2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA) | 978-1-6654-7652-2/23/$31.00 ©2023 1IEEE | DOI: 10.1109/HPCA56546.2023.10070956

2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

CEGMA: Coordinated Elastic Graph Matching
Acceleration for Graph Matching Networks

Yue Dai
Computer Science Department
University of Pittsburgh
Pittsburgh, PA
Email: yud42 @pitt.edu

Abstract—The recently proposed Graph Matching Network
models (GMNs) effectively improve the inference accuracy of
graph similarity analysis tasks. GMNs often take graph pairs as
input, embed nodes features, and match nodes between graphs for
similarity analysis. While GMNs deliver high inference accuracy,
the all-to-all node matching stage in GMNs introduces quadratic
computing complexity with excessive memory accesses, resulting
in significant computing and memory overhead that cannot be
handled by existing approaches. In this paper, we propose the
Coordinated Elastic Graph Matching Accelerator (CEGMA),
a software and hardware co-design accelerator to address the
challenges of GMNs. Specifically, by exploiting duplicate sub-
graphs in the input graphs, we develop an elastic matching filter
to significantly reduce the quadratic computing overhead. By
exploring the substantial data reuses oriented from accessing
node features, we propose a cross-graph coordinator that fuses
cross-graph similarity computing with intra-graph computing
to enhance data locality. Experimental results show that, on
average, CEGMA achieves 353x and 6.5x speedups in GMN
computing compared to state-of-the-art GPU implementation and
GNN accelerators, respectively.

Index Terms—Graph Matching Networks, Graph Neural Net-
works, Accelerator

I. INTRODUCTION

Graph similarity analysis (i.e., graph matching) is an impor-
tant application that powers many application fields, including
protein interaction analysis for disease prediction in medical
science [6], friend cycle matching in social networks [10],
[19], [30], program debugging and subroutine identification in
compilers [2], [3], [7], [36], and binary function similarity
measuring in computer security [24]. In particular, feature
matching gains momentum in the computer vision domain,
which puts strict requirements on matching accuracy and
matching latency [11], [12], [23], [31], [35], [39]. Graph sim-
ilarity analysis is known to be an NP-hard problem [26] and
it is increasingly difficult to conduct efficient graph matching
analysis when the graph size is large.

Recently, Graph Matching Network (GMN) models have
been proposed to enhance the efficiency of similarity analy-
sis [4], [5], [24]. Specifically, the inference of these models
consists of two stages: (1) node embedding which employs
Graph Neural Networks (GNNs) to embed intra-graph node
feature information into node vectors; and (2) node matching
which compares/matches the embedded node vectors from one
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graph to all nodes in the other graph for similarity analysis.
While the node embedding stage can benefit from substantial
prior optimizations on Graph Neural Networks (GNNs) [17],
[21], [38], [41], the node matching stage dominates the GMN
execution performance and involves significant memory ac-
cesses and computation that have been overlooked. Moreover,
many applications relying on graph similarity analysis have
strict requirements on fast and efficient GMNs. One particular
example is the graph matching tasks in computer vision that re-
quire real-time graph matching and have strict deadlines [16],
[18], [27], [28]. However, using GMNs to match large graphs
from images potentially yields a longer response time than
the real-time demands. In addition, searching a graph in large
chemistry/biology/cybersecurity databases requires millions of
matching queries [33], [40], [43]. While one pair might take
milliseconds on GPUs, the searching process can take hours.
In contrast, real-time code clone search applications require
searching within a second [40]. None of the existing CPU
and GPU GMN implementations and state-of-the-art GNN
accelerators can meet the latency deadlines with massive
matching requests. As such, there is a practical need to design
a hardware accelerator for efficient GMN computing.

It is non-trivial to design a GMN accelerator. First, the
computing overhead caused by all-to-all node comparison
during the node matching stage incurs dense computation
and excessive memory accesses. For example, matching two
graphs with 100 nodes and 1,000 edges requires 10,000
matching between cross-graph node pairs, which introduces
more than 10X computation and 2X memory accesses than
the intra-graph edge processing. Numerous redundancy exists
within these cross-graph node pairs since nodes within the
same graph exhibit significantly redundant matching due to
their duplicate neighborhoods. Second, prior GNN accelerators
focus on single graph optimizations [8], [13], [14], [20], [22],
[25], [42], and fail to exploit the tremendous data reuse across
graphs. The nodes from one graph are substantially reused
to compute similarities with nodes from the other graph.
Such reuses typically have long reuse distances and cannot
be captured by existing accelerators.

In this paper, we target to reduce the i) redundant compu-
tation and ii) redundant memory accesses in GMNSs. First, we
observe a large amount of redundant computations and mem-
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ory accesses due to the duplicate node features. Specifically,
in the node matching stage, if two nodes from the same graph
have the same features, their matching results are identical
since they are compared with the same set of nodes in the other
graph. We refer to these nodes as duplicate nodes. Second,
we observe redundant memory accesses due to unnecessary
accesses to node features in the node matching stage. Our
quantitative study (discussed later in Section III) shows that the
features are reused substantially between the embedding stage
and the matching stage. However, those feature reuses are not
translated to data locality due to i) the large reuse distances of
the node features and ii) the limited on-chip storage capacity.
To this end, we propose CEGMA (Coordinated Elastic Graph
Matching Accelerator), which reduces the redundant compu-
tation and memory accesses to enhance the GMN efficiency,
thereby satisfying the aforementioned application needs. We
summarize the major contributions as follows.

e We comprehensively and quantitatively investigate the chal-
lenges in GMN models. We observe substantial redundant
computation and memory accesses during the node match-
ing stage, which have been overlooked by existing GMN
implementations.

e We propose a GMN accelerator that significantly reduces
the redundancy in GMN. Specifically, we propose i) elastic
matching filter (EMF) that memorizes and reuses unique
matching results, thereby eliminating the redundant com-
putation, and ii) cross-graph coordination (CGC) that co-
ordinates the embedding and matching stages at a fine
granularity, thus enhancing the node feature locality.

e We evaluated CEGMA using SimGNN, GraphSim, and
GMN-Li. The results indicate that CEGMA outperforms the
optimized GPU implementations by an average of 353 x.
It also outperforms the state-of-the-art GNN accelerators,
HyGCN and AWB-GCN, by an average of 9.2x and 6.5X,
respectively.

II. BACKGROUND

Stage 1: Node Embedding :Stage 2: Node Matching
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Fig. 1. Two stages in Graph Matching Networks.

In recent years, Graph Neural Network (GNN) based graph
similarity computing models gain popularity due to their
improved accuracy and scalability [4], [S], [24], [26], [35].
These models are referred to as Graph Matching Networks
(GMNs). GMNs often consist of two stages depicted in
Figure 1: Given a pair of graphs (G1,G>)!, all nodes from

'We name G as target graph, G2 as query graph as convention.

both graphs go through node embedding and node match-
ing stages, either layer-wisely or model-wisely, to compute
similarity. Specifically, in the node embedding stage, each
node aggregates information from its neighbors during the
aggregation phase (green edges in Figure 1) and combines the
aggregated information messages with its own features during
the combination phase (illustrated by blue nodes in Figure 1).2
The matching stage performs all-to-all similarity computation
between two graphs (orange edges in Figure 1).

Stage 1: Node Embedding. The GMNs use a traditional
GNN to update the features of the nodes. Each node aggregates
intra-graph messages from its immediate neighbors and com-
bines the accumulated messages with its own features using
neural networks. The embedding procedure at layer [ can be
generalized as:

X" = 6(COMBINE(AGGREGATE(A, X', W}, W}))

ey
where o(+) is the activation function, A is the adjacency matrix
of the graph, X! is the node feature at layer I/, and W!
and W/ are the weights of layer /. The input feature X' is
first aggregated along edges indicated by adjacency matrix
A in the AGGREGATE(-) module, then updated in the
COMBINE(-) module. Since GNNs usually have several
layers, nodes iteratively aggregate and combine information
from their 1-hop neighbors per layer and embed K_hop
subgraph information in the Kth layer accordingly [17], [21],
[38], [41].

Stage 2: Node Matching. The GMNs conduct similar-
ity computing between two nodes from target and query
graphs. Different similarity calculation functions, including
dot-product similarity, cosine similarity, and euclidean simi-
larity, can be used to compute similarities between the cross-
graph node-pairs [4], [5], [24]. The similarities are either
directly used for prediction [4], [5] or indirectly used for
further cross-graph communication [24], [35]. The matching
procedure on layer [ can be generalized as:
,_ XH)t

B K
where S is the similarity matrix between two node sets in
layer [ (i.e., Sf»j describes similarity between node 7 in X! and
node j in Y'; X! and Y are node features of layer [ from
G4 and (), and K is the scale factors (i.e., K = 1 for dot-
product similarity, K = 2 for euclidean similarity, and K;; =
| XL HYJZ || for cosine similarity). For euclidean similarity, the
score Sfj will be further normalized by subtracting squared
magnitudes of row vectors S}; = St — (|| X}||* 4[| Y}[|?) [24].
Consequently, the node features X* used by the intra-graph
node embedding are also leveraged to the cross-graph node
matching computation. Recent GMNs adopt layer-wise node
matching since it yields better accuracy [5], [11], [12], [23],
[24], [31], [35]. In layer-wise node matching, both equation
(1) and equation (2) are calculated in each layer of the GMN

S 2

2The combination phase can be conducted after matching stage in some
GMN implementations [24].
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computing during layer-wise as discussed above. In contrast,
model-wise GMN only applies equation (2) at the last layer
of GMN computing [4], which suffers from low matching
accuracy as stated by prior works [5], [24].

III. MOTIVATION
A. Why GMN Accelerator?

GMNs are important in many application domains as we
mentioned in Section I [4], [5], [24], [26], [35], [43]. These
applications require not only accurate but also fast and efficient
similarity computing. However, GMNs suffer low computing
efficiency due to quadratic increased computing complexity,
which hardly meets the application requirements. We quantify
the inference latency of GMN-Li [24] with different-sized
input graphs. For each graph size, we generate random graphs
following [24] and measure the average execution time per
graph pair on Nvidia V100 GPU and state-of-the-art GNN
accelerator (AWB-GCN [13]), as shown in Figure 2. With
1,000 nodes input graphs, the GMN-Li execution times are
33ms and 24ms on V100 and AWB-GCN per pair, and the
execution times increase to 671ms and 514ms when the graph
size grows to 5,000 nodes. These execution times are unaccept-
able for time-critical applications. For instance, autonomous
vehicles ideally require ~20ms for graph matching related
tasks [15]. Moreover, searching a graph from an extensive
database would require millions of matching queries [33],
[40], [43]. For instance, searching a code clone within the
BigCloneBench dataset [37] requires matching a code snippet
with 60,000 candidates. While one pair might take millisec-
onds, the searching process can take hours. In contrast, real-
time code clone search applications require searching within
a second [40]. In a nutshell, there is a practical need for a
GMN accelerator that meets both the accuracy and the latency
requirements of graph matching applications.
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Fig. 2. Latency per pair with different sized graphs in Nvidia V100 GPU
and AWB-GCN.

B. Quadratically Increased Node Comparisons

Given a pair of input graphs (G1, G2), finding their graph
similarity demands all nodes in G; to be matched to the nodes
in G, and vice versa, resulting in O(|V;]||V2|) computing
complexity, where |V;|, |V| are numbers of nodes in G; and
(2, respectively. As a comparison, the computing complexity
of the aggregation stage depends on the total intra-graph edges,
the complexity is O(|V;| + |V2|), much smaller than matching
(O(|V1||V2])). To summarize, the node matching stage suffers
from quadratic complexity growth to the input graph sizes. The

all-to-all comparison nature leads to fast-growing computing
overheads in graph similarity computing.
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Fig. 3. Percentage of FLOPs within one GMN layer.

We quantify the percentages of FLOPs for intra-graph ag-
gregation, combination, and cross-graph node matching stages
on several commonly used datasets for graph matching tasks
[26] in Figure 3 (details of the datasets are given in Table II
Section V). We use the GMN layer defined in GraphSim [5],
in which the node embedding follows a standard GCN setup,
and the node matching computes the dot-product similarity
between node features. We set the input and output feature
sizes of the layer as 64. From the figure, the proportions of the
FLOPs in cross-graph node matching are significantly larger
than the FLOPs in intra-graph aggregation and combination
(accounting for 58% to 99% of the FLOPs).

Therefore, it would not be surprising to observe larger
computing overhead and more off-chip data accesses than the
native GNN models.

On-Chip Input Buffer Miss
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Fig. 4. Node reuse distances in GraphSim.

We next study the off-chip data accesses in GMNs. Due
to the limited on-chip memory space and irregular memory
access patterns to graphs, nodes are frequently read/written
between the on-chip buffer and memory. To quantify the off-
chip data accesses in GMNs, we profile the node-reusing
distances in GraphSim [5] with three graph classification
datasets: AIDS, COLLAB, and REDDIT-BINARY (RD-B).
We set node feature dimension to 64 and batch size to 32,
following typical settings in the literature. We define the reuse
distance as the number of unique nodes between two refer-
ences to the same node, and the node has to be reloaded from
memory if the distance exceeds the input buffer’s capacity
(128KB [42]). Figure 4 summarizes the CDFs (Cumulative
distribution function) of reuse distances for three datasets.
From the figure, most of the revisits are missed. This is due
to the small on-chip input buffer used. A naive solution would
need to enlarge the input buffer. However, this is not feasible
and not scalable in accelerator designs. For example, AIDS
demand about 4x buffer size to mitigate revisit misses, yet
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Fig. 5. Illustration of (a) Redundant Matching and (b) Redundant Revisiting in GMNss.

REDDIT-BINARY [43] dataset demands about 128 x buffer
size. The demands can be further exacerbated for larger graphs.

C. Redundant Matching

Duplicate node features. In GMNs, the node feature
in layer [ (i.e., X!) captures the I-hop subgraph information
around node ¢. Therefore, if there exists another node j, whose
I-hop neighbors form an isomorphic subgraph as that of 4, both
nodes will have the same feature in layer ! (i.e., Xf =X ]l<).
The isomorphic subgraphs are fairly common in real-world
datasets, such as the same molecular within a macromolecule
or the duplicate components within an object in point clouds.
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Fig. 6. Exactly same matching results caused by duplicate node features.

Redundant matching. In the following discussion, we
assume that X! and Y! are node features from the target
graph (i.e., G1) and the query graph (i.e., G2), respectively. As
described in Equation (2), the i-th row in the similarity matrix
Si, which describes how similar node ¢ compared with nodes
in the other graph, is determined by i-th row in X' and all
the columns in (Y7, i.e., St = XH(Y!)T. If there exist node
i and node j in the target graph that have X! =
St = Sjl- since X} (YHT = X;(YZ)T. The computation of the
j—th row of the similarity matrix is redundant and thus can be
optimized. In the example in Figure 6, X, s represents node
features from an n-node target graph, and each node has f
features; and Y,,,« ¢ represents node features from an m-node
query graph and each node has f features. S, ., represents
their matching results in which row ¢ describes similarities
between node ¢ and all the nodes in the target graph, and
column j describes similarities between node j and all the
nodes in the target graph. Assume for nodes 1 and 3, we have
X7 = X3. We can derive S; = S3. Therefore, we can skip
computation operations and memory accesses for computing
Ss and copy from S; directly without jeopardizing accuracy.
Note that the same principle is applicable when switching
target and query graphs, in which case we find duplicates in
two columns of the similarity matrix.

In this paper, we define unique matching as a matching
from a node in the target graph to a node in query graphs
whose computation has not been conducted before; and redun-
dant matching as a matching between two nodes whose com-
putation has already been conducted. Figure 5(a) illustrates an
example of redundant matching. Assume we conduct similarity
analysis for two graphs G; and G. For simplicity, we assume
both graphs are unlabelled, and each node has the same initial
feature set, e.g., X = XJ. By conducting GNN embedding
at layer I, GMNs collect information from neighbors within
I-hop neighbors. When I=1, we have X{ = X3 since only
nodes’s information is sent to node; and nodes, respectively.
Similarly, we have X? = X2 as both nodes share the same 2-
hop neighbors. For the similarity matrix computation, their
corresponding rows are exactly identical, as shown in the
figure. Depending on the computation order, only the first
computation of the two rows is necessary, while the other is
redundant.
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Fig. 7. Ratio between Redundant and Unique matching.

To quantify the potential redundant matching, we study
three GMNs (SimGNN, GraphSim, and Graph-Matching-
Network(GMN-Li) in Table I Section V). We train the models
on the datasets mentioned in Section V and plot the ratios
between redundant matching and unique matching in Figure
7. From the figure, we observe over 90% redundant matching
on average. The scenarios are prevalent in datasets with large-
sized graphs (i.e., graphs over 100 nodes), given that more
subgraph patterns are replicated. Based on this observation,
removing those redundant matching can effectively reduce the
computation in the matching stage in GMN:s.

D. Redundant Node Revisiting

The node matching stage also suffers poor data locality
due to excessive memory access. During the node embedding
stage, the GMNs load and aggregate source-node features for
each edge within the same graph. During the node matching
stage, the same features are used to compute the similarity
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Fig. 8. Examples of (a) single intra-graph window and (b) double independent intra-graph window. The Input Nodes show on-chip input nodes with missed
nodes highlighted. The Edges indicate node embedding, and Matching represents node matching pairs enclosed in the window step. The total miss count

accumulates on-chip input buffer miss in terms of the node number.

between nodes. We use the same example pair (G, G2) in
Figure 5 to illustrate the redundancy in memory accesses.
Given the case depicted in Figure 5(b), the features of node;
in GGy are first accessed during the node embedding stage
to compute edge (node;, nodes), and the features of node,
from G4 are read to compute edge (node,, nodey). Due to
the limited on-chip buffer capacity, these features are possibly
evicted for other source nodes of edges and have to be loaded
to the on-chip buffer again to compute sim(node;, node,).
These redundant revisits cause extra off-chip memory accesses
and jeopardize latency and energy efficiency.

Existing works towards GNN acceleration focus on feature
reusing within single graphs [8], [13], [14], [20], [25], [42].
When the approaches are employed for GMNSs, the redundant
revisit remains. We take the HyGCN [42] design as a represen-
tative example and show the limitation of these single-graph-
based medthods. The edges within a graph can be represented
by an adjacent matrix A, where A(4, j) indicates an edge from
i to j. Since real-world graphs are usually large and do not fit
in the on-chip storage, existing GNN computing frameworks
usually adopt a sliding window to process only part of the
graph in each step. Specifically, a MxN window is placed on
a graph’s adjacency matrix and locates certain rows (a, a+M)
and columns (b, b+N). The M and N are determined by the
buffer size, and are usually much smaller than the size of A.
Features of corresponding nodes are loaded into on-chip buffer
for edge computation. The window slides column-wisely or
row-wisely until all the edges are processed.

An example of adopting a single intra-graph sliding window
for GMNs is shown in Figure 8(a). The workload within one
GMN layer can be represented by a global adjacency matrix.
The row index shows the source node of (G; and the destination
node of GGo, and the column index shows the source node of
G and the destination node of G;. The green cells indicate
intra-graph edges, and the orange cells indicate cross-graph
node pairs to be matched. Assuming the input/output buffers
hold four nodes in each, we can hold features of four nodes,
and there is a 4 x 4 sliding window. First, the node embedding
stage is executed for Gi(i.e., step 1) and G2 (i.e., steps 2-
3). Next, the node matching stage is executed (i.e., steps
4-9). During steps 1-3, the node embedding stage visits all
the nodes, yet these nodes must be revisited in steps 4-9 for
matching usage. The scheme causes 26 node misses in total,
as depicted in Figure 8(a).

A possible optimization is to read features from both graphs
and conduct intra-graph and cross-graph computing on-chip

at the same time. However, problems remain due to incomplete
comparison issue. Suppose we process two graphs in parallel
and look for available matching pairs for possible feature
reusing. The input buffer must be split because we need
to handle inputs from both graphs. Here we follow a static
partitioning that assigns 1/2 of buffer capacity to each graph.
As shown in Figure 12(b), many nodes are evicted during
window steps 1-3 without completely comparing with another
graph. For instance, node; and nodey are evicted after step
1 without matching with node c-f, then cause a miss at
step 3. These incomplete comparisons result in a poor data
locality. As shown in Figure 12(b), it causes 25 node misses
in total. To this end, neither the existing accelerator nor simple
optimizations can handle redundant node revisiting efficiently.

In summary, there exist substantial redundant computation
and memory accesses in GMN computing. However, existing
approaches overlook these redundancies and cannot mitigate
them efficiently through simple design enhancement.

IV. DESIGN
A. Overview of CEGMA

We propose a Coordinated Elastic Graph Matching Accel-
erator (CEGMA) for GMN to address the aforementioned
challenges. The overall workflow of CEGMA is shown in
Figure 9(a). First, Elastic Matching Filter (EMF) (@) removes
redundant matching by detecting and affiliating duplicate
nodes. Next, Cross Graph Coordinator (CGC) (@) removes
redundant revisits by controlling a joint sliding window on
the global adjacency matrix.

The overall architecture of CEGMA is presented in Figure
9(b). It consists of four components: SRAM buffers that hold
on-chip data, a computing engine containing a MAC array,
and two proposed components, EMF and CGC. The EMF (b)®
handles duplicate node detection and affliction. The CGC (b)®
solves the redundant node revisits.

B. Elastic Matching Filter

In the node matching stage, EMF filters all the redundant
matching and only leaves unique matching. It prepares elastic
matching metadata for layer [ based on node features from the
layer [ — 1 outputs. To facilitate description, we name nodes
whose features are the first time seen as Unique Node and
nodes whose features are seen before as Duplicate Node.

The overall algorithm of EMF is presented in Algorithm
1. It generates two sets that are cached on-chip for the
subsequent layer usage: 1) The RecordSet that memorizes
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Fig. 9. Overview of the (a) architecture and (b) workflow in CEGMA.

Algorithm 1: Elastic Matching Filter

Output: R;: RecordSet for non-duplicate nodes input to layer I; M;: TagMap
for duplicate node input to layer [
Input : X;_;: Node feature outputs from layer [ — 1

1 Ry ={}, My ={}
2 for x; € X;_1 do
3 h; = Hash(z;);

if h; € R; then
M; + (i, match);

Ry + (i, h;y);

4
5
6 else
7
8 return R;, M;;

unique matching need to be computed, and 2) the TagMap
that indicates redundant matching so they can be directly
retrieved from previous results. As discussed in III-C, redun-
dant matching appears in the entire row or column, which
can be represented by the index of the duplicate node. We
format entries in the sets as follows: i) Entry in the RecordSet
is formatted as (Unique_Node_idx, Unique_Node_tag). The
Unique_Node_idx specifies the index of a unique node and
the Unique_Node_tag holds hash tag of node’s feature. ii)
Entries in TagMap affiliate duplicate nodes to unique nodes
recorded in RecordSet. They are formatted as (Node_idx,
Unique_node_idx). The Duplicate_Node_idx specifies the in-
dex of a duplicate node, and Unique_node_idx specifies the
index of the unique node who holds the same results and has
been recorded in the RecordSet.

We use tags to represent node features to save memorization
and comparison overheads. Compared to the original features
that usually consist of tens to hundreds of floating-point values,
a single tag value costs much less on-chip memory and can
simplify the comparison among. The output feature of node
i is first hashed into a tag h;, a 32-bit unsigned value, as
depicted in line 3. We choose XXHash [9] to calculate the
value. XXHash is a non-cryptographic hash algorithm that
generates the hash value of input bit-streams in three steps:
1) It divides input bit-steam (B) into 4 independent sub-bit-
streams ((b1, ba, b3, bs)). 2) In each sub-bit-stream (i.e., bg),
it consumes 4 bytes to update state value (sy), following the
equation s = rotateLeft(sy + by * Prime2,13) x Primel).
The Primel, Prime2 in the equation are preset prime con-
stants. The equation can be implemented in hardware using
MAC and bit-shift operations. 3) In the end, it merges all
four states (i.e., s1, S2,S3,S4) to generate a final hash value
H. The conflict rate of XXhash is low. For instance, given
256 bytes of input bit-streams with 100 billion hashes, there
are only 314 conflicts (i.e., the conflict rate is ~0.0000314%)

[9]. In all our experiments, we include the impact caused by
hash conflicts. However, since the conflict rate is very low,
we observe that the conflicts have little impact on the final
matching accuracy (no conflict observed in our experiments).
Due to the uniformity of hash functions, the generated tag h;
equals another tag hy if their nodes have the same features
x; = xk. Then we will have the same matching results for
these two nodes in the next layer. As shown in line 4, we
search tags in the RecordSet. If it is found, we get a duplicate
node and memorize its index (i.e., ¢) and its counterpart unique
node index (i.e., k) in TagMap. If it is not found, we record
its index and tag in the RecordSet.

G ; G ! G !
1 1 1
“ 3 2 3 2 3
Check node_1: Check node_2:
— ———
b h, not found: h, ==h;:
Gz Ri={(1,hy)} Gz Ri={(,h)} Gz
a c M ={ a M ={2,1)} a ®
d d d
Edge Edge Edge
Matching Matching Matching
Fig. 10. An example of Elastic Matching Filter steps.
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1 1
PE ! il | Addto Tag Buffer !
——————————————— 1 1
"""""" Duplicate! | [! !
Filter i \
“““ | Add to Map Buffer 1
PE 5 ! !
1 MapBuffer | ! !

Fig. 11. Architecture of Elastic Matching Filter.

We illustrate an example in Figure 10, assuming there is
a graph pair (G1,G2) such that node; and nodes; have the
same features in the layer [. When the node; is checked, its
tag hq is calculated and is not found in the RecordSet R;. In
this case, record (1, hy) is added into R;. When the nodes is
checked, its tag ho is calculated and is found duplicate with
hy in the RecordSet entry (1, hp). In this case, mapping (2,
1) is added into the TagMap M. The process continues until
all nodes from the previous layer are digested.
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Fig. 12. Illustrated examples of (a) joint window slides row-wisely and (b) coordinated joint window using the same example and representation as Figure 8.

We present the detailed architecture design of EMF in
Figure 11. The MAC subarray ()) computes the tags h; for
each node i. The subarray output 32-bits h; at the end of each
row. We pack the node index ¢ with its tag h; and push it to
the TaskBuffer in the EMF. The EMF (@) and the processing
engine (@)) work in a “producer-consumer” pipelined fashion.
Specifically, the processing engine calculates the hashtags for
node indices and stores the information in the TaskBuffer.
Then, the EMF retrieves the hashtag and node index from the
TaskBuffer to eliminate the redundancy. The EMF()) consists
of four elements: The TaskBuffer holds 64-bits (i,h;) entries
that are produced by the processing engine and consumed by
the duplicate filter. It is implemented by FIFO and holds 64-
bits (¢,7) entries for TagMap (i.e., M;). The TagBuffer holds
64-bits (i,7) entries for RecordSet (i.e., R;), it is implemented
by a set of loopback FIFOs, and each FIFO holds a subset
of R; so that the lookup operations can be paralleled. Du-
plicateFilter handles main logic as lines 4-7 in Algorithm 1.
It controls a set of duplicate comparators (DC) by a Finite
State Machine(FSM), whose logic is depicted in (@®). Each
DC equips a 32-bit identity comparator and looks up tag h;
by comparing it with the last 32 bits of the entry popped from a
subset of TagBuffer. If they are identical, FSM stops searching
on all other DC and writes ¢ with the first 32 bits of the found
entry to the MapBuffer. Otherwise, if none of the DCs find
an identical entry, the 64-bits task entry is inserted into the
TagBuffer. Specifically, entries are added to the subsets in a
round-robin manner so that each subset contains a balanced
amount of entries. The generated TagBuffer and MapBuffer
can be accessed by CGC and PE for computation in the
following layer.

C. Cross Graph Coordinator

Cross Graph Coordinator (CGC) is designed to mitigate
redundant revisits issues between node embedding and match-
ing stages. It slides a single joint window on the matching
matrix. On the one hand, the window jointly maps intra-graph
edges and cross-graph matching pairs to facilitate inter-stage
data reuse. On the other hand, the sliding path is heuristically
determined to maximize inter-stage data locality.

We use the same example shown in Figure 8 to illustrate
the scheme. Recall our discussion in Section III-D, adopting
double independent windows is inadequate to reduce the
node revisiting. The inefficiency comes from the incomplete
comparison. To prevent incomplete comparisons in double in-
dependent windows, we adopt a joint sliding window. Instead
of sliding two windows within each graph independently, we
place one joint window sliding on the cross-graph adjacency

area (i.e., the top-right area in the global adjacency matrix).
The joint window maps both intra-graph edges and cross-
graph matches. We present a row-wise sliding example in
Figure 12(a). During steps 1-6, a joint window slides over the
matching matrix. In step 7, the remaining edges are collected.
The joint window has the following property: (1) It only goes
row or column-wise so that one side of the window can always
be fully reused to be compared with the other graph. As shown
by steps 1-3 in the example, it goes through node a-f while
keeping node; and nodes unchanged. (2) It turns and starts at
the closes start point of new rows/columns instead of jumping
back to the zero-index point. For instance, step 3 finishes all
the matching on node; and nodes. Instead of starting from
node, and nodep, on nodes and nodey rows, the window
keeps node, and nodey and compares them with new rows.
Therefore, except for the first step, we only update one side
of the window and the other one is stationary. We can always
have new coming nodes matched with on-chip stationary nodes
while used for edge computation. In other words, we “pause”
execution on one graph by freezing the side in one direction
and “activate” execution on the other graph by sliding the
window in the other direction.

We next address the question of when the joint window
finishes one row/column. That is, to maximize data reuse,
should it consume the remaining matching matrix row-wisely
or column-wisely? As shown in Figure 12(a), sliding over the
matching matrix always updates one side (e.g., two nodes
in the example). In other words, it incurs the same number
of missing node counts for steps that contain matching (e.g.,
Steps 1-6 in the example). Differences happen in the steps after
the matching is completed (e.g., step 7)—the window slides
over rows/columns during these remaining steps to schedule
the remaining edges. Apparently, fewer remained edges lead
to less extra cost at these steps. The intuition drives us to
propose the coordinated joint window. It slides the same way
as a joint window but selects its sliding direction based on a
heuristic, Approximate Outlier Estimation (AOE), as presented
in Algorithm 2.

The intuition behind AOE is: Keep nodes with fewer re-
maining edges. Whichever nodes have been kept stationary
on-chip will have their matching completed; those nodes with
remained edges need to be revisited after matching. To this
end, for each of the two sides (input nodes from G; and G),
AOE estimates the number of nodes with the least amount
of remaining edges (remaining degree). We call these nodes
outliers. Next, AOE keeps the side that contains more outliers
stationary. As presented in the algorithm, lines 2-13 detect the
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Algorithm 2: Approximate Outlier Estimation

Output: g,,: sliding direction (1—row-wise, 0—column-wise).

Input : Sp: on-chip node set represented by row index; Si: on-chip node set
represented by column index.

1 ng =0,n1 =0,Threshold = MAX_INT,

2 for g € Sp|J S1 do

3 if g.remains < Threshold then

4 Threshold = q.remains;

5 if ¢ € Sp then

6

7

8

no =1,n; = 0;
else
ny =1,n9 =0;

9 else if g.remains == Threshold then
10 if ¢ € So then

1 no+ =1;

12 else

13 ni+ =1,

14 if ng > n; then

15 return g,, = 0;

16 else

17 return g,, = 1;

number of outliers by counting outlier nodes whose remained
edges are less than the threshold. The threshold is updated,
and the counter is reset if a new minimum remaining degree
is observed. Figure 12(b) illustrates an example of coordinated
sliding window. In step 4, the window can go along rows 3, 4
or columns c, d. It evicts node. and nodeg instead of following
its original column-wise sliding plan. Hence, nodes and nodey
are matched with node, to node; and never used again. In
contrast, if node. and nodey are kept on-chip, edge (c, d), (d,
), (d, e), (e, ) will be revisited after step 6.

EMF | Map Buffer |

¥ ¥
CGC [ Rowldxbuffer | [ Column Idx buffer |

Eh
A
gl
g
]

Dest ID.

—

Edge Buffer

| Task Queue

Fig. 13. Architecture of Cross Graph Coordinator.

We present architecture of CGC in Figurel3. The entries
in the MapBuffer are popped out to the Row_Idx Buffer and
Column_Idx Buffer following the producer-consumer pattern.
The Task Generator (@)) keeps window sides information in
the SRC_IDX cache and intra-graph destination node indices
in Dest_IDX cache. The Control FSM operates as: i) if the
window is located, it passes Dest_IDX and SRC_IDX to Task
Queue; ii) if the window needs to be updated, it overwrites
SRC_IDX caches based on direction; and iii) if direction
needs to be decided, it collects row/columns from the edge
buffer based on indices in the SRC_IDX, then sends them to
the AOE (@). The AOE makes decision based on Algorithm
2. Row/columns from the edge buffer are fed into Remains
Counters (RCs), they count the remaining edges from nodes,
and their following comparator decides if nodes are outliers.
The Outlier Counters (OCs) count number of outliers based

on comparison results. Both RCs and OCs are implemented
by 8-inputs parallel counters.

D. MainStream Execution in Processing Engine

We show the architecture of the Processing Engine and
its dataflow in Figure 14. It consumes tasks from the Task
Queue when finishing the tasks defined by the current window.
Also, it utilizes node maps generated by the EMF to eliminate
redundant matching.
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Fig. 14. Architecture of Processing Engine.

The input buffer are evenly partitioned into a T-node buffer
and a Q-node buffer. The T-Node buffer stores input node
features from the target graphs, and the Q-Node buffer stores
input node features from the query graphs. The weight buffer
stores the neural network parameters used by the node embed-
ding stage, the Output buffer stores results, and the Map-Cache
stores the TagMap entries for duplicate nodes.

The Window Controller ()) handles tasks from the CGC.
When there is a task from the Task Queue. The corresponding
edges (i.e., Edge[src][dest]) are fetched to the edge buffer
and then utilized to control aggregation from the input nodes.
Meanwhile, the window controller reads the input nodes index
(SCR IDX). It checks missing nodes and marks one of the
input buffers (i.e., T-node and Q-node buffers) as active input
buffer, the other one as stationary input buffer. The memory
controller load missing node features to the active input buffer.
For matching, the features in active input buffer are streamed
vertically across the MAC array, and the node features in
stationary input buffer are streamed horizontally across the
MAC array. For edge processing, only features from active
input buffer are streamed vertically, while edge weights are
streamed horizontally.

The Matching Controller (@)) eliminates redundant match-
ing computation using entries from the MapBuffer in EMF. It
first collects entries from the MapBuffer into Map Cache based
on the source node indices. The Map is collected and utilized
in two types: (a) For GMNs that directly write similarities back
to DRAM for later usage (e.g., SImMGNN [4] and GraphSim
[5]), matching controller looks for entries that contain input
nodes as unique nodes. The entries are brought to the Map
cache, and the memory controller uses their duplicate node
indices to write back result to DRAM. We broadcast unique
matching results to all redundant matching references in this
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case. (b) For GMNs that use matching results within each
layer, such as Graph-Matching-Network (GMN-Li) [24], the
matching controller collects entries that contain input nodes
as duplicate nodes. The entry is used to access output results
from their unique nodes. In this case, the unique nodes’ results
are cached on-chip and reused by duplicate nodes. The type
is statically set before runtime.
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Fig. 15. An ex(ar)nple of (a) graph batch with 4 inpgt) graph pairs and (b)
corresponding global adjacency matrix A.

The CEGMA takes batched graph pairs to improve the
hardware utilization. Specifically, a single global adjacency
matrix is created for a batch of graph pairs, as shown in
Figure 15. Given a batch of graph pairs (e.g., four graph pairs
shown in Figure 15(a)), we combine edges in target graphs
in the top-left area in Figure 15(b) (i.e., A[0:60][0:60]). Then
we have edges in query graphs in the bottom-right area in
Figure 15(b) (i.e., A[60:120][60:120]). Lastly, we keep cross-
graph matching pairs in the top-right area in Figure 15(b)(i.e.,
A[0:60][60:120]).

V. EVALUATION
A. Methodology

Models. We evaluate CEGMA using three recent GMNs:
1) GMN-Li [24], 2) GraphSim [5], which employs layer-wise
cross-graph node matching, and 3) SimGNN [4], which em-
ploys a three-layer GCN and computes cross-graph similarity
based on the third-layer output. We set the batch size as 32
for all the models. The model details are described in Table I.
The layer configurations are presented as LayerType ([hidden
sizes]). And the similarity describes which type of similar-
ity (cosine/dot-product/euclidean) is computed. We name the
special GNN used in [24] as MGNN, in which a special edge
Multilayer-Perceptron (MLP) is used to generate intra-graph
edge messages to be aggregated. And it uses another updating
MLP to combine aggregated intra-graph messages from edge
and cross-graph messages from matching into nodes.

Datasets. We use six commonly-used real-world graph
classification datasets [26], as depicted in Table II. Specifically,
AIDS [33] contains small-sized graphs of molecular com-
pounds constructed from the AIDS Antiviral Screen Database
of Active Compounds. Github Stargazers [34] (GITHUB)
contains middle-sized graphs in which the nodes represent
authors and edges represent their relationship. COLLAB [43]
contains middle-sized ego-collaboration graphs collected from

TABLE I
DETAILS OF GMNS MODELS.
Model Layers (Type[hidden_sizes]) Similarity
MLP[1,64],
GMN-Li | 5*(MGNN[64,64,64], MATCHING[64,64], MLP(64#3,64,64)) | Euclidean
READOUT(64,128,128]
3*(GCN[1,64], SIM[64,1]),
GraphSim 3*(CNN[1,16,32,64,128]) Cosine
MLP([128*3,128,64,32,16,1])
I 3%(GCN[T,64]),SIM[64,1], )
SimGNN READOUT(64,128,16],NTN[ 128,16, MLP([32,16,8,4,1]) | Dotproduct
TABLE 11
DETAILS OF DATASETS.
Datasets Ave. # of Nodes | Ave. # of Edges | # of Graph Pairs | Graph Scale
AIDS 15.69 16.20 200 small-sized
COLLAB 74.49 2457.78 500 small-sized
Github-Stargazer(GITHUB) 113.79 234.64 1273 middle-sized
REDDIT-BINARY(RD-B) 429.63 497.75 200 middle-sized
REDDIT-MULTI-5K(RD-5K) 508.52 594.87 500 large-sized
REDDIT-MULTI-12K(RD-12K) 391.41 456.89 1193 large-sized

scientists in the fields. REDDIT-BINARY (RD-B), REDDIT-
MULTI-5K (RD-5K), and REDDIT-MULTI-12K (RD-12K)
[43] contain large-sized graphs in which nodes represent users
and edges represent relationships among users. We follow the
setting of the classification task in [24] to generate similar/dis-
similar graph pairs by randomly substituting edges in original
graphs. Specifically, given an original graph G4, We substi-
tute Mpositive = 1 edges to produce its similar counterpart
Gposs and Npegative = 4 edges to produce its dissimilar
counterpart G,.4. We also follow [24] to split the dataset with
the ratio in train:val:test=8:1:1. Then we use graph pairs in
the test set for the evaluation. The numbers of graph pairs in
these test sets are shown in Table II.

Simulation and platforms. We implement CEGMA in
a cycle-accurate simulator from scratch to compare with
the baseline and the state-of-the-art GNN accelerators. The
simulator is trace-driven: We first run the GMNs on the
CPU, and profile trace files include node features, adjacency
matrices, weights, and operations within each layer of GMNs.
Next, the simulator reads these files and then simulates the
execution of CEGMA. Note that all the information in the
trace file is application dependent, and they are not tied to
particular platforms where the traces are obtained. Therefore,
if the GNM is implemented in a different framework (e.g.,
TensorFlow), we can profile the same information and use
it as input to the CEGMA simulator. The power and area
of buffers in CEGMA are estimated using CACTI [29]. We
synthesize GECMA on RTL and estimate its area cost on
TSMC 14nm process. Other platforms are presented in Table
III. We compared the CEGMA with the following different
GMN implementations:

TABLE III
HARDWARE CONFIGURATION OF CEGMA AND OTHER PLATFORMS.
Platform PyG-CPU PyG-GPU HyGCN AWB-GCN
IGHz @
> 25G
Compute Units 260 Ghz @ 1:25GHz @ 32SIMD 16cores and 1GHz ©
12 cores 5120cores oeore 4096 PEs
32x128 systolic array
" 128KB (Input) + 128KB (Input) +
On-chip Memory 32MB 34MB 24MB (Others) 24MB (Others)
Off-chip Memory 119.21 GB/s DDR4 | ~900GB/s HBM 2.0 256GB/s HBM 1.0 256GB/s HBM 1.0
Area - - 7.8 mm?(12nm) -
CEGMA
Module Configuration
EMF 32-bits Identity Comparator x 1024
CGC 8-input Parallel_Counter x 34, 8-bit Magnitude Comparator x 33
PE 128 32 MAC array

On-chip Memory 128KB(TNode+QNode)+6.8MB(Others) SRAM
Off-chip Memory 256GB/s HBM 1.0
Frequency 1 GHz
Area 6.3 mm? (14nm)
Area-Distribution-EMF 0.18%(logic) + 6.66%(buffer)
Area-Distribution-CGC
Area-Distribution-PE

0.01%(logic) + 11.79%(buffer)
53.58%(logic) + 27.78%(buffer)
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ing over original matching pairs.

e PyG-CPU (Baseline): The PyG-CPU runs GMN on a
dual 12-core Skylake CPU (Intel Xeon Gold 6126 2.60
GHz). We implement GMNs using PyTorch and PyTorch-
Geometric [32], and convert the model into TorchScript for
better efficiency. We use the PyTorch version with MKL
and OpenMP libraries to optimize parallelism on CPU.
PyG-GPU: In PyG-GPU, we run GMN on NVIDIA V100
GPU using CUDA 10.1. We implement GMNs the same
ways as PyG-CPU. This version leverages cuSPARSE and
cuBLAS libraries to accelerate GMN computation on GPUs.
HyGCN: HyGCN [42] is a GCN accelerator that accelerates
the node embedding stage in GMN through sparsity elimina-
tion. We use the same configuration of HyGCN in [42]. To
run GMN on HyGCN: 1) we keep its GCN optimizations for
the node embedding stage; 2) for the node matching stage,
it reads the input node features from the input buffer (if hit)
or DRAM (if missing), computes the similarity using the
general PE array within its combiner and writes back the
matching results to memory. During the matching stage, it
schedules window steps based on the similarity matrix (i.e.,
sliding window on S! like what it does on A’ during node
embedding). It runs at IGHZ frequency.

AWB-GCN: AWB-GCN [13] is an FPGA-based GCN ac-
celerator. It balances the workload among PEs and reorders
computation within GCN to reduce computations. For a fair
comparison, we set its buffer sizes the same as buffer sizes
in HyGCN. The steps to make GMN run on AWB-GCN are
similar with HyGCN. The only difference is that we use all
4K PEs in the AWB-GCN to conduct similarity computation
as AWB-GCN is a homogeneous accelerator. This differs
from HyGCN, whose combiner only includes a subset of
PEs. We also set 1GHZ frequency for AWB-GCN.

B. Overall Performance

We present the log-scale speedup of CEGMA over baseline
(PyG-CPU) in Figure 16. From the figure, one can make
the following observations. First, compared with PyG-CPU,

Fig. 19. Normalized energy consumption.
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Fig. 20. Node reuse distances of GraphSim in
CEGMA.

PyG-GPU, HyGCN, and AWB-GCN, our proposed CEGMA
achieves significant performance improvements, with an av-
erage of 3139x, 353x, 8.4x, and 6.5x%, respectively. The
major improvements come from the effective reduction in
redundant matching and node revisiting. Second, different
GMN models have different speedups. In particular, CEGMA
performs better on those GMN models that require more
similarity computation. For instance, the GMN-Li, CEGMA
achieves 18.1x and 12.2x speedups over HyGCN and AWB-
GCN, respectively. We also show the percentage of remain-
ing unique matching after removing redundancy matching in
Figure 18. As one can observe, CEGMA eliminates more
than 90% matching computation on average. In contrast, for
SimGNN, CEGMA achieves only 2.1x and 2.3x speedups
over HyGCN and AWB-GCN, respectively. The main reason
is that the SimGNN performs matching in its last layer,
thereby having less optimization potential. Third, the speedup
also varies across different datasets. CEGMA gets 3.1x and
1.5x speedups over HyGCN and AWB-GCN on AIDS, which
contains relatively small-sized graphs (~15.69 nodes per graph
on average). When graph size grows, CEGMA yields higher
speedups. For instance, in GITHUB (~113.79 nodes per graph
on average), the speedups are 5.8 x and 3.9 x over HyGCN and
AWB-GCN, respectively. In contrast, the speedups on RD-5K
(~508.52 nodes per graph on average) reach 14.4x and 12.9x
over HyGCN and AWB-GCN. Figure 18 also shows that more
redundant matching is removed in large graphs (e.g., 97%
in RD-5K) compared to small graphs (e.g., 67% in AIDS).
This is because large graphs usually comprise more duplicated
subgraphs than small graphs.

We next study the effectiveness of CEGMA in reduc-
ing DRAM accesses. Figure 17 shows DRAM accesses of
HyGCN, AWB-GCN, and CEGMA. All the results are nor-
malized to the DRAM access of HyGCN. From the figure, we
make the following observations. First, CEGMA reduces 59%
and 61% DRAM accesses compared to HyGCN and AWB-
GCN, respectively. HyGCN and AWB-GCN show similar
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memory footprints since they both suffer redundant revisits
of node features. In contrast, CEGMA significantly reduces
the DRAM access because (i) CGC in CEGMA effectively
reduces the redundant node revisits, and (ii) EMF in CEGMA
reduces node visits for redundant matching. Also, the CGC
significantly reduces the data reuse distances where the on-
chip buffer can capture more reuses. To quantify this, we
show the node reuse distances in Figure 20. It uses the same
GMN model (GraphSim [5]) as Figure 4. One can observe
that the node reuse distances are significantly reduced (e.g., in
RD-B, 90.3% reuses are within the distance of 28, compared
to only 0.02% reuses in Figure 4). Third, the amount of
reduced DRAM accesses varies across different GMN models.
For instance, CEGMA reduces 98.18% and 98.16% DRAM
accesses in GMN-Li compared to HyGCN and AWB-GCN.
In contrast, it reduces 31.6% and 38.14% DRAM accesses
in SImGNN. This is because GMN-Li performs matching in
each layer, thus benefiting more from reuse distance reduction
and redundancy matching removal. Finally, DRAM access re-
duction also varies across different datasets. CEGMA reduces
69%, 81%, and 76% DRAM accesses on RD-B, RD-5K, and
RD-12K, respectively. In contrast, it reduces DRAM accesses
to 38%, 50%, and 61% on GITHUB, COLLAB, and AIDS.
This is because CEGMA avoids more redundant matching in
RD-B, RD-5K, and RD-12K, as shown in Figure 18.

We investigate the energy efficiency of CEGMA in Figure
19. The results are normalized to the energy consumption of
HyGCN. On average, CEGMA consumes 63% and 62% less
energy than HyGCN and AWB-GCN, respectively. The reason
is two-fold: First, EMF significantly reduces redundant match-
ing, leading to fewer amounts of computation and memory
accesses, which reduces energy consumption. Second, CGC
effectively improves inter-stage data locality, further reducing
memory access, which brings energy benefits.

C. Breakdown Analysis

We further analyze the performance gain from each com-
ponent in CEGMA. We evaluate (1) CEGMA-EMF where
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Fig. 25. Speedup of CEGMA and prior approaches on large graphs.

EMF is enabled and CGC is disabled; and (2) CEGMA-CGC
where CGC is enabled and EMF is disabled. We compare the
speedup and DRAM accesses with AWB-GCN as it performs
best among GMN implementations mentioned before.

The results are shown in Figure 21. On average, CEGMA-
EMF performs 3.6x speedup over AWB-GCN. The perfor-
mance gain of EMF increases when the graph size grows.
While CEGMA-EMF brings only 1.1x speedup over AWB-
GCN on AIDS, it achieves 7.1x speedup over AWB-GCN on
RD-5K. On the other hand, CEGMA-CGC gains an average
2.9x speedup over the baseline since CGC reduces node revis-
its. With growing graph sizes, CGC brings more performance
gain as well. Specifically, it achieves 1.5x speedup on AIDS
and 4.3x speedup on RD-5K. Compared to CEGMA-EMF,
CEGMA-CGC achieves less speedup in large graphs. The
reason is that less latency is caused by DRAM access when
GMNs perform on large graphs. In smaller graphs, nodes
from one graph are compared with fewer nodes from the
other, incurring fewer reuses, so the PEs frequently wait for
data to be loaded to the buffer. However, in larger graphs,
nodes from one graph are compared with more nodes from
the other, incurring more reuses, so the memory bandwidth is
underutilized and waiting for computing to be finished.

We also show DRAM accesses of CEGMA-EMF and
CEGMA-CGC in Figure 22. Both EMF and CGC reduce
memory costs effectively. Compared to the AWB-GCN, EMF
reduces DRAM accesses by 49% on average. The reduction
comes from the omitted duplicate matching. The improve-
ments are more significant in larger graphs. CEGMA-EMF
gains 72% DRAM access reduction in RD-5K compared to
14% DRAM access reduction compared to AWB-GCN in
AIDS. CGC also reduces DRAM access since it removes
redundant revisits caused by node matching. On average, it
reduces DRAM accesses by 34% compared to the AWB-GCN.
The Algorithm 2 can achieve 90% precision compared to the
optimal decisions. EMP brings more significant improvements
than CGC since node matching dominates DRAM accesses in
many cases. Hiding its DRAM accesses into node embedding
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has less benefit than cutting off the total amount of matching
pairs.

To investigate the overhead brought by EMF, we show the
absolute cycle counts of EMF components in Figure 23. The
EMF-Hashing stands for time spent on computing hashtags
of node features, and the EMF-Filtering stands for time spent
on searching the same tags and generating masks for nodes.
On average, EMF-Hashing takes 284 cycles and EMF-Hashing
takes 429 cycles per graph—the overheads are less than one
microsecond under 1GHz. Since CEGMA calculates hashing
and filters for nodes in parallel, the overheads are ignorable
and have little impact to the deadline requirements. Even in
RD-12K, EMF-Hashing takes 1488 cycles (0.001ms) per graph
and EMF-Filtering takes 655 cycles (0.0006ms), which are far
less than deadline requirements in milliseconds (e.g., 20ms).
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Fig. 26. An example of a four pairs batch workload (global adjacency matrix)
(a) before and (b) after EMF.

Next, we show the inference throughput (i.e., graph pairs
per second) in Figure 24. Overall, CEGMA achieves an
average of 353x, 8.4x, and 6.5x throughputs over the PyG-
GPU, HyGCN, and AWB-GCN. It demonstrates that CEGMA
provides excellent potential to satisfy the graph matching
deadlines. For instance, in RD-K5, CEGMA can take 5000
query graphs per second on GMN-Li. In comparison, PyG-
GPU takes 312 query graphs per second, and AWB-GCN
takes 588 query graphs per second. Figure 26 shows the
effectiveness of EMF via an example from AIDS. Given a
batch of 4 graph pairs, EMF effectively reduces redundant
matching (black pixels in the top-right area) in the global
adjacency matrix.

D. Large Graphs

To investigate how CEGMA performs on large graphs, we
generate graphs following the graph generation algorithm pre-
sented in [24]. Specifically, we generate 8 original graphs for
each size and produce graph pairs as described in Section V-A.
Figure 25 shows the log-scaled speedups over the baseline. We
observe that CEGMA consistently achieves high performance
over other platforms. The speedups on large graphs are more
significant. For instance, with the graphs having 1000 nodes,
CEGMA achieves 10.8x and 9.6x average speedup over
HyGCN and AWB-GCN, respectively; the speedup increase to
37.5x and 36.6x with graphs having 5000 nodes. The major
reason behind this is that there are more duplicate subgraphs

in large graphs, leading to more duplicate computation and re-
dundant memory access in matching. Therefore, our approach
is more effective on large graphs.

VI. RELATED WORK

Studies have revealed that GNNs computing exhibits not
only a poor data locality but also a significant imbalance
between computing and memory access [1]. Many hardware
accelerators have been proposed to address these challenges
[8], [13], [14], [20], [22], [25], [42]. HyGCN utilizes a
heterogeneous architecture for aggregation and combination
with a dedicated cooperative working mode to solve the hybrid
execution in GNN [42]. However, HyGCN targets workload
partitioning within single graphs and adopts the separate
combination engine and aggregate engine, where the dense
matrix multiplication is handled by part of the PEs. This
leads to potential imbalanced throughput in GMNSs since the
dense comparison could potentially congest the combination
engine while the aggregation engine could be stalled. AWB-
GCN employs execution phase reordering with an auto-tuning
workload balancing approach to solve the imbalance problem
between nodes with different degrees [13]. Nevertheless, the
architecture focuses on general GCN only, which assumes only
sparse-dense matrix multiplication and no cross-graph compu-
tations, leaving potential inefficiencies in GMN computing. /-
GCN adopts a node-reordering approach named islandization
that reconstructs the graph to enhance runtime data locality
and remove redundant computations [14]. However, the intra-
graph islandization method does not consider cross-graph
matching workloads. In summary, prior GNN accelerators
focused on addressing poor data locality and hybrid execution
challenges in the node embedding stage depicted as Equation
1. However, the proposed optimizations are insufficient to
efficiently handle graph matching computing, where pairs of
graphs and corresponding cross-graph computing are involved.

VII. CONCLUSION

In this work, we propose CEGMA, a software-hardware co-
design accelerator, to address computing challenges in GNN-
based Graph Similarity networks. We first propose an elastic
matching scheme to detect and remove redundant matching
in GMNs. Furthermore, we design a cross-graph coordination
scheme to enhance data locality between GMN computing
stages. Our approach effectively reduces both computing com-
plexity and memory consumption in GMN execution. Exper-
imental results show that CEGMA achieves 353x and 6.5x
speedup over GPUs and state-of-the-art GNN accelerators.
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