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We propose a machine learning (ML) non-Markovian
closure modelling framework for accurate predictions
of statistical responses of turbulent dynamical systems
subjected to external forcings. One of the difficulties
in this statistical closure problem is the lack of
training data, which is a configuration that is not
desirable in supervised learning with neural network
models. In this study with the 40-dimensional
Lorenz-96 model, the shortage of data is due to the
stationarity of the statistics beyond the decorrelation
time. Thus, the only informative content in the
training data is from the short-time transient statistics.
We adopt a unified closure framework on various
truncation regimes, including and excluding the
detailed dynamical equations for the variances.
The closure framework employs a Long-Short-Term-
Memory architecture to represent the higher-order
unresolved statistical feedbacks with a choice of
ansatz that accounts for the intrinsic instability yet
produces stable long-time predictions. We found that
this unified agnostic ML approach performs well
under various truncation scenarios. Numerically, it
is shown that the ML closure model can accurately
predict the long-time statistical responses subjected
to various time-dependent external forces that have
larger maximum forcing amplitudes and are not in the
training dataset.
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1. Introduction
The closure problem in nonlinear dynamical systems is one of the most challenging tasks in
computational statistics, see e.g. [1–6]. In the context of turbulent fluid flows, the closure problem
has been studied for over a century dating back to Boussinesq’s eddy viscosity hypothesis
[7], where the goal is to describe the Reynold stress term (which is effectively a second-order
statistic) as a function of the mean flow. In a nutshell, the underlying closure problem is to
find a closed system that can describe the evolution of observable (such as low-order statistics),
and by ‘closure’, the goal is to specify a map that allows one to untangle the dependence on
unresolved variables (such as higher-order statistics). In the context of the low-order statistical
closure problem, which is the primary interest in this work, predicting the time evolution of
mean statistics is useful for point estimation, while predicting the time evolution of the covariance
statistics has a wide range of applications, including uncertainty quantification [8–10] and data
assimilation [11–13].

As machine learning (ML) becomes popular, finding such a ‘closure’ map can be formulated
as a supervised learning task. With ML algorithms, one approximates the closure system by
solving a regression problem on an appropriate hypothesis space, replacing the traditional
approach of finding an analytical expression that can be very difficult in general. In the
context of turbulent fluid flows, numerous neural network-based ML closure systems have been
proposed (e.g. [6,14,15]). While the success of the estimation depends crucially on the choice of
neural network architectures, a natural hypothesis space for modelling time series is the RNNs
architecture. In the closure modelling applications, the Long-Short-Term-Memory (LSTM) [16], a
special class of RNNs, has been shown to produce state-of-the-art accuracies in the prediction of
high-dimensional time series [17–20].

Building on these empirical successes, we consider the LSTM-based neural network
architecture for statistical closure modelling of turbulent dynamical systems. In this paper, we will
examine the effectiveness of ML in uncovering the non-Markovian statistical model. In previous
works [20,21], a closure model for predicting the trajectory of the observed state variables is
constructed using a long time series of the corresponding observable. Despite the similarity to
the closure modelling framework formulated in [20,21], the proposed statistical closure problem
in this article is more challenging. In the present work, a unified model framework is proposed
aiming to directly predict the leading-order statistical moments subjected to general external
perturbations, with limited training data. Particularly, we will consider short-time transient
statistical sequences for training. This consideration is motivated by practical issues (e.g. stiff
numerical solver and large storage) in obtaining longer time series when the full-order model is
multiscale and high-dimensional. Even in moderately low-dimensional problems, as we shall
see in this paper when the perturbed dynamics correlation statistics are decaying, we only
have short-time series of transient statistics that are informative for training. While the lack of
training data makes the closure problems in this paper a stringent test for the ML algorithm,
we are not only concerned to predict the evolution of the low-order statistics of the underlying
unperturbed system. Our ultimate goal is to capture statistical responses subjected to unseen
external forces, extending previous works [20,21] which only examined the accuracy of the
unperturbed dynamical system on new initial conditions.

To achieve this goal, we assume that one can numerically simulate the full-order model
in a short time window (as in many reduced-order modelling configurations, e.g. [9,22–25])
to generate a training dataset under pre-selected simple constant forcing functions and initial
conditions. We will simulate this training dataset by a Monte–Carlo simulation. While this task
can be expensive depending on the choice of integration scheme for solving the underlying full-
order model, the length of the time integration to reach correlation time scales, and the sample
size needed to achieve a robust statistical estimation, it only needs to be performed once for pre-
selected constant external forcings. Subsequently, we validate the closure model by examining
how well it can extrapolate beyond the training data to predict the statistical responses subjected
to various new time-dependent forcing functions and initial conditions.
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Numerically, we examine the ML closure on a simple test model, the Lorenz ’96 (L-96) system,
that was first introduced by Lorenz [26] as an idealization of atmospheric waves in midlatitude.
While the model is simple, it carries some properties of realistic turbulent complex systems
[27,28] such as the energy preserving advection-like nonlinear term, and a wide spectrum of
unstable modes through the nonlinear coupling between states. Beyond the simplicity, which
allows us to carry the numerical verification with moderate computational costs, our choice to
investigate this case is largely motivated by the fact that closure models for a coupled system of
the mean and covariance statistics have been well developed and improved in [4,9,28]. These
parametric closure models, developed based on clever physical intuition, have demonstrated
accurate statistical predictions. In such a configuration, we found that the ML-based model can
produce accurate statistical responses (comparable to the parametric model) on moderate to large
forcing amplitudes. Despite the effective prediction with parametric closure models in [9,28], the
cost of calibrating the statistical modes throughout the entire spectrum can become very high
as the dimensionality of the problem increases [5,10]. In addition to this practical problem, a
more fundamental issue with parametric modelling is that the design of accurate closure models
crucially depends on knowing the physics well enough, such as self-similarity or some structure
of the underlying dynamics. As an example that illustrates this issue, we will compare parametric
and ML closure models for only the mean statistics (no dynamical models for the variance are
involved) in the simple L-96 example. In this scenario, we find that the agnostic ML framework
can produce more accurate predictions, beating the parametric-based approach. This simple test
suggests that the agnostic approach is easily portable for any truncation scenario. On the other
hand, while the parametric modelling assumption [9,28] works well on the coupled system of the
mean of covariance statistics, different parametric assumptions need to be considered for accurate
closure of only the mean statistics.

The remainder of this paper is organized as follows. In §2, we discuss the general statistical
closure modelling framework of turbulent dynamical systems using L-96 as a prototypical
example and provide a hierarchy of low-order closure models. In §3, we provide details on the
ML algorithm used to estimate the non-Markovian dynamical components. In §4, we present
numerical results on the hierarchy of closure models introduced in §2. In §5, we close the paper
with a summary.

2. Statistical closure of complex nonlinear systems
The general formulation of the turbulent dynamical systems [9,27] can be described by the
canonical equations for the state variable u ∈R

N as

du
dt

= (L + D)u + B(u,u) + F(t). (2.1)

On the right-hand side of the above equation (2.1), the first two components, (L + D)u, represent
linear dispersion and dissipation effects, where L∗ = −L is an energy-conserving skew-symmetric
operator; and D < 0 is a negative definite operator. The nonlinear effect in the dynamical system
is introduced through a quadratic form, B(u,u), that satisfies the conservation law, u · B(u,u) = 0,
and the Liouville property, divuB(u,u) = 0 [27].

Following [9,29], the dynamics of the statistical moments are constructed by representing the
state space u as

u(t) = ū(t) +
N∑
i=1

Zi(t)ei and Rij =
〈
ZiZ

∗
j

〉
(2.2)

where ū(t) = 〈u(t)〉 represents the mean statistics, and the coefficients {Zi(t)} are fluctuation terms
along the coordinates ei. In the above description, the notation 〈·〉 is to denote the canonical
statistical ensemble average that approximates the integral over the phase space at the limit of
large ensemble size, following the standard notion in statistical mechanics [30]. Inserting the
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representation in (2.2) to (2.1), one obtains a system of dynamical moments equations, where
the first two moments satisfy

dū
dt

= (L + D)ū + B(ū, ū) +
∑
i,j

RijB(ei, ej) + F (2.3a)

and
dR
dt

= Lv(ū)R + RL∗
v(ū) + θ , (2.3b)

with
(Lv)ij = [(L + D)ej + B(ū, ej) + B(ej, ū)] · ei (2.4a)

and
(θ )ij =

∑
m,n

〈
ZmZnZj

〉
B(em, en) · ei + 〈ZmZnZi〉B(em, en) · ej. (2.4b)

Here, the energy flux θ expresses nonlinear energy exchanges between different fluctuation
modes due to the nonlinearity of the dynamics modelled through third-order moments. In
general, such a representation gives rise to a non-closed system (possibly infinite-dimensional
ODEs) as each moment equation is coupled to higher-order moments.

Despite the fact that the exact equations for the statistical mean (2.3a) and the covariance
fluctuations (2.3b) are not a closed system, the total energy in the mean plus the total variance
defined as E= 1

2 ū · ū + 1
2 tr(R) satisfies the following scalar dynamical equation [9]

dE
dt

= ū · Dū + tr(DR) + ū · F, (2.5)

where ū and R are the exact solutions from the statistical equations. While the mean and
covariance dynamics in (2.3a) and (2.3b) are not explicitly written in terms of E, we found that
by allowing the unresolved components in (2.3b) to depend on E, one can achieve an effective
non-Markovian closure model, especially for reduced-order model building upon the coupled
system (2.3a), (2.3b), (2.5) in leading modes [28].

For the convenience of notation in the following discussion, we consider a discrete dynamical
system induced by numerical integration of the coupled system (2.3a), (2.3b), (2.5), and a non-
Markovian equation for the energy flux θ ,

ūi+1 =F1(ūi,Ri, Fi+1),

Ri+1 =F2(ūi,Ri, θi)

Ei+1 =F3(ūi,Ri, Fi+1)

and θi+1 = G(ūi, . . . , ūi−m+1;Ri, . . . ,Ri−m+1;Ei . . . ,Ei−m+1; θi, . . . , θi−m+1).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.6)

Here, we have defined ūi := ū(ti), Ri :=R(ti), Ei := E(ti), θi := θ (ti), and {Fj} to denote the
corresponding operators associated with the numerical integration of (2.3a), (2.3b), (2.5) for a
suitable time step �t := ti+1 − ti. The operator G denotes a hidden non-Markovian model that
maps the delay coordinates of variables {ū,R,E, θ} to the energy flux θ at the next time step.
We should point out that in the absence of external forces, the non-Markovian system in (2.6) is
an exact representation (no approximation) of the corresponding temporal discretization of the
full dynamical system in (2.1) in terms of {ū,R,E, θ} that satisfies mild conditions of the delay
embedding theorem [31,32]. To see this, one can employ the discrete Mori–Zwanzig formulation
[20] to the full system (2.1) with a projection operator defined as the conditional expectation of the
delay embedding coordinates of these observables, E[Xi+1|xi, . . . , xi−m+1] for some m> 1, where
Xi denotes the random variable associated with the dynamical process xi := (ui,Ri,Ei, θi) (see §3
of [33] for such a derivation).

While one can, in principle, deduce the hidden dynamics G, such a mathematical derivation
is far from trivial even if the structure of the full dynamics in (2.1) is known. Following the idea
in [20,21], we will use ML to approximate the hidden map G in an efficient way. Theoretically,
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under the assumption that Fj,G are uniformly Lipschitz, one can guarantee accurate solutions
(in a strong sense) up to a finite time with an error bound that depends linearly on the total error
of learning G (see theorem 3 in [20]). Numerically, we will consider a specific type of RNN known
as the LSTM model for the estimation of G, motivated by the robust numerical results on other
closure problems reported in [20]. In fact, using the approximation theory of a two-layer neural
network, the work in [34] shows that there exists an RNN closure model that gives the desired
consistency up to a finite time.

To illustrate the approach, we focus on the Lorenz’96 (L-96) model [26] that fits into the
general structure of (2.1). The L-96 model is a 40-dimensional ODE system with state variables
u= (u0, u1, . . . , uJ−1)�

duj
dt

= (uj+1 − uj−2)uj−1 − d(t)uj + Fj(t), j= 0, . . . , J − 1 = 39, (2.7)

with a periodic boundary condition, uJ = u0, mimicking geophysical waves in the mid-latitude
atmosphere. While the model is rather simple, it carries representative properties of realistic
complex systems with the energy preserving advection-like nonlinear terms, and the exchanges
between the damping and forcing terms.

To compare with the abstract form (2.1), we can write the linear and quadratic operators for
the L-96 system as

L= 0, D(t) = diag(−d0(t), . . . , −dJ−1(t)) and B(u, v) = {u∗
i−1(vi+1 − vi−2)}J−1

i=0

and define the state variables in (2.2) with ek := {e2π ik(j/J)}j for j= 0, . . . , J − 1.
For simplicity, we consider uniform damping and forcing terms, d(t) and F(t) respectively, that

are only functions of time and identical for any grid points j= 0, . . . J − 1. For an extensive test
of the model prediction skill, we will consider several forcing functions with distinctive features
(figure 1b). With this assumption, the first two moments can be further simplified to a uniform
mean state, ū(t) = ū(t)(1, . . . , 1)T, and a diagonal covariance matrix, R(t) = diag(r0(t), . . . , rJ/2(t)).
The corresponding moment equations are given as

dū(t)
dt

= −d(t)ū(t) + φ(t) + F(t), (2.8a)

drk(t)
dt

= −2[Γkū(t) + d(t)]rk(t) + θk(t), k= 0, 1, . . . ,
J
2

(2.8b)

and
dE(t)

dt
= −2d(t)E(t) + F(t)ū(t), (2.8c)

where we have defined the coupling coefficients Γk = 1/J(cos(4πk/J) − cos(2πk/J)), r−k =
〈Z−kZ∗

−k〉 = 〈ZkZ∗
k 〉 = rk, the variance feedback φ to the mean equation, and the nonlinear flux

θk in the variance equations

φ =
∑
k

rkΓk and θk = 2
∑
m

Re
{〈
ZmZ∗

m+kZk
〉
(e−2π i(2m+k/J) − e2π i((m+2k)/J))

}
,

respectively, with statistical energy conservation tr(θk) = 0. See appendix A in [28] for a detail
derivation of these terms. A numerical discretization of the right hand sides of (2.8a)–(2.8c) gives
an explicit example for the abstract operators F1,F2,F3 in (2.6).

(a) Mean-covariance closure model
Here, we will specify the closure model for the discrete dynamical system in the form (2.6)
induced by the time discretization of (2.8a)–(2.8c). In §4, we will numerically validate the
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Figure 1. Direct Monte–Carlo simulation solutions of the 40-mode L-96 system as the standard test model. (a) The equilibrium
energy spectra and the inner shaded area includes the resolvedmodes in the reduced-order model (2.10). Unstablemodes span
in awider range 4≤ k ≤ 13 than the resolved state in the reduced-ordermodel. (b) Several external forces wewill consider for
testing the prediction skill. (Online version in colour.)

effectiveness of the ML strategy in recovering the dynamical maps Gk that model the evolution of
the nonlinear flux θk that are missing in this formulation

ūi+1 =F1(ūi, {rk,i}k=0,...,J/2, Fi+1),

rk,i+1 =F2,k(ūi, rk,i, θk,i),

Ei+1 =F3(ūi,Ei, Fi+1)

and θk,i+1 = Gk(ūi, . . . , ūi−m+1; {θk,i, . . . , θk,i−m+1}k=0,...,J/2;Ei, . . . ,Ei−m+1)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.9)

for k= 0, . . . , J/2. Here, we should point out that ūi, rk,i,Ei, θk,i are all real-valued scalar variables,
where we used subscript-i to denote the discrete time index. Here, we have adopted another
simplification by ignoring the explicit dependence of Gk on {rk}. This simplification is partly
motivated by the implicit dependence of the variance information through E. Numerically, this
simplification avoids the complexity in training the neural network model in approximating
G := (G0, . . . ,GJ/2). In such a case, we should point out that {Gk : R(3+J/2)m →R}k=0,...,J/2 is already
high-dimensional when m is large, even without the explicit dependence on {rk}.

(b) Reduced-order mean-covariance closure model
Next, we will consider a reduced-order model by truncating the summation term in (2.8a) to
only account for leading modes K := {k ∈Z : kmin ≤ k≤ kmax} that carry large variances (see the
variances as functions of modes in figure 1a for various constant forcings). In our numerical
experiment, we consider kmin = 6 and kmax = 12 such that the resolved subset K includes only
the most unstable modes.

Specifically, the reduced-order model is given by a coupled system consisting of

dū(t)
dt

= −d(t)ū(t) +
∑
k∈K

rk(t)Γk + φ̃(t) + F(t),

and the dynamics of {rk : k ∈K} in (2.8b) and the dynamics of E in (2.8c). The key idea here is to
consider a non-Markovian model (to be learned via appropriate ML algorithm) for the evolution
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of the unresolved total variance feedback φ̃ := ∑
k∈{0,...,J/2}\K rk(t)Γk. In discrete form, our task will

be to learn the dynamical maps Gk,1 and G2 of,

ūi+1 =F1(ūi, {rk,i}k∈K, Fi+1) + φ̃i,

rk,i+1 =Fk,2(ūi, rk,i, θk,i),

Ei+1 =F3(ūi,Ei, Fi+1),

θk,i+1 = G1,k(ūi, . . . , ūi−m+1; {θk,i, . . . , θk,i−m+1}k∈K;Ei, . . . ,Ei−m+1)

and φ̃i+1 = G2(ūi, . . . , ūi−m+1; φ̃i, . . . , φ̃i−m+1;Ei, . . . ,Ei−m+1),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)

for k ∈K using appropriate ML algorithms. With the reduced-order model (2.10), we only need
to learn {G1 : R(2+|K|)m →R

|K|,G2 : R3m →R}k∈K, where G1 := (G1,k)k∈K and we have denoted the
number of modes in K by |K| = kmax − kmin + 1. Compared to the full-order closure model in
(2.9), G1 is a lower-dimensional map which makes the computational cost less expensive when
|K| < J/2. In our numerical simulation, we will consider K= {6, . . . , 12} such that |K| = 7 < 21 and
the closure map to be recovered, G1 : R9m →R

7, is a much smaller dimensional map relative to
that in the full-order model where G1 : R24m →R

21.

(c) Mean closure model
Finally, we will consider a closure model that ignores the detail evolution of the covariance
terms rk. In such a severe truncation scenario, we will introduce a non-Markovian closure for
φ := ∑J/2

k=−J/2+1 rk(t)Γk to account for the combined contribution of the truncated covariance terms
in (2.8a). The corresponding discrete form is given as follows,

ūi+1 =F1(ūi, Fi+1) + φi,

Ei+1 =F3(ūi,Ei, Fi+1)

and φi+1 = G(ūi, . . . , ūi−m+1; φi, . . . , φi−m+1;Ei, . . . ,Ei−m+1).

⎫⎪⎪⎬
⎪⎪⎭ (2.11)

Computationally, we only need to learn one map G : R3m →R, which is a significant reduction
compared to the previous models in (2.9) and (2.10).

(d) An important strategy for modelling unstable dynamics
In the full-order and reduced-order covariance models (2.9) and (2.10), neural network models
will be constructed to update the variances rk. One major challenge is the inclusion of strong
inherent instability that is common among turbulent dynamical systems. For example, in
the L-96 system, the covariance equation (2.8b) for rk contains positive unstable modes with
positive Lyapunov exponents if −Γkū> 0. A lack of careful consideration in the detailed balance
in unstable variance dynamics will lead to unbounded model divergence in the numerical
verification. Particularly, an empirically trained neural-network model for the map G in (2.9) (or
G1 in (2.10)) may not produce marginally stable dynamics that maintain accurate long-term stable
forecasts.

To address this issue, we consider a more structural modelling, adopting the ideas in [9] by
including an explicit nonlinear coupling term in the variance equation. To illustrate this, we
modify the dynamical equation for G in (2.9) and (2.10) as follows: we decompose the higher-
order nonlinear flux θk containing all the third moments in a (nonlinear) effective damping dMk,i+1
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and noise σM
k,i+1 such that

θk,i+1 = −dMk,i+1rk,i + σM
k,i+1,

QM
k,i+1 = Gk(ūi, . . . , ūi−m+1; {θk,i, . . . , θk,i−m+1}k=0,...,J/2;Ei, . . . ,Ei−m+1)

dMk,i+1 = −
min{QM

k,i+1, 0}
rk,eq

and σM
k,i+1 = max{QM

k,i+1, 0}.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12)

Here, the map Gk models the full nonlinear flux at each time instant and we employ an LSTM
network in the next section to approximate G := (G0, . . . ,GJ/2). However, instead of directly setting
θk,i+1 =QM

k,i+1, which gives the last equation in (2.9), we split the model output into two positive

effective damping dMk > 0 and effective noise σM
k > 0. The effective damping is recovered from

the unperturbed equilibrium statistics rk,eq. In this way, the unstable directions in the system are
stabilized by the effective damping modelling the nonlinear transfer of energy without altering
the detailed statistical balance in the equilibrium. One can see that if QM

k,i+1 is positive (that is, the

mode is stable), then θk,i+1 =QM
k,i+1 and we retain the original model in (2.9).

3. Machine learning of the missing non-Markovian components
In this section, we briefly discuss how to employ the LSTM [16], a recurrent neural network,
to learn the hidden non-Markovian maps in the proposed closure statistical models in (2.9)–
(2.11). To simplify the discussion, let us identify the input variable (or covariate) with a
sequence of correlated state variables {xj}ij=i−m+1 measured at m time instants ahead of the
prediction time i + 1 and the output (response) variable at discrete time index-i + 1 as yi+1.
In the case of (2.9), the input variable is xj = {ūj, θ0,j, . . . , θJ/2,j,Ej} and the output variable is
yi+1 = {θ0,i+1, . . . , θJ/2,i+1}. For (2.10), the input variable is xj = {ūj, {θk,j}k∈K, φ̃j,Ej} and the output
variable is yi+1 = {{θk,i+1}k∈K, φ̃i+1}. For (2.11), the input variable is xj = {ūj, φj,Ej} and the output
variable is yi+1 = {φi+1}.

Recurrent neural networks offer the desirable structure to incorporate temporal processes of
sequential data with long temporal correlations and keep tracking of hidden processes. The LSTM
network is designed to avoid the problem of vanishing gradients. The building block of LSTM is
to consider the following model, which is known as an LSTM cell

fi = σg(Wf xi + Ufhi−1 + Vf ci−1 + bf ),

Ii = σg(Wixi + Uihi−1 + Vici−1 + bi),

ci = fi ⊗ ci−1 + Ii ⊗ tanh(Wcxi + Uchi−1 + bc),

oi = σg(Woxi + Uohi−1 + Voci + bo)

and hi = oi ⊗ tanh(ci).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

In (3.1), σg = 1/1 + e−x is the sigmoid activation function, and ⊗ represents the element-wise
product. The model cell includes forget, input and output gates fi, Ii, oi, and the cell state ci. The
hidden process {hi−m+1, . . . ,hi−1,hi} represents the time-series of the unresolved process. In a
compact form, let us denote the LSTM cell in (3.1) as hi+1 = Lc(xi,hi), where we have suppressed
the dependence on the parameters for simplicity.

The LSTM network is constructed from m LSTM cells Lc with the same structure and
parameters W. The cells are connected by the intermediate hidden state hi ∈R

h. Every LSTM
cell takes in the input data xi at the ith step and the output hi from the previous adjacent cell, and
gives out the inner hidden state hi+1 to be used for prediction of the next state. The full LSTM
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chain is connected through m sequential cell structures, that is,

hm = Lc(m){h0; xi−m+1, . . . , xi} ≡ Lc(xi) ◦ · · · ◦ Lc(xi−m+1)(h0), (3.2)

where the composition operator is defined with respect to the hidden state hi. In (3.2), the data
at different time instance, xi, is fed into the corresponding LSTM cell, and the hidden state hi is
the output of the previous cell and input for the next cell. For simplicity, the initial value of the
hidden state is often set as zero, h0 = 0. The final output hm from the last step of the LSTM chain
goes through a final single layer fully connected linear model given as

ŷi+1 =Ahm + b, (3.3)

where A ∈R
dy×h,b ∈R

dy are the model coefficients in the final layer and dy = dim(y) denotes the
dimension of the output variables. In our numerical implementation, for the reduced-order model
in (2.10), we consider two LSTM networks, one for estimating G1 and another one for estimating
G2. One can also consider separate LSTM networks for each component Gk in (2.9) (or G1,k in
(2.10)), which we do not pursue in our numerical experiments.

(a) Empirical loss functions
The neural network parameters W := {A,b,Wf ,Uf ,Vf ,bf ,Wi,Ui,Vi,bi, . . .} are obtained by
solving a nonlinear non-convex optimization problem to minimize the difference between the
training output data {y�

j }n,M
�,j=1 and the LSTM output data {ŷ�

j }n,M
�,j=1, subjected to the same input

data {x�
j }i,nj=i−m+1,�=1, where n denotes the total number of training samples. There are many ways

to design loss functions. Denote the true output data as y�
j = {φ�

j , θ�
k,j} and the LSTM model output

data as ŷ�
j = {φ̂�

j , θ̂ �
k,j}, then we can, for example, consider the following empirical loss function:

M∑
j=1

[
α

n∑
�=1

(
φ�
j − φ̂�

j (Wφ)
)2 +

∑
k

βk

n∑
�=1

∣∣θ�
k,j − θ̂ �

k,j(W
θ )

∣∣] , (3.4)

where we have defined Wφ and Wθ to distinguish the parameters of the two network models.
For the full-order mean-covariance model in (2.9), we set α = 0 and minimize (3.4) for Wθ . For
the reduced-order mean-covariance model in (2.10), we set α = 1 and βk > 0 such that they have
comparable scales and minimize (3.4) for both Wφ and Wθ . For the mean closure model in (2.11),
we set α = 1 and βk = 0, ∀k, and minimize (3.4) for Wφ . While other choices exist, such as to include
the error in the mean and variance components, we found the improvement is not significant. We
should also point out that the empirical loss function in (3.4) is defined over a path of length-M,
the model parameters are obtained by one minimization problem. In practice, we found that with
M= 10, the resulting estimate yields more stable long-time predictions, compared to just setting
M= 1 (for which one can solve separate minimization problems to obtain independent LSTM
networks for G1 and G2, by fitting to one-step forecast data as employed in [20]).

(b) Small training dataset
While the general unperturbed underlying non-Markovian dynamics in (2.6) is an example of
the missing dynamical model formulated in [20,21], the statistical configuration here is more
challenging due to the shortage of informative training data that reflect the key features of the
underlying dynamical process. In our numerical test problem (the L-96 model), the statistics are
homogeneous such that the statistics of each of the solutions forced by a constant forcing will
decay to a constant value in a short time (figure 2). To compensate for the lack of observed
statistical data, in practice, we generate the training data by a direct short-time Monte-Carlo
simulation following these steps:
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Figure2. Statistical responses correspond toperturbations in external forcing (a(i),b(i)) and in the initialmean state (a(ii),b(ii)).
Responses of the statistical mean and total variance with different perturbation amplitudes are shown. (a) Response in ū (b)
Response in tr(R). (Online version in colour.)

(i) Generate an ensemble of unperturbed equilibrium statistical solutions with the reference
forcing F= Feq. Each ensemble member solves an initial value problem corresponding to
a randomly drawn initial condition from the standard Gaussian distribution.

(ii) Simulate an ensemble of solutions to the statistical steady state subjected to various
constant external perturbations F= Feq + δf . The ensemble of solutions at the final
time from [i.] is used as initial conditions. The empirical mean and variance of these
initial conditions correspond to the mean state ū= ūeq ≈ 2.35, and total variance, tr(R) =
tr(Req) ≈ 6.8, respectively (figure 2a(i),b(i)).

(iii) Simulate an ensemble of solutions to the statistical steady state corresponding to
unperturbed constant external perturbation F= Feq and perturbed initial conditions ū→
ū + δū. We perturb each ensemble member of the initial condition by adding a constant
value δū to each ensemble member at the final time from [i.]. In figure 2a(ii),b(ii), one can
see that the ensemble mean states at the initial time vary while the total variances at the
initial time stay the same.

Typical statistical trajectories with different initial and forcing perturbation amplitudes are
depicted in figure 2. The statistics of the perturbed states, which exhibit strong nonlinear coupling
effects, decay to new (or original unperturbed) equilibrium states beyond the decorrelation time.
Notice that for this problem, the decaying behaviour of these trajectories yields a small training
dataset (in terms of temporal length). Beyond the transient time, the time series saturates and,
thus, is not informative.

In general, even when long time statistics are informative (e.g. for non-trivial time-dependent
external forces or non-stationary statistical dynamics), from a practical standpoint, attaining
longer time series is computationally infeasible, especially when the dimension of the underlying
state space is high and/or the system requires a stiff numerical solver. Thus, the configuration
that we consider (training with an ensemble of short time series) in the present paper can be used
for a wide class of high-dimensional systems when long time series are not accessible.

4. Numerical results
We now examine the effectiveness of the statistical model schemes discussed above with detailed
numerical tests. We start with the full-order mean-covariance model (2.9) to learn the unresolved
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high-order nonlinear flux directly from data. Second, the reduced-order mean-covariance model
(2.10) is proposed for efficient computation with the most energetic leading modes. Finally, we
show an even more efficient computation of the mean statistical prediction using only the mean
closure model (2.11), focusing on the mean responses subjected to various forcing perturbations.

(a) Model configuration for training and prediction
In the training stage, the training data are generated from 41 response solutions (shown in
figure 2) with either perturbed initial states δū ∈ [−ūeq, ūeq] or constant forcing perturbations
δf ∈ [−0.1Feq, 0.1Feq] from direct Monte-Carlo solutions of the L-96 system with an ensemble
size 10 000. The true equation (2.7) is integrated with a fourth-order Runge–Kutta scheme with
a small time step δt= 0.001, while the data are sampled at every 10 steps. Thus, we have the
data sampling step �t= 0.01. The training model is updated M= 10 times to account for the
integrated error along the time integration. Notice that this choice of larger measurement step
size leads to numerical discretization errors in computing the time integration and recovering
the parameters of φ and θk. The total number of samples is n= 1640, and they are obtained by
collecting non-overlapping time interval M�t= 0.1 units from the statistical response trajectories.
With such a small sample size, the learning problem is rather challenging as the neural-network
model has a large number of parameters. While one can, of course, generate more data by
additional perturbations and initial conditions, we will not pursue this direction since our goal is
to understand the effectiveness of the agnostic ML model in such a stringent configuration with
a small training dataset.

In the prediction stage, we verify the model performance by considering the long-time
statistical prediction under a variety of time-dependent forcing scenarios that are not observed in
the training dataset. For long-time prediction, the model output in the previous step is reiterated
as an input in the next forecast stage, thus model errors accumulate in time. Therefore, it requires
the closure models to be numerically stable in resistance to the accumulated model errors in
the neural network model. In our numerical tests, we consider the ramp-type forcings and the
periodic forcing as standard test examples where the large external perturbation is introduced to
its equilibrium state forcing, Feq = 8 (see figure 1 for changes in the energy spectra for different
forcing perturbations). In application, such testing configurations can be used to simulate the
climate change scenario where the original state is driven away from its previous equilibrium
state due to external perturbations [10,28] and other uncertainty quantification tasks.

In addition, a residual structure is adopted in the neural network for the closure models
(2.9)–(2.11)

θi+1 = G = θi + G̃, (4.1)

where G̃ denotes the LSTM network (3.2) to update the increment of the unresolved higher-order
component. The LSTM chain contains m= 100 repeating cells with the same structure, taking a
time sequence of time length T = 1 which is still shorter than the correlation time of the system
(figure 2). The dimensions of the hidden states in LSTM are taken as hv = 50 for the variance
equation and hm = 10 for the mean equation. The optimization for the loss (3.4) is carried out by
the ADAM scheme. A total of 100 epochs is repeated during training, starting from the learning
rate lr = 5 × 10−4 which is reduced three times to half of its original value at the epoch numbers
25, 50 and 75.

(b) Prediction skill of the mean-covariance model
In this section, we numerically verify the prediction skill of the full statistical mean-covariance
model (2.9). For clarity, we split the discussion into two subsections. First, we state the concrete
discrete closure model corresponding to this example. Subsequently, we report the detailed
prediction skill.
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Figure 3. Long-time model prediction with the full mean-covariance closure model. Predictions of the statistical mean and
total variance under three different external forcing scenarios are compared. (a) Upward ramp forcing. (b) downward ramp
forcing. (c) periodic forcing. (Online version in colour.)

(i) Training model to learn the unresolved nonlinear flux

In the full mean-covariance model in (2.8a)–(2.8c), the dynamical equations for the mean state
ū, the total energy E, and variance rk are given explicitly and Markovian. In our numerical
experiment, the discrete form in (2.9) is obtained by adopting the mid-point implicit scheme
on (2.8a)–(2.8c) to ensure a more robust numerical performance with the larger time step
�t= 10δt. Together with the structural form in (2.12) to avoid instabilities and the residual
network architecture in (4.1), the overall dynamical closure model adopted here is given as
follows:

ūi+1 − ūi = �t

[
−d

2
(ūi + ūi+1) +

∑
k

Γk

2
(rk,i + rk,i+1) + 1

2
(Fi + Fi+1)

]
,

Ei+1 − Ei = �t
[
−d(Ei + Ei+1) + 1

2
(ūiFi + ūi+1Fi+1)

]
,

rk,i+1 − rk,i = �t[−Γk(ūirk,i + ūi+1rk,i+1) − d(rk,i + rk,i+1) + θk,i+1],

θk,i+1 − θk,i =
min{QM

k,i+1, 0}
rk,eqrk,i

+ max{Qm
k,i+1, 0},

and QM
k,i+1 = Gk(ūi, . . . , ūi−m+1, {θk,i, . . . , θk,i−m+1}k=0,...,J/2,Ei, . . . ,Ei−m+1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

In (4.2), the states are discretized at time intervals ti+1 − ti = �t. The exact dynamical equations
for the mean ū, the total statistical energy E, and rk are adopted, while dynamics of θk are learned
from data, with Gk modelled by an LSTM architecture.

(ii) Numerical results for detailed mean and variance prediction

Figure 3 shows the model prediction performance under the three forcing scenarios. The
numerical model (4.2) is trained with a very short time dataset under constant forcings
(in figure 2), while the prediction performance is tested on time-dependent forcing perturbations
(in figure 1a). It is shown that for the long-time prediction (up to T = 50), the trained neural
network model is stable and generates accurate predictions of both the statistical mean and
variance throughout the time interval among all three test cases. For a more detailed comparison
of the variance response on individual mode, figure 4 compares the predictions of the variances
of the first three leading modes. Again, we observe robust accurate prediction of variances in all
the modes under the tested forcing cases containing different statistical features.

In addition, we confirm the importance of adopting the strategy discussed in §(d) to
guarantee long-time numerical stability. The variance dynamics include a large number of
unstable directions that will amplify even small errors. Considering this, the neural network
approximation for θk adopts the decomposed structure (2.12) so that the marginally stable modes
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decomposition. (Online version in colour.)

are balanced. Otherwise, if a neural network is applied directly to the model structure θk without
proper consideration of the physical mechanism, severe numerical instability may occur due to
the insufficient modelling of the unstable dynamics. Numerically, we compare the root mean
square errors (RMSEs) in mean and total variance prediction in figure 5. Indeed, we see that the
optimal model with decomposed damping and noise structure (model 1) maintains high accuracy
for the long prediction period. By contrast, if the nonlinear flux θk is directly learned from the
neural network (model 2), the predicted solution diverges after a short time due to the strong
inherent persistent instability in the system.

(c) Prediction skill of the reduced-order mean-covariance model
Next, we consider the reduced-order mean-covariance model for efficient computation of only
the most energetic modes kmin ≤ k≤ kmax in the variance equation. The total contribution of the
less energetic unresolved modes is accounted with another neural network model for φ̃. Thus,
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the computational scheme follows the discretized mean and variance equations (2.10), with the
dynamical equation for θ being modified as in (2.12) to avoid instability of the flux with residual
network structure in (4.1).

In figure 6, we compare the reduced-order model prediction for different forcing perturbations.
Again, we attain accurate predictions on both the statistical mean state and variances in the
resolved subspace among the different kinds of forcing cases. In comparison to the full-order
model prediction in figure 3, a slightly larger error occurs here, especially in the mean state. This
reflects the additional model error due to the model approximation for the many unresolved
modes. However, the computation cost is significantly reduced since we only compute a small
portion of the full system (7 out of the total 21 modes).

Furthermore, to check the robustness of the model, we verify the model prediction skill
with even stronger forcing perturbation amplitudes. Figure 7 shows the downward forcing
case with stronger maximum forcing perturbations, δf = −0.1Feq, −0.15Feq, −0.2Feq (beyond the
maximum forcing |δf | = 0.1Feq in the training data). Notice that the long-time prediction skill
remains accurate for −0.15Feq and starts to deteriorate for larger forcing amplitude, −0.2Feq. This
somewhat negative result for larger perturbation is not so surprising as it displays the difficulty
of the ML model in extrapolating beyond the information contents in the training data.

As a benchmark, we also show the corresponding prediction skill of the parametric closure
model [28] in figure 7b. By visual comparison, one can see that the prediction skill is very similar
to the ML-based closure model; for the largest forcing amplitude, the parametric closure gives a
slightly better prediction. While the prediction performance is comparable, this parametric model
requires a complicated calibration strategy that involves an expensive brute-force minimization
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of a loss function that depends on long time statistics (linear response statistics). Particularly,
the evaluation of the loss function involves an integration of the reduced-order model for a long
time for each choice of parameter. Beyond this step that can be expensive for high-dimensional
problems (as the dimension of the parameter space increases), a more fundamental issue is that
it requires a physical insight for choosing the parametric model for the flux term. On the other
hand, the more agnostic neural-network model can capture the changes in the statistics without
specifying some detailed nonlinear flux structure beyond (2.12) that overcome instability.

(d) Prediction skill of the mean closure model
Finally, we test the prediction skill of the mean closure model (2.11), where we adopt the implicit
midpoint rule for the discretization of (2.8a) and (2.8c), and use the standard LSTM network
for the unresolved high-order feedback. We test the performance of the neural network model
for long-term mean state prediction under the ramp down and periodic forcings in figure 1. In
figure 8, we plot the predicted mean state ū, total statistical energy E, as well as the variance
feedback in the mean φ. It shows that the ML model successfully captures the changes in the mean
state under this extreme model set-up (with severely truncated dynamics) without including
the explicit dynamical equations of the second-order moments. With forcing to a non-Gaussian
regime (downward ramp forcing) or a periodic forcing with larger amplitude, the prediction
becomes less accurate compared to the closure models that include more detailed variance
dynamics (e.g. figures 3 and 6). Still, the closure model maintains high prediction skills under the
unseen forcings. Again, if we compare the ML model results with the parametric closure model
in [28], the ML framework produces more accurate predictions with cheaper computational costs.
This shows the robustness of the agnostic neural network-based approach on various truncated
configurations. On the other hand, the less accurate parametric model is due to the difficulty in
modelling the truncated flux terms with a simple parametric equation.

5. Summary
In this paper, we developed non-Markovian statistical modelling strategies with ML. In the
construction of the statistical closure models, we considered learning the complicated dynamical
structure of the high-order nonlinear flux terms directly from data by imposing the LSTM
neural-network architecture to uncover the non-Markovianity induced by partially observed
components. Three statistical mean and covariance models were considered, with different
emphases on the prediction of full variance spectrum, most energetic leading modes, and only
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the mean state. With limited training data due to the stationarity of the statistics beyond the
correlation time, we enriched the training dataset by simulating the transient behaviour of the
statistics under various constant forcings and perturbed initial conditions.

The performance of the hierarchical ML models was verified on the L-96 system with
homogeneous statistics. Uniformly accurate long-time predictions are observed using the
resulting ML model under different forcing perturbation functions and strong perturbation
amplitudes beyond the data in the training set. In addition, the true nonlinear physical energy
transfer mechanism was considered in the model construction to guarantee numerical stability
in long-term numerical integration. The ML model displays strong resistance to accumulated
model errors with a long-time stable prediction despite the inherent instability in a wide spectrum
of modes in the L-96 system. We found that the ML-based model prediction is comparable to
that of the existing parametric model, which requires a more detailed calibration strategy, in
two scenarios: learning the full-order and reduced-order coupled systems of mean-covariance
statistics. On the other hand, the ML model is more accurate than the parametric approach in the
severely truncated regime, learning the closure of only the mean statistics.

From this study, we conclude that the agnostic ML model is portable on various truncation
scenarios since the strategy does not require physical knowledge of the high-order flux terms
(as in parametric modelling) beyond avoiding instabilities. Numerically, the proposed scheme
benefits from the advancement in the optimization of neural-network modelling, which allows us
to carry the supervised learning task conveniently under one caveat (a reasonable neural-network
architecture, in our case LSTM, and various tuning parameters). In addition, it is found from our
numerical tests that the model performance is insensitive to different choices of neural-network
hyperparameters such as the input chain length and hidden state size, implying robust prediction
skills of the model framework.

While this result is encouraging, we only view this work as a first step. Particularly, this
work only focuses on the L-96 system with homogeneous statistical dynamics. This assumption
simplifies the closure model as the covariance matrix naturally becomes diagonal, so we only need
to close the diagonal variances and their reduction. A more important and challenging direction
is to extend the proposed ML approach to non-homogeneous statistical dynamics, which involve
non-trivial off-diagonal covariance components. Besides the curse of dimension problem (the
dynamical equation of the covariance matrix has N2-terms), a direct closure on the covariance
statistics may not preserve positive definite-ness under the ML prediction. To overcome these
two issues, one possibly needs to consider closing the dynamical equation for the fluctuation
components Zi in (2.2) directly, extending the idea from [35] with the ML model, which is part of
our future work.
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