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Abstract
Bacteria are microscopic, single-celled organisms known for
their ability to adapt to their environment. In response to
stressful environmental conditions or in the presence of a
contact surface, they commonly form multicellular aggregates
called biofilms. Biofilms form on various abiotic or biotic sur-
faces through a dynamic stepwise process involving adhesion,
growth, and extracellular matrix production. Biofilms develop
on tissues as well as on implanted devices during infections,
providing the bacteria with a mechanism for survival under
harsh conditions including targeting by the immune system
and antimicrobial therapy. Like pathogenic bacteria, members
of the human microbiota can form biofilms. Biofilms formed by
enteric bacteria contribute to several human diseases
including autoimmune diseases and cancer. However, until
recently the interactions of immune cells with biofilms had been
mostly uncharacterized. Here, we will discuss how compo-
nents of the enteric biofilm produced in vivo, specifically am-
yloid curli and extracellular DNA, could be interacting with the
host’s immune system causing an unpredicted immune
response.
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Introduction
The human microbiota includes bacteria, fungi, vi-
ruses, and archaea that colonize the barrier and

mucosal surfaces including skin, mouth, lungs, and
gut. The microbial population of each body part is
different, shaped by unique environmental condition.
The gut microbiota plays a crucial role in immune and
metabolic homeostasis. When this homeostasis is
disrupted, opportunistic bacteria can flourish leading
to disease states including autoimmune dis-
eases [1e3].

Enteric bacteria that belong to the order Enter-
obacterales within the class of g-Proteobacteria colo-
nize the healthy gut as part of the normal microbiota,
albeit in relatively low abundances (less than 0.1% of
the whole microbiota). Enterobacterales are among the
most overgrown symbionts in many conditions
involving inflammation such as inflammatory bowel
disease, colorectal cancer, and celiac disease [4].
Blooms of these otherwise low abundance bacteria may
contribute to disease. There is an increased prevalence
of adherent-invasive Escherichia coli (E. coli) in patients
suffering from Crohn’s disease and ulcerative colitis,
two forms of inflammatory bowel disease [5e7].
Furthermore, the potent inflammatory pathogen-
associated molecular pattern (PAMPs), lipopolysac-
charide (LPS) is thought to promote disease and has
been shown to exacerbate intestinal injury induced by
non-steroidal anti-inflammatory agents and celiac dis-
ease [8]. Bacteria associated with biofilms decorate
their extracellular matrices (ECMs) with PAMPs
including the amyloid curli [9]. In colorectal cancer,
E. coli biofilms directly associate with tumors and
contribute to tumorigenesis by producing a DNA-
damaging toxin called colibactin [10].

The signals that induce biofilm formation inside a host
are not known and may be regulated by the inflamma-
tory environment within the gut. The inflamed gut is a
unique microenvironment with gradients of essential
nutrients and metabolites that favor growth of patho-
genic bacteria. Numerous studies have identified the
interactions between the invasive planktonic bacteria
and the byproducts produced by the host. The signals
that induce biofilm formation inside a host are not
known and may be regulated by the inflammatory
environment within the gut. In this review, we will
discuss how the bacterial amyloideDNA complexes
formed within the enteric biofilm ECM induce or
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accelerate the onset of autoimmune diseases and trigger
disease flares in susceptible individuals.

Biofilms
In a biofilm, a single bacterial species or multiple species
are encapsulated in a three-dimensional ECM adhered
to a biotic or abiotic surface [11]. Many bacterial spe-
cies, including both Gram-negative and Gram-positive
species, including the commensal microbes inhabiting
the human gastrointestinal tract, can produce biofilms
[12]. The composition and the structure of the ECM is
specific to the bacterial species and the environment in
which it is produced. Biofilms may protect members of
the commensal microbiota from the harsh conditions of
the gut luminal environment and shear forces. Patho-
gens produce their own biofilms to compete with the
commensal microbiota; these biofilms also protect the
bacteria from antimicrobial stressors generated by the
immune system [13,14].

The main components of the enteric ECM are amyloid
curli, cellulose, BapA, and extracellular DNA (eDNA);
the ECM accounts for 75e90% of the total biomass of
the biofilm [9,15]. Curli amyloid fibers mediate
cellecell attachment, adhesion to surface, environ-
mental persistence and biofilm formation [16,17]. Cel-
lulose and curli production and secretion are co-
regulated by a complex regulatory network that in-
volves the protein CsgD [18,19]. The expression of
BapA, a large cell-surface protein required for biofilm
formation, is also coordinated with the expression of
curli and cellulose, through the action of CsgD [20].
CsgD also regulates expression of the O-antigen
capsule, which is critical for environmental persistence,
but not for multicellular aggregation [21].

Bacterial amyloid curli
Curli, the main proteinaceous component of a biofilm,
forms amyloid fibers that are responsible for biofilm
resistance to enzymatic degradation and physical stress.
In bacteria lacking the ability to produce curli, the
three-dimensional ECM structure is disorganized and
strength of the biofilm is decreased [22]. The isolation
of curli fibers from a biofilm involves multiple rounds of
lysozyme, RNase, and DNase treatments and boiling in
sodium dodecyl sulfate, which degrade all ECM com-
ponents except curli [23]. Harsh conditions such as 90%
formic acid and hexafluoroisopropanol are required for
the breakdown of curli into its monomeric subunit, CsgA
[24]. The complexes formed by curli with the other
ECM molecules such as cellulose and eDNA contribute
to the structure and stability of the biofilm.

In animal models of Salmonella enterica Typhimurium (S.
Typhimurium) infection and in sepsis patients infected
with E. coli, antibodies against curli are detected
[25,26], and it was recently demonstrated that curli is

expressed in the gastrointestinal tract [14], suggesting
that biofilms are produced in vivo. Curli forms complexes
with eDNA that internalize into Toll-like receptor
(TLR) 9-containing endosomes of host cells via TLR2
binding. Subsequent recognition of the eDNA in the
curlieeDNA complex by TLR9 can lead to the pro-
duction of type I interferons and anti-double-stranded
DNA (dsDNA) autoantibodies (Figure 1) [27,28].
In vitro and in vivo studies suggest that amyloid
curlieeDNA complexes play a role in the pathogenesis
of autoimmune diseases including reactive arthritis and
systemic lupus erythematosus (SLE) [14,29].

DNA in the biofilm matrix
eDNA is a major constituent of the biofilms of multiple
human pathogens [30,31]. eDNA provides structural
stability, acts as a sink for antimicrobial peptides, pro-
tects resident bacteria from the host immune response,
and facilitates the uptake of genetic material between
species via horizontal gene transfer [31]. When DNA
was first observed in the biofilm matrix of Pseudomonas
aeruginosa (P. aeruginosa), it was assumed that the DNA
was from lysed cells and that it was not an important
component of the biofilm structure. It was soon
demonstrated that P. aeruginosa produces substantial
amounts of DNA through a mechanism independent of
cellular lysis, involving the release of small vesicles from
the outer membrane [32,33]. Whitchurch and col-
leagues showed that eDNA is an important functional
component of the biofilm ECM. They demonstrated
that treatment of P. aeruginosa with DNase I prevents
biofilm formation and dissolves mature biofilms [31].
Studies using recombinant human DNase I as a pro-
phylactic treatment for cystic fibrosis showed sputum
thinning and a decrease in biofilm formation [31].

Autolysis and fratricide are known sources of eDNA in
the biofilm, but cell-lysis-independent DNA release by
Bacillus subtilis (B. subtilis) has been demonstrated [34]. A
sequence comparison of DNA released by B. subtilis
showed that eDNA in the ECM was identical to intra-
cellular DNA, although the two fractions had distinct
methylation patterns [34]. Under certain conditions,
the classical WatsoneCrick-paired, right-handed double
helix, a conformation known as B-DNA, can twist in a
counterclockwise direction and form a left-handed double
helix or Z-DNA. Z-DNA is a strong driver of autoim-
munity, and antibodies against Z-DNA have been
detected in SLE patients [35,36]. Despite these find-
ings, Z-DNA and Z-RNA was thought not to readily
occur in nature until a study in 2020 showed that Z-RNA
was produced during viral infections and acts as a ligand
for the necroptosis-activating host sensor protein ZBP1
[37]. Additionally, Aishwarya et al. recently made the
remarkable discovery that the DNA present within
Haemophilus influenzae (H. influenzae), uropathogenic
E. coli, and P. aeruginosa biofilms is not solely B-DNA but
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also includes substantial amounts of Z-DNA [38]. This
notable discovery suggests that biofilms could be a
source for of Z-DNA, which leads to generation of au-
toantibodies in SLE patients and other autoim-
mune manifestations.

Curli binds tightly to DNA, and both prokaryotic and
eukaryotic DNA can be incorporated into the curli fibrils
and accelerate the polymerization process [27]. Phenol
soluble modulins (PSMs), proteins produced by Staph-
ylococcus aureus (S. aureus) also form amyloid fibers, and
PSM-eDNA fibers appear to provide structural support
in S. aureus biofilms [39,40]. Amyloids are not the only
proteins that form proteineeDNA complexes within
biofilms. The extracellular cell wall protein, LytC, from
Streptococcus pneumoniae, binds to DNA to form com-
plexes within the biofilm matrix [41]. The nucleopro-
tein complexes formed inMyxococcus xanthus biofilms add
mechanical strength and adherence, paralleling the
function of curli/eDNA complexes in enteric biofilms
[42]. eDNA is also essential to the overall architecture
and structural integrity of biofilms formed by non-

typeable H. influenzae and Burkholderia cenocepacia,
which have been linked to chronicity, recurrence, and
resistance to treatment of multiple respiratory tract
diseases. In these biofilms, DNABII proteins bind at the
vertices of crossed eDNA strands and act as lynchpins to
stabilize the structure of the ECM [43e45]. Inhibition
of DNABII binding proteins with antibodies specific to
integration host factor (IHF) and/or histone-like protein
(HU) induces a collapse of the biofilm and subsequent
release of resident bacteria, making them significantly
more susceptible to traditional antibiotics. IHF and HU
are ubiquitously expressed by eubacteria and have a
conserved amino acid sequence homology in the DNA-
binding region and a highly conserved three-
dimensional conformation that enables the DNABII
proteins to bind with high affinity to the eDNA lattice of
the biofilm [46].

Amyloid-containing biofilms and
autoimmunity
ProteineDNA or proteineRNA complexes of bacterial
biofilms are important in the pathogenesis of classical

Figure 1

Amyloid containing biofilms and autoimmunity. Curli–DNA complexes produced by commensal bacteria are recognized by TLR2/TLR1 hetero-
complex, which dampens inflammation in healthy intestinal tract. When the epithelial barrier is damaged during invasive infections or by other envi-
ronmental factors or diseases, curli–DNA complexes dislodged from biofilms activate the TLR2/TLR1 heterocomplex and TLR9 leading to the generation
of type I interferons and autoantibodies resulting in initiation or exacerbation of autoimmunity.
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autoimmune diseases including SLE [47,48]. Our group
has shown curlieDNA complexes from either
commensal E. coli or pathogenic S. Typhimurium are
recognized by the immune system as a conserved
signature, leading to the generation of an autoimmune
response characterized by the production of anti-
dsDNA and anti-chromatin autoantibodies and type I
interferons [27]. Wild-type mice injected with
curlieDNA complexes began to develop anti-dsDNA
autoantibodies within a week, and the levels of auto-
antibodies increase over a 6-week period. Interestingly,
injections of curlieDNA complexes into TLR2-and
TLR9-deficient mice induced very low levels of auto-
antibodies [28]. A number of studies have now
confirmed that curlieeDNA complexes are responsible
for the elicitation of immune responses to bacterial
biofilms [14,27e29,49e53]. These studies defined a
series of events that lead to the severe pro-autoimmune
effects of amyloid-expressing bacteria and suggest a
mechanism by which the curli acts as a carrier to break
immune tolerance to DNA. This is not an enteric spe-
cific functionality as this protein/eDNA binding is seen
in many other systems.

Both the gut microbiota and infections play roles in the
pathogenesis of autoimmune diseases [1,2,54,55].
Autoimmune manifestations are observed in a small
percentage of patients after infection with human
pathogens such as Salmonella, Yersinia enterocolitica, Shigella
spp., Borrelia burgdorferi, Mycobacterium tuberculosis,
P. aeruginosa, group A Streptococci, and S. aureus. Although
some of these manifestations are quite puzzling, all of
these bacteria produce curli-like amyloids and bio-
films [50].

Reactive arthritis, which is triggered by curli-producing
enteric pathogens, is relatively well studied compared to
the autoimmune sequalae triggered by the other path-
ogens. Reactive arthritis, characterized by inflammation
in the joints, the eyes, and the urethra, occurs in
approximately 5% of patients within 1e4 weeks of
enteric gastrointestinal infection. Since curlieDNA
complexes from enteric biofilms trigger an autoimmune
response in mouse models, we investigated whether
curlieDNA complexes trigger the disease [14]. Mice
orally infected with invasive, curli-producing strains of
S. Typhimurium or injected intraperitoneally with
curlieDNA complexes produced an autoimmune
response, but mice orally infected with a non-invasive,
curli-producing strain of S. Typhimurium or orally
administered curlieDNA complexes did not [14]. This
indicates that curli produced in the gastrointestinal tract
can lead to anti-dsDNA autoantibody production and
inflammation in the knee joints of mice when the gut
barrier is permeated.

CurlieDNA complexes are also implicated in the
pathogenesis of SLE. Factors including lymphopenia,

neutropenia, and complement deficiencies likely
contribute to the susceptibility of those with SLE to
infection, and genetic factors that lead to development
of SLE may impair bacterial clearance [56]. SLE pa-
tients more frequently experience infections with
S. aureus, S. Typhimurium, E. coli, S. pneumoniae, and
some mycobacterial species [57e59]. Both viral and
bacterial infections trigger flares in SLE patients causing
flu-like symptoms, fatigue, and muscle and joint pain,
and repetitive flare-ups can damage the kidneys and
lungs [60]. Infection by curli-producing bacteria like S.
Typhimurium and E. coli can cause disseminated in-
fections in SLE patients leading to bacteremia, septic
arthritis, pneumonia, and soft-tissue infections
[61e63]. Anti-curli/eDNA antibodies were detected in
the plasma of SLE patients; levels were correlated with
the presence of asymptomatic persistent bacteriuria and
the occurrence of diseases flares [29]. Studies have
found increased levels of soluble CD14 and LPS in the
blood of SLE patients [64,65], a clear indicator of a
damaged mucosal barrier. These findings suggest that
curli-expressing bacteria and/or curlieeDNA complexes
can pass through the epithelial barrier and are systemi-
cally presented to professional immune cells initiating
and/or exacerbating autoimmune disease. Additionally,
other autoimmune-promoting mechanisms can
contribute to SLE pathogenesis by these pathogens; for
instance, S. aureus via IFN-mediated skin barrier
dysfunction [66] or S. Typhimurium via Ro60 ortho-
logs [67,68].

A reduction in the complexity of the microbiota is
implicated in the pathogenesis of SLE, rheumatoid
arthritis, systemic sclerosis, Sjogren’s syndrome, and
anti-phospholipid syndrome [1,2,54,55]. In patients
with SLE, there is a lower Firmicutes/Bacteroidetes ratio
and higher percentage of Bacteroidetes than in healthy
controls [54,69]. Analysis of the fecal microbiota showed
that the microbiome in patients with SLE was
decreased in taxonomic complexity [70]. SLE patients
had 5-fold greater representation of Ruminococcus gnavus
of the Lachnospiraceae family and a reciprocal decrease
in species with protective properties. Furthermore,
these patients had antibodies against cell-wall lipogly-
cans of R. gnavus in their serum [70]. Another possible
pathobiont for SLE in susceptible individuals is the
Gram-positive commensal gut bacterium, Enterococcus
gallinarum. Both healthy individuals and SLE patients
were sero-reactive to E. gallinarum; however, SLE pa-
tients with autoantibodies to ribosomal proteins had
higher anti-E. gallinarum IgG titers than healthy controls
[71]. These higher titers were also significantly associ-
ated with the presence of anti-dsDNA, anti-Sm auto-
antibodies, and antibodies to human RNA [71]. Finally,
E. gallinarum-specific DNA was recovered from liver bi-
opsies of autoimmune patients suggesting that trans-
location of this pathobiont into the systemic organs
induces autoimmunity [72].
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A number of bacterial species express outer-surface
proteins with amyloid characteristics. B. burgdorferi ex-
presses an amyloid, OspA, that has been shown to
induce autoimmunity, specifically Lyme disease; OspA
is a molecular mimic of the adhesion molecule LFA-1a,
which is a partial agonist of anti-OspA antibodies and
exacerbates autoimmune symptoms [73,74]. Although
Lyme disease is an infectious disease, many Lyme dis-
ease symptoms overlap with those of SLE and patients
show positive auto-nuclear antigen (ANA) test results, a
diagnostic tool indicative of SLE. These correlations
between the two diseases suggest that if untreated,
some of the long-term sequelae of Lyme disease can be
autoimmune-mediated. A significant antibody and Tcell
response to OspA develops during prolonged episodes of
arthritis [74], suggesting that OspA contributes to
autoimmunity. Infection with M. tuberculosis, the causa-
tive agent of tuberculosis, can also induce autoantibody
production and inflammatory arthritis [75e77]. Heat
shock proteins from microorganisms can also act as
superantigens. Antibodies against HSP65, 70, and 90
have been detected in the sera of patients with SLE
[78], and homology between human HSP65 and mo-
lecular sequences of M. tuberculosis have been identi-
fied [79].

As curli or curli-like amyloids are produced by human
commensal members [19], leakage of amyloids that are
normally confined to the gut could trigger autoimmu-
nity. This idea is consistent with data showing that the
presence of curli in the gut is not sufficient to trigger
autoimmunity. Mice systemically exposed to purified
curli via intraperitoneal injection showed symptoms of
autoimmunity but those exposed via oral gavage did not
since the complex is unable to escape the gut [14].
Similarly, when mice were implanted subcutaneously
with a mesh-associated S. aureus biofilm or when PSM3a
complexed with DNA is injected systemically into mice,
anti-dsDNA autoantibodies were generated in a PSM-
dependent manner [80]. We speculate that in condi-
tions where the gut is leaky or with an invasive or
chronic systemic infection, bacterial amyloid complexes
translocate to the underlying sterile tissues and chronic
activation of the immune system with these DNA car-
riers result in autoimmune reactions.

Relationship between the structure of
amyloid–DNA complexes and
autoimmunity
Host derived amyloids and antimicrobial peptides
(AMPs) were thought to be distinct classes of molecules
with drastically different functions: whereas amyloid
accumulation in tissues is linked to various disease
states, AMPs are best known for their defensive roles in
the innate immune system [81]. The lines of demar-
cation between amyloids and AMPs have blurred in the
last 10 years; however, it is now clear that AMPs can be

autoantigens. AMPs and amyloids can adopt similar
structures and biophysical properties, and both can self-
assemble with immune ligands like DNA to amplify
immune responses [28,82,83]. Although AMPs and
bacterial amyloids have been implicated in the patho-
genesis of autoimmune diseases like SLE, psoriasis,
rheumatoid arthritis [5,9e13], recent work has shown
that many amyloids possess antimicrobial activity,
suggesting a potential role in host defense [84]. What’s
more, given that AMP production increases during
bacterial infections, it is possible that 1) AMPs can
directly contribute to autoimmunity following in-
fections and 2) AMPs can assemble with amyloids into
composite complexes with the same unifying structure
and thereby lead to synergistic pro-inflammatory ef-
fects. Our preliminary work with hybrid complexes that
comprise both host AMPs and “AMP-like” motifs of
microbial origin suggests that this latter scenario may be
also possible for AMPs and amyloids.

The structures of amyloid and AMP complexes with
DNA are critically related to their pro-inflammatory
activity. Amyloids can adopt a range of structures.
Curli monomers are predicted to adopt a twisted b-
sheet secondary structure and assemble into a b-sheet
fiber. In contrast, the a-helical PSMs from Staphylococcus
biofilms are amphiphiles form cross-a fibers composed
of two mirrored lattices of helices [40,85]. In both cases,
the fibrillation process creates a periodic structure of
amino acid motifs along the fiber surface. The exposed
hydrophilic interface has the ability to interact with
other molecular agents such as eDNA and other amy-
loids to create macromolecular assemblies.

AMPs can also assemble into protofibril scaffolds that
organize double-stranded nucleic acids into nano-
crystalline ordered structures with the inter-nucleic acid
spacings (a range of values near 35 Å) optimal for
multivalent interaction with TLR9 and TLR3, poten-
tially promoting receptor clustering [82,86,87]. This
behavior stands in contrast to other cationic molecules,
such as cell penetrating peptides like HIV TAT, which
bind to DNA and form ordered structures at small inter-
DNA spacings that do not activate TLRs. Interestingly,
recent work by de Mello et al. demonstrated that a cell
penetrating peptide with more hydrophobicity (which
made it more similar to AMPs and amyloids) fibrillates
in the presence of DNA and can carry DNA into the
eukaryotic cells [88].

Interestingly, the general trend in the pro-inflammatory
structures of amyloid-DNA and AMPeDNA complexes
is evident in pro-inflammatory components responsible
for Clostridiodes difficile-driven colitis. The C. difficile toxin
TcdA initiates a marked host innate immune response
via TLR9. We recently showed that fragments of TcdA
can organize DNA into pro-inflammatory nanocrystal-
line structures at inter-DNA spacings that activate
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TLR9, similar to amyloideDNA complexes and
AMPeDNA complexes [89]. Importantly, even in the
protease-rich environment of the gut where only frag-
ments of TcdA exist, the TcdA transduction domain
alone can organize DNA into complexes capable of
strong multivalent TLR9 activation. Consistent with
these results, Di Domizio et al. showed that artificially
formed amyloideDNA complexes administered sys-
tematically promote systematic autoimmunity, autoan-
tibody production, and lupus-like syndrome in mice
through TLR9 signaling in plasmacytoid dendritic cells
[83,90]. In sum, amyloids and AMPs can both organize
and chaperone immune ligands into supramolecular
structures with optimized geometries that promote
multivalent binding to toll-like receptors and thereby
amplify immune activation.
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