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Abstract

Lipschitz learning is a graph-based semi-supervised learning method where one extends labels from
a labeled to an unlabeled data set by solving the infinity Laplace equation on a weighted graph. In this
work we prove uniform convergence rates for solutions of the graph infinity Laplace equation as the num-
ber of vertices grows to infinity. Their continuum limits are absolutely minimizing Lipschitz extensions
with respect to the geodesic metric of the domain where the graph vertices are sampled from. We work
under very general assumptions on the graph weights, the set of labeled vertices, and the continuum
domain. Our main contribution is that we obtain quantitative convergence rates even for very sparsely
connected graphs, as they typically appear in applications like semi-supervised learning. In particular,
our framework allows for graph bandwidths down to the connectivity radius. For proving this we first
show a quantitative convergence statement for graph distance functions to geodesic distance functions in
the continuum. Using the “comparison with distance functions” principle, we can pass these convergence
statements to infinity harmonic functions and absolutely minimizing Lipschitz extensions.
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1 Introduction
The last few years have seen a deluge of discrete to continuum convergence results for various problems
in graph-based learning. This theory makes connections between discrete machine learning and continuum
partial differential equations or variational problems, leading to new insights and better algorithms. Current
works use either a Gamma-convergence framework [20, 37, 38, 41], sometimes leading to convergence rates
in energy norms (i.e., L2), or PDE techniques like the maximum principle [4, 5, 10, 19, 45], which give
uniform convergence rates, albeit with more restrictive conditions on the graph bandwidth that often rule
out the sparse graphs used in practice. The different problems considered can be structured into consistency
of spectral clustering—e.g., the convergence of eigenvalues and eigenvectors of graph Laplacian operators [7,
8, 18, 28]—and of semi-supervised learning problems, where one is interested in convergence of solutions to
boundary value problems of graph Laplacian operators, e.g., [4, 5, 6, 9, 37, 38].

In this work we focus on graph-based semi-supervised learning. Given a large data set Ωn with n ∈ N
elements, the general task consists in extending labels g : On → R from a (typically much smaller) set
of labeled data points On ⊂ Ωn to the rest of the data set.1 To include information about the unlabeled
data into the problem, one builds a graph Gn := (Ωn, wn) where wn denotes a weight function. The semi-
supervised smoothness assumption (see, e.g., [40]) then demands that data points with high similarity, i.e.,
connected with an edge of large weight, carry similar labels. To enforce this, the method of Laplacian
learning [46] has been developed which requires solving the graph Laplace equation on Gn with prescribed
boundary values on On. Since this method behaves poorly if the label set On is small [33], the more general
framework of p-Laplacian learning [14] was suggested, which mitigates this drawback for sufficiently large
values of p ∈ (1,∞) [17]. It consists in solving the following nonlinear graph p-Laplacian equation (see [15]
for details on the graph p-Laplacian)

(∀x ∈ Ωn\On)
∑
y∈Ωn

wn(x, y) |u(x)− u(y)|p−2
(u(x)− u(y)) = 0, subject to u = g on On. (1.1)

The underlying reason why p-Laplacian learning outperforms its special case p = 2 is the Sobolev embedding
W 1,p ↪→ C0,1− d

p , which implies that only for p > d, where d is the ambient space dimension, it is meaningful
to prescribe boundary values on the label set On in the limit n → ∞. Since the dimension d of the data
can be quite large it seems canonical to consider the limit of p-Laplacian learning as p → ∞. The resulting

1Generally the labels are vector-valued, in Rk if there are k classes, but this can be reduced to the scalar case with the
one-versus-rest approach to multi-class classification [32].
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method is called Lipschitz learning [24] and takes the form

(∀x ∈ Ωn\On) min
y∈Ωn

wn(x, y)(u(y)− u(x)) + max
y∈Ωn

wn(x, y)(u(y)− u(x)) = 0, subject to u = g on On.

(1.2)

Note that solutions to this problem are absolutely minimizing Lipschitz extensions of g [3, 22]. This means
that they extend the labels g from On to Ωn without increasing the (graph) Lipschitz constant and, in
addition, are locally minimal in the sense that their Lipschitz constant cannot be reduced on any subset of
Ωn. The operator on the left hand side in (1.2) is referred to as graph infinity Laplacian since it arises as
the limit of the graph p-Laplacian operators in (1.1). It has been established experimentally that Lipschitz
learning performs very similarly to p-Laplacian learning for d < p < ∞ [17], and so it has the added benefit
over p-Laplace learning of having one less parameter, p, to tune. In addition, while Lipschitz learning forgets
the distribution of the labeled data [5, 14, 38], which is generally undesirable for semi-supervised learning,
it is possible to reweight the graph to introduce a strong dependence on the data density [5].

The importance of Lipschitz-based algorithms in semi-supervised learning has already been observed in
[27] and in [24] algorithms for solving the Lipschitz learning problem have been proposed (see also [17, 34]).
In [5] a continuum limit for (1.2) in the setting of geometric graphs was proved by one author of the present
paper. For wn(x, y) := η(|x− y| /hn) with hn > 0 being a graph length scale and η : [0,∞) → [0,∞) a
sufficiently well-behaved kernel profile, graph vertices contained in the flat torus, i.e., Ωn ⊂ Td, and a fixed
label set On = O it was shown in [5] that as n → ∞ solutions of (1.2) uniformly converge to the viscosity
solution of the infinity Laplacian equation

∆∞u = 0 on Td\O subject to u = g on O. (1.3)

Here, for a smooth function u the infinity Laplacian is defined as

∆∞u := 〈∇u,D2u∇u〉 =
d∑

i,j=1

∂iu ∂ju ∂
2
iju. (1.4)

The main hypothesis for the proof in [5] is that the graph length scale hn is sufficiently large compared to
the resolution δn (see Section 2.2 for the definition) of the graph; in particular, it is assumed that

lim
n→∞

δ2n
h3
n

= 0 (1.5)

holds. Furthermore, the viscosity solutions techniques require that the kernel function η is sufficiently
smooth. In the related work [37] by the two other authors of the present paper, continuum limits for
general Lipschitz extensions on geometric graphs are proved using Gamma-convergence of the graph Lipschitz
constant functional u 7→ maxx,y∈Ωn

wn(x, y) |u(x)− u(y)| to the L∞-norm of the gradient u 7→ ‖∇u‖L∞(Ω) in
a suitable L∞-type topology. Note that minimizers of these functionals, satisfying label constraints on Ωn and
Ω, respectively, are not unique. In particular, the Gamma-convergence result does not imply the convergence
to absolute minimizers of the continuum problem in a straightforward way. Furthermore, establishing non-
asymptotic convergence rates using Gamma-convergence, which by definition is of asymptotic flavor, is a
difficult endeavour. Still, the approach in [37] opened the door to a much more general analysis of the
Lipschitz learning problem. In particular, in [37] the weakest possible scaling assumption

lim
n→∞

δn
hn

= 0, (1.6)

which ensures that the graph Gn is connected, was already sufficient to prove Gamma-convergence of the
Lipschitz-constant functional. Furthermore, the theory in [37] applies to more general kernels η and a large
class of continuum domains. The paper [37] was also the first to work with general (non-fixed) label sets On

in a Lipschitz learning context (see [10] for a corresponding approach for p-Laplace learning (1.1) with p = 2).
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Note that the weakest scaling assumption (1.6) has already appeared in [25] where discrete to continuum
convergence of absolutely minimizing Lipschitz extensions on unweighted graphs was proved.

When it comes to convergence rates of solutions to (1.2) to a suitable continuum problem much less
is known. To the best of our knowledge the only contribution in this direction is [39], where convergence
rates are proved under very special conditions: the graph is unweighted and assumed to be a regular grid.
Furthermore, the author works with Dirichlet boundary conditions and requires the even stricter scaling
assumption

lim
n→∞

δn
h2
n

= 0. (1.7)

The main motivational factors for the present paper are therefore the following:

• We would like to prove convergence rates for (1.2) which are valid down to the smallest scaling (1.6).

• The labeled set On should be completely free, in particular, it should not have to approximate the
boundary of Ω, which is not realistic for semi-supervised learning.

• We would like to work under minimal assumptions on the weight function η and the continuum domain
Ω ⊂ Rd from which the graph vertices in Ωn are drawn.

Let us reiterate that, while the previous scaling conditions (1.5), (1.6), and (1.7) might look very similar,
they in fact have strong impacts on the numerical complexity of the problem (1.2). To give a concrete
example, let Ωn coincide with a square grid of the hypercube [0, 1]d. In this case it holds that δn ∼ 1/n1/d

and suitable graph length scales have the form hn = 1/nα where α ∈ (0, 1/d) for the weakest scaling (1.6),
α ∈ (0, 2/(3d)) for the scaling (1.5), and α ∈ (0, 1/(2d)) for the largest scaling (1.7). Correspondly, the
degree of a graph vertex, i.e., the number of neighbors which have to be considered when solving (1.2), scale
like nhd

n = n1−αd. For n = 10, 000 vertices the size of these computational stencils would scale like 5, 100,
and 500 for the different scalings. These are dramatic differences in numerical complexity, and the differences
grow larger as n increases (e.g., at n = 106 points there is a 1, 000-fold difference in sparsity between the
weakest and strongest conditions). Furthermore, in applications of graph-based learning in practice, it is
common to use very sparse graphs (typically k-nearest neighbor graphs) that operate slightly above the
graph connectivity threshold [42]. These observations justify the need for analysis and convergence rates
that hold in the sparsest connectivity regime.

Let us briefly discuss where the restrictive length scale conditions (1.5) and (1.7) arise in discrete to
continuum convergence, and how the techniques used in this paper overcome these issues. Both of these
conditions stem from the use of pointwise consistency of the graph infinity Laplacian given in (1.2) with
the continuous infinity Laplacian ∆∞, which is one of the main steps required for uniform convergence
rates. Pointwise consistency results normally have two steps, one in which we pass to a nonlocal operator
by controlling the randomness (or variance) in the graph construction, and a second step that uses Taylor
expansion to pass from a nonlocal operator to a local PDE operator. For Lipschitz learning (1.2) with
geometric weights wn(x, y) = η(|x − y|/hn), the corresponding nonlocal equation (see [11] for analytical
results on such a nonlocal infinity Laplacian equation) is obtained by replacing the discrete set Ωn with the
continuum domain Ω, yielding

min
y∈Ω

η

(
|x− y|
hn

)
(u(y)− u(x)) + max

y∈Ω
η

(
|x− y|
hn

)
(u(y)− u(x)) = 0. (1.8)

To control the difference between the discrete and nonlocal operators, we need to prove estimates of the form

max
y∈Ωn

wn(x, y)(u(y)− u(x)) = max
y∈Ω

η

(
|x− y|
hn

)
(u(y)− u(x)) +O(rn), (1.9)

where rn depends on the regularity of η and u. If η and u are Lipschitz continuous, then the function

y 7→ η

(
|x− y|
hn

)
(u(y)− u(x)) (1.10)
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is Lipschitz continuous with Lipschitz constant independent of hn > 0, provided η has compact support so
that we can use the bound |u(y) − u(x)| ≤ Chn. It then follows that rn = δn is exactly the resolution of
the point cloud Ωn (see Section 2.2 for the definition). We can of course repeat the same argument for the
minimum term in (1.8). When Taylor expanding u(y)− u(x) to obtain consistency to ∆∞, the second order
terms are of size O(h2

n), so we have to divide both side of the nonlocal equation (1.8) by h2
n in order to obtain

consistency with the infinity Laplace equation ∆∞u = 0, leading to pointwise consistency truncation errors
of the form O

(
δnh

−2
n

)
. The condition that this term converges to zero is exactly the strongest length scale

condition (1.7). When η and u are C2, we can improve the error in (1.9) to be rn = δ2nh
−1
n , which follows from

examining the Hessian of the mapping in (1.10) (see [5, Lemma 4.1]). This leads to the pointwise consistency
error term O(δ2nh

−3
n ), which corresponds to the intermediate condition (1.5). This condition was suitable in

[5] since the viscosity solution framework only requires pointwise consistency for smooth functions u, though
no convergence rate can be established in this way. In addition to the restrictive length scale conditions on
hn required for pointwise consistency, the kernel η is also required to be Lipschitz for (1.7) and C2 for (1.5),
and in either case, the restrictive condition that t 7→ tη(t) has a unique maximum near which it must be
strongly concave, is needed to pass from nonlocal to local (see [17, Section 2.1]).

In the present approach we overcome these limitations by introducing a nonlocal infinity Laplacian on a
homogenized length scale ε > hn. The homogenized operator has the form

∆ε
∞u(x) =

1

ε2

(
inf

y∈Bε(x)
(u(y)− u(x)) + sup

y∈Bε(x)

(u(y)− u(x))

)
(1.11)

and notably the effect of the kernel function η has been “homogenized out”. Although sometimes hidden,
this operator frequently appears in the analysis of equations involving the infinity Laplacian (cf. [2, 3, 26, 29,
30, 35, 36]). Most prominently, in [2] it was used as intermediate step in a very simple and elementary proof
of the maximum principle for the infinity Laplace equation. There, the key ingredient is the astonishing
property that whenever −∆∞u ≤ 0, the function uε(x) := supBε(x) u satisfies −∆ε

∞uε ≤ 0 for any ε > 0.
For proving this one only utilizes that u satisfies the celebrated “comparison with cones” property [3] which
in our more general setting is rather a comparison with distance functions [12].

A key step in our approach is an approximate version of this statement. We show that a graph infinity
harmonic function can be extended to a continuum function uε

n that satisfies

−∆ε
∞uε

n(x) ≤ O

(
δn
hnε

+
hn

ε2

)
.

Compared to the truncation error of O(δnh
−2
n ) from [39] we have improved by replacing one hn by the

(asymptotically larger) nonlocal length scale ε. For this we pay the price of having an additional hnε
−2

term which, however, does not contribute to the error for the small length scales hn that we are interested
in. The convergence rates then follow by an application of the maximum principle for the operator ∆ε

∞ in
combination with some (approximate) Lipschitz estimates to go back from uε

n to the graph solution.
The main caveat in proving our results is that we are dealing with three different metrics that have to

be put into relation with each other. First, there is the Euclidean metric of the ambient space which enters
through the graph weights and quantifies the approximation of the continuum domain by the graph. Second,
there is the geodesic metric which is inherited from the Euclidean one and constitutes the natural metric
in the (possibly non-convex) domain Ω. Finally, there is also the graph metric, which describes shortest
paths in the graph and is inherently connected to the Lipschitz learning problem (1.2). For proving our
continuum limit we need that all three metrics behave similarly on locally scales. While it is straightforward
to show that the graph metric approximates the geodesic metric, we have to assume that the latter also
approximates the Euclidean metric locally. This we ensure by posing a very mild regularity condition on the
continuum domain Ω which prevents internal corners, where the geodesic metric has a constant discrepancy
to the Euclidean one. In particular, this allows us to work with arbitrary (non-smooth) convex domains and
also with non-convex domains whose boundaries are smooth in non-convex regions.

The rest of this paper is organized as follows: Section 2 summarizes the paper by stating all assumptions,
the precise settings for the discrete and continuum equations and the passage between these two worlds,

5



and our main results. Subsequently, we investigate both the discrete and continuum problems in much
more detail. Section 3 introduces weighted graphs, proves that infinity harmonic functions on a graph
satisfy comparison with graph distance functions, and are absolutely minimizing Lipschitz extensions. In
Section 4 we study the continuum limit, namely absolutely minimizing Lipschitz extensions (AMLEs). Most
importantly, in Section 4.3 we show that AMLEs give rise to sub- and supersolutions of a nonlocal infinity
Laplace equation and collect several perturbation results for this equation which were proved in [39]. The
main part of the paper is Section 5 where we first prove convergence rates of graph distance function
to geodesic ones (Section 5.2) and then use these results to establish convergence rates for graph infinity
harmonic functions (Section 5.3). Finally, in Section 6 we perform some numerical experiments where we
compute empirical rates of convergence of AMLEs on a non-convex domain.

2 Setting, Assumptions, and Main Results
To simplify the distinction between discrete and continuum, we will from now on denote general points in
the continuum domain Ω in regular font x, y, z, etc., while we will denote points specifically belonging to
the point cloud Ωn with bold font x,y, z, etc. We will use the same notation for functions on Ω, denoted,
for example, as u, v, w : Ω → R, while we will again use bold notation and an index n for functions defined
solely on the point cloud Ωn, i.e., un,vn,wn : Ωn → R.

2.1 The Discrete Problem
We let Ωn be a point cloud and On ⊂ Ωn be a set of labelled vertices. We construct a graph with vertices
Ωn in the following way: Let h > 0 be a graph length scale, let η : [0,∞) → [0,∞) be a function satisfying
Assumption 1 below, and define the rescaled kernel as ηh(t) =

1
σηh

η
(
t
h

)
, where ση = supt≥0 tη(t).

Assumption 1. The function η : (0,∞) → [0,∞) is nonincreasing with supp η ⊂ [0, 1]. Furthermore,
ση := supt>0tη(t) ∈ (0,∞) and we assume that there exists t0 ∈ (0, 1] (chosen as the largest number with
this property) with ση = t0η(t0).

Example 1. A couple of popular kernel functions η which satisfy Assumption 1 are given below:

• (constant weights) η(t) = 1[0,1](t),

• (exponential weights) η(t) = exp(−t2/(2σ2))1[0,1](t),

• (non-integrable weights) η(t) = 1
tp 1[0,1](t) with p ∈ (0, 1].

Note that the assumption that t0 > 0 achieves the supremum is not redundant. Indeed, for the kernel

η(t) =
1

t
1

t−1+2
1[0,1](t), t > 0,

the supremum of t 7→ tη(t) is achieved at t0 = 0 although ση = 1.

Using the kernel function, the edge connecting two vertices x,y ∈ Ωn carries the weight ηh(|x− y|)
whenever x 6= y and zero otherwise. Consequently, in the whole paper we use the convention that η(0)·0 := 0
even though η is not defined in 0. Of course, the weight between two vertices x,y ∈ Ωn is also zero whenever
|x− y| > h, in which case we regard the vertices as not connected. The number h > 0 can be interpreted as
characteristic connectivity length scale of the graph.

The main objective of this paper is to prove convergence rates for solutions to the graph infinity Laplacian
equation to solutions of the corresponding continuum problem. To state the discrete problem we let gn :
On → R be a labelling function and un : Ωn → R a solution of the graph infinity Laplacian equation{

miny∈Ωn
ηh(|x− y|) (un(y)− un(x)) + maxy∈Ωn

ηh(|x− y|) (un(y)− un(x)) = 0, x ∈ Ωn \ On,

un(x) = gn(x), x ∈ On.
(2.1)
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The solution of this problem (see [5] for existence and uniqueness) is characterized by the fact that it is an
absolutely minimizing Lipschitz extension of the labelling function gn in the sense that

Lipn(un;A) = Lipn(un; ∂A), ∀A ⊂ Ωn. (2.2)

Here Lipn(un;A) is a discrete Lipschitz constant of the graph function un on a subset of vertices A ⊂ Ωn

with graph boundary ∂A. We refer to Section 3 for precise definitions and a proof of this statement in an
abstract graph setting. In particular, not only do we have Lipn(un; Ωn) = Lipn(gn;On), which would be
satisfied by any Lipschitz extension, but the Lipschitz constant of un is also locally minimal.

2.2 Discrete to Continuum
To set the scene for a discrete to continuum study, we let Ω ⊂ Rd be an open and bounded domain and
assume that the point cloud Ωn is sampled from Ω and that the constraint set On approximates a closed set
O ⊂ Ω. Of course, we need to quantify how well Ωn and On approximate their continuum counterparts Ω
and O. For this we introduce the Hausdorff distance of two sets A,B ⊂ Rd:

dH(A,B) := sup
x∈A

inf
y∈B

|x− y| ∨ sup
x∈B

inf
y∈A

|x− y| . (2.3)

Note that since Ωn ⊂ Ω, its Hausdorff distance simplifies to

dH(Ωn,Ω) = sup
x∈Ω

inf
y∈Ωn

|x− y| . (2.4)

To control both approximations at the same time we define the resolution of the graph as

δn := dH(Ωn,Ω) ∨ dH(On,O), (2.5)

where we recall that a ∨ b = max{a, b} and a ∧ b = min{a, b}. For convenience we introduce a closest point
projection πn : Ω → Ωn, meaning that

πn(x) ∈ argmin
x∈Ωn

|x− x| , x ∈ Ω. (2.6)

Note that the closest point projection has the important property that

|πn(x)− x| ≤ δn, ∀x ∈ Ω, (2.7)

where δn is the graph resolution (2.5). For a function u : Ωn → R we define its piecewise constant extension
to Ω as

un : Ω → R, un := u ◦ πn. (2.8)

Note that un is a simple function, constant on each Voronï cell [43, 44] of Ωn.
For treating the labelling sets On and O we use a projection πOn

: O → On, satisfying

πOn
(z) ∈ argmin

z∈On

|z − z| , z ∈ O. (2.9)

By the definition of the graph resolution (2.5) it holds

|πOn
(z)− z| ≤ δn, ∀z ∈ O. (2.10)
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2.3 The Continuum Problem
Before we formulate the continuum problem, we need to discuss some properties of the continuum domain Ω
and the label set O. Unlike in classical PDE theory we do not prescribe boundary values on the topological
boundary ∂Ω but instead on the closed subset O ⊂ Ω which is equipped with a continuous labeling function
g : O → R.

Our motivation for this comes from applications like image classification where, e.g., Ω = (0, 1)d could
model the space of grayscale images with d pixels and O is a subset of labeled images. In this case it is
not meaningful to assume that O = ∂Ω but instead O could even be a discrete subset of Ω. For notational
convenience we will for the rest of the paper use the notation

ΩO := Ω \ O. (2.11)

We define the geodesic distance dΩ(x, y) by

dΩ(x, y) = inf

{∫ 1

0

|ξ̇(t)| dt : ξ ∈ C1([0, 1]; Ω) with ξ(0) = x and ξ(1) = y

}
, x, y ∈ Ω. (2.12)

By definition it holds dΩ(x, y) ≥ |x− y| and if the line segment from x to y is contained in Ω, which, in
particular, is the case for convex Ω, then dΩ(x, y) = |x−y|. We pose the following assumption on the domain
which relates the intrinsic geodesic distance with the extrinsic Euclidean one. The assumption is satisfied,
e.g., for convex sets or sets with mildly smooth boundaries (see Section 5), and essentially demands that Ω
has no inward-pointing cusps.

Assumption 2. There exists a function φ : [0,∞) → [0,∞) with limh↓0
ϕ(h)
h = 0 and rΩ > 0 such that

dΩ(x, y) ≤ |x− y|+ φ(|x− y|), for all x, y ∈ Ω : |x− y| ≤ rΩ. (2.13)

Furthermore, for h > 0 we define σϕ(h) = sup0<s≤h
ϕ(s)
s .

Using the geodesic distance function we can also define the distance between a point and a set and, more
generally, between two sets as

distΩ(A,B) := inf
x∈A
y∈B

dΩ(x, y) (2.14)

and we abbreviate distΩ(x,A) := distΩ({x}, A) for sets A,B ⊂ Ω. The corresponding distance functions
with respect to the Euclidean metric are denoted by dist(·, ·).

In what follows we forget that Ω is a subset of Rd and simply regard (Ω, dΩ) as a metric space, or more
specifically, a length space. In particular, all topological notions like interior, closure, boundary, etc., will
be understood with respect to the relative (intrinsic) topology of this length space. For example, ΩO is
relatively open, its relative boundary ∂relΩO coincides with O, and its relative closure is Ω

rel

O = Ω. Note
that for a subset A ⊂ Ω it holds A

rel
= A, which is why we do not distinguish those two different closures

anymore. When it is clear from the context we also omit the word “relative”. All closures and boundaries
with respect to Ω as an open subset of Rd will be denoted by the usual symbols.

The continuum problem is to find an absolutely minimizing Lipschitz extension (AMLE) of the function
g : O → R to the whole domain Ω. For this, we define the Lipschitz constant of a function u : Ω → R on a
subset A ⊂ Ω as

LipΩ(u;A) := sup
x,y∈A

|u(x)− u(y)|
dΩ(x, y)

, (2.15)

and we abbreviate LipΩ(u) := LipΩ(u; Ω). A function u ∈ C(Ω) is an absolutely minimizing Lipschitz
extension of g if it holds that{

LipΩ(u;V ) = LipΩ(u; ∂
relV ) for all relatively open and connected subsets V ⊂ ΩO,

u = g on O.
(2.16)
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2.4 Main Results
We now state our general uniform convergence result for solutions un : Ωn → R of the graph infinity
Laplacian equation (2.1) to an AMLE u : Ω → R satisfying (2.16). Obviously, we also have to quantify in
which sense the labelling functions gn : On → R converge to g : O → R. In the simplest case On = O and
gn = g for all n ∈ N. However, in general On 6= O and we can work under the following much more general
assumption.

Assumption 3. The labelling functions gn : On → R and g : O → R satisfy:

• supn∈N Lipn(gn;On) < ∞ and LipΩ(g;O) < ∞.

• There exists C > 0 such that for all z ∈ O it holds that |gn(πOn
(z))− g(z)| ≤ Cδn.

Example 2. In this example we illustrate some important special cases where this assumption is satisfied.

• If gn = g and On = O for all n ∈ N and g : O → R is Lipschitz with respect to the Euclidean distance,
meaning Lip(g;O) := supx,y∈O

|g(x)−g(y)|
|x−y| < ∞, then Assumption 3 is fulfilled. This is the setting

of [5].

• If On = O for all n ∈ N then πOn
(z) = z for all z ∈ N and hence Assumption 3 reduces to sufficiently

fast uniform convergence of gn to g on O if g : O → R is Lipschitz.

• If gn = g where g : Ω → R is defined on the whole of Ω and is Lipschitz, then Assumption 3 is satisfied
by properties of the graph resolution δn, see (2.10). This is the setting of [37].

Our main result is non-asymptotic and depends on a free parameter ε > 0. Since this parameter arises
from a nonlocal homogenized problem (see Section 4.3 for details), we refer to it as the nonlocal length scale.
The relative scaling between the graph resolution δn, the graph length scale h, and the nonlocal length scale ε
is of utmost importance for our convergence statement. Later we shall optimize over ε to obtain convergence
rates depending only on δn and h.

Assumption 4. The parameters δn > 0, h > 0, and ε > 0 satisfy

h ≤ rΩ, (2.17a)
h

ε
<

1

2
, (2.17b)

σϕ(h) +
δn
h

≤ t0
4 + 2σϕ(h)

(
1− 2

h

ε

)
. (2.17c)

Here t0 > 0, rΩ > 0, and σϕ(h) are defined in Assumptions 1 and 2, respectively.

Remark 2.1. By Assumption 2 σϕ(h) → 0 as h → 0. Hence, for very small graph bandwidths the scaling
assumption on general domains approaches the one on convex domains where φ = 0.

For a concise presentation we will in the following use the notation a ≲ b which is very common in the
PDE community and means a ≤ C b for a universal constant C > 0, possibly depending on the kernel η or
the label function g. Furthermore, the notation an � bn means an/bn → 0 as n → ∞.

Theorem 2.2 (General Convergence Result). Let ε > 0, let Assumptions 1 to 4 hold, let un : Ωn → R solve
(2.1), and u : Ω → R solve (2.16).

1. It holds

sup
Ωn

|u− un| = sup
Ω

|u− un| ≲ ε+
3

√
δn
hε

+
h

ε2
+

φ(h)

hε
.
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2. If infΩ |∇u| > 0, then it even holds

sup
Ωn

|u− un| = sup
Ω

|u− un| ≲ ε+
δn
hε

+
h

ε2
+

φ(h)

hε
.

Here, un : Ω → R denotes the piecewise constant extension of un, defined in (2.8).

The main advantage of our results is that they allow one to obtain uniform convergence rates for the
weakest possible scaling assumption on the graph length scale h with respect to the graph resolution δn.
Indeed, h = hn satisfying δn

hn
→ 0 and hn → 0 is the smallest possible graph length scale such that the

graph is asymptotically connected. For such scaling we recover known convergence results from [25, 37] and
improve the result from [5].

Corollary 2.3 (Convergence under Weakest Scaling Assumption). For h = hn and δn � hn � ε it holds
that un → u uniformly on Ω as n → ∞.

Proof. Using the scaling assumption δn � hn � ε and keeping ε > 0 fixed, the entire root in Theorem 2.2
converges to zero and we obtain that

lim
n→∞

sup
Ω

|u− un| ≲ ε.

Since ε > 0 was arbitrary, this shows the assertion.

For every graph scaling hn which is asymptotically larger than the weakest one, our general convergence
theorem allows us to define a nonlocal scaling ε = εn for which a uniform convergence rate holds true. By
optimizing over εn we obtain convergence rates in different regimes, which we discuss in the following.

Corollary 2.4 (Small Length Scale Regime). We have the following convergence rates:

1. For δn ≲ h ≲ δ
5
9
n it holds

sup
Ωn

|u− un| = sup
Ω

|u− un| ≲
(
δn + φ(h)

h

) 1
4

.

2. If infΩ |∇u| > 0, then for δn ≲ h ≲ δ
3
5
n it holds

sup
Ωn

|u− un| = sup
Ω

|u− un| ≲
(
δn + φ(h)

h

) 1
2

.

Proof. For 1, we choose

ε =

(
δn + φ(h)

h

) 1
4

.

The condition h ≲ δ
5
9
n implies that

h

ε2
≲ δn + φ(h)

hε
,

and so 1 follows from Theorem 2.2.
The proof for 2 is similar, but instead we choose

ε =

(
δn + φ(h)

h

) 1
2

.
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For larger length scales we make a case distinction based on the regularity of the boundary, in other
words, the decay of the function φ in Assumption 2.

Corollary 2.5 (Large Length Scale Regime for Smooth Boundaries). Let φ(h) ≲ h
9
5 (e.g., if Ω is convex or

∂Ω is at least C1, 45 ). Then we have the following convergence rates:

1. For h ≳ δ
5
9
n it holds

sup
Ωn

|u− un| = sup
Ω

|u− un| ≲ h
1
5 .

2. If infΩ |∇u| > 0, then for h ≳ δ
3
5
n it holds

sup
Ωn

|u− un| = sup
Ω

|u− un| ≲ h
1
3 .

Proof. Since φ(h) ≲ h
9
5 , we get

φ(h)

hε
≲ h

4
5

ε
=

ε

h
1
5

h

ε2
.

For both choices ε := h
1
5 (respectively, ε := h

1
3 ) it holds ϕ(h)

hε ≲ h
ε2 and we can can absorb the term ϕ(h)

hε into
h
ε2 . Furthermore, for these two choices it holds h

ε2 ≳ δn
hε and moreover 3

√
h
ε2 = ε (respectively, h

ε2 = ε).

In the case of less regular boundaries, where h
9
5 � φ(h) � h as h → 0, the third error term dominates.

Note that this regime includes non-smooth domains, see Proposition 5.3 below.

Corollary 2.6 (Large Length Scale Regime for Less Smooth Boundaries). We have the following convergence
rates:

1. For φ(h)
5
9 ≳ h ≳ δ

5
9
n it holds

sup
Ωn

|u− un| = sup
Ω

|u− un| ≲
(
φ(h)

h

) 1
4

.

2. If infΩ |∇u| > 0, then for φ(h)
3
5 ≳ h ≳ δ

3
5
n it holds

sup
Ωn

|u− un| = sup
Ω

|u− un| ≲
(
φ(h)

h

) 1
2

.

Proof. Assuming for a moment that φ(h) ≳ h2

ε and φ(h) ≳ δn the term ϕ(h)
hε dominates δn

hε and h
ε2 . Further-

more, for ε := (φ(h)/h)
1
4 (respectively, ε := (φ(h)/h)

1
2 ) it holds 3

√
ϕ(h)
hε = ε (respectively, ϕ(h)

hε = ε). Note
that for these choices of ε the condition φ(h) ≳ h2

ε is equivalent to φ(h)
5
9 ≳ h or φ(h) 3

5 ≳ h, respectively.

Remark 2.7 (Relation to previous results). In [39, Theorem 3.1.3] convergence rates are established for the
special case where Ωn = [0, 1]2h is a grid, On = Ωn ∩ ∂[0, 1]2 consists of boundary vertices, and the weight
function is chosen as η = 1[0,1]. The condition that Ω is a grid in two dimensions is not directly used in [39,
Theorem 3.1.3] and can be relaxed without any difficulty. Using the arguments in our paper, the condition
that On = Ωn ∩ ∂[0, 1]2 can be relaxed as well, provided the boundary ∂Ω is C2,α, or Ω is convex. However,
the assumption η = 1[0,1] seems essential to this result, since pointwise consistency for the discrete graph
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∞-Laplacian is established using comparison with cones. Translating these results to our setting we would
obtain

sup
Ωn

|u− un| = sup
Ω

|u− un| ≲ h+

(
δn + φ(h)

h2

) 1
3

.

In the case that infΩ |∇u| > 0, the result can be improved to read

sup
Ωn

|u− un| = sup
Ω

|u− un| ≲ h+
δn + φ(h)

h2
.

Note that these rates only apply to very large stencil sizes and become meaningless as h approaches δ
1
2
n .

In contrast, our rates work for arbitrary small graph length scales above the connectivity threshold. In
addition, for the rates to be non-vacuous, it is necesary that φ(h) � h2, which requires the boundary to be
uniformly C2 (or, say, C2,α for α > 0) when Ω is non-convex. In constrast, our results only require φ(h) � h,
which holds for non-convex domains with uniformly C1 boundary. Finally, it does not seem clear how to
relax the restrictive condition that η = 1[0,1] in [39, Theorem 3.1.3], which is important for applications to
semi-supervised learning, where a very common choice is the Gaussian weight η(t) = exp(−t2/(2σ2))1[0,1].

2.5 Extensions of our Main Results
Lastly, we mention two extensions of these results that would be natural to pursue.

1. In [5] a reweighted Lipschitz learning problem was studied of the form (1.2) with weights

wn(x,y) = dn(x)
αdn(y)

αηh(|x− y|), (2.18)

where dn(x) is the degree of node x, given by

dn(x) =
∑
y∈Ωn

ηh(|x− y|).

This reweighting modifes the continuum infinity Laplace equation (see [5, Theorem 2.4]) by adding a
drift term along the gradient of the data density; in particular, the continuum equation becomes

∆∞u+ 2α∇ log ρ · ∇u = 0

in the case that the point cloud Ωn has density ρ(x) locally as n → ∞. The motivation for the
reweighting was to introduce the density ρ into the continuum model in order to improve the semi-
supervised classification results. Indeed, the whole point of semi-supervised learning is to use properties
of the unlabeled data, e.g., its distribution, to improve classification results. Numerical experiments in
[5] established improved performance of the reweighted Lipschitz learning classifier for both synthetic
and real data.
It would be natural to extend the results in this paper to the reweighted model from [5] with weights
given in (2.18). We expect the main modifications to be to the notion of geodesic distance on the
domain Ω, which will now be weighted by ρ−2α. The geodesic distance functions, which are the
continuum limit of the graph versions, would be solutions of the eikonal equation ρ2α|∇u| = 1, and
the continuum model would be modified accordingly.

2. In machine learning, it is common to take the manifold assumption [21], whereby the data Ωn ⊂ Rd

is sampled from an underlying data manifold M ⊂ Rd of much smaller intrinsic dimension dim(M) =
D � d. It would also be natural to extend our results to this setting. Since an embedded manifold can
be equipped with the geodesic metric inherited from the metric on the ambient space, and furthermore
comparison with distance functions is a purely metric notion, we expect that our arguments translate
to this setting in a straightforward way.
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3 Discrete: Graph Infinity Laplacian Equation
In this section we investigate the discrete problem of the graph infinity Laplacian equation (2.1). In fact, we
will work in an abstract weighted graph setup which is more general than the geometric graphs which we use
for our final discrete to continuum results. The main result in this section is that graph infinity harmonic
functions satisfy a comparison principle with graph distance functions.

3.1 Weighted Graphs
Let G = (X,W ) be a weighted graph with nodes X and edge weights W = (wxy)x,y∈X . The edge weights
are assumed to be nonnegative (wxy ≥ 0) and symmetric (wxy = wyx). For O ⊂ X and g : O → R, we
consider the graph ∞-Laplace equation {

LG
∞u = 0, in X \ O,

u = g, on O,
(3.1)

where the graph ∞-Laplacian is defined by

LG
∞u(x) = min

y∈X
wxy(u(y)− u(x)) + max

y∈X
wxy(u(y)− u(x)). (3.2)

The well-posedness of (3.1) was established in [5] and is discussed in more detail in Section 3.2 below. In
graph-based semi-supervised learning, (3.1) is referred to as Lipschitz learning [5, 24, 37], since it propagates
the labels u = g on O to the entire graph in a Lipschitz continuous manner. The discrete ∞-Laplace equation
has also been used for image inpainting, which is concerned with filling in missing parts of an image (e.g.,
in art restoration), see [15].

In this section we study the discrete problem (3.1) and show that solutions satisfy a comparison principle
with graph distance functions which is the discrete analogue of Definition 4.1.

We define the graph distance function dG : X ×X → R ∪ {∞} by

dG(x, y) = min

{
N∑
i=1

w−1
xi−1xi

: N ∈ N, {xi}Ni=0 ⊂ X, x0 = x, xN = y

}
(3.3)

for x 6= y, and dG(x, x) = 0. Here we use the convention that if wxi−1xi
= 0 for any i then w−1

xi−1xi
= ∞. We

note that since the graph G is symmetric, we have dG(x, y) = dG(y, x).
The notion of graph connectivity is now simple to state in terms of the graph distance function.

Definition 3.1. We say that G is connected if dG(x, y) < ∞ for all x, y ∈ X. We say that G is connected
to O if for every x ∈ X there exists y ∈ O with dG(x, y) < ∞.

We remark that a connected graph is also connected to any constraint set O ⊂ X. However, a discon-
nected graph can still be connected to O, provided O has a non-empty intersection with every connected
component of G.

In order to study comparison with graph distance functions, we need a notion of graph boundary. For
X ′ ⊂ X we define the boundary of X ′, denoted ∂X ′, as the set

∂X ′ = {x ∈ X \X ′ : wxy > 0 for some y ∈ X ′}. (3.4)

In other words, the boundary ∂X ′ consists of all nodes in X \X ′ that are connected to some node in X ′.
This is often called the exterior boundary of X ′. The interior boundary can be defined similarly as all nodes
in X ′ that are connected to a node in X \X ′. While we only use the notion of exterior boundary defined in
(3.4) in this paper, the results in this section hold, with minor modifications, for the interior boundary. We
also define the closure of X ′, denoted X ′, to be the set

X ′ = X ′ ∪ ∂X ′. (3.5)
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3.2 Comparison with Graph Distance Functions
Our main result in this section shows that graph infinity harmonic functions satisfy comparison with graph
distance functions.

Theorem 3.2. Assume G is connected. Let X ′ ⊊ X and suppose that u : X ′ → R satisfies −LG
∞u(x) ≤ 0

for all x ∈ X ′. Then for every a ≥ 0 and z ∈ X \X ′ we have

max
X′

(u− a dG(·, z)) = max
∂X′

(u− a dG(·, z)). (3.6)

If u : X ′ → R satisfies −LG
∞u(x) ≥ 0 for all x ∈ X ′, then for every a ≥ 0 and z ∈ X \X ′ we have

min
X′

(u+ a dG(·, z)) = min
∂X′

(u+ a dG(·, z)) (3.7)

Remark 3.3. One could also investigate the converse statement, namely that comparison with graph distance
functions implies being a solution to the graph infinity Laplacian equation (3.1). However, since this is not
needed for our result we do not consider this question here. Note also that we do not have to assume that
X ′ is a connected subset of X, as it is typically done for defining AMLEs (see (2.16)).

The proof of Theorem 3.2 relies on a discrete comparison principle for (3.1), which was established in [5].
We include the statement of the result below for reference.

Theorem 3.4 ([5, Theorem 3.1]). Assume that G is connected to O, and let u, v : X → R satisfy

−LG
∞u(x) ≤ 0 ≤ −LG

∞v(x) for all x ∈ X \ O.

Then
max
X

(u− v) = max
O

(u− v).

We note that it follows from Theorem 3.4 and the Perron method that (3.1) has a unique solution u
whenever G is connected to O. We refer to [5, Theorem 3.4] and [4, Theorem 4] for the proof of this result.

We now establish that graph distance functions satisfy the graph eikonal equation.

Lemma 3.5. Assume G is connected and let z ∈ X. Then the graph distance function u := dG(·, z) is the
unique solution of the graph eikonal equation

max
y∈X

wxy(u(x)− u(y)) = 1 for all x ∈ X \ {z} (3.8)

satisfying u(z) = 0.

Proof. It follows directly from the definition of the graph distance dG, (3.3), that u = dG(·, z) satisfies the
dynamic programming principle

u(x) = min
y∈X

{
u(y) + w−1

xy

}
, x ∈ X \ {z}. (3.9)

As above, we take w−1
xy = ∞ when wxy = 0. Since G is connected, for every x ∈ X there exists y ∈ X with

wxy > 0, so the minimum in (3.9) can be restricted to y ∈ X with wxy > 0 (i.e., graph neighbors of x). We
note that (3.9) can be rearranged to show that

max
y∈X

{u(x)− u(y)− w−1
xy } = 0, x ∈ X \ {z}.

It follows that
max
y∈X

{wxy(u(x)− u(y))− 1} = 0, x ∈ X \ {z}, (3.10)

which is equivalent to (3.8).
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To show uniqueness, let u : X → R be a solution of (3.8) satisfying u(z) = 0. Let λ > 1 and let x0 ∈ X
be a point at which u− λ dG(·, z) attains its maximum over X. Then we have

u(x0)− u(x) ≥ λ(dG(x0, z)− dG(x, z)), x ∈ X.

If x0 6= z, then we have

1 = max
y∈X

wx0y(u(x0)− u(y)) ≥ λmax
y∈X

wx0y(dG(x0, z)− dG(y, z)) = λ > 1,

which is a contradiction. Therefore x0 = z and so

max
X

(u− λ dG(·, z)) = u(z)− λ dG(z, z) = 0.

Since λ > 1 is arbitrary, it follows that u ≤ dG(·, z). A similar argument, examining the minimum of
u− λ dG(·, z) for 0 < λ < 1 shows that u ≥ dG(·, z), which completes the proof.

In order to apply Theorem 3.4 to prove Theorem 3.2, we need to show that the subgraph of G with
vertices X

′ is connected to its boundary ∂X ′ in the sense of Definition 3.1.

Proposition 3.6. Assume G is connected. Let X ′ ⊊ X and let G′ = (X ′,W ′) be the subgraph of G with
weights W ′ = (wxy)x,y∈X′ . Then G′ is connected to ∂X ′.

Proof. If x ∈ X
′ \X ′ then x ∈ ∂X ′ and x is trivially connected to ∂X ′. Let therefore x ∈ X ′. Since G is

connected and X ′ ⊊ X, there exists y ∈ X \X ′ and a path x0 = x, x1, x2, . . . , xn = y with wxixi+1
> 0 for

i = 0, . . . , n− 1. Since x0 ∈ X ′ and xn ∈ X \X ′, there exists 0 ≤ j ≤ n− 1 such that xi ∈ X ′ for 0 ≤ i ≤ j
and xj+1 ∈ X \X ′. It follows that xj+1 ∈ ∂X ′ and

dG′(x, xj+1) ≤
j∑

i=0

w−1
xixi+1

< ∞.

This completes the proof.

We now give the proof of Theorem 3.2.

Proof of Theorem 3.2. For notational simplicity, let us set v = dG(·, z). We first show that

LG
∞v(x) ≤ 0 for all x ∈ X \ {z}. (3.11)

Let x ∈ X \ {z}. By Lemma 3.5 we have

min
y∈X

wxy(v(y)− v(x)) = −max
y∈X

wxy(v(x)− v(y)) = −1.

Now let y∗ ∈ X be such that

wxy∗(v(y∗)− v(x)) = max
y∈X

wxy(v(y)− v(x)).

Invoking Lemma 3.5 again yields

max
y∈X

wxy(v(y)− v(x)) = wxy∗(v(y∗)− v(x)) ≤ max
z∈X

wzy∗(v(y∗)− v(z)) = 1,

since the weights are symmetric, so that wzy∗ = wy∗z. This establishes the claim (3.11).
We now consider the subgraph G′ = (X ′,W ′), as in Proposition 3.6. Since LG′

∞ v(x) = LG
∞v(x) for all

x ∈ X ′ we have
LG′

∞ (av)(x) = aLG′

∞ v(x) = aLG
∞v(x) ≤ 0
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for all x ∈ X ′ and a ≥ 0. By Proposition 3.6, G′ is connected to ∂X ′, and so we can invoke the comparison
principle, Theorem 3.4, to obtain that for u satisfying −LG

∞(u) ≤ 0 it holds

max
X′

(u− a v) = max
∂X′

(u− a v).

If, conversely, it holds −LG
∞u ≥ 0 we get −LG

∞(−u) ≤ 0 and hence

max
X′

(−u− a v) = max
∂X′

(−u− a v)

which is equivalent to

min
X′

(u+ a v) = min
∂X′

(u+ a v).

This concludes the proof.

3.3 Relations to Absolute Minimizers
Since according to Theorem 3.2, the solution of (3.1) satisfies comparison with graph distance functions, it
seems natural that it is also an absolutely minimal Lipschitz extension of g from the constraint set O to the
entire graph X. Since, for the sake of simplifying later proofs, we are not working with connected test sets
X ′ in Theorem 3.2, we cannot use standard results like [23, Proposition 4.1] and will prove the statement
ourselves.

For a subset X ′ ⊂ X, and a function u : X ′ → R, we define the graph Lipschitz constant

LipG(u;X
′) = max

x,y∈X′

|u(x)− u(y)|
dG(x, y)

(3.12)

and we abbreviate LipG(u) := LipG(u;X). Before we can prove the absolute minimality we need the following
Lemma.

Lemma 3.7. Let X ′ ⊂ X, x ∈ X ′, and X ′′ := X ′ \ {x}. Then it holds

∂X ′′ ⊂ ∂X ′ ∪ {x}, X ′ \X ′′ ⊂ ∂X ′ ∪ {x}.

Proof. If X ′′ = ∅ the statements are trivial so we assume that X ′′ 6= ∅.
For the first statement we distinguish two cases: If z ∈ ∂X ′′∩X ′, then by definition of the graph boundary

(3.4) it holds z /∈ X ′′ which together with z ∈ X ′ implies z = x. If z ∈ ∂X ′′ \X ′, then again by (3.4) and
the fact that X ′′ 6= ∅ it follows that there exists y ∈ X ′′ ⊂ X ′ with wyz > 0 and hence z ∈ ∂X ′. Combining
both cases shows the desired statement.

For the second statement we let z ∈ X ′ \X ′′ and argue as follows: If z = x nothing needs to be shown
and therefore we assume z 6= x. We know that in particular it holds z ∈ X ′ = X ′ ∪ ∂X ′ so if z ∈ ∂X ′ the
proof is complete. The only interesting case is z ∈ X ′ in which case we get that

z ∈ X ′ \X ′′ ⊂ X ′ \X ′′ = X ′ \ (X ′ \ {x}) = {x}.

This contradicts our assumption and we can conclude.

Proposition 3.8. Assume G is connected, let g : O → R be Lipschitz continuous, and let u : X → R be a
solution of (3.1). Then for all subsets X ′ ⊂ X\O it holds

LipG(u;X
′) = LipG(u; ∂X

′). (3.13)
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Proof. By definition of LipG(u; ∂X ′) we have that

u(x)− u(y) ≤ LipG(u; ∂X
′) dG(x, y), ∀x, y ∈ ∂X ′. (3.14)

Using Theorem 3.2 we get

max
X′

(u− LipG(u; ∂X
′) dG(·, y)) = max

∂X′
(u− LipG(u; ∂X

′) dG(·, y)) ≤ u(y), ∀y ∈ ∂X ′,

and therefore

u(x)− u(y) ≤ LipG(u; ∂X
′) dG(x, y), ∀x ∈ X ′, ∀y ∈ ∂X ′. (3.15)

Note that (3.15) implies that

u(x) = min
y∈∂X′∪{x}

{u(y) + LipG(u; ∂X
′) dG(x, y)}, ∀x ∈ X ′.

Fixing x ∈ X ′, setting X ′′ = X ′ \ {x} and using comparison with cones from below from Theorem 3.2 we
have

min
X′′

(u+ LipG(u; ∂X
′) dG(x, ·)) = min

∂X′′
(u+ LipG(u; ∂X

′) dG(x, ·))

≥ min
∂X′∪{x}

(u+ LipG(u; ∂X
′) dG(x, ·)) = u(x),

since ∂X ′′ ⊂ ∂X ′ ∪ {x} according to Lemma 3.7. It follows that

u(x)− u(y) ≤ LipG(u; ∂X
′) dG(x, y), ∀y ∈ X ′′. (3.16)

By Lemma 3.7 we know that X ′ \ X ′′ ⊂ ∂X ′ ∪ {x}. Using (3.15) we then have that (3.16) also holds for
every y ∈ X ′ \X ′′ and therefore

u(x)− u(y) ≤ LipG(u; ∂X
′) dG(x, y) ∀y ∈ X ′.

Since x ∈ X ′ was arbitrary, this concludes the proof.

4 Continuum: Absolutely Minimizing Lipschitz Extensions
4.1 Equivalence with Comparison with Distance Functions
In Section 2 we have already introduced the continuum problem (2.16) of finding an Absolutely Minimizing
Lipschitz Extension (AMLE) of the label function g : O → R. In fact, we will not work with AMLEs directly
but rely on an intriguing property of theirs, called Comparison with Distance Functions (CDF), see [12, 23].

Definition 4.1 (CDF). We shall say that a upper semicontinuous function u ∈ USC(Ω) satisfies CDF from
above in ΩO, if for each relatively open and connected subset V ⊂ ΩO, any x0 ∈ Ω \ V and a ≥ 0 we have

max
V

(u− a dΩ(x0, ·)) = max
∂relV

(u− a dΩ(x0, ·)).

Similarly, we say u ∈ LSC(Ω) satisfies CDF from below in ΩO, if for each relatively open and connected
subset V ⊂ ΩO, any x0 ∈ Ω \ V and a ≥ 0 we have

min
V

(u+ a dΩ(x0, ·)) = min
∂relV

(u+ a dΩ(x0, ·)).

We say u ∈ C(Ω) satisfies CDF if it satisfies CDF from above and below.
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Remark 4.2. Note that this definition is a special case of [23, Definition 2.3]. For this, one regards X := Ω
equipped with dΩ as a length space and ΩO as an open subset of X with respect to the topology of dΩ, as
explained in Section 2.3. Consequently, open subsets of ΩO with respect to this topology are relatively open
subsets.

In fact, being an AMLE is equivalent to satisfying CDF, which is why we will only work with this property
for the rest of the paper.

Proposition 4.3 ([23, Proposition 4.1]). Let g : O → R be Lipschitz continuous. A function u : C(Ω) → R
with u = g on O is an AMLE of g if and only if it satisfies CDF on ΩO.

Hence, we can equivalently reformulate the continuum problem as to find a function u : Ω → R which
attains the label values on O and satisfies CDF in ΩO:{

u satisfies CDF on ΩO,

u = g on O.
(4.1)

For convenience we also introduce the notion of sub- and super solutions to (4.1).

Definition 4.4 (Sub- and supersolutions). We call u ∈ USC(Ω) a subsolution of (4.1) if{
u satisfies CDF from above on ΩO,

u ≤ g on O.

Furthermore, u ∈ LSC(Ω) is called a supersolution if −u is a subsolution. Obviously, being both a sub- and
a supersolution is equivalent to being a solution of (4.1) and hence also to being an AMLE.

4.2 Relations to Infinity Laplacian Equations
Under some regularity conditions on the boundary of the domain Ω (now regarded as a subset of Rd), and if
O is a subset of ∂Ω, one can relate being an AMLE, or equivalently satisfying CDF, with solving an infinity
Laplacian equation, where the infinity Laplacian operator is defined as

∆∞u = 〈∇u,D2u∇u〉.

Proposition 4.5. Let ∂Ω denote the boundary of Ω, regarded as subset of Rd. Then the following is true:

1. If O = ∂Ω then u ∈ C(Ω) is an AMLE of g : ∂Ω → R if and only if it is a viscosity solution of{
−∆∞u = 0 in Ω,

u = g on ∂Ω.
(4.2)

2. If Ω is smooth and convex and O ⊂ ∂Ω then u ∈ C(Ω) is an AMLE of g : O → R if and only if it is a
viscosity solution of 

−∆∞u = 0 in Ω \ O,
∂u
∂ν = 0 on ∂Ω \ O,

u = g on O,

(4.3)

where the Neumann boundary conditions are to be understood in the weak viscosity sense, cf. [13, 16].

Proof. The first statement is well-known and contained in the seminal paper by Aronsson [3], see Theorem
4.1 therein. The second one is a special case of the results in [1]. In Lemma 3.1 therein the authors show
that, under the hypothesis that Ω is smooth and convex, the solution of the PDE admits CDF and hence is
an AMLE. Furthermore, by the uniqueness of the CDF problem (see Proposition 4.11 below), which does,
however, not require any convexity, this is in fact an equivalence.
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4.3 Max-Ball and Perturbation Statements
The following “max-ball” and perturbation statements will be essential when we prove discrete-to-continuum
convergence rates. In a simpler setting, using Dirichlet boundary conditions O = ∂Ω, they were all proved
in [39]. However, for our more general problem (4.1) we need to reprove them.

They main point of the max-ball statement is that sub- and supersolutions of (4.1) can be turned into
sub- and supersolutions of a nonlocal difference equation which is much easier to study. In particular, as
shown in [2] the nonlocal equation allows us to derive a maximum principle for (4.1) which will let us prove
uniqueness and discrete-to-continuum convergence.

The perturbation statement will allow us to turn sub- or supersolutions of the nonlocal equation into
strict sub- or supersolutions which will turn out useful for deriving convergence rates.

Because of the nonlocal nature of the above statements, one has to work on an inner parallel set of Ω.
However, it suffices to maintain positive distance to the constraint set O only. In what follows we denote by

BΩ(x, ε) := {y ∈ Ω : dΩ(x, y) < ε} (4.4)

the open geodesic ball around x with radius ε > 0 and its closure is denoted by BΩ(x, ε). Using this, we can
define the set

Ωε
O := {x ∈ Ω : distΩ(x,O) > ε}. (4.5)

Note that this “inner parallel set” deliberately includes those parts of the topological boundary ∂Ω which
are sufficiently far from the constraint set O.

For a function u : Ω → R and x ∈ Ω we also define

T εu(x) := sup
BΩ(x,ε)

u, Tεu(x) := inf
BΩ(x,ε)

u, (4.6)

S+
ε u :=

1

ε
(T εu− u), S−

ε u :=
1

ε
(u− Tεu), (4.7)

∆ε
∞u :=

1

ε

(
S+
ε u− S−

ε u
)
. (4.8)

We refer to the last object as nonlocal infinity Laplacian operator. Interestingly, harmonic functions with
respect to this operator coincide with AMLEs with respect to a discrete “step distance” and we refer the
interested reader to [30] for more details. The following lemma, the proof of which is adapted from [2],
is the desired max-ball statement. It states that functions satisfying CDF can be turned into a sub- and
supersolution of the nonlocal infinity Laplacian equation.

Lemma 4.6 (Max-Ball). Let u ∈ USC(Ω) and v ∈ LSC(Ω) satisfy CDF on ΩO from above and from below,
respectively. Then for all ε > 0 it holds

−∆ε
∞T εu(x0) ≤ 0 ≤ −∆ε

∞Tεv(x0), ∀x0 ∈ Ω2ε
O . (4.9)

Proof. We just show the inequality for the subsolution u, the other case works analogously. Since u is upper
semicontinous we can select points y0 ∈ BΩ(x0, ε) and z0 ∈ BΩ(x0, 2ε) such that

u(y0) = T εu(x0), u(z0) = T 2εu(x0).

Using the definition of the nonlocal infinity Laplacian (4.8) one computes

−ε2∆ε
∞T εu(x0) = 2T εu(x0)− (T εT εu)(x0)− (TεT

εu)(x0) ≤ 2u(y0)− u(z0)− u(x0). (4.10)

This is true since x0 ∈ BΩ(y, ε) for all y ∈ BΩ(x0, ε) and therefore,

T εu(y) = sup
BΩ(y,ε)

u ≥ u(x0) =⇒ (TεT
εu)(x0) = inf

y∈BΩ(x0,ε)
T ε(y) ≥ u(x0).
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Now one observes that the following inequality is true

u(w) ≤ u(x0) +
u(z0)− u(x0)

2ε
dΩ(w, x0), ∀w ∈ ∂rel(BΩ(x0, 2ε) \ {x0}).

For w = x0 the inequality is obviously correct. If dΩ(w, x0) = 2ε, then the definition of z0 shows it.
Since u satisfies CDF from above on ΩO and using that distΩ(x0,O) > 2ε, we obtain

u(w) ≤ u(x0) +
u(z0)− u(x0)

2ε
dΩ(w, x0), ∀w ∈ BΩ(x0, 2ε).

Choosing w = y0 we get

u(y0) ≤ u(x0) +
u(z0)− u(x0)

2ε
dΩ(y0, x0) ≤ u(x0) +

u(z0)− u(x0)

2
.

Using this inequality together with (4.10) yields the assertion.

The next results are contained in [39] which treats a more general graph Laplacian for a graph G =
(X,E, Y ) consisting of a vertex set X, an edge set E, and a “boundary set” Y . This graph Laplacian is
defined as

∆G
∞u(x) = sup

{x,y}∈E

(u(y)− u(x))− sup
{x,y}∈E

(u(x)− u(y)) (4.11)

and for the choice

X := Ωε
O,

Y := {x ∈ X : distΩ(x0,O) ≤ 2ε},
E := {{x, y} ⊂ X : x ∈ X \ Y, 0 < dΩ(x, y) ≤ ε},

it holds

∆G
∞u(x) = ε2∆ε

∞u(x), (4.12)

where ∆ε
∞ is defined in (4.8). Hence, we can use the results from [39] to obtain statements about the nonlocal

Laplacian ∆ε
∞.

The first result is a maximum principle for the nonlocal infinity Laplacian.

Lemma 4.7. Assume that for a constant C ≥ 0 the functions u, v : Ωε
O → R satisfy

−∆ε
∞u ≤ C ≤ −∆ε

∞v (4.13)

in Ω2ε
O . Then it holds

sup
Ωε

O

(u− v) = sup
Ωε

O\Ω2ε
O

(u− v). (4.14)

Proof. See [39, Theorem 2.6.5].

The following two lemmas are perturbation results. The first one allows us to turn a supersolution of the
nonlocal equation into one with strictly positive gradient. The second one shows how to turn a supersolution
into a strict supersolution.

Lemma 4.8. If u : Ωε
O → R is bounded from below and satisfies −∆ε

∞u ≥ 0 in Ω2ε
O , then for any δ > 0

there is a function v : Ωε
O → R that satisfies

−∆ε
∞v ≥ 0, S−

ε v ≥ δ, u ≤ v ≤ u+ 2δ distΩ(·,Ωε
O \ Ω2ε

O ) on Ω2ε
O .
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Proof. See [39, Lemma 2.6.3].

Lemma 4.9. Suppose v : Ωε
O → R is bounded and −∆ε

∞v ≥ 0 on Ω2ε
O . Then there exists δ0 > 0 such that

for any 0 ≤ δ ≤ δ0 the function w := v − δv2 satisfies

−∆ε
∞w ≥ −∆ε

∞v + δ(S−
ε v)2 on Ω2ε

O .

Proof. If v ≥ 0 the map t 7→ t+ δt2 is monotone on the range of v for all δ ≥ 0. If v ≥ −c for some constant
c > 0 then it is monotone for all 0 ≤ δ ≤ 1

2c . From there on the proof works verbatim as in [39, Lemma
2.6.4].

Remark 4.10. Obviously, these two lemmata have analogous versions for subharmonic functions, which are
obtained by replacing u with −u, S−

ε with S+
ε , etc.

4.4 Existence and Uniqueness
Existence for AMLEs (2.16) or equivalently of solutions for the CDF problem (4.1) is well understood.
Indeed, since (Ω, dΩ) is a length space, existence of solutions can be obtained using Perron’s method, see
[22, 23, 31] for details.

Using Lemmas 4.6 and 4.7 and the same strategy as in [2] we obtain uniqueness of solutions to the
continuum problem (4.1) which we state in the following proposition.

Proposition 4.11 (Uniqueness). There exists at most one solution of (4.1).

Proof. The proof works verbatim as for the main result in [2]. Letting u, v ∈ C(Ω) denote two solutions,
Lemma 4.6 implies that

−∆ε
∞T εu(x0) ≤ 0 ≤ −∆ε

∞T εv(x0), ∀x0 ∈ Ω2ε
O .

Now Lemma 4.7 implies

sup
Ωε

O

(T εu− Tεv) = sup
Ωε

O\Ω2ε
O

(T εu− Tεv).

Sending ε ↘ 0 implies

sup
Ω

(u− v) = sup
O

(u− v) = 0

and hence u ≤ v in Ω. Swapping the roles of u and v finally implies that u = v on Ω.

5 Discrete-to-Continuum Convergence
In this section we first prove convergence rates of the graph distance functions defined in Section 3 to geodesic
distance functions, in the continuum limit on geometric graphs. Then we utilize this to prove convergence
rates of solutions to the graph infinity Laplacian equation (3.1) to the continuum problem (4.1).

We write B(x, r) := {y ∈ Rd : |x− y| < r} for the Euclidean open ball of radius r > 0 centered at
x ∈ Rd and denote its closure by B(x, r). Recall that we define the geodesic distance dΩ(x, y) on Ω by

dΩ(x, y) = inf

{∫ 1

0

|ξ̇(t)| dt : ξ ∈ C1([0, 1]; Ω) with ξ(0) = x and ξ(1) = y

}
.

If the line segment from x to y is contained in Ω, then dΩ(x, y) = |x − y|. Remember that we pose
Assumption 2 on the relation between the geodesic and Euclidean distance. In the following we list important
cases where the assumption is satisfied.
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Proposition 5.1. Let Ω ⊂ Rd be an open and bounded domain.

1. If Ω is convex, Assumption 2 is satisfied with φ = 0.

2. If Ω has a C1,α boundary for α ∈ (0, 1], Assumption 2 is satisfied with φ(h) = Ch1+α for some constant
C > 0.

Proof. The proof of 1 is immediate. The proof of 2 is split into 3 steps.

Step 1 We first show that for every x, y ∈ Ω we have

dΩ(x, y) ≤ |x− y|+ sup
z∈∂Ω∩B(x,r)

{dΩ(x, z)− |x− z|} , (5.1)

where r = |x− y|. To see this, we use a maximum principle argument. Let u(z) = dΩ(x, z), v(z) = |x− z|,
λ > 1 and set V = Ω∩B(x, r). Let z∗ ∈ V be a point where u−λv attains its maximum value over V . Since
u is a viscosity solution of |∇u| = 1 on V \ {x} and λ > 1, we must have z∗ ∈ ∂V ∩{x}. Now, we claim that
z∗ 6∈ Ω ∩ ∂B(x, r), since if this were the case, then we could find a small ε > 0 such that B(z∗, ε) ⊂ Ω, and
setting ν = x−z∗

r we have

u(z∗ + εν)− λv(z∗ + εν) ≥ u(z∗)− ε− λv(z∗) + λε = u(z∗)− λv(z∗) + (λ− 1)ε,

which contradicts the optimality of z∗, as z∗ + εν ∈ V . Thus z∗ ∈ ∂Ω ∩ B(x, r) or z∗ = x. If z∗ = x then
u− λv ≤ 0 on V . If z∗ ∈ ∂Ω ∩B(x, r) then

u− λv ≤ sup
∂Ω∩B(x,r)

{u(z)− λv} .

Sending λ ↘ 1 establishes (5.1).

Step 2 We now show that
dΩ(x, z) ≤ |x− z|+ C|x− z|1+α, (5.2)

whenever x ∈ Ω, z ∈ ∂Ω, and |x− z| ≤ rΩ, where rΩ > 0 will be determined below and C depends only on
Ω. Without loss of generality, we may assume that z = 0, and that

Ω ∩Br = {x ∈ Br : xd < Φ(x)}, (5.3)

where x = (x1, . . . , xd−1), Φ : Rd−1 → R is C1,α with ∇Φ(0) = 0, and 0 < r ≤ r′Ω, where r′Ω depends only
on Ω. Since ∂Ω is C1,α, there exists C > 0 so that

|Φ(x)| ≤ C|x|1+α and |∇Φ(x)| ≤ C|x|α. (5.4)

Note we can write
dΩ(x, 0) = inf

γ

∫ 1

0

|γ′(t)| dt, (5.5)

where the infimum is over C1 curves γ : [0, 1] → Ω satisfying γ(0) = 0 and γ(1) = x. Let us set

γ(t) = tx+ (Φ(tx)− tΦ(x))ed.

Then γ(0) = 0 and γ(1) = x. Since xd ≤ Φ(x) we have

γd(t) = txd +Φ(tx)− tΦ(x) = t(xd − Φ(xd)) + Φ(tx) ≤ Φ(tx) = Φ
(
γ(t)

)
.

By (5.4) we have
|γ(t)| ≤ t|x|+ |Φ(tx)|+ t|Φ(x)| ≤ |x|+ C|x|1+α.
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Let us set r = (1 + C)|x| and restrict |x| ≤ rΩ, where rΩ ≤ 1 is sufficiently small so that |x| ≤ rΩ implies
r ≤ r′Ω (i.e., (1 + C)rΩ ≤ r′Ω). Since |x| ≤ 1 we have

|γ(t)| ≤ (1 + C)|x| = r,

and so γ(t) ∈ Br for all 0 ≤ t ≤ 1. It follows that γ(t) ∈ Ω ∩Br for all 0 ≤ t ≤ 1. We now compute

γ′(t) = x+ (〈∇Φ(tx), x〉 − Φ(x)) ed,

and so by (5.4) we have
|γ′(t)| ≤ |x|+ |∇Φ(x)||x|+ |Φ(x)| ≤ |x|+ C|x|1+α.

Substituting this into (5.5) completes the proof of (5.2).

Step 3 Combining steps 1 and 2 we find that

dΩ(x, y) ≤ |x− y|+ C sup
z∈∂Ω∩B(x,|x−y|)

|x− z|1+α ≤ |x− y|+ C|x− y|1+α,

provided |x− y| ≤ rΩ, which completes the proof.

Remark 5.2. Assumption 2 is slightly stronger than the one made in [37] which takes the form

lim sup
h↓0

sup
|x−y|≤h

dΩ(x, y)

|x− y|
= 1.

This is an asymptotic version of Assumption 2 which was used in [37] to prove a Gamma-convergence result.
However, for the quantitative analysis in this paper, this does not suffice.

Note that also non-smooth domains can satisfy Assumption 2. A particular interesting example is the
following star-shaped subset of R2:

Ω :=
{
x ∈ [0, 1]2 : |x1|2/3 + |x2|2/3 ≤ 1

}
. (5.6)

See Section 6 for figures and numerical examples on this domain. While the boundary ∂Ω is only C0, 23

Hölder regular, we still have the following result.

Proposition 5.3. The domain (5.6) satisfies Assumption 2 with φ(h) = Ch
3
2 for some constant C > 0

depending on Ω. It even holds that

dΩ(x, y) ≤ |x− y|+ C|x− y| 32 , ∀x, y ∈ Ω. (5.7)

Proof. We sketch a proof of this here. We first assume x, y ∈ Ω are in the same quadrant, which we can
assume, by symmetry, to be the first quadrant Ω1 := Ω ∩ [0,∞)2. In this case, the shortest path between x
and y must also lie in the quadrant Ω1, since if it were ever to leave and subsequently return to the quadrant,
we could construct a path with strictly shorter length by projecting the portion of the path that left Ω1 back
to the quadrant. Given this observation, we have that

dΩ(x, y) = dΩ′(x, y),

where the domain Ω′ given by
Ω′ = Ω ∪ (R2 \ [0,∞)2).

It can be easily calculated that the domain Ω′ has a C1, 12 boundary, and so it follows from part 2 of
Proposition 5.1 that (5.7) holds whenever x, y ∈ Ω are in the same quadrant.
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The case where x and y lie in different quadrants is handled by symmetry. We first consider the case
where x and y lie in two different quadrants that belong to a common halfspace. Without loss of generality,
we take x ∈ Ω1 and

y ∈ Ω2 = Ω ∩ [0,∞)× (−∞, 0].

These quadrants belong to the common halfspace H := [0,∞)×R, and a similar argument as above can be
made to show that the shortest path between x and y must remain in H ∩Ω. Let z ∈ H ∩ ∂Ω1 ∩ ∂Ω2 be the
point on the line segment between x and y. Then by the triangle inequality we have

dΩ(x, y) ≤ dΩ(x, z) + dΩ(z, y). (5.8)

Since x, z ∈ Ω1, and z, y ∈ Ω2, we can apply (5.7) to obtain

dΩ(x, y) ≤ |x− z|+ |z − y|+ C(|x− z| 32 + |z − y| 32 ).

Since z is on the line segment between x and y we have |x− z|+ |z − y| = |x− y| and so

dΩ(x, y) ≤ |x− y|+ 2C|x− y| 32 .

The last case is where x and y belong to diagonally opposing quadrants. Without loss we can consider
x ∈ Ω1 and

y ∈ Ω3 = Ω ∩ (−∞, 0]2.

Here, we let z ∈ ∂Ω3 be the point along the line segment between x and y. Since the points x and z lie in
the same halfspace, the previous step shows that

dΩ(x, z) ≤ |x− z|+ 2C|x− z| 32 .

Since z and y lie in the same quadrant we have

dΩ(z, y) ≤ |z − y|+ C|z − y| 32 .

Inserting these into the triangle inequality (5.8) yields

dΩ(x, y) ≤ |x− y|+ 3C|x− y| 32 ,

which completes the proof.

5.1 Geometric Graphs
Remember that we consider a set of points Ωn ⊂ Ω and a subset On ⊂ Ωn of labelled vertices, which acts
as the discrete analog of O. On the point cloud Ωn we define the geometric graph Gn,h = (Ωn,Wn,h) with
vertices Ωn and a set of edge weights Wn,h = (wn,h(x,y))x,y∈Ωn

given by

wn,h(x,y) =

{
0, x = y,

σ−1
η ηh (|x− y|) , x 6= y,

(5.9)

where
ση = sup

t>0
tη(t). (5.10)

By Assumption 1 we can choose t0 ∈ (0, 1] as a maximum of tη(t), so that ση = t0η(t0). When the value of
t0 is not unique, the convergence rates below are slightly better by choosing the largest such t0.

To simplify notation we will write Gn in place of Gn,h, and wn in place of wn,h, when the value of h is
clear from the context. We will denote the graph distance function dGn

, defined in (3.3) by dn : Ωn×Ωn → R
and the Lipschitz constant of a function un : Ωn → R as Lipn(un) := LipGn

(un).
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5.2 Convergence of Cones
The proof of convergence of the graph distance dn to the distance function dΩ is split into two parts.
Lemma 5.4 gives the lower bound, while Lemma 5.5 gives the upper.

Lemma 5.4. Let Assumptions 1 and 2 hold. Then for h ≤ rΩ and all x,y ∈ Ωn we have

dn(x,y) ≥ |x− y| ∨
(
1− φ(h)

h

)
dΩ(x,y). (5.11)

Proof. Let x,y ∈ Ωn. If there is no path in Gn from x to y then dn(x, y) = ∞ and (5.11) holds trivially.
Thus, we may assume there is a path

x = x1,x2, . . . ,xm = y

such that wn(xi,xi+1) > 0 for all i = 1, . . . ,m− 1. We can choose the path to be optimal for x,y, so that

dn(x,y) =

m−1∑
i=1

wn(xi,xi+1)
−1.

It follows that

dn(x,y) =

m−1∑
i=1

σηηh(|xi − xi+1|)−1 =

m−1∑
i=1

σηhη

(
|xi − xi+1|

h

)−1

.

By definition of ση, (5.10), we have σηη(t)
−1 ≥ t, and so

dn(x,y) ≥
m−1∑
i=1

|xi − xi+1|.

It follows from the triangle inequality that dn(x,y) ≥ |x− y|. Also, using Assumption 2 we have

dΩ(xi,xi+1) ≤ |xi − xi+1|+ φ(|xi − xi+1|) ≤ |xi − xi+1|+ dΩ(xi,xi+1)
φ(h)

h
.

Substituting this above yields

dn(x,y) ≥
(
1− φ(h)

h

)m−1∑
i=1

dΩ(xi,xi+1) ≥
(
1− φ(h)

h

)
dΩ(x,y),

where we again used the triangle inequality, this time for dΩ.

We now give the proof of the upper bound.

Lemma 5.5. Let Assumptions 1 and 2 hold. Assume that h ≤ rΩ and that

δn
h

≤ t0

2(2 + ϕ(δn)
δn

)
. (5.12)

Then for any x,y ∈ Ωn we have

dn(x,y) ≤
(
1 +

4δn
t0h

+
2φ(δn)

t0h

)
dΩ(x,y) + τηh, (5.13)

where
τη := sup

0<t≤t0

{
σηη(t)

−1 − t
}
. (5.14)
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Remark 5.6. We note that since η is nonincreasing, for t ≤ t0 we have

σηη(t)
−1 ≤ σηη(t0)

−1 = σηt0σ
−1
η = t0.

Therefore, τη ≤ t0 ≤ 1. In the special case of the singular kernel η(t) = t−1 we have tη(t) = 1, and so ση = 1.
Hence, it holds σηη(t)

−1 = t and τη = 0.
In fact, we can show that if η is any kernel satisfying τη = 0 then η(t) = σηt

−1 for t ∈ (0, t0]. To see this,
note that if τη = 0 then ση ≤ tη(t) for all 0 < t ≤ t0. Since ση = sup0<t≤1tη(t) ≥ tη(t), we have ση = tη(t)
for all 0 < t ≤ t0, which establishes the claim.

Fig. 1 illustrates the improved approximation accuracy obtained by using the singular kernel η(t) = t−1,
compared to the uniform kernel η = 1[0,1]. For the uniform kernel, the graph cone gives a roughly piecewise
constant staircasing approximation of the true Euclidean cone, with steps of size O(h), due to the additional
τηh term in Lemma 5.5. These artifacts are removed by using the singular kernel η(t) = t−1.

Remark 5.7. The condition in (5.12) is a consequence of Assumption 4. Since σϕ(h) ≥ ϕ(h)
h ≥ 0, the

assumption implies

δn
h

+
φ(hn)

h
≤ t0

4

(
1− 2

h

ε

)
and in particular δn < h. Therefore, it holds φ(δn) ≤ σϕ(h)δn ≤ σϕ(h)h and we can estimate, using
Assumption 4 again,

δn
h

(
2 +

φ(δn)

δn

)
= 2

δn
h

+
φ(δn)

h
≤ 2

(
δn
h

+ σϕ(h)

)
≤ t0

2

(
1− 2

h

ε

)
≤ t0

2

and with this
δn
h

≤ t0

2
(
2 + ϕ(δn)

δn

) .
Proof. Let x,y ∈ Ωn. We construct a sequence x0,x1,x2, . . . as follows. Define x0 = x and for k ≥ 1 set

xk ∈ argmin
Ωn∩B(xk−1,t0h)

dΩ(·,y).

If y ∈ B(xk−1, t0h) then we set xk = y and the procedure terminates. We claim that whenever y 6∈
B(xk−1, t0h) we have

dΩ(xk,y) ≤ dΩ(xk−1,y)− (t0h− 2δn − φ(δn)). (5.15)

To see this, we start from the dynamic programming principle

dΩ(xk−1,y) = min
z∈Ω∩∂B(xk−1,t0h−δn)

{dΩ(xk−1, z) + dΩ(z,y)} ,

which is valid since (5.12) implies that δn < t0h. Choosing an optimal z above yields

dΩ(z,y) ≤ dΩ(xk−1,y)− t0h+ δn. (5.16)

where we used that dΩ(xk−1, z) ≥ |xk−1 − z| = t0h− δn. We also have by (2.5) that

|πn(z)− xk−1| ≤ |πn(z)− z|+ |z − xk−1| ≤ δn + t0h− δn = t0h.

Thus πn(z) ∈ Ωn ∩B(xk−1, t0h). Furthermore, by Assumption 2 and (5.16), πn(z) satisfies

dΩ(πn(z),y) ≤ dΩ(z,y) + dΩ(πn(z), z) ≤ dΩ(xk−1,y)− t0h+ δn + δn + φ(δn).
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(a) η = 1[0,1] (b) η(t) = t−1

Figure 1: Examples of graph cones (graph distance functions to a point) computed with (a) the nonsingular
kernel η = 1[0,1] and (b) the singular kernel η(t) = t−1. The graph consists of an i.i.d. sample of size n = 104

uniformly distributed on the unit ball B(0, 1), and we set h = 0.1.

This establishes the claim (5.15). Let us define

r0 := t0 − 2
δn
h

− φ(δn)

h
,

and note that (5.12) implies that δn ≤ h and so

1 ≥ r0
t0

≥ 1− 2
δn
t0h

− φ(δn)

t0h
= 1− δn

t0h

(
2 +

φ(δn)

δn

)
≥ 1

2
, (5.17)

where we again used (5.12) in the last inequality. Therefore r0 > 0 and so by (5.15) we have

dΩ(xk,y) ≤ dΩ(xk−1,y)− r0h

and hence
dΩ(xk,y) ≤ dΩ(x,y)− r0hk,

provided y 6∈ B(xj , t0h) for all j = 0, . . . , k − 1. Hence, the condition y 6∈ B(xj , t0h) for all j = 0, . . . , k − 1
implies that

k ≤ dΩ(x,y)− dΩ(xk,y)

r0h
. (5.18)

It follows that eventually y ∈ B(xk−1, t0h) and xk = y for some k. Let T ≥ 1 denote the smallest integer
such that xT = y, and note that (5.18) implies

T ≤ dΩ(x,y)− dΩ(xT−1,y)

r0h
+ 1. (5.19)

We now compute

dn(x,y) ≤
T∑

k=1

wn(xk−1,xk)
−1 =

T∑
k=1

σηηh(|xk−1 − xk|)−1 =

T∑
k=1

hσηη

(
|xk−1 − xk|

h

)−1

.
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Since |xk−1 − xk| ≤ t0h and η is nonincreasing we have

η

(
|xk−1 − xk|

h

)−1

≤ η (t0)
−1

.

It follows that

dn(x,y) ≤
T−1∑
k=1

hσηη(t0)
−1 + hσηη

(
|xT−1 − y|

h

)−1

=

T−1∑
k=1

t0h+ hσηη

(
|xT−1 − y|

h

)−1

= t0h(T − 1) + hσηη

(
|xT−1 − y|

h

)−1

≤ t0h

(
dΩ(x,y)− dΩ(xT−1,y)

r0h

)
+ hσηη

(
|xT−1 − y|

h

)−1

≤ t0
r0

dΩ(x,y) + hσηη

(
|xT−1 − y|

h

)−1

− |xT−1 − y| (5.20)

≤ t0
r0

dΩ(x,y) + τηh, (5.21)

where we used that t0 ≥ r0 and dΩ(xT−1,y) ≥ |xT−1 − y| in the second to last inequality, and xT−1 ∈
B(y, t0h) in the last. By (5.17) we have

t0
r0

=
1

1−
(
1− r0

t0

) ≤ 1 + 2

(
1− r0

t0

)
= 1 +

4δn
t0h

+
2φ(δn)

t0h
,

which completes the proof.

5.3 Convergence of Infinity Harmonic Functions
In the previous sections we have analyzed the continuum problem (4.1), introduced the corresponding discrete
problem on a graph, and proved convergence of graph cone functions to continuum Euclidean cone functions.
These are all the ingredients which we need in order to finally show that the solution of (3.1) converges to
the solution of (4.1) and establish convergence rates.

For this we need to introduce discrete analogies of the operators T ε and Tε from (4.6). For a graph
function un : Ωn → R we define uε

n, (un)ε : Ω → R by

uε
n(x) := sup

BΩ(x,ε)∩Ωn

un, (un)ε(x) := inf
BΩ(x,ε)∩Ωn

un, x ∈ Ω. (5.22)

Before we proceed with a discrete-to-nonlocal consistency statement and prove Theorem 2.2, we devote
a section to collecting several technical lemmas, dealing with (approximate) Lipschitz continuity of the
quantities involved. For understanding the gist of our arguments the following section can be skipped,
however.

5.3.1 Approximate Lipschitz Estimates

Lemma 5.8. Under Assumptions 1, 2 and 4 there exists a constant C > 0 such that for all un : Ωn → R
and all x, y ∈ Ω it holds

|∆ε
∞uε

n(x)−∆ε
∞uε

n(y)| ≤ Lipn(un)C
|x− y|+ φ(|x− y|) + 2δn + φ(2δn) + τηh

ε2
. (5.23)
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Proof. We first note that by definition (4.8)

ε2 |∆ε
∞uε

n(x)−∆ε
∞(y)| ≤ |T εuε

n(x)− T εuε
n(y)|+ |Tεu

ε
n(x)− Tεu

ε
n(y)|+ 2 |uε

n(x)− uε
n(y)|

=
∣∣u2ε

n (x)− u2ε
n (y)

∣∣+ |Tεu
ε
n(x)− Tεu

ε
n(y)|+ 2 |uε

n(x)− uε
n(y)| .

We first estimate the third term and then argue that the same estimate also applies to the first and second.
For x ∈ Ω we know that there exists a point x∗ ∈ BΩ(x, ε) ∩ Ωn such that

uε
n(x) = un(x

∗).

For y ∈ Ω we construct a point ỹ ∈ BΩ(y, ε) as follows. Since (Ω, dΩ) is a length space we can find a
geodesic γ : [0, 1] → Ω with γ(0) = y, γ(1) = x∗, and length dΩ(y,x

∗). We define ỹ := γ(t∗) where
t∗ := sup{t > 0 : γ(t) ∈ BΩ(y, ε)} as the last point which still lies in BΩ(y, ε). We distinguish two cases: If
x∗ ∈ BΩ(y, ε) then ỹ = x∗ and hence dΩ(ỹ,x

∗) = 0 ≤ dΩ(x, y). If x∗ /∈ BΩ(y, ε) then it holds dΩ(y, ỹ) = ε.
Furthermore, since γ is a geodesic it holds

dΩ(y,x
∗) = dΩ(y, ỹ) + dΩ(ỹ,x

∗).

Hence, we obtain that also in this case it holds

dΩ(ỹ,x
∗) = dΩ(y,x

∗)− dΩ(y, ỹ) ≤ dΩ(x, y) + dΩ(x,x
∗)− dΩ(y, ỹ) ≤ dΩ(x, y).

By definition of the graph resolution δn there exists a point y∗ ∈ BΩ(y, ε) ∩ Ωn, such that |ỹ − y∗| ≤ 2δn
and by definition of uε

n it holds un(y
∗) ≤ uε

n(y). Furthermore, by Assumption 2

dΩ(x
∗,y∗) ≤ dΩ(ỹ,x

∗) + dΩ(ỹ,y
∗) ≤ dΩ(x, y) + 2δn + φ(2δn).

Thus, using Lemma 5.5 and Assumptions 2 and 4 it follows that

uε
n(x)− uε

n(y) ≤ un(x
∗)− un(y

∗)

≤ Lipn(un)dn(x
∗,y∗)

≤ Lipn(un)
(
C dΩ(x

∗,y∗) + τηh
)

≤ Lipn(un)
(
C (dΩ(x, y) + 2δn + φ(2δn) + τηh

)
≤ Lipn(un)C

(
|x− y|+ φ(|x− y|) + 2δn + φ(2δn) + τηh

)
.

Exchanging the role of x and y we can estimate the difference uε
n(y) − uε

n(x). The resulting estimate on
|uε

n(x)− uε
n(y)| does not depend on the choice of ε and is therefore also valid for

∣∣u2ε
n (x)− u2ε

n (y)
∣∣. Finally,

we can estimate

Tεu
ε
n(x)− Tεu

ε
n(y) = inf

BΩ(x,ε)
uε
n − inf

BΩ(y,ε)
uε
n

= inf
BΩ(x,ε)

uε
n − uε

n(y
∗),

where y∗ ∈ BΩ(y, ε) realizes the infimum. With the same trick as above we can choose a geodesic γ : [0, 1] →
Ω from y∗ to x and define the first point lying in BΩ(x, ε) as x∗ := γ(t∗) where

t∗ := inf{t > 0 : γ(t) ∈ BΩ(x, ε)}.

Either y∗ ∈ BΩ(x, ε) and therefore x∗ = y∗ or, similar as before, it holds dΩ(x, x
∗) = ε and

dΩ(y
∗, x∗) = dΩ(y

∗, x)− dΩ(x
∗, x) ≤ dΩ(x, y) + dΩ(y

∗, y)− dΩ(x
∗, x) ≤ dΩ(x, y).
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Hence, as before we can estimate

Tεu
ε
n(x)− Tεu

ε
n(y) ≤ uε

n(x
∗)− uε

n(y
∗)

≤ Lipn(un)
(
C (dΩ(x

∗, y∗)︸ ︷︷ ︸
≤dΩ(x,y)

+2δn + φ(2δn) + τηh
)

≤ Lipn(un)C
(
|x− y|+ φ(|x− y|) + 2δn + φ(2δn) + τηh

)
.

Lemma 5.9. For u : Ω → R it holds

sup
Ω

|T εu− u| ∨ sup
Ω

|Tεu− u| ≤ LipΩ(u) ε. (5.24)

Proof. We only give a proof of the first inequality since the one for Tεu works analogously. For x ∈ Ω one
computes

T εu(x)− u(x) = max
y∈BΩ(x,ε)

u(y)− u(x) ≤ LipΩ(u) max
y∈BΩ(x,ε)

dΩ(x, y) ≤ LipΩ(u) ε, ∀x ∈ Ωε
O,

which implies supΩε
O
|T ε − u| ≤ LipΩ(u) ε.

Lemma 5.10. Under Assumptions 1, 2 and 4 there exists a constant C > 0 such that for all un : Ωn → R
it holds

sup
Ω

|uε
n − un| ∨ sup

Ω

|(un)ε − un| ≤ C Lipn(un)ε, (5.25)

where un : Ω → R is the piecewise constant extension of un, defined in (2.8).

Proof. Again we only prove the first estimate. For every x ∈ Ω it holds thanks to Lemma 5.5 and Assump-
tions 2 and 4 that

uε
n(x)− un(x) = max

BΩ(x,ε)∩Ωn

un − un(πn(x)) ≤ Lipn(un) max
y∈BΩ(x,ε)∩Ωn

dn(πn(x),y)

≤ Lipn(un) max
y∈BΩ(x,ε)∩Ωn

(CdΩ(πn(x),y) + τηh)

≤ Lipn(un) max
y∈BΩ(x,ε)∩Ωn

(C(dΩ(x,y) + dΩ(x, πn(x)) + τηh)

≤ Lipn(un) (C(ε+ δn + φ(δn)) + τηh)

≤ C Lipn(un) ε,

where the constant C > 0 changed its value.

Lemma 5.11. Under Assumptions 1 to 4 there exists a constant C > 0 such that for all un : Ωn → R with
un = gn on On and all u : Ω → R with u = g on O it holds

sup
Ωε

O\Ω2ε
O

(uε
n − Tεu) ≤ C(Lipn(un) + LipΩ(u))ε.

Proof. Using Lemmas 5.9 and 5.10 we have that

sup
Ωε

O\Ω2ε
O

(uε
n − Tεu) ≤ sup

Ωε
O\Ω2ε

O

(
|uε

n − un|+ |un − u|+ |u− Tεu|
)

≤ (Lipn(un) + LipΩ(u))Cε+ sup
Ωε

O\Ω2ε
O

|un − u| .
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Since x ∈ Ωε
O \ Ω2ε

O we know that there exists z ∈ O such that |z − x| ≤ 2ε, for which we also find a
vertex πOn(z) ∈ On with |z − πOn(z)| ≤ δn and therefore |x− πOn(z)| ≤ 2ε + δn. This also implies that
|πn(x)− πOn

(z)| ≤ 2ε + 2δn. With similar computations as before, using Assumptions 3 and 4 and Lem-
mas 5.5, 5.9 and 5.10, we have

|un(x)− u(x)| ≤ |un(πn(x))− gn(πOn
(z))|+ |gn(πOn

(z))− g(z)|+ |g(z)− u(x)|
= |un(πn(x))− un(πOn

(z))|+ |gn(πOn
(z))− g(z)|+ |u(z)− u(x)|

≤ Lipn(un)dn(πn(x), πOn
(z)) + |gn(πOn

(z))− g(z)|+ LipΩ(u)dΩ(z, x)

≤ C(Lipn(un) + LipΩ(u))ε.

Lemma 5.12. Under Assumptions 1, 2 and 4 there exists a constant C > 0 such that for all u : Ωn → R it
holds

|un(x)− un(y)| ≤ Lipn(un)
(
C
(
dΩ(x, y) + 2δn + 2φ(δn)

)
+ τηh

)
, ∀x, y ∈ Ω,

where un : Ω → R is the piecewise constant extension of un, defined in (2.8).

Proof. Using Lemma 5.5 and Assumptions 2 and 4 and the definition of un in (2.8) it holds

|un(x)− un(y)| = |un(πn(x))− un(πn(y))|
≤ Lipn(un)dn(πn(x), πn(y))

≤ Lipn(un) (C dΩ(πn(x), πn(y)) + τηh)

≤ Lipn(un)
(
C
(
dΩ(πn(x), x) + dΩ(x, y) + dΩ(y, πn(y))

)
+ τηh

)
≤ Lipn(un)

(
C
(
dΩ(x, y) + 2δn + 2φ(δn)

)
+ τηh

)
.

5.3.2 Discrete-to-Nonlocal Consistency

In this section we will prove that if un is a solution of the graph infinity Laplace equation (2.1) then a
discrete-to-continuum version of the max-ball statement Lemma 4.6 holds true. Using only the comparison
with graph distance functions, established in Theorem 3.2, we shall prove

−∆ε
∞uε

n ≤ C(δn, h, ε) and −∆ε
∞(un)ε ≥ −C(δn, h, ε),

where C(δn, h, ε) > 0 is small if δn and h are small. This means that the extension operators (5.22) turn
discrete solutions into approximate sub- and supersolutions of the nonlocal equation −∆ε

∞u = 0. Compared
to the continuum setting from Lemma 4.6, the inhomogeneity C(δn, h, ε) originates from the discretization
error. Using the perturbation results from Section 4.3 we can then derive uniform convergence rates of un

to an AMLE (2.16).
In the proof we will first show the desired statement for all graph vertices and then use an approximate

Lipschitz property to extend it to the whole continuum domain.

Theorem 5.13. Assume that Assumptions 1, 2 and 4 hold. Let un : Ωn → R solve the graph infinity
Laplacian equation (2.1). Then there exists a constant C > 0 such that for all x0 ∈ Ω2ε+3δn

O it holds

−∆ε
∞uε

n(x0) ≤ Lipn(gn)C

(
δn
hε

+
h

ε2
+

φ(h)

hε

)
, (5.26a)

−∆ε
∞(un)ε(x0) ≥ −Lipn(gn)C

(
δn
hε

+
h

ε2
+

φ(h)

hε

)
. (5.26b)
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Proof. We only proof the first inequality (5.26a). The second one can be established by applying the first one
to −un and −gn. Our proof strategy consists in proving the desired inequality for points x0 ∈ Ω2ε+2δn

O ∩Ωn

and then extending this to the whole domain by the help of Lemma 5.8 which gives another δn contribution
and leads to Ω2ε+3δn

O .
By definition of the nonlocal infinity Laplacian (4.8) it holds

−ε2∆ε
∞uε

n(x0) = 2uε
n(x0)− sup

y∈BΩ(x0,ε)

uε
n(y)− inf

y∈BΩ(x0,ε)
uε
n(y).

For the sup term we have

sup
y∈BΩ(x0,ε)

uε
n(y) = sup

y∈BΩ(x0,ε)

sup
BΩ(y,ε)∩Ωn

un = sup
BΩ(x0,2ε)∩Ωn

un = u2ε
n (x0).

For the inf term, using the fact that uε
n is a simple function, we find y∗ ∈ BΩ(x0, ε) such that

inf
y∈BΩ(x0,ε)

uε
n(y) = uε

n(y
∗) = sup

BΩ(y∗,ε)∩Ωn

un ≥ un(x0)

and therefore

−ε2∆ε
∞uε

n(x0) ≤ 2uε
n(x0)− u2ε

n (x0)− un(x0).

Denoting by pε
n(x0) ∈ BΩ(x0, ε) ∩ Ωn and p2ε

n (x0) ∈ BΩ(x0, 2ε) ∩ Ωn two vertices such that

uε
n(x0) = sup

BΩ(x0,ε)∩Ωn

un = un(p
ε
n(x0)),

u2ε
n (x0) = sup

BΩ(x0,2ε)∩Ωn

un = un(p
2ε
n (x0)),

we rewrite this inequality to

−ε2∆ε
∞uε

n(x0) ≤ 2un(p
ε
n(x0))− un(p

2ε
n (x0))− un(x0). (5.27)

In order to estimate this term we have to use the comparison with cones property, which un satisfies thanks
to Theorem 3.2. To this end we define the following subset of vertices

B :=

{
w ∈ Ωn \ {x0} : dn(x0,w) ≤ 2ε

(
1− φ(h)

h

)
− h

}
.

First note that B is non-empty. To see this, we know that by definition of the graph resolution δn in (2.5)
there exists y ∈ Ωn \ {x0} such that |x0 − y| ≤ 2δn. Thanks to Assumption 4 it trivially holds 2δn/h ≤ t0
and also φ(h)/h ≤ 1/2 and (1 + t0)

h
ε < 1, which is why we obtain

dn(x0,y) =
ση

ηh(|x0 − y|)
≤ σηh

η(2δn/h)
≤ t0h

= 2ε

(
1− φ(h)

h

)
− h+ t0h− 2ε

(
1− φ(h)

h

)
+ h

= 2ε

(
1− φ(h)

h

)
− h+ ε

(
(1 + t0)

h

ε
− 2 + 2

φ(h)

h

)
≤ 2ε

(
1− φ(h)

h

)
− h,

meaning that y ∈ B. We claim that the graph boundary of B satisfies

∂B ⊂
{
w ∈ Ωn : 2ε

(
1− φ(h)

h

)
− h < dn(x0,w) and dΩ(x0,w) ≤ 2ε

}
∪ {x0} =: B′.
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By definition of the graph boundary (3.4) it holds w ∈ ∂B if and only if w /∈ B and there exists y ∈ B such
that ηh(|w − y|) > 0. Hence, the only non-trivial property to check is the inequality dΩ(x0,w) ≤ 2ε. For
this, we observe that y ∈ B as above satisfies |w − y| ≤ h and hence, using Lemma 5.4 and Assumption 2,
we get

dΩ(x0,w) ≤ dΩ(x0,y) + dΩ(y,w) ≤ dn(x0,y)

1− ϕ(h)
h

+ |y −w|+ φ(|y −w|)

≤ 2ε− h

1− ϕ(h)
h

+ h+ φ(h) = 2ε+ h

(
1 +

φ(h)

h
− 1

1− ϕ(h)
h

)
≤ 2ε

using that 1 + x − 1
1−x ≤ 0 for all 0 ≤ x < 1 and ϕ(h)

h ≤ 1
2 < 1 by Assumption 4. With this we have

established that ∂B ⊂ B′. Next we claim that any vertex w ∈ B′ satisfies the inequality

un(w) ≤ un(x0) +
un(p

2ε
n (x0))− un(x0)

2ε
(
1− ϕ(h)

h

)
− h

dn(x0,w). (5.28)

On one hand, if w = x0 then the inequality is trivially fulfilled. On the other hand, for all other w ∈ B′ by
definition of p2ε

n (x0) it holds

un(w) ≤ sup
BΩ(x0,2ε)∩Ωn

un = un(p
2ε
n (x0)), and un(x0) ≤ un(p

2ε
n (x0)).

Combining these two inequalities with the definition of B′ shows (5.28) for all w ∈ B′ and in particular
for all w ∈ ∂B. Before we are able to use comparison with cones we have to argue that B′ ⊂ Ωn \ On,
i.e., B′ does not contain any labelled points. Let therefore w ∈ B′ be arbitrary. Using the fact that
distΩ(x0,O) ≥ 2ε+ 2δn it holds

distΩ(w,O) ≥ distΩ(x0,O)− dΩ(x0,w) ≥ 2ε+ 2δn − 2ε = 2δn.

Since the graph resolution δn is defined with respect to the Euclidean distance, we have to transfer this
statement to the Euclidean distance.

Aiming for a contradiction we assume there exists y ∈ O with |w − y| ≤ δn. By Assumption 2 it holds

|w − y| ≥ dΩ(w, y)− φ(|w − y|) ≥ 2δn − |w − y| φ(|w − y|)
|w − y|

.

We observe that thanks to Assumption 4 it holds δn ≤ h and also

φ(|w − y|)
|w − y|

≤ φ(δn)

δn
≤ σϕ(h) < 1.

Thus, we obtain

|w − y| ≥ 2δn − |w − y| φ(|w − y|)
|w − y|

> 2δn − δn = δn

which is a contradiction. Therefore, we get that |w − y| > δn for all y ∈ O and, since O is a compact set, it
holds dist(w,O) > δn. Next, we observe that it holds

dist(w,O) = inf
y∈O

|w − y| ≤ inf
y∈O

(|w − y|+ |y − y|) = |w − y|+ inf
y∈O

|y − y| , ∀y ∈ On.

Taking the infimum over y we get

dist(w,O) ≤ inf
y∈On

(
|w − y|+ inf

y∈O
|y − y|

)
≤ inf

y∈On

(
|w − y|+ sup

y∈On

inf
y∈O

|y − y|
)

≤ dist(w,On) + dH(O,On).
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Hence, can we conclude

dist(w,On) ≥ dist(w,O)− dH(O,On) > δn − δn = 0,

which means B′ ∩ On = ∅ and therefore B′ ⊂ Ωn \ On.
Therefore, we can utilize that un satisfies comparison with cones from above (see Theorem 3.2) and infer

that (5.28) holds for all vertices w ∈ Ωn with dn(x0,w) ≤ 2ε(1 − φ(h)/h) − h. We would like to choose
w = pε

n(x0) and this choice is possible because of the following estimate. Using Lemma 5.5 and abbreviating
C̃(h) :=

4+2σϕ(h)
t0

it holds

dn(x0,p
ε
n(x0)) ≤

(
1 + C̃(h)

δn
h

)
dΩ(x0,p

ε(x0)) + τηh

≤
(
1 + C̃(h)

δn
h

)
ε+ τηh

= ε+ C̃(h)
δn
h
ε+ τηh

= 2ε

(
1− φ(h)

h

)
− h−

(
2ε− 2ε

φ(h)

h
− h

)
︸ ︷︷ ︸

=0

+ ε+ C̃(h)
δn
h
ε+ τηh

= 2ε

(
1− φ(h)

h

)
− h+ 2ε

φ(h)

h
− ε+ (1 + τη)h+ C̃(h)

δn
h
ε

= 2ε

(
1− φ(h)

h

)
− h+ ε

(
2
φ(h)

h
− 1 + (1 + τη)

h

ε
+ C̃(h)

δn
h

)
≤ 2ε

(
1− φ(h)

h

)
− h, (5.29)

where we used t0 ≤ 1, 2 ≤ 4+2σϕ(h)
t0

= C̃(h), τη ≤ 1, and ϕ(h)
h ≤ σϕ(h) to obtain from Assumption 4

2
φ(h)

h
− 1 + (1 + τη)

h

ε
+ C̃(h)

δn
h

≤ C̃(h)

(
σϕ(h) +

δn
h

)
− 1 + 2

h

ε
≤ 0.

Before starting with the central estimate we use Eq. (5.29), Proposition 3.8, Lemma 5.5, and Assumption 4
to compute ∣∣un(p

2ε
n (x0))− un(x0)

∣∣ ≤ Lipn(gn)dn(p
2ε
n (x0),x0))

≤ Lipn(gn)
(
C̃(h) dΩ(p

2ε
n (x0),x0) + τηh

)
≤ Lipn(gn)

(
2C̃(h)ε+ τηh

)
≤ Lipn(gn)Cε (5.30)
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for a constant C > 0. Using Eq. (5.30), Lemma 5.5, and Assumption 4 we can compute

2un(p
ε
n(x0)) ≤ 2un(x0) +

un(p
2ε
n (x0))− un(x0)

ε
(
1− ϕ(h)

h

)
− h/2

dn(x0,p
ε
n(x0))

≤ 2un(x0) +
un(p

2ε
n (x0))− un(x0)

ε
(
1− ϕ(h)

h

)
− h/2

((
1 + C̃(h)

δn
h

)
ε+ τηh

)

= 2un(x0) +
(
un(p

2ε
n (x0))− un(x0)

)(1 + C̃(h)
δn
h

)
ε

ε
(
1− ϕ(h)

h

)
− h/2

+
τηh

ε
(
1− ϕ(h)

h

)
− h/2


= un(x0) + un(p

2ε
n (x0))+(

un(p
2ε
n (x0))− un(x0)

)(
C̃(h)

δn
h

+
εϕ(h)

h + h/2

ε(1− ϕ(h)
h )− h/2

(
1 + C̃(h)

δn
h

)
+

τηh

ε(1− ϕ(h)
h )− h/2

)

≤ un(x0) + un(p
2ε
n (x0)) + Lipn(gn)Cε

(
C̃(h)

δn
h

+

(
φ(h)

h
+

h

2ε

)(
1 + 2

φ(h)

h
+

h

ε

)(
1 + C̃(h)

δn
h

)

+ τη
h

ε

(
1 + 2

φ(h)

h
+

h

ε

))

≤ un(x0) + un(p
2ε
n (x0)) + Lipn(gn)Cε

(
δn
h

+
h

ε
+

φ(h)

h

)
= un(x0) + un(p

2ε
n (x0)) + Lipn(gn)C

(
δnε

h
+ h+ ε

φ(h)

h

)
,

for a constant C > 0. Plugging this into (5.28) with w = pε(x0) and and dividing by ε2 we get

−∆ε
∞uε

n(x0) ≤ Lipn(gn)C

(
δn
hε

+
h

ε2
+

φ(h)

εh

)
.

Remark 5.14. Almost the whole proof of Theorem 5.13 works under the assumption that un merely satisfies
comparison with cones from above / below in which case one could only prove (5.26a) / (5.26b). However,
in order to have the discrete Lipschitz estimate from Proposition 3.8, we need un to satisfy both comparison
properties.
Remark 5.15. We were hoping that in the case of a singular kernel, where τη = 0 and hence the convergence
rate of graph distance functions is better according to Lemma 5.5, the consistency error in (5.26) might be
better. Closely following the proof, one observes that almost all order h contributions are multiplied with
τη. Only in the definition of the graph set B, we have to use the lower bound which features −h. This then
leads to the term hε−2 which, however, does not contribute for small graph length scales h.

5.3.3 Convergence Rates

Now we are in the position to prove an important result on our way to convergence rates which can be
interpreted as an approximate maximum principle.

Proposition 5.16. Let u ∈ C(Ω) satisfy CDF (cf. (4.1)) and define ε̃n := ε + 3
2δn. Under the conditions
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of Theorem 5.13 there exists a constant C > 0 such that

sup
Ωε̃n

O

(uε
n − Tεu) ≤ sup

Ωε̃n
O \Ω2ε̃n

O

(uε
n − Tεu) +

3

√
Lipn(gn)C

(
δn
hε

+
h

ε2
+

φ(h)

hε

)
, (5.31a)

sup
Ωε̃n

O

(T εu− (un)ε) ≤ sup
Ωε̃n

O \Ω2ε̃n
O

(T εu− (un)ε) +
3

√
Lipn(gn)C

(
δn
hε

+
h

ε2
+

φ(h)

hε

)
. (5.31b)

If additionally it holds that α := infΩ |∇u| > 0, then we even have

sup
Ωε̃n

O

(uε
n − Tεu) ≤ sup

Ωε̃n
O \Ω2ε̃n

O

(uε
n − Tεu) + Lipn(gn)C

(
δn
hε

+
h

ε2
+

φ(h)

hε

)
, (5.32a)

sup
Ωε̃n

O

(T εu− (un)ε) ≤ sup
Ωε̃n

O \Ω2ε̃n
O

(T εu− (un)ε) + Lipn(gn)C

(
δn
hε

+
h

ε2
+

φ(h)

hε

)
. (5.32b)

Proof. We only prove (5.31a), the second inequality is obtained analogously. By Theorem 5.13 we know that
there is a constant C > 0 such that

−∆ε
∞uε

n ≤ Lipn(gn)C

∣∣∣∣ δnhε +
h

ε2
+

φ(h)

hε

∣∣∣∣ =: Cn,ε in Ω2ε̃n
O .

By Lemma 4.6 we know that −∆ε
∞Tεu ≥ 0 in Ω2ε

O and hence also in Ω2ε̃n
O . Furthermore, since u is infinity

harmonic, it is bounded and hence also Tεu is bounded. Applying Lemma 4.8 with δ := (Cn,ε)
1
3 we can

hence choose v : Ωε
O → R such that

−∆ε
∞v ≥ 0, S−

ε v ≥ (Cn,ε)
1
3 , Tεu ≤ v ≤ Tεu+ 2(Cn,ε)

1
3 dist(·,Ωε

O \ Ω2ε
O ) in Ω2ε

O .

Since u ∈ C(Ω) is a bounded function, the same holds for v. Define w := v − (Cn,ε)
1
3 v2 which according to

Lemma 4.9 and its definition satisfies

−∆ε
∞w ≥ Cn,ε in Ω2ε

O , ‖w − Tεu‖L∞(Ωε
O) ≤ c(Cn,ε)

1
3 .

Then it holds −∆ε
∞uε

n ≤ Cn,ε ≤ −∆ε
∞w in Ω2ε̃n

O and applying Lemma 4.7 with ε replaced by ε̃n we can
compute

sup
Ωε̃n

O

(uε
n − Tεu) ≤ sup

Ωε̃n
O

(uε
n − w) + c(Cn,ε)

1
3

≤ sup
Ωε̃n

O \Ω2ε̃n
O

(uε
n − w) + c(Cn,ε)

1
3

≤ sup
Ωε̃n

O \Ω2ε̃n
O

(uε
n − Tεu) + 2c(Cn,ε)

1
3 .

In the case that α = infΩ |∇u| > 0 we do not have to apply Lemma 4.8 to construct a perturbation v with
positive slope. Instead, we define w := u− Cn,ε

α2 u2 which according to Lemma 4.9 satisfies

−∆ε
∞w ≥ Cn,ε in Ω2ε

O , ‖w − Tεu‖L∞(Ωε
O) ≤

c

α2
Cn,ε.

From here the proof continues as before.

For getting rid of the ε-extension operators and boundary terms in Proposition 5.16, we have to use the
lemmas from Section 5.3.1. Basically, one uses Lipschitzness of u (and uε

n in an appropriate sense) in order
to transfer the statement of Proposition 5.16 to u and un, estimating the boundary term, and extending the
uniform estimate to the whole of Ω. All this comes with an additional additive error term of order ε > 0.
We are now ready to prove the main theorem of this article, Theorem 2.2.
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Proof of Theorem 2.2. First we notice that thanks to [37, Lemma 2.3] we have

sup
Ωn

|u− un| = sup
Ω

|u− un| .

Again we abbreviate ε̃n := ε+ 3
2δn. Using Lemmas 5.9 to 5.11 and Proposition 5.16 we get

sup
Ωε̃n

O

(un − u) ≤ sup
Ωε̃n

O

(un − uε
n) + sup

Ωε̃n
O

(uε
n − Tεu) + sup

Ωε̃n
O

(Tεu− u)

≤ C Lipn(un)ε+ C LipΩ(u)ε+ sup
Ωε̃n

O \Ω2ε̃n
O

(uε
n − Tεu) +

3

√
Lipn(gn)C

(
δn
hε

+
h

ε2
+

φ(h)

hε

)

≤ C Lipn(un)ε+ C LipΩ(u)ε+ Cε+ 3

√
Lipn(gn)C

(
δn
hε

+
h

ε2
+

φ(h)

hε

)
.

By Proposition 3.8 we know that Lipn(un) = Lipn(gn) and by Assumption 3 it holds supn∈N Lipn(gn) ≤ C.
The term supΩε̃n

O
(u− un) can be estimated analogously. Hence, we get the inequality

sup
Ωε̃n

O

|u− un| ≤ C

(
ε+

3

√
δn
hε

+
h

ε2
+

φ(h)

hε

)
.

Note that it holds |u(x)− u(y)| ≤ LipΩ(u)dΩ(x, y) for all x, y ∈ Ω. Using this together with Lemma 5.12
and Assumption 4 we get for all x ∈ Ω \ Ωε̃n

O that

|u(x)− un(x)| ≤ |u(x)− u(x̃)|+ |u(x̃)− un(x̃)|+ |un(x̃)− un(x)|

≤ LipΩ(u)ε̃n + C

(
ε+

3

√
δn
hε

+
h

ε2
+

φ(h)

hε

)
+ C Lipn(un)ε̃n,

where x̃ ∈ Ωε̃
O is such that dΩ(x, x̃) ≤ ε̃n. Using also that thanks to Assumption 4 it holds ε̃n = ε(1+ 3

2δn) ≤
Cε, we can pass from supΩε̃

O
|u− un| to supΩ |u− un| at the cost of another term of order ε which proves

the first assertion of the theorem. In the case that infΩ |∇u| > 0 one simply uses the better estimate in
Proposition 5.16 without 3

√
·.

6 Numerical Results
In this section we present a brief numerical study of convergence rates for the continuum limit of Lipschitz
learning.2 In order to test convergence rates, we work with the Aronsson function

u(x1, x2) = |x1|4/3 − |x2|4/3 ,

which is infinity harmonic on the plane R2. We work with the non-convex and non-smooth domain (5.6)
which satisfies Assumption 2 according to Proposition 5.3 and on which the Aronsson function is an AMLE
(2.16). For convenience, we remind the reader that this domain was defined as follows

Ω :=
{
x ∈ [0, 1]2 : |x1|2/3 + |x2|2/3 ≤ 1

}
,

and coincides with the non-convex unit ball around zero of the `2/3 metric space.
As constraint set we choose the four points O = {(±1, 0)} ∪ {(0,±1)}. This domain was chosen so that

the Aronsson function u satisfies the homogeneous Neumann condition ∂u/∂ν = 0 on ∂Ω \ O. The point
2The code for our experiments is available online: https://github.com/jwcalder/LipschitzLearningRates.
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cloud Ωn is generated by drawing i.i.d. samples from Ω. For the discrete constraint set we consider two
different choices. The first one consists of the four closest graph points to O,

Ocp
n =

⋃
x∈O

argmin
x∈Ωn

|x− x| ,

and the second one is given using a dilated boundary:

Odil
n = {x ∈ Ωn : dist(x,O) ≤ hn}.

Fig. 2 shows the solutions of the Lipschitz learning problem for different numbers n ∈ N of vertices, using the
constraint set Ocp

n . Furthermore, in Fig. 3 we show a convergence study where we compute empirical rates3

of convergence for the different bandwidths and kernels. We consider two different kernels: the constant one
with η(t) = 1 and the singular one with η(t) = t−1. Furthermore, we consider three different scalings of the
graph bandwidth hn which we choose as hn ∼ {δn, δ2/3n , δ

1/2
n }. For the first scaling our theory does not even

prove convergence. This is due to the fact that the angular error in the point cloud should go to zero which
manifests in hn � δn. Still, for a randomly sampled point cloud one can hope for a homogenization effect
and still obtain convergence. The other two scalings are covered by our theory, whereby hn ∼ δ

2/3
n falls into

the small length scale regime (cf. Corollary 2.4) and hn ∼ δ
1/2
n falls into the large one with less smooth

boundary (cf. Corollary 2.6).
For the constant kernel η(t) = 1 we ran experiments with n = 212 up to n = 216 points and averaged

the errors over 100 different random samples of Ωn. For the singular kernel η(t) = t−1, the numerical solver
is much slower and we ran experiments only up to n = 215 and averaged errors over 20 trials. We observe
in Fig. 3 that all scalings appear to be convergent. Interestingly, the smallest bandwidth hn ∼ δn, where
convergence cannot be expected in general, exhibits the best rates and smallest errors. Notably all empirical
rates are better than the ones from Corollaries 2.4 and 2.6. This does not necessarily mean that our results
are not sharp since for the Aronsson solution one can typically prove better rates, see the discussion in
[39]. At the same time, it constitutes the only non-trivial (i.e., not a cone) explicit solution of the AMLE
problem which is why it is a popular test case. We also observe in Fig. 3 that the rates for the singular kernel
η(t) = t−1 are better than the ones for unit weights which suggests that there might be a way to lift the
better approximation of the distance functions (cf. Lemma 5.5) to a better approximation of the (non-local)
infinity Laplacian (cf. Remark 5.15). Also the magnitudes of the errors are much smaller for the singular
kernel than for the constant one.

In Figs. 4 and 5 we show the results using the dilated constraint set Odil
n . For the singular kernel we

see that the smallest graph length scales again yield the best rates, while for the constant kernel η(t) = 1,
all length scales exhibit similar convergence rates. We can partially attribute this to the fact that the
constraint set Ocp

n leads to sharp cusps which is resolved better using the smallest bandwidth whereas the
dilated boundary in Odil

n generates smoother domains where the larger length scales are well-suited for
approximating the infinity Laplacian.

Acknowledgments
The authors thank the Institute for Mathematics and its Applications (IMA) where this collaboration started
at a workshop on “Theory and Applications in Graph-Based Learning” in Fall 2020. Part of this work was
also done while the authors were visiting the Simons Institute for the Theory of Computing to partici-
pate in the program “Geometric Methods in Optimization and Sampling” during the Fall of 2021. LB
acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) un-
der Germany’s Excellence Strategy - GZ 2047/1, Projekt-ID 390685813. JC acknowledges funding from
NSF grant DMS:1944925, the Alfred P. Sloan foundation, and a McKnight Presidential Fellowship. TR
acknowledges support by the German Ministry of Science and Technology (BMBF) under grant agreement
No. 05M2020 (DELETO).

3We computed the rates by fitting a linear function to the log-log plots in Fig. 3.

38



References
[1] S. Armstrong, C. Smart, and S. Somersille. “An infinity Laplace equation with gradient term and mixed

boundary conditions”. In: Proceedings of the American Mathematical Society 139.5 (2011), pp. 1763–
1776 (cit. on p. 18).

[2] S. N. Armstrong and C. K. Smart. “An easy proof of Jensen’s theorem on the uniqueness of infinity
harmonic functions”. In: Calculus of Variations and Partial Differential Equations 37.3 (2010), pp. 381–
384 (cit. on pp. 5, 19, 21).

[3] G. Aronsson, M. Crandall, and P. Juutinen. “A tour of the theory of absolutely minimizing functions”.
In: Bulletin of the American mathematical society 41.4 (2004), pp. 439–505 (cit. on pp. 3, 5, 18).

[4] J. Calder. “The game theoretic p-Laplacian and semi-supervised learning with few labels”. In: Nonlin-
earity 32.1 (2018), pp. 301–330 (cit. on pp. 2, 14).

[5] J. Calder. “Consistency of Lipschitz learning with infinite unlabeled data and finite labeled data”. In:
SIAM Journal on Mathematics of Data Science 1 (2019), pp. 780–812 (cit. on pp. 2, 3, 5, 7, 9, 10,
12–14).

[6] J. Calder, B. Cook, M. Thorpe, and D. Slepcev. “Poisson Learning: Graph Based Semi-Supervised
Learning At Very Low Label Rates”. In: Proceedings of the 37th International Conference on Machine
Learning. Ed. by H. D. III and A. Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR,
13–18 Jul 2020, pp. 1306–1316 (cit. on p. 2).

[7] J. Calder and N. García Trillos. “Improved spectral convergence rates for graph Laplacians on ε-graphs
and k-NN graphs”. In: Applied and Computational Harmonic Analysis 60 (2022), pp. 123–175 (cit. on
p. 2).

[8] J. Calder, N. García Trillos, and M. Lewicka. “Lipschitz regularity of graph Laplacians on random
data clouds”. In: SIAM Journal on Mathematical Analysis 54.1 (2022), pp. 1169–1222 (cit. on p. 2).

[9] J. Calder and D. Slepčev. “Properly-weighted graph Laplacian for semi-supervised learning”. In: Applied
mathematics & optimization 82.3 (2020), pp. 1111–1159 (cit. on p. 2).

[10] J. Calder, D. Slepčev, and M. Thorpe. Rates of Convergence for Laplacian Semi-Supervised Learning
with Low Labeling Rates. 2020. arXiv: 2006.02765 [math.ST] (cit. on pp. 2, 3).

[11] A. Chambolle, E. Lindgren, and R. Monneau. “A Hölder infinity Laplacian”. In: ESAIM: Control,
Optimisation and Calculus of Variations 18.3 (2012), pp. 799–835 (cit. on p. 4).

[12] T. Champion and L. De Pascale. “Principles of comparison with distance functions for absolute mini-
mizers”. In: Journal of Convex Analysis 14.3 (2007), p. 515 (cit. on pp. 5, 17).

[13] M. G. Crandall, H. Ishii, and P.-L. Lions. “User’s guide to viscosity solutions of second order partial
differential equations”. In: Bulletin of the American mathematical society 27.1 (1992), pp. 1–67 (cit. on
p. 18).

[14] A. El Alaoui, X. Cheng, A. Ramdas, M. J. Wainwright, and M. I. Jordan. “Asymptotic behavior of `p-
based Laplacian regularization in semi-supervised learning”. In: 29th Annual Conference on Learning
Theory. Ed. by V. Feldman, A. Rakhlin, and O. Shamir. Vol. 49. Proceedings of Machine Learning
Research. Columbia University, New York, New York, USA: PMLR, 23–26 Jun 2016, pp. 879–906 (cit.
on pp. 2, 3).

[15] A. Elmoataz, M. Toutain, and D. Tenbrinck. “On the p-Laplacian and ∞-Laplacian on graphs with
applications in image and data processing”. In: SIAM Journal on Imaging Sciences 8.4 (2015), pp. 2412–
2451 (cit. on pp. 2, 13).

[16] L. Esposito, B. Kawohl, C. Nitsch, and C. Trombetti. “The Neumann eigenvalue problem for the ∞-
Laplacian”. In: Rendiconti Lincei-Matematica e Applicazioni 26.2 (2015), pp. 119–134 (cit. on p. 18).

39

https://arxiv.org/abs/2006.02765


[17] M. Flores, J. Calder, and G. Lerman. “Analysis and algorithms for `p-based semi-supervised learning
on graphs”. In: Applied and Computational Harmonic Analysis 60 (2022), pp. 77–122 (cit. on pp. 2, 3,
5).

[18] N. García Trillos, M. Gerlach, M. Hein, and D. Slepčev. “Error estimates for spectral convergence of the
graph Laplacian on random geometric graphs toward the Laplace–Beltrami operator”. In: Foundations
of Computational Mathematics 20.4 (2020), pp. 827–887 (cit. on p. 2).

[19] N. García Trillos and R. W. Murray. “A maximum principle argument for the uniform convergence of
graph Laplacian regressors”. In: SIAM Journal on Mathematics of Data Science 2.3 (2020), pp. 705–739
(cit. on p. 2).

[20] N. García Trillos and D. Slepčev. “Continuum Limit of Total Variation on Point Clouds”. In: Archive
for Rational Mechanics and Analysis 220.1 (2015), pp. 193–241. issn: 1432-0673 (cit. on p. 2).

[21] I. Goodfellow, Y. Bengio, and A. Courville. “Machine learning basics”. In: Deep learning 1.7 (2016),
pp. 98–164 (cit. on p. 12).

[22] P. Juutinen. “Absolutely minimizing Lipschitz extensions on a metric space”. In: Annales Academiae
Scientiarum Fennicae Mathematica. Vol. 27. 1. Academia Scientiarum Fennica. 2002, pp. 57–68 (cit. on
pp. 3, 21).

[23] P. Juutinen and N. Shanmugalingam. “Equivalence of AMLE, strong AMLE, and comparison with
cones in metric measure spaces”. In: Mathematische Nachrichten 279.9-10 (2006), pp. 1083–1098 (cit.
on pp. 16–18, 21).

[24] R. Kyng, A. Rao, S. Sachdeva, and D. A. Spielman. “Algorithms for Lipschitz Learning on Graphs”. In:
Proceedings of The 28th Conference on Learning Theory. Ed. by P. Grünwald, E. Hazan, and S. Kale.
Vol. 40. Proceedings of Machine Learning Research. Paris, France: PMLR, Mar. 2015, pp. 1190–1223
(cit. on pp. 3, 13).

[25] E. Le Gruyer. “On absolutely minimizing Lipschitz extensions and PDE ∆∞(u) = 0”. In: Nonlinear
Differential Equations and Applications NoDEA 14.1 (2007), pp. 29–55 (cit. on pp. 4, 10).

[26] M. Lewicka and J. J. Manfredi. “The obstacle problem for the p-Laplacian via optimal stopping of
tug-of-war games”. In: Probability Theory and Related Fields 167.1-2 (2017), pp. 349–378 (cit. on p. 5).

[27] U. V. Luxburg and O. Bousquet. “Distance-Based Classification with Lipschitz Functions”. In: J. Mach.
Learn. Res. 5 (2004), pp. 669–695 (cit. on p. 3).

[28] U. von Luxburg, M. Belkin, and O. Bousquet. “Consistency of spectral clustering”. In: The Annals of
Statistics 36.2 (Apr. 2008), pp. 555–586 (cit. on p. 2).

[29] J. J. Manfredi, M. Parviainen, and J. D. Rossi. “On the definition and properties of p-harmonious
functions”. In: Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 11.2 (2012), pp. 215–
241 (cit. on p. 5).

[30] J. Mazón, J. D. Rossi, and J. Toledo. “On the best Lipschitz extension problem for a discrete distance
and the discrete ∞-Laplacian”. In: Journal de mathématiques pures et appliquées 97.2 (2012), pp. 98–
119 (cit. on pp. 5, 19).

[31] V. A. Milman. “Absolutely minimal extensions of functions on metric spaces”. In: Sbornik: Mathematics
190.6 (1999), p. 859 (cit. on p. 21).

[32] K. P. Murphy. Machine learning: a probabilistic perspective. Cambridge, Massachusetts: MIT press,
2012 (cit. on p. 2).

[33] B. Nadler, N. Srebro, and X. Zhou. “Semi-supervised learning with the graph Laplacian: The limit of
infinite unlabelled data”. In: Advances in neural information processing systems 22 (2009), pp. 1330–
1338 (cit. on p. 2).

[34] A. M. Oberman. “A convergent difference scheme for the infinity Laplacian: construction of absolutely
minimizing Lipschitz extensions”. In: Mathematics of Computation 74.251 (Sept. 2004), pp. 1217–1231
(cit. on p. 3).

40



[35] Y. Peres, O. Schramm, S. Sheffield, and D. Wilson. “Tug-of-war and the infinity Laplacian”. In: Journal
of the American Mathematical Society 22.1 (2009), pp. 167–210 (cit. on p. 5).

[36] Y. Peres and S. Sheffield. “Tug-of-war with noise: a game-theoretic view of the p-Laplacian”. In: Duke
Mathematical Journal 145.1 (2008), pp. 91–120 (cit. on p. 5).

[37] T. Roith and L. Bungert. “Continuum limit of Lipschitz learning on graphs”. In: Foundations of Com-
putational Mathematics (2022), pp. 1–39 (cit. on pp. 2, 3, 9, 10, 13, 23, 37).

[38] D. Slepčev and M. Thorpe. “Analysis of p-Laplacian Regularization in Semisupervised Learning”. In:
SIAM Journal on Mathematical Analysis 51.3 (2019), pp. 2085–2120 (cit. on pp. 2, 3).

[39] C. K. Smart. “On the infinity Laplacian and Hrushovski’s fusion”. PhD thesis. UC Berkeley, 2010
(cit. on pp. 4–6, 11, 12, 19–21, 38).

[40] J. E. Van Engelen and H. H. Hoos. “A survey on semi-supervised learning”. In: Machine Learning 109.2
(2020), pp. 373–440 (cit. on p. 2).

[41] Y. Van Gennip, A. L. Bertozzi, et al. “Γ-convergence of graph Ginzburg-Landau functionals”. In:
Advances in Differential Equations 17.11/12 (2012), pp. 1115–1180 (cit. on p. 2).

[42] U. Von Luxburg. “A tutorial on spectral clustering”. In: Statistics and computing 17.4 (2007), pp. 395–
416 (cit. on p. 4).

[43] G. Voronoï. “Nouvelles applications des paramètres continus à la théorie des formes quadratiques.
Deuxième mémoire. Recherches sur les parallélloèdres primitifs.” In: Journal für die reine und ange-
wandte Mathematik (Crelles Journal) 1908.134 (1908), pp. 198–287 (cit. on p. 7).

[44] G. Voronoï. “Nouvelles applications des paramètres continus à la théorie des formes quadratiques.
Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites.” In: Journal für
die reine und angewandte Mathematik (Crelles Journal) 1908.133 (1908), pp. 97–102 (cit. on p. 7).

[45] A. Yuan, J. Calder, and B. Osting. “A continuum limit for the PageRank algorithm”. In: European
Journal of Applied Mathematics 33.3 (2022), pp. 472–504 (cit. on p. 2).

[46] X. Zhu, Z. Ghahramani, and J. Lafferty. “Semi-Supervised Learning Using Gaussian Fields and Har-
monic Functions”. In: ICML’03 (2003), pp. 912–919 (cit. on p. 2).

41



−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

Figure 2: Solutions of the Lipschitz learning problem for different graph resolutions on a non-convex domain
with mixed Neumann and Dirichlet conditions. The four labelled points in Ocp

n are marked in red.
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Figure 3: Empirical convergence rates of the solutions in Fig. 2 for unit weights (left) and singular weights
(right) and different scalings with the constraint set Ocp

n . The rates are specified in the legend. Note that
our theory does not prove convergence for the blue scaling.
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Figure 4: Solutions of the Lipschitz learning problem for different graph resolutions on a non-convex domain
with mixed Neumann and Dirichlet conditions. The labelled points in Odil

n are marked in red.
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Figure 5: Empirical convergence rates of the solutions in Fig. 4 for unit weights (left) and singular weights
(right) and different scalings with the constraint set Odil

n . The rates are specified in the legend. Note that
our theory does not prove convergence for the blue scaling.
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