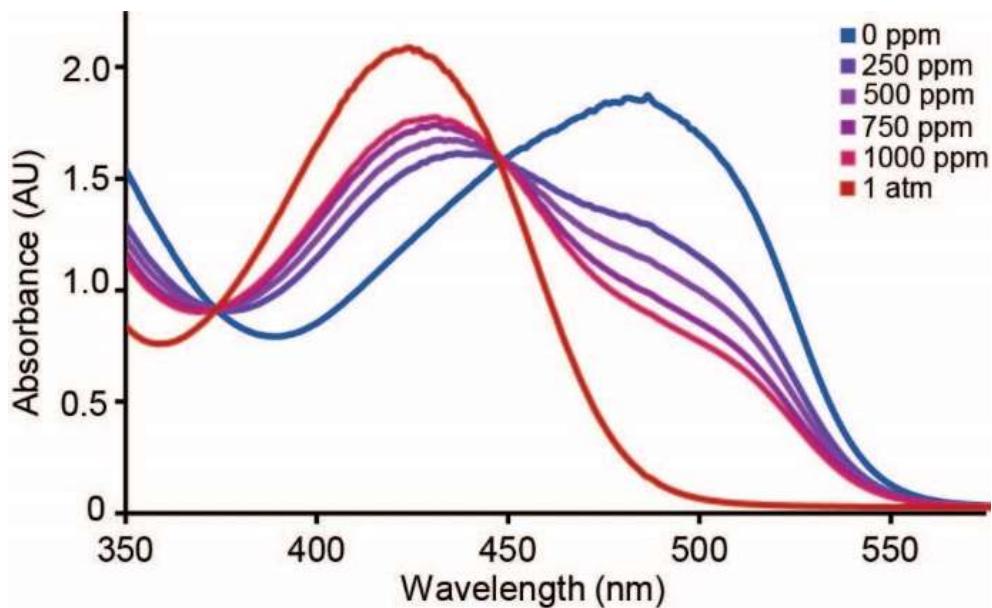
Metal–ligand cooperativity facilitates the CO₂ capture as a metal-bound methylcarbonate, Figure 4. The non-coordinated, hydrazinatopyridine nitrogen serves as an intramolecular, Brønsted-Lowry base that is protonated in the CO₂ capture complex. The metal ion serves as a Lewis acid to stabilize the methylcarbonate anion. X-ray crystallographic studies on yellow single crystals grown from ZnL¹(MeOH) under a CO₂ atmosphere confirm the identity of the CO₂ captured product as Zn(HL¹)(O₂COMe).³⁰ Repeated attempts to obtain single crystals of the Cu(II) derivative and the Zn(HL²⁻⁴)(O₂COMe) analogues were unsuccessful. Product identity was confirmed by FT-IR and ¹H NMR spectroscopy. The addition of CO₂ to Zn(Lⁿ)(MeOH) in CD₃OD:CH₃OH (25:75) shifts all ¹H NMR resonances downfield as expected for the Zn(HLⁿ)(O₂COMe) complexes. For ZnL²(MeOH), the methyl resonances shift from 2.20 and 2.21 ppm to 2.34 and 2.35 ppm, while the hydrazinopyridine peaks shift from 6.66, 6.84, 7.56, and 7.74 ppm to 7.06, 7.12, 7.91, and 8.05 ppm. The other Zn complexes show similar shifts. To further confirm the formation of methylcarbonate, FT-IR spectra were collected on ZnLⁿ(MeOH) solutions in 10% CD₃OD and 90% dichloromethane under Ar and CO₂. As shown for ZnL⁴(MeOH) (Fig. S31), the introduction of CO₂ results in a new, sharp peak at 1613 cm⁻¹ and a series of broader peaks between 1629 and 1700 cm⁻¹ consistent with an equilibrium mixture of bound and unbound methylcarbonate.³⁹ Similar spectra were obtained for the other Zn complexes (Fig. S32).


Figure 4. Metal-ligand cooperativity for CO_2 capture with $\text{ML}^n(\text{MeOH})$ complexes.

The equilibrium constant for CO_2 capture, K_I , associated with the reversible capture of CO_2 as a metal-bound methylcarbonate species (Scheme 1, equation 1) was determined spectrophotometrically. The color changes from orange to yellow for the Zn(II) complexes and purple to orange for CuL¹(MeOH) upon CO_2 capture associated with a change in the protonation state of the hydrazinatopyridine chromophore. As shown in Figure 5, a 0.2 mM solution of ZnL²(MeOH) in methanol displays a prominent peak at 487 nm under Ar associated with the hydrazinatopyridine chromophore in the unprotonated state. Sparging the solution with 1 atm CO_2 results in a shift of the hydrazinatopyridine peak to 430 nm due to protonation as part of the capture process. At lower CO_2 pressures (100 – 1000 ppm), the relative intensity of the two peaks varies as a function of CO_2 concentration. Analysis of the data using Bindfit⁴⁰⁻⁴² yielded a CO_2 capture equilibrium constant (K_I) of $11,700 \pm 300$ for ZnL²(MeOH). Similar measurements were conducted for the other Zn(II) and Cu(II) complexes with their associated K_I tabulated in Table 2. Notably, ZnL⁴(MeOH) has the highest equilibrium constant for CO_2 capture, $K_I = 35,000 \pm 200$, despite having lower basicity than the ZnL¹⁻³(MeOH) complexes. The equilibrium constant of 88


± 9 for the Cu(II) complex $\text{CuL}^1(\text{MeOH})$ is ~ 400 times lower than the corresponding Zn(II) complex.

Scheme 1. Overall and stepwise CO_2 capture reactions.


Overall CO_2 Capture Reaction

Protonation Reaction

Ligand Exchange Reaction

Figure 5. Spectrophotometric titration of a 0.20 mM solution of $\text{ZnL}^2(\text{MeOH})$ in methanol under a 1 atmosphere stream of Ar/ CO_2 containing 0, 250 ppm, 500 ppm, 750 ppm, 1000 ppm, and 1 atm of CO_2 .

Table 2. Equilibrium constants for $ML^n(\text{MeOH})$ complexes with CO_2 in methanol.

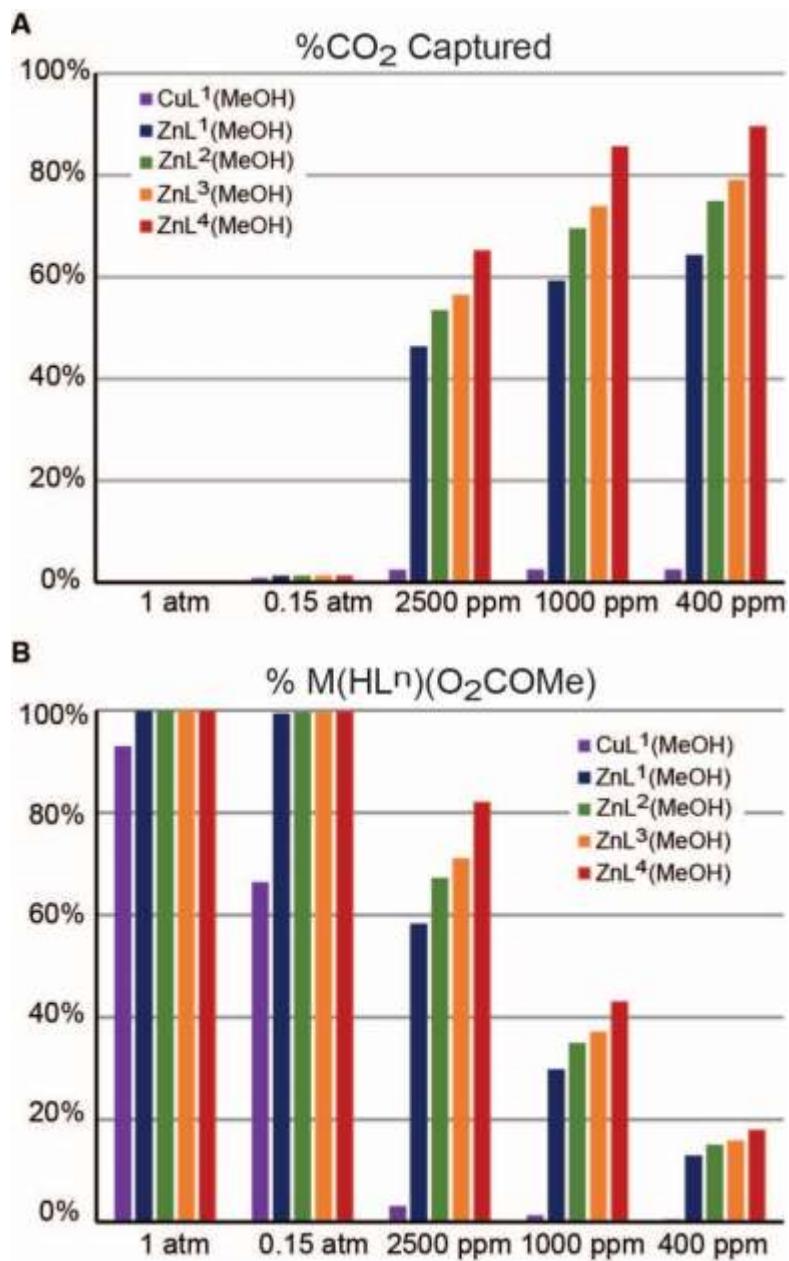
Complex	K_1 CO ₂ Affinity	K_2 Protonation	K_3 Ligand Exchange
$\text{CuL}^1(\text{MeOH})$	88 ± 9	0.17 ± 0.03	520 ± 100
$\text{ZnL}^1(\text{MeOH})$	6900 ± 180	81 ± 17	85 ± 18
$\text{ZnL}^2(\text{MeOH})$	$11,700 \pm 300$	105 ± 24	112 ± 26
$\text{ZnL}^3(\text{MeOH})$	$15,000 \pm 400$	91 ± 10	164 ± 18
$\text{ZnL}^4(\text{MeOH})$	$35,000 \pm 200$	21 ± 2	1670 ± 160

Thermodynamic Discussion

Metal-ligand cooperativity promotes CO_2 capture in a reaction that is dependent on the Brønsted-Lowry basicity of the hydrazinatopyridine ligand and the Lewis acidity metal ion. As shown in Scheme 1, the overall CO_2 capture reaction (equation 1) can be *conceptually represented* as the combination of a Brønsted-Lowry acid-base reaction (equation 2) and a ligand exchange reaction (equation 3). This approach provides a means to deconvolute the effect of the ligand basicity and metal acidity on the CO_2 capture reaction. It does not require the reaction mechanism necessarily proceeds via these steps. As reported for $\text{ZnL}^1(\text{MeOH})$,³⁰ a mechanism involving tautomerization between $\text{ZnL}^1(\text{MeOH})$ and $\text{Zn}(\text{HL}^1)(\text{OMe})$, followed by CO_2 insertion is consistent with the known CO_2 reactivity of other metal-alkoxide complexes.⁴³⁻⁴⁵

The acid-base reaction in equation 2 involves a proton transfer between methylcarbonic acid ($\text{CH}_3\text{OCO}_2\text{H}$), formed upon dissolution of CO_2 in methanol, and the hydrazinatopyridine of $\text{M}(\text{L}^n)(\text{MeOH})$. The dissolution of CO_2 in methanol yields small amounts of methylcarbonic acid, analogous to the formation of carbonic acid upon CO_2 dissolution in water. The effective $\text{p}K_a$ for the acid dissociation of CO_2 in methanol to CH_3OH_2^+ and methylcarbonate as the conjugate base is 8.97.⁴⁶ Based on this effective $\text{p}K_a$ and the measured $\text{p}K_a$ values associated with the $\text{ML}^n(\text{MeOH})$ complexes in Table 1, equilibrium constants (K_2) for the acid-base reactions were calculated. As shown in Table 2, for each of the $\text{ML}^n(\text{MeOH})$ complexes, the overall equilibrium constant (K_1) is greater than the acid-base equilibrium constant (K_2). This clearly shows that CO_2 capture is not a simple acid-base reaction between $\text{ML}^n(\text{MeOH})$ and methylcarbonic acid. The ratio of K_1/K_2 defines K_3 , which represents the ligand exchange reaction between the weak, neutral Lewis base methanol with the much stronger, anionic Lewis base methylcarbonate and provides an indirect measure of Lewis acidity of the metal. This Lewis acidity factor increases the CO_2 capture affinity by stabilizing the conjugate base (methylcarbonate) of the acid-base reaction through coordination similar to the way HF is transformed from a weak acid to a super acid upon addition of SbF_5 .

A comparison of the equilibrium constants in Table 2 reveals some interesting trends. The data for $\text{CuL}^1(\text{MeOH})$ and $\text{ZnL}^1(\text{MeOH})$ reveal a clear metal ion effect with a substantial *increase in CO_2 capture affinity upon substitution of Cu(II) with Zn(II)*. Within the Zn(II) series, a ligand effect is observed with the ability to *further increase CO_2 capture affinity upon variation of the ligand substituents*. For the $\text{ML}^1(\text{MeOH})$ complexes, substitution of Cu(II) with the less Lewis acidic Zn(II) ion results in a substantial increase in the basicity of the hydrazinatopyridine nitrogen as evidenced by an increase in K_2 by a factor of ~500. However, the lower Lewis acidity of Zn(II) also decreases the affinity for methylcarbonate as demonstrated by the ~6 fold decrease in K_3 .


Overall, the CO_2 capture affinity increases from 88 to 6900 upon substitution of Cu(II) with Zn(II). The CO_2 capture affinity can be further enhanced by fine tuning of the ligand. As noted above, the $\text{ZnL}^{1-3}(\text{MeOH})$ complexes have similar basicities, which leads to similar K_2 values. The observed increase in K_1 within this series results from increased Lewis acidity of the Zn(II) ion. The greatest CO_2 capture affinity is observed for $\text{ZnL}^4(\text{MeOH})$. The benzylamine substituent in this complex substantially increases the Lewis acidity of the Zn(II) by at least one order of magnitude relative to the other Zn complexes, as indicated by the K_3 values. However, it also slightly decreases the basicity of the non-coordinating nitrogen in the hydrazinatopyridine, by a factor of ~ 4 , as shown in the K_2 values. The net result is a CO_2 capture affinity, K_1 , for $\text{ZnL}^4(\text{MeOH})$ that is at least double that of the other Zn complexes. Within the other complexes, $\text{ZnL}^{1-3}(\text{MeOH})$ all have similar ligand basicities (K_2), with some variation in Lewis acidity (K_3) that is responsible for changes in CO_2 capture affinity.

Conclusion

A series of thiosemicarbazone-hydrazinatopyridine metal complexes have been synthesized, characterized, and evaluated for their ability to capture CO_2 . Although the Co(III), Ni(II), and Pd(II) complexes showed no CO_2 capture affinity, metal-ligand cooperativity facilitates CO_2 capture with the Cu(II) and Zn(II) $\text{ML}^n(\text{MeOH})$ complexes in methanol. The reaction involves complimentary protonation of the non-coordinated, hydrazinatopyridine nitrogen in a Brønsted-Lowry acid-base reaction and stabilization of the methylcarbonate anion via coordination to the Lewis acidic metal ion. As such, the equilibrium constant for CO_2 capture, K_1 , depends on both the ligand basicity, K_2 , and the metal Lewis acidity, K_3 . Overall, the Zn(II) complexes bind CO_2 significantly stronger than Cu(II) due to increased ligand basicity. Variations in the Lewis acidity of the Zn(II) complexes by variation of the pendent amine on the thiosemicarbazone functional

group further enhanced CO₂ capture with the benzylamine derivative, ZnL⁴(MeOH), showing the best performance.

The Zn(II) complexes efficiently bind CO₂ from dilute sources such as enclosed interior spaces or air. The concentration of CO₂ within buildings typically varies from ~400 ppm (concentration in air) to 2500 ppm with 1000 ppm identified by the World Health Organization as a maximum level for indoor air quality.⁴⁷ As shown in Figure 6a, a 0.3 mM solution of ZnL⁴(MeOH) effectively captures 90% of the CO₂ from 400 ppm air, 86% of 1000 ppm CO₂, and 65% of 2500 ppm CO₂. The other Zn(II) complexes perform slightly less well, but all capture at least 64%, 59%, and 46% of CO₂ at 400, 1000, and 2500 ppm, respectively. The CuL¹(MeOH) is significantly less effective as it binds only 2 – 3% of these dilute CO₂ streams. At higher CO₂ concentrations associated with flue gas exhaust (15% CO₂)⁴⁸ or pure CO₂ streams (1 atm) the percentage of CO₂ sequestered from these sources is very low ($\leq 1\%$) as the metal complexes in solution are saturated with CO₂, Figure 6b. In summary, thiosemicarbazone-hydrazinato-pyridine metal complexes provide a novel route for reversible CO₂ capture from dilute sources with high CO₂ capture efficiency up to 90% from air.

Figure 6. A) Percentage CO₂ captured by a 0.3 mM solution of MLⁿ(MeOH) complexes at CO₂ pressures from 400 ppm to 1 atm. B) Percentage of M(HLⁿ)(O₂COMe) complexes in a 0.3 mM solution of MLⁿ(MeOH) from 400 ppm to 1 atm of CO₂.

ASSOCIATED CONTENT

Supporting Information

The following files are available free of charge: crystallographic data and refinement parameters; NMR and UV-visible spectra (PDF). CCDC 2214614–2214616 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Craig Grapperhaus, email: craig.grapperhaus@louisville.edu, ORCID 0000-0003-4889-2645

Robert Buchanan email: robert.buchanan@louisville.edu, ORCID 0000-0001-8653-5388

Other Authors

Christine A. Phipps, ORCID 0000-0003-4924-7488

Dillon T. Hofsommer, ORCID 0000-0001-8638-2465

Calian D. Zirilli, ORCID 0000-0002-5784-5595

Bailee G. Duff, ORCID 0000-0003-2725-9832

Mark S. Mashuta, ORCID 0000-0002-2724-7252

Author Contributions

C.D.Z. and B.G.D. performed ligand and complex syntheses and assisted with the collection of spectroscopic data. D.T.H. synthesized and characterized $[\text{CoL}^1(\text{PPh}_3)]\text{BF}_4$. M.S.M. performed all X-ray crystallography. C.A.P. performed all other experiments in the manuscript. D.T.H. and C.A.P. wrote the manuscript in tandem. D.T.H, R.M.B., and C.A.G. conceived the project, supervised experimental studies, and contributed to writing the manuscript. All authors have approved the final version of the manuscript.

Funding Sources

This research was supported by the National Science Foundation CHE-1955268 (CAG) and CHE-1800245 (RMB).

Notes

The authors declare no competing financial interests.

References

1. House, K. Z.; Baclig, A. C.; Ranjan, M.; Nierop, E. A. v.; Wilcox, J.; Herzog, H. J. Economic and energetic analysis of capturing CO_2 from ambient air. *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *108* (51), 20428-20433. DOI: 10.1073/pnas.1012253108.
2. Rendell, D. J.; Clarke, M.; Evans, M. The Effect of Environmental Conditions on The Absorption of Carbon Dioxide Using Soda Lime. SAE Technical Paper 2003-01-2644, 2003 DOI: 10.4271/2003-01-2644.
3. Boyda, R. B.; Miller, C. W.; Schwartz, M. R. Integrated Air Revitalization System for Space Station. *SAE Transactions* **1986**, *95*, 207 -219.
4. Fasihi, M.; Efimova, O.; Breyer, C. Techno-economic assessment of CO_2 direct air capture plants. *J. Clean. Prod.* **2019**, *224*, 957-980. DOI: 10.1016/j.jclepro.2019.03.086.
5. Sanz-Pérez, E. S.; Murdock, C. R.; Didas, S. A.; Jones, C. W. Direct Capture of CO_2 from Ambient Air. *Chem. Rev.* **2016**, *116* (19), 11840-11876. DOI: 10.1021/acs.chemrev.6b00173.
6. Wang, Y.-B.; Sun, D.-S.; Zhou, H.; Zhang, W.-Z.; Lu, X.-B. CO_2 , COS and CS_2 adducts of N-heterocyclic olefins and their application as organocatalysts for carbon dioxide fixation. *Green Chemistry* **2015**, *17* (7), 4009-4015, 10.1039/C5GC00948K. DOI: 10.1039/C5GC00948K.

7. Lee, C.-H.; Huang, H.-Y.; Lee, J.-J.; Huang, C.-Y.; Kao, Y.-C.; Lee, G.-H.; Peng, S.-M.; Jiang, J.-C.; Chao, I.; Lu, K.-L. Amide-CO₂ Interaction Induced Gate-Opening Behavior for CO₂ Adsorption in 2-Fold Interpenetrating Framework. *ChemistrySelect* **2016**, *1* (11), 2923-2929. DOI: 10.1002/slct.201600345.
8. Chen, C.; Li, X.; Zou, W.; Wan, H.; Dong, L.; Guan, G. Structural modulation of UiO-66-NH₂ metal-organic framework via interligands cross-linking: Cooperative effects of pore diameter and amide group on selective CO₂ separation. *Appl. Surf. Sci.* **2021**, *553*, 149547. DOI: 10.1016/j.apsusc.2021.149547.
9. Park, J.; Li, J.-R.; Chen, Y.-P.; Yu, J.; Yakovenko, A. A.; Wang, Z. U.; Sun, L.-B.; Balbuena, P. B.; Zhou, H.-C. A versatile metal-organic framework for carbon dioxide capture and cooperative catalysis. *Chem. Commun.* **2012**, *48* (80), 9995-9997. DOI: 10.1039/C2CC34622B.
10. Ma, L.; Wang, X.; Deng, D.; Luo, F.; Ji, B.; Zhang, J. Five porous zinc(II) coordination polymers functionalized with amide groups: cooperative and size-selective catalysis. *J. Mater. Chem. A* **2015**, *3* (40), 20210-20217. DOI: 10.1039/C5TA06248A.
11. Smith, A. L.; Hardcastle, K. I.; Soper, J. D. Redox-active ligand-mediated oxidative addition and reductive elimination at square planar cobalt(III): Multielectron reactions for cross-coupling. *J. Am. Chem. Soc.* **2010**, *132* (41), 14358-14360. DOI: 10.1021/ja106212w.
12. van der Meer, M.; Rechkemmer, Y.; Peremykin, I.; Hohloch, S.; van Slageren, J.; Sarkar, B. (Electro)catalytic C-C bond formation reaction with a redox-active cobalt complex. *Chem. Commun.* **2014**, *50* (76), 11104-11106. DOI: 10.1039/C4CC03309D.
13. Haneline, M. R.; Heyduk, A. F. C-C Bond-Forming Reductive Elimination from a Zirconium(IV) Redox-Active Ligand Complex. *J. Am. Chem. Soc.* **2006**, *128* (26), 8410-8411. DOI: 10.1021/ja061107a.
14. Tennyson, A. G.; Lynch, V. M.; Bielawski, C. W. Arrested Catalysis: Controlling Kumada Coupling Activity via a Redox-Active N-Heterocyclic Carbene. *J. Am. Chem. Soc.* **2010**, *132* (27), 9420-9429. DOI: 10.1021/ja102686u.
15. Guin, A. K.; Mondal, R.; Chakraborty, G.; Pal, S.; Paul, N. D. Ruthenium-Catalyzed Dehydrogenative Functionalization of Alcohols to Pyrroles: A Comparison between Metal-Ligand Cooperative and Non-cooperative Approaches. *J. Org. Chem.* **2022**, *87* (11), 7106-7123. DOI: 10.1021/acs.joc.2c00311.
16. Sikari, R.; Sinha, S.; Chakraborty, G.; Das, S.; van Leest, N. P.; Paul, N. D. C-N Cross-Coupling Reactions Under Mild Conditions Using Singlet Di-Radical Nickel(II)-Complexes as Catalyst: N-Arylation and Quinazoline Synthesis. *Adv. Synth. Catal.* **2019**, *361* (18), 4342-4353. DOI: 10.1002/adsc.201900545.
17. Russell, S. K.; Lobkovsky, E.; Chirik, P. J. Iron-Catalyzed Intermolecular [2π + 2π] Cycloaddition. *J. Am. Chem. Soc.* **2011**, *133* (23), 8858-8861. DOI: 10.1021/ja202992p (acccesed 2011/11/21).
18. Sylvester, K. T.; Chirik, P. J. Iron-catalyzed, hydrogen-mediated reductive cyclization of 1,6-enynes and diynes: Evidence for bis(imino)pyridine ligand participation. *J. Am. Chem. Soc.* **2009**, *131* (25), 8772-8774. DOI: 10.1021/ja902478p.
19. Brunel, P.; Monot, J.; Kefalidis, C. E.; Maron, L.; Martin-Vaca, B.; Bourissou, D. Valorization of CO₂: Preparation of 2-Oxazolidinones by Metal-Ligand Cooperative Catalysis with SCS Indenediide Pd Complexes. *ACS Catal.* **2017**, *7* (4), 2652-2660. DOI: 10.1021/acscatal.7b00209.
20. Zubay, V.; Lebedev, Y.; Azofra, L. M.; Cavallo, L.; El-Sepelgy, O.; Rueping, M. Hydrogenation of CO₂-Derived Carbonates and Polycarbonates to Methanol and Diols by Metal-

- Ligand Cooperative Manganese Catalysis. *Angew. Chem. Int. Ed.* **2018**, *57* (41), 13439-13443. DOI: 10.1002/anie.201805630.
21. Chen, Y.; Li, H.; Zhao, W.; Zhang, W.; Li, J.; Li, W.; Zheng, X.; Yan, W.; Zhang, W.; Zhu, J.; Si, R.; Zeng, J. Optimizing reaction paths for methanol synthesis from CO₂ hydrogenation via metal-ligand cooperativity. *Nat. Commun.* **2019**, *10* (1), 1885. DOI: 10.1038/s41467-019-09918-z.
22. Mathis, C. L.; Geary, J.; Ardon, Y.; Reese, M. S.; Philliber, M. A.; VanderLinden, R. T.; Saouma, C. T. Thermodynamic Analysis of Metal–Ligand Cooperativity of PNP Ru Complexes: Implications for CO₂ Hydrogenation to Methanol and Catalyst Inhibition. *J. Am. Chem. Soc.* **2019**, *141* (36), 14317-14328. DOI: 10.1021/jacs.9b06760.
23. Elsby, M. R.; Baker, R. T. Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. *Chem. Soc. Rev.* **2020**, *49* (24), 8933-8987. DOI: 10.1039/D0CS00509F.
24. Rauch, M.; Kar, S.; Kumar, A.; Avram, L.; Shimon, L. J. W.; Milstein, D. Metal–Ligand Cooperation Facilitates Bond Activation and Catalytic Hydrogenation with Zinc Pincer Complexes. *J. Am. Chem. Soc.* **2020**, *142* (34), 14513-14521. DOI: 10.1021/jacs.0c05500.
25. Vogt, M.; Gargir, M.; Iron, M. A.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. A New Mode of Activation of CO₂ by Metal–Ligand Cooperation with Reversible C–C and M–O Bond Formation at Ambient Temperature. *Chem. Eur. J.* **2012**, *18* (30), 9194-9197. DOI: 10.1002/chem.201201730.
26. McKinnon, M.; Ngo, K. T.; Sobottka, S.; Sarkar, B.; Ertem, M. Z.; Grills, D. C.; Rochford, J. Synergistic Metal–Ligand Redox Cooperativity for Electrocatalytic CO₂ Reduction Promoted by a Ligand-Based Redox Couple in Mn and Re Tricarbonyl Complexes. *Organometallics* **2019**, *38* (6), 1317-1329. DOI: 10.1021/acs.organomet.8b00584.
27. Filonenko, G. A.; Conley, M. P.; Copéret, C.; Lutz, M.; Hensen, E. J. M.; Pidko, E. A. The impact of Metal–Ligand Cooperation in Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium PNP Pincer. *ACS Catal.* **2013**, *3* (11), 2522-2526. DOI: 10.1021/cs4006869.
28. Sieh, D.; Lacy, D. C.; Peters, J. C.; Kubiak, C. P. Reduction of CO₂ by Pyridine Monoimine Molybdenum Carbonyl Complexes: Cooperative Metal–Ligand Binding of CO₂. *Chem. Eur. J.* **2015**, *21* (23), 8497-8503. DOI: 10.1002/chem.201500463.
29. Derrick, J. S.; Loipersberger, M.; Chatterjee, R.; Iovan, D. A.; Smith, P. T.; Chakarawet, K.; Yano, J.; Long, J. R.; Head-Gordon, M.; Chang, C. J. Metal–Ligand Cooperativity via Exchange Coupling Promotes Iron-Catalyzed Electrochemical CO₂ Reduction at Low Overpotentials. *J. Am. Chem. Soc.* **2020**, *142* (48), 20489-20501. DOI: 10.1021/jacs.0c10664.
30. Cronin, S. P.; Strain, J. M.; Mashuta, M. S.; Spurgeon, J. M.; Buchanan, R. M.; Grapperhaus, C. A. Exploiting Metal–Ligand Cooperativity to Sequester, Activate, and Reduce Atmospheric Carbon Dioxide with a Neutral Zinc Complex. *Inorg. Chem.* **2020**, *59* (7), 4835-4841. DOI: 10.1021/acs.inorgchem.0c00121.
31. Cowley, A. R.; Dilworth, J. R.; Donnelly, P. S.; White, J. M. Copper Complexes of Thiosemicarbazone–Pyridylhydrazine (THYNIC) Hybrid Ligands: A New Versatile Potential Bifunctional Chelator for Copper Radiopharmaceuticals. *Inorg. Chem.* **2006**, *45* (2), 496-498. DOI: 10.1021/ic0514492.
32. Calatayud, D. G.; Lopez-Torres, E.; Dilworth, J. R.; Antonia Mendiola, M. Complexes of group 12 metals containing a hybrid thiosemicarbazone–pyridylhydrazone ligand. *Inorg. Chim. Acta* **2012**, *381*, 150-161. DOI: 10.1016/j.ica.2011.10.023.

33. Phipps, C. A.; Hofsommer, D. T.; Toda, M. J.; Nkurunziza, F.; Shah, B.; Spurgeon, J. M.; Kozlowski, P. M.; Buchanan, R. M.; Grapperhaus, C. A. Ligand-Centered Hydrogen Evolution with Ni(II) and Pd(II)DMTH. *Inorg. Chem.* **2022**, *61* (25), 9792-9800. DOI: 10.1021/acs.inorgchem.2c01326.
34. Huang, H.; Chen, Q.; Ku, X.; Meng, L.; Lin, L.; Wang, X.; Zhu, C.; Wang, Y.; Chen, Z.; Li, M.; Jiang, H.; Chen, K.; Ding, J.; Liu, H. A Series of α -Heterocyclic Carboxaldehyde Thiosemicarbazones Inhibit Topoisomerase II α Catalytic Activity. *J. Med. Chem.* **2010**, *53* (8), 3048-3064. DOI: 10.1021/jm9014394.
35. Chiswell, B.; Lions, F.; Tomlinson, M. L. Tridentate Chelate Compounds. IV. Metal Complexes from α -Diketone Mono- α -pyridylhydrazone Type Ligands. *Inorg. Chem.* **1964**, *3* (4), 492-499. DOI: 10.1021/ic50014a007.
36. *CrysAlis PRO (CCD and RED)*, V 1.171.40.67a; Rigaku OD 2019.
37. *SCALE3 ABSPACK included in CrysAlis PRO RED*, V. 1.171.40.67a.
38. Sheldrick, G. M. A short history of SHELX. *Acta Crystallogr A* **2008**, *64* (1), 112-122. DOI: 10.1107/S0108767307043930.
39. Hong, S. Y.; Cheon, Y.; Shin, S. H.; Lee, H.; Cheong, M.; Kim, H. S. Carboxylate-Assisted Formation of Alkylcarbonate Species from CO₂ and Tetramethylammonium Salts with a β -Amino Acid Anion. *ChemSusChem* **2013**, *6* (5), 890-897. DOI: 10.1002/cssc.201200971.
40. Brynn Hibbert, D.; Thordarson, P. The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis. *Chem. Commun.* **2016**, *52* (87), 12792-12805. DOI: 10.1039/C6CC03888C.
41. Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. *Chem. Soc. Rev.* **2011**, *40* (3), 1305-1323. DOI: 10.1039/C0CS00062K.
42. Bindfit. <http://supramolecular.org/>.
43. Arikawa, Y.; Nakamura, T.; Ogushi, S.; Eguchi, K.; Umakoshi, K. Fixation of atmospheric carbon dioxide by ruthenium complexes bearing an NHC-based pincer ligand: formation of a methylcarbonato complex and its methylation. *Dalton Trans.* **2015**, *44* (12), 5303-5305. DOI: 10.1039/C5DT00476D.
44. Mandal, S. K.; Ho, D. M.; Orchin, M. Reaction of electrophiles with manganese(I) and rhenium(I) alkoxide complexes: reversible absorption of atmospheric carbon dioxide. *Organometallics* **1993**, *12* (5), 1714-1719. DOI: 10.1021/om00029a032.
45. Kato, M.; Ito, T. Facile carbon dioxide uptake by zinc(II)-tetraazacycloalkane complexes. 2. X-ray structural studies of (.mu.-monomethyl carbonato)(1,4,8,11-tetraazacyclotetradecane)zinc(II) perchlorate, bis(.mu.-monomethyl carbonato)tris[(1,4,8,12-tetraazacyclopentadecane)zinc(II)] perchlorate, and (monomethyl carbonato)(1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)zinc(II) perchlorate. *Inorg. Chem.* **1985**, *24* (4), 509-514. DOI: 10.1021/ic00198a016.
46. Gohres, J. L.; Marin, A. T.; Lu, J.; Liotta, C. L.; Eckert, C. A. Spectroscopic investigation of alkylcarbonic acid formation and dissociation in CO₂ expanded alcohols. *Ind. Eng. Chem. Res.* **2009**, *48* (3), 1302-1306.
47. Ma, N.; Aviv, D.; Guo, H.; Braham, W. W. Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality. *Renewable and Sustainable Energy Rev.* **2021**, *135*, 110436. DOI: 10.1016/j.rser.2020.110436.

48. Gautam, M.; Hofsommer, D. T.; Uttarwar, S. S.; Theaker, N.; Paxton, W. F.; Grapperhaus, C. A.; Spurgeon, J. M. The effect of flue gas contaminants on electrochemical reduction of CO₂ to methyl formate in a dual methanol/water electrolysis system. *Chem Catalysis* **2022**, *2* (9), 2364-2378. DOI: 10.1016/j.checat.2022.08.001.

TOC Image and Synopsis

Thiosemicarbazone-hydrazinatopyridine metal complexes reversibly capture CO₂ as metal bound methylcarbonate. Substitution of Cu(II) with Zn(II) improves CO₂ capture affinity by modulating ligand basicity while variation of the thiosemicarbazone ligand enhances CO₂ affinity by tuning the metal ion Lewis acidity. Overall, the Zn(II) complexes effectively capture CO₂ from dilute sources with up to 90%, 86%, and 65% CO₂ capture efficiency from 400 ppm, 1000 ppm, and 2500 ppm CO₂ streams.