
Adversarial Prefetch: New Cross-Core Cache Side
Channel Attacks

Yanan Guo1, Andrew Zigerelli, Youtao Zhang2, and Jun Yang1

1Electrical and Computer Engineering Department, University of Pittsburgh
2Department of Computer Science, University of Pittsburgh

yag45@pitt.edu, zhangyt@cs.pitt.edu, juy9@pitt.edu

Abstract—Modern x86 processors have many prefetch instruc-
tions that can be used by programmers to boost performance.
However, these instructions may also cause security problems.
In particular, we found that on Intel processors, there are
two security flaws in the implementation of PREFETCHW, an
instruction for accelerating future writes. First, this instruction
can execute on data with read-only permission. Second, the
execution time of this instruction leaks the current coherence
state of the target data.

Based on these two design issues, we build two cross-core
private cache attacks that work with both inclusive and non-
inclusive L L C s , named Prefetch+Reload and Prefetch+Prefetch.
We demonstrate the significance of our attacks in different
scenarios. First, in the covert channel case, Prefetch+Reload
and Prefetch+Prefetch achieve 782 KB/s and 822 KB/s channel
capacities, when using only one shared cache line between the
sender and receiver, the largest-to-date single-line capacities for
CPU cache covert channels. Further, in the side channel case,
our attacks can monitor the access pattern of the victim on the
same processor, with almost zero error rate. We show that they
can be used to leak private information of real-world
applications such as cryptographic keys. Finally, our attacks can
be used in transient execution attacks in order to leak more
secrets within the transient window than prior work. From the
experimental results, our attacks allow leaking about 2 times as
many secret bytes, compared to Flush+Reload, which is widely
used in transient execution attacks.

Index Terms—cache security, side channel attacks

I . INTRODUC T I ON

Modern processors often feature many microarchitectural
structures that are shared among applications. Although such
resource sharing enables significant performance benefits, it
also gives adversaries the potential to build powerful covert
channel and side channel attacks. When an application runs
on such hardware, its execution may cause various state
changes to these shared microarchitectural structures, which
can be observed by an attacker on the same platform. Through
repeated observations, the attacker can derive the application’s
private information related to the state changes, bypassing
sandboxes and traditional privilege boundaries. Cache timing
covert channel and side channel attacks, or cache attacks for
short, are extremely potent [1]–[25]. They are especially pow-
erful primitives used in the more recently discovered transient
execution attacks [26]–[36]. Different cache behaviors, such
as hits and misses create significant timing differences to the
execution of an instruction. Attackers can use these timing

variances to stealthily transfer data (in the covert channel case)
or infer some secrets from a victim (in the side channel case)
such as cryptographic keys.

A critical step in most cache attacks is evicting the victim’s
data from a cache level. Based on how the attacker evicts the
victim’s data, most cache attacks can be classified into flush-
based attacks [1], [2], [7], [37] and conflict-based attacks [4],
[8], [38]. Flush-based attacks usually assume data sharing
between the attacker and victim. Thus, the attacker directly
performs CLFLUSH on the victim’s data to evict it from all
cache levels. For conflict-based attacks, the attacker instead
achieves the eviction by constructing set conflicts, i.e., the
attacker fills the cache set (that the victim’s data occupies)
with his own data. Many secure cache designs have been
proposed to defend cache attacks. For example, flush-based
attacks can be prevented by modifying CLFLUSH (to make it
a privileged instruction), as suggested in prior work [1], [39]–
[41]. Conflict-based attacks can be defended by stopping/lim-
iting attackers from discovering congruent addresses [39],
[40], [42]. Thus, in this work we present new cache eviction
methods to enable practical cache attacks.

PREFETCHW is an x86 prefetch instruction introduced in
2000. It is now available on all Intel Xeon Scalable processors
and recent Core processors (since Broadwell). According to
the technology manual [43], the function of this instruction is
to prepare data for future writes. It is different from other
prefetch instructions (e.g., PREFETCHT0) which only move
the target cache line closer to the CPU core (i.e., to a higher
cache level) to get ready for future accesses. PREFETCHW
moves the cache line to the requesting core’s L1 data cache
(L1D cache), as well as sets the coherence state of the cache
line to be Modified. This can accelerate future write operations
from this requesting core, because a cache line in Modified
state indicates that 1) the current private cache has exclusive
ownership of this cache line, meaning a write operation on
this cache line can be directly served by the private cache,
and 2) this cache line is already marked as dirty, so the flag
(i.e., the dirty bit) does not need to be changed when serving a
write operation. For correctness, setting the coherence state of
a cache line to Modified causes all copies of this cache line in
other cores’ private caches to be invalidated [44], [45].

In this work, we make two important observations regarding
PREFETCHW on Intel processors. First, although its purpose

Core 0

R/W
Private
Cache

(M)odified

Core 1

Private
Cache

(I)nvalid

Core 2

Private
Cache

(I)nvalid

Core 0

R
Private
Cache

(S)hared

Core 1

R
Private
Cache

(S)hared

Core 2

Private
Cache

(I)nvalid

Core 0

R/W
Private
Cache

(E)xclusive

Core 1

Private
Cache

(I)nvalid

Core 2

Private
Cache

(I)nvalid

Core 0

Private
Cache

(I)nvalid

Core 1

Private
Cache

(I)nvalid

Core 2

Private
Cache

(I)nvalid

Shared Last-Level Cache (LLC)

Stale data

(a) M

Shared Last-Level Cache (LLC)

Valid data

(b) S

Shared Last-Level Cache (LLC)

Valid data

(c) E

Shared Last-Level Cache (LLC)

Valid data

(d) I

Fig. 1: The four possible states of a private cache line, when using the MESI protocol.

is to accelerate future writes, PREFETCHW works on data
with read-only permission. Second, the execution time of
PREFETCHW is related to the current coherence state of the
target data. With the first observation, an attacker on a different
core than the victim can use PREFETCHW on the shared data
between the attacker and the victim (which is usually read-
only [1]), to evict this data from the victim’s private cache. In
addition, the second observation means that the attacker can
time the execution of PREFETCHW on the shared data
between the attacker and victim to learn the coherence state
changes of this data, which could be related to the victim’s
cache accesses.

Based on these two observations, we first propose two
covert channel attacks: Prefetch+Load and Prefetch+Prefetch.
In Prefetch+Load, the sender transmits a bit by prefetching
(with PREFETCHW) the shared data between the sender and
receiver (for “1”) or not prefetching (for “0”). The receiver (on a
different core) receives the bit by loading this data and timing the
load to determine if it is a local private cache hit (for “0”) or a
remote private cache hit (for “1”). In Prefetch+Prefetch, the
sender transmits a bit by loading (or not) the shared data, and
the receiver receives the bit by prefetching the data and timing
the prefetch instruction to determine whether the sender loaded.
We show that our prefetch-based channels have very high
capacities: on our Kaby Lake processor, when only using one
shared cache line between the sender and receiver, the
capacities are 840KB/s for Prefetch+Load, and 822KB/s for
Prefetch+Prefetch, which are the highest single-line capacities
among all existing CPU cache covert channels.

We then modify the covert channel attacks and build the
Prefetch+Reload and Prefetch+Prefetch side channel attacks,
which can be used to leak the victim’s access patterns, similar
to previous cache attacks (e.g., [1]–[7]). Prefetch+Prefetch
can be directly used as a side channel attack by letting the
victim be the sender, and the attacker be the receiver, since
in this attack the sender transmits signals by accessing (or
not) the shared data. However, in Prefetch+Load, the sender
is sending signals by prefetching (or not), which is unlikely a
side channel. Thus, we modify it and build Prefetch+Reload,
where the attacker owns two threads running on different
cores. The attacker first uses one thread to prefetch and waits
for the victim’s possible access, and then reloads using the
other thread. When the attacker reloads, he will get a remote
private cache hit if the victim accessed this data; otherwise he

will get a last level cache (LLC) hit. Then, the attacker can
determine the victim’s behavior using timing information: a
remote private cache hit and an L L C hit take different amounts
of time to finish. We show that our attacks can be deployed on
Intel processors to leak secrets from real-world applications,
and that they can be used in transient execution attacks,
making those attacks faster (and more potent) than before. To
the best of our knowledge, our prefetch-based attacks are the
first cross-core private cache side channel attacks that can
work with both inclusive and non-inclusive LLCs: in our
attacks, the victim’s data is only evicted from the private cache
but never the L L C .

In this paper, we make the following contributions:
• We discover two severe security vulnerabilities in the

implementation of PREFETCHW.
• We present a new cache eviction method, as well as two

new cross-core cache covert channels and side channels,
using PREFETCHW.

• We evaluate the proposed prefetch-based covert channels
and side channels on multiple desktop and server pro-
cessors. The experimental results show that 1) our covert
channels are faster than most existing cache covert chan-
nels and 2) our side channel attacks can leak information
from daily applications with high temporal resolution.

We have disclosed the security vulnerabilities we found in
this paper to Intel. The source code of our attacks can be found at
https://github.com/PittECEArch/AdversarialPrefetch.

I I . BAC K G RO U N D

A. CPU Cache Architecture and Coherence Protocol
Cache architecture. Most CPU caches on modern x86 pro-
cessors are divided into L1, L2, and L3. The L1 and L2 caches
are very fast but relatively small. Typically, they are organized
separately for each CPU core, and are thus often referred to
as private caches. In contrast, the L3 cache, also known as
last-level cache (LLC), is a larger but slower cache, shared
among CPU cores.

Caches operate on fixed-size (e.g., 64 bytes) data blocks
called cache lines. Additionally, caches are usually set-
associative: a cache is organized into multiple cache sets.
Every cache set consists of multiple equivalent cache ways,
and each of them can store one cache line. The address bits of a
cache line determine which cache set that this line is mapped to.
Most L L C s in Intel processors are inclusive, meaning that

Core 1 Core 0

data present in private caches are necessarily also present in the
L L C (and conversely, data not in the L L C are not in the private
caches). However, recent Intel server processors (e.g., Intel
Xeon Scalable processors [46], [47]) use non-inclusive LLCs,
i.e., cache lines in private caches may not be present in the
L L C . For non-inclusive LLCs, a separate directory structure
is required for tracking the cache lines that are in the private
caches but not in the L L C .

When a CPU core performs a memory access request, it
first checks whether the target cache line is present in its L1
or L2 cache. If present, the request results in a private cache
hit; if not, it is a private cache miss and the core must further
check the L L C (and the directory for a non-inclusive LLC) . If
the cache line is found, the request finishes and the data is sent
to the CPU. If not, the cache forwards the request to the
memory controller, which can read data from DRAM.
Cache coherence. In multi-core systems, a cache line can
be present in multiple private caches, due to data sharing. A
cache coherence protocol1 is required for maintaining data
consistency among the copies of a cache line in different
private caches: each private cache line is assigned a coherence
state, and the L L C needs to track this state to prevent the use of
stale data. For inclusive LLCs, the coherence states of private
cache lines are stored together with the tag array in the L L C
since all the private cache lines are also in the L L C . For non-
inclusive LLCs, the directory structure mentioned earlier is
used for storing the coherence states of cache lines that are in
the private caches but not the L L C .

Most modern x86 processors use variants of the MESI
coherence protocol [44], [45]. In the rest of this section, we
use inclusive cache as an example to introduce MESI. For non-
inclusive caches, the protocol is essentially the same, except
that a cache line in a private cache might not be present in the
L L C . With MESI, there are four possible states of a private
cache line:

• Modified (M), in which the cache line is only present in
one private cache and is dirty, i.e., the copy of this cache
line in the L L C contains stale data (Figure 1(a)).
Additionally, when a private cache line is in M state, the
current owner core has read/write permission for it.

• Shared (S), in which the cache line is present in one or
more private caches and is clean, i.e., the data of this
cache line matches all other copies (both in other private
caches and the LLC) . The current core can only read this
cache line (Figure 1(b)).

• Exclusive (E), in which the cache line is only present
in one private cache, and is clean (Figure 1(c)). The
current core can read/write this cache line; however, a
write operation will change the state of this cache line to
M.

• Invalid (I), in which the cache line is invalid, and thus
the current core has neither read nor write permission for
it (Figure 1(d)).

1In this paper, we only focus on the cache coherence inside a processor; this
should not be confused with the coherence among sockets (processors) [37].

With MESI, a memory request from a CPU core will
sometimes 1) change the coherence state of the target cache
line, and 2) take different amounts of time to finish, depending
on the coherence state of the target cache line.
State transitions. There are many different coherence state
transitions, we only discuss the two scenarios related to our
attacks. First, as shown in Figure 2(a), when a CPU core (core
1) is reading a cache line that is present in the L L C and the
private cache of another core (core 0) in M state, this read
request will first miss in its private cache and then search the
L L C . Although this target cache line can be found in the L L C ,
its content is potentially stale. Thus, the L L C will fetch the
data from the owner private cache (in core 0) that contains the
up-to-date data of this cache line, change the coherence state of
this cache line in that private cache (in core 0) to S, update the
content of this cache line in the L L C , and then return the
updated cache line to the requesting core (core 1) as well as
fill its private cache with a copy of this cache line in S state.
Thus, after serving this read request, the target cache line is
present in two private caches, and is in S state in both caches,
as shown in Figure 2(b). This case is usually referred to as
remote private cache hit.

Core 0 Core 1 Core 0 Core 1

Private Private Private Private
Cache Cache Cache Cache

(M)odified (I)nvalid
Read from Core 1

(S)hared (S)hared

1
reads Write from Core 0 1

writes

Shared LLC Shared LLC
2 LLC forwards the read 2 LLC sends invalidation

Stale data Valid data

(a) (b)

Fig. 2: The illustration of cache coherence state changes. The
state of a line changes from M (shown in (a)) to S (shown
in (b)) when a CPU core is loading it; conversely, the state
changes from S to M when a CPU core is writing it. Dashed
lines shows the request path of the read/write operation.

Core 0 Core 1 Core 0 Core 1

Private Private Private Private
Cache Cache Cache Cache

(M)odified (I)nvalid (S)hared (I)nvalid

Slower than
Read Read

Shared LLC Shared LLC

Stale data Valid data

(a) (b)

Fig. 3: The illustration of an L L C access with the target cache
line in M state (a), and S state (b).

Second, as shown in Figure 2(b), when a CPU core (core 0)
is trying to write a cache line that is in S state in its own private
cache, this private cache (in core 0) needs to send request to
the L L C to acquire write permission before it can serve this

write operation. As a result, the L L C will send invalidation
signal(s) to the other private cache(s) that the cache line is
present in (in core 1), and then change the state of the cache
line in the private cache of the requesting core (core 0) to
M so that the requesting core can write this cache line in its
private cache. Thus, after this write operation, the target cache
line is only present in the requesting core’s private cache, and
is in M state, as shown in Figure 2(a).
Timing difference. As one can observe in Figure 3, if a CPU
core is reading a cache line that is not present in its private
cache but is present in the L L C , the total latency it takes
to finish this read request can be different when this cache
line has different coherence states: a remote private cache hit
is much slower than an L L C hit. When another core has a
copy of this cache line in M state in its private cache, this
request results in a remote private cache hit. As explained
earlier, serving this request will require fetching data from the
owner private cache. In contrast, when all the private cache
copies of this cache line are in S state, the data of this cache
line in the L L C is up-to-date. This means the L L C can serve
this read request directly, resulting in an L L C hit. Due to these
different execution paths, an L L C hit is much faster than a
remote private cache hit. This has been observed by previous
work [7] and has been verified in our experiments. On an Intel
Core i7-6700 processor, an L L C hit takes less than 60 cycles
to finish and a remote private cache hit takes about 90 cycles.

B. Prefetch
Prefetch is a technique to boost performance by fetching

data and placing them closer to the CPU core (e.g., from
the L L C to L1 cache) before they are needed. Prefetch can
be performed in two ways: 1) hardware prefetch, which is
implemented in cache hardware and is transparent to users
(e.g., the adjacent cache line prefetcher); 2) software prefetch,
which needs to be explicitly done by the programmer/com-
piler. Recent x86 CPUs offer many different instructions for
software prefetch, such as PREFETCHT0, PREFETCHT1,
PREFETCHT2, PREFETCHNTA, and PREFETCHW.2 These
instructions are used to hint the processor that a memory loca-
tion is very likely to be accessed soon [43], then the processor
will prefetch the corresponding data into certain level of cache,
thereby accelerating future accesses to this data. Software
prefetch is an important way to improve performance. For
example, compilers sometimes inject prefetch instructions to
accelerate for loops.

C. Cache Side Channel Attacks
There are typically two types of cache attacks. The first type

utilizes the contention on certain cache hardware (e.g., the ring
interconnect [48] or L1 cache ports [49], [50]): the attacker
passively monitors the latency of accessing this hardware
resource to infer the victim’s usage of it. Such attacks are
usually referred to as contention based attacks or stateless
attacks. The other type utilizes cache states: the attacker

actively brings the cache line/cache set to a certain state, then
lets the victim execute (which potentially changes the state),
and later checks the state again to infer the victim’s behavior.
Such attacks are often referred to as eviction based attacks or
stateful attacks. In this overview, we focus on stateful attacks
because they are more numerous, and our proposed attacks are
stateful. We further divide stateful attacks into private cache
attacks and L L C attacks, based on whether the attacker evicts
the victim’s data from the L L C during the attack.
Private cache attacks. In private cache attacks, the attacker
learns the victim’s cache behavior by monitoring the state of
the victim’s data in the private cache. For example, in L1
Evict+Reload, the attacker evicts the victim’s data (which is
shared with the attacker) from the L1 cache to the L2 cache
by building set conflicts, and waits for the victim’s execution.
Later the attacker accesses this data and times the access to
determine it is in the L1 or L2 cache: if it is in the L1 cache, it
means the victim accessed the data and brought it back to the
L1 cache, otherwise the victim did not access. Private cache
attacks could have high-bandwidth since they do not create
slow DRAM accesses. However, most private cache attacks
require the attacker to be on the same physical core with the
victim (e.g., [5], [11]), and many of them further require SMT.
This significantly limits the attacks, as cloud providers may
allocate users to different cores and may disable SMT for
security [51]–[53].

The directory Prime+Probe attack [47] and its optimization,
the directory Prime+Scope attack [38], are an exception: they
are cross-core private cache attacks. On a processor with
a non-inclusive L L C , the attacker can “remotely” evict the
victim’s data from the victim’s private cache to the L L C (but
not to DRAM) by building conflicts in the directory.
L L C attacks. In L L C attacks (e.g., [1], [4], [54]), the attacker
monitors the state of the victim’s data in the L L C . The L L C is
usually shared among CPU cores. Thus, different than private
cache attacks, L L C attacks do not require the attacker to be on
the same core as the victim. These attacks are considered more
practical. However, DRAM accesses are usually involved in
L L C attacks. To monitor the victim’s access on the L L C data,
the attacker needs to first evict the victim’s data from the L L C to
memory. For example, in Flush+Reload [1], the attacker uses
CLFLUSH instruction to flush the victim’s data from the L L C
(and also the private caches), and later reloads this data and
times this operation to determine whether the victim has
brought this data back to the L L C . Therefore, the bandwidths
of L L C attacks are bottlenecked by DRAM latencies.

I I I . C H A R AC T E R I Z I N G DATA PR E F E T C H I N G

Among the prefetch instructions discussed in Section II-B,
PREFETCHW (or PREFETCHWT1 on some CPU models)
works slightly differently than the others. It not only brings the
data close to the CPU core, but also changes the coherence
state of the data: PREFETCHW places the target data cache
line into the L1D cache3 and sets the coherence state of this

2Some CPU models (e.g., Intel Xeon Phi Processor 7200) use
PREFETCHWT1 instead of PREFETCHW.

3PREFETCHW can only be used on data but not instructions [43], [55].
Thus, the cache line will be brought into L1D cache.

* *

* *

* *

* *

* *

* *

* *

* *
* *

* *

* *

* *

* *

* *

* *

* *

* *
* *

L
a

te
n

cy
 (

cy
cl

e
s)

L
a

te
n

cy
 (

cy
cl

e
s)

60

0 0

1 v o i d t h r e a d 0 (v o i d addr d0 , i n t e x p t i d x) {
2 f o r (i n t i = 0 ; i < 1 0 0 0 0 0 0; i + +) {
3 / ch e ck t h e e x p e r i m e n t i n d e x /
4 i f (e x p t i d x == 0) {
5 / e x e c u t e p r e f e t c h w on d0 /
6 p r e f e t c h w (a d d r d 0) ; }
7 / l e t t h r e a d 1 e x e c u t e 1 i t e r a t i o n /
8 w a i t f o r t h r e a d 1 () ;
9 } }

10
11 v o i d t h r e a d 1 (v o i d a d d r d 0) {
12 f o r (i n t i = 0 ; i < 10 0 0 0 0 0 ; i + +) {
13 / l e t t h r e a d 0 e x e c u t e 1 i t e r a t i o n /
14 w a i t f o r t h r e a d 0 () ;
15 i n t r e s u l t = r e a d a n d t i m e (a d d r d 0) ;
16 } }
17

18
19 i n t main () {
20 / open and map a f i l e a s r e a d − o n l y /
21 i n t f d = open (FILE NAME , O RDONLY) ;
22 i n t * a d d r d 0 = mmap(fd , PROT READ , . . .) ;
23
24 / p i n t h r e a d 0 on c o r e 0 and s t a r t t h r e a d 0 / 25

/ p i n t h r e a d 1 on c o r e 1 and s t a r t t h r e a d 1 / 26

. . .

Listing 1: The code snippet for verifying Observation 1.

1 v o i d t h r e a d 0 (v o i d addr d0 , i n t e x p t i d x) {
2 f o r (i n t i = 0 ; i < 1 0 0 0 0 0 0; i + +) {
3 / ch e ck t h e e x p e r i m e n t i n d e x /
4 i f (e x p t i d x == 0) {
5 r e a d (a d d r d 0) ; }
6 / l e t t h r e a d 1 e x e c u t e 1 i t e r a t i o n /
7 w a i t f o r t h r e a d 1 ()
8 } }
9

10 v o i d t h r e a d 1 (v o i d a d d r d 0) {
11 f o r (i n t i = 0 ; i < 10 0 0 0 0 0 ; i + +) {
12 / l e t t h r e a d 0 e x e c u t e 1 i t e r a t i o n /
13 w a i t f o r t h r e a d 0 () ;
14 i n t t 1 = r d t s c p () ; / r e a d t i m e s t amp /
15 p r e f e t c h w (a d d r d 0) ;
16 i n t r e s u l t = r d t s c p () − t 1 ;
17 } }
18
19 i n t main () {
20 / open and map a f i l e a s r e a d − o n l y /
21 i n t f d = open (FILE NAME , O RDONLY) ;
22 i n t * a d d r d 0 = mmap(fd , PROT READ , . . .) ;
23

24 / p i n t h r e a d 0 on c o r e 0 and s t a r t t h r e a d 0 / 25

/ p i n t h r e a d 1 on c o r e 1 and s t a r t t h r e a d 1 / 26

. . .

Listing 2: The code snippet for verifying Observation 2.

cache line to M. According to the technology manual [43],
[55], the role of PREFETCHW is to accelerate future writes
on the target cache line. As explained in Section II-A, the
CPU core can directly write a cache line in its local L1 cache
iff the state of this cache line is E/M. Thus, PREFETCHW
pre-sets the coherence state of the target cache line to M so
that future writes on this cache line will likely have an L1
hit. PREFETCHW sets the cache line state to M instead of E
because writing a cache line in E state results in changing the
state to M, and thus has higher latency than writing a cache
line that is already in M state.

Most of the recent Intel desktop and server processors (since
Broadwell) support PREFETCHW. When used appropriately, it
can significantly improve performance. However, we make two
observations about PREFETCHW on Intel processors, which
can be leveraged to create security vulnerabilities.

Observation 1 PREFETCHW successfully executes on data
with read-only permission.

We observe this by monitoring the coherence state changes
of the data, using timing information. Specifically, as shown in
Listing 1, we run a program with two threads (thread0 and
thread1, both in one process), and pin them on different
physical cores. We use mmap [56] to map part of a system file
(e.g., glibc) as a read-only data block (in cache line size) in
this program and name it d0: both threads can only read d0. If
any thread tries to write d0, it will trigger a segmentation fault.
thread0 and thread1 both consist of a for loop with the same
amount of iterations. In each iteration, thread0 first executes,
then waits for thread1 to execute. After thread1 finishes this
iteration, they both move to the next iteration and repeat this
procedure again. We use pthread mutex locking [57] to ensure
that in each iteration thread0 and thread1 execute

sequentially (the implementation details of locking is omitted
in Listing 1).

We run the code in Listing 1 twice: in the first experiment
(i.e., expt idx = 0 in line 3), in each iteration of the for loop,
thread0 performs PREFETCHW on d0, and then thread1 loads
d0 as well as times the load. In the second experiment (i.e.,
expt idx = 1 in line 3), in each iteration thread0 stays idle
and then thread1 still loads d0 and times the load.

100 160

80
120

Experiment 0 Experiment 0
Experiment 1

80
Experiment 1

40

20
40

Listing 1 Listing 2

1000 1020 1040 1060 1080 1100 1000 1020 1040 1060 1080 1100

Iteration ID Iteration ID

Fig. 4: The timing measurement results in thread1 of Listing 1
and Listing 2.

Figure 4 shows a segment of the timing results from
thread1 (in line 15) in both of the above experiments on an
Intel Core i7-6700 processor. Note that we observe similar
results on other Intel processors that support PREFETCHW. In
experiment 0, thread0 prefetches d0 in each iteration, which
causes thread1 to take around 90 cycles to load d0 after
the prefetch. In contrast, in experiment 1, thread0 stays idle,
which causes thread1 to take only around 30 cycles to load
d0. This timing difference infers that d0 is in different states in
the above two experiments. In experiment 0, every time when
thread0 prefetches, it will load d0 to its private cache and set
the coherence state of it to be M. According to MESI, explained
in Section II-A, this will invalidate the copy of d0

in the private cache of thread1 (if it exists). Therefore, when
thread1 later loads d0, it will have a remote private cache hit
(see Figure 2). This load also changes the state of d0 from
M to S and fills a copy of it in the private cache of thread1.
Thus, the same cache behavior (i.e., invalidating the copy of d0
in the private cache of thread1) will happen when thread0
prefetches in the next iteration. However, in experiment 1,
since thread0 is not prefetching, when thread1 loads d0, it
will very likely have a local private cache hit, which is much
faster than a remote private cache hit (30 cycles4 vs. 90 cycles
on the tested processor).
Rationale. We observe reliable cache state changes on read-
only data when executing PREFETCHW, with a F-score of
1.0 (n = 1000000). This indicates that Intel processors very
unlikely perform a write permission check when executing
PREFETCHW. This does not cause any error in the architec-
ture level, because PREFETCHW only has microarchitectural
effects: although it can get a cache line ready for future writes, if
later the program without write permission for this cache line
actually tries to write it, it will still trigger a fault and likely
terminate the process. However, later we will show that
allowing coherence-based cache invalidation (which should
only happen upon writes) on read-only data cause significant
security problems. This is because in cache attacks based on
shared memory, the attacker can manipulate the coherence
state of the shared data (which is usually read-only) between
the victim and attacker to monitor the victim’s access to this
data.

Observation 2 The execution time of PREFETCHW is related
to the coherence state of the target cache line.

We observe this with the program shown in Listing 2. We
still use two threads pinned on different physical cores, and
let them execute sequentially in each iteration of the for
loop. Again, we run the program twice: in experiment 0 (expt
idx = 0 in line 3), in each iteration, thread0 loads d0, and then
thread1 performs PREFETCHW on d0 and times the prefetch.
In experiment 1, thread0 stays idle and thread1 still prefetches
and times the prefetch in each iteration.

Figure 4 shows the execution time of PREFETCHW observed
by thread1 (in line 16) on our Intel Core i7-6700 processor
in both experiments. In the first experiment, it always takes
around 130 cycles for PREFETCHW to finish; however, in
the second experiment it only takes around 70 cycles. This is
because in the first experiment, after thread0 loads d0, the
state of d0 becomes S, and a copy of d0 is filled into the
private cache of thread0 (see Figure 2). Then when
thread1 prefetches, it needs to change the state from S to
M, which means it has to inform the L L C to invalidate
the copy of d0 in the private cache of thread0. However,
in the second experiment, since thread0 stays idle, when
thread1 prefetches, d0 is already in M state. Thus, in this

4Due to the granularity of time stamp counters, this measured latency is in
fact longer than the real private cache access latency.

case PREFETCHW does not cause any state change and finishes
much faster.
Affected processors. We have tested these two observations
on many Intel processors including the available 1st/2nd/3rd
Generation Intel Xeon Salable Processors on AWS EC2, and
five Intel desktop/server processors we own. As shown in
Table I, Observation 1 is valid on all the tested processors,
and Observation 2 is valid on most, excluding the Intel Xeon
Platinum 8375C processor. On this processor, there is no
difference on the execution time of PREFETCHW when the
target data is different coherence states: PREFETCHW always
takes 70 to 80 cycles to finish, even when the target data is
not already in M state.

In general, we believe that Observation 1 should be valid on
all Intel processors that support PREFETCHW, and Observation
2 should be valid on most of them. Note that all 1st/2nd/3rd
Generation Intel Xeon Scalable processors and most Intel
Core i7/i9 processors (other than the early generations before
Broadwell) support PREFETCHW.

TA B L E I: The evaluated processors for the two observations.

Processor Microarch. L L C Type Observ.1 Observ.2
Intel Core i7-6700 Broadwell Inclusive ✓ ✓
Intel Core i7-6800K Broadwell Inclusive ✓ ✓
Intel Core i7-7700K Kaby Lake Inclusive ✓ ✓
Intel Core i9-10900X Cascade Lake Non-incl. ✓ ✓
Intel Xeon Silver 4114 Skylake-SP Non-incl. ✓ ✓
Intel Xeon Platinum 8151 Skylake-SP Non-incl. ✓ ✓
Intel Xeon Platinum 8124M Skylake-SP Non-incl. ✓ ✓
Intel Xeon Platinum 8175M Skylake-SP Non-incl. ✓ ✓
Intel Xeon Platinum 8259CL Skylake-SP Non-incl. ✓ ✓
Intel Xeon Platinum 8275CL Skylake-SP Non-incl. ✓ ✓
Intel Xeon Platinum 8375C Ice Lake Non-incl. ✓ ✗

I V. P R E F E T C H - BA S E D C O V E RT C H A N N E L AT TA C K S

Based on the observations in Section III, we build two cache
covert channel attacks: Prefetch+Load and Prefetch+Prefetch.
In this section, we first introduce the threat model, then discuss
the details of each attack.

A. Threat Model
We assume that the two essential parties in the attack,

the sender and receiver, are two unprivileged processes that
are running on the same processor with multiple CPU cores.
The sender and receiver can launch themselves on different
physical cores (e.g., using t a s k s e t [58]). We also assume
that the sender and receiver can share data; however, the
shared data can be read-only (e.g., via shared library or page
deduplication),5 similar to previous attacks [1], [2], [5]–[7].
In addition, the sender and receiver should agree on pre-
defined channel protocols, including the synchronization, core
allocation, data encoding, and error correction protocols. We
do not have requirement on the L L C inclusivity; our attacks

5Page deduplication (a.k.a kernel same-page merging [59]) was originally
created for virtual environments but is now included in OSs. Although many
cloud providers no longer use it, it is usually still available in OSs [6].

————————————————————————————–
Sender Algorithm

Receiver Algorithm

————————————————————————————–
Sender Algorithm

Receiver Algorithm

Algorithm 1: Prefetch+Load Covert Channel
line0: the shared cache line between the sender and receiver
message[n]: the n-bit long message to transfer on the channel
Th0: the timing threshold for distinguishing local and remote private cache hit

————————————————————————————–
// Send 1 bit in each iteration.
for i = 0; i < n ; i + + do

s y n c _ w i t h _ r e c e i v e r () ;
if message[i] = = 1 then

Prefetch line0;
else

Do not prefetch;

————————————————————————————–

————————————————————————————–
// Detect 1 bit in each iteration.
for i = 0; i < n ; i + + do

s y n c _ w i t h _ s e n d e r () ;
Access line0 and time the access;
if access t i me > T h0 then

Received a bit “1”;
else

Received a bit “0”;

work with both inclusive and non-inclusive LLCs. We also do
not require SMT; SMT can be turned off for security.

B. Prefetch+Load Attack
We build the first covert channel attack, Prefetch+Load,

following Observation 1. Algorithm 1 shows the details of it. In
this attack, the sender and receiver first agree on the shared
cache line used to transmit information. Then in each iteration
of the attack, the sender transmits a bit “1” by performing
PREFETCHW on the shared cache line, or a bit “0” by idling.
The receiver loads the same cache line and times the load to
determine if it is a remote private cache hit or local private
cache hit: the receiver receives a bit “1” when having a remote
private cache hit, and otherwise receives a bit “0”.

Note that different than the experiments in Section III, the
sender and receiver cannot synchronize using pthread mutex
locking, since they do not belong to the same process. Thus,
we let the sender and receiver synchronize the transmission
using time stamp counters (TSCs), as done in prior covert
channel attacks (e.g., [1], [2], [5], [7], [38]).

C. Prefetch+Prefetch Attack
Our second attack, Prefetch+Prefetch, is based on Observa-

tion 2. As shown in Algorithm 2, in each iteration of the attack,
the sender transmits “1” by loading the shared cache line,
or transmits “0” by idling. After this, the receiver performs
PREFETCHW on the shared cache line and times the prefetch
to decode the bit: when the sender sends “1”, it takes longer
for the receiver to prefetch than when the sender sends “0”.
Prefetch+Prefetch follows the same synchronization method
with Prefetch+Load.

V. P R E F E T C H - BA S E D S I D E C H A N N E L AT TA C K S

A. Basic Idea and Assumptions
In the Prefetch+Prefetch covert channel attack, the sender

is sending the signal by “accessing (or not) the shared data”.
Thus, this attack can be directly applied as a side channel

Algorithm 2: Prefetch+Prefetch Covert Channel
line0: the shared cache line between the sender and receiver
message[n]: the n-bit long message to transfer on the channel
Th0: the timing threshold on PREFETCHW to distinguish M and S states

————————————————————————————–
// Send 1 bit in each iteration.
for i = 0; i < n ; i + + do

s y n c _ w i t h _ r e c e i v e r () ;
if message[i] = = 1 then

Load line0;
else

Do not load;

————————————————————————————–

————————————————————————————–
// Detect 1 bit in each iteration.
for i = 0; i < n ; i + + do

s y n c _ w i t h _ s e n d e r () ;
Prefetch line0 and time the prefetch;
if pr ef etch t i m e > T h0 then

Received a bit “1”;
else

Received a bit “0”;

attack to leak a victim’s access pattern on the shared data:
the victim is the sender, and the attacker is the receiver. This
leakage (the victim’s access pattern) is same as the one in
previous cache attacks (e.g., [1], [2], [7], [8]).

However, Prefetch+Load cannot be directly used as a side
channel, because the sender is transmitting the signal by
“prefetching (or not) the shared data”. In other words, the
attacker (receiver) can only detect the victim’s (sender’s)
prefetch patterns on the shared data. Since software prefetch is
not as common as memory accesses in real-world applications,
the attack opportunities are limited. However, we can modify
the attack slightly to make it work more generally.

We term the new attack Prefetch+Reload. The attacker
prefetches the shared data to pre-set the coherence state, and
then waits for the victim to possibly access this data. Later the
attacker reloads the data (using a different thread on a different
core, explained later) and uses the timing information to learn
the current coherence state of the data, which leaks whether
the victim has loaded this data (thus changing the coherence
state). Different than Prefetch+Load, in Prefetch+Reload, the
attacker needs to have two threads running on different cores.
Threat model. We assume a similar threat model as the one
for the covert channels. First, the attacker is an unprivileged
process that can 1) run on the same processor with the victim
and 2) share data with the victim (e.g., through a shared
library). The attacker aims at leaking the victim’s access
pattern on a shared data block, as in [1], [2]. In addition,
the attacker can launch his thread(s) on different core(s) than
the victim’s.

For Prefetch+Reload, the attacker needs to have two threads
running on different physical cores; but for Prefetch+Prefetch,
there is still only one thread required in the attacker’s process,
which is the same setup as the covert channel attacks.

In this attack, we assume that the attacker controls two
threads named Trojan and Spy. Trojan and Spy should be
located on different cores, which are also both different than

1 Trojan prefetches

Trojan Spy Victim

Private Private Private
Cache Cache Cache

(M)odified (I)nvalid (I)nvalid

Shared LLC

Stale data

2 Yes
Victim

2 No (No state changes)

accesses

Trojan Spy Victim Trojan Spy Victim

Private Private Private Private Private Private
Cache Cache Cache Cache Cache Cache

(S)hared (I)nvalid (S)hared (M)odified (I)nvalid (I)nvalid

Shared LLC Shared LLC

Valid data Stale data

3 Spy accesses: 3 Spy accesses:
LLC hit Remote private cache hit

Trojan Spy Victim Trojan Spy Victim

Private Private Private Private Private Private
Cache Cache Cache Cache Cache Cache

(S)hared (S)hared (S)hared (S)hared (S)hared (I)nvalid

Shared LLC Shared LLC

Valid data Valid data

Fig. 5: The details of the three steps in Prefetch+Reload.

the victim’s core, i.e., Trojan, Spy, and the victim all run on
different cores. As mentioned in Section II-A, the execution
times of a remote private cache hit and an L L C hit are differ-
ent. The Prefetch+Reload attacker uses this timing difference
to observe cache state changes caused by the victim’s accesses.
Specifically, before the victim accesses the target shared cache
line, Trojan executes PREFETCHW on this cache line, which
invalidates the copies of this cache line in the victim’s and
Spy’s private caches (if they exist), and places a copy of this
cache line (in M state) in Trojan’s private cache, as shown in
Step 1 of Figure 5. Then, if the victim accesses this cache
line, according to MESI, the coherence state changes from M to
S, and the copy of this cache line in the L L C is updated
(although the content did not change, see Section II-A) and is
now valid (Step 2 in the left path of Figure 5).

B. Prefetch+Reload Attack

Unfortunately, Trojan cannot observe this state change
caused by the victim’s access: if Trojan accesses (reloads)
this cache line, he will get a private cache hit, no matter
if the victim accessed this line or not. This is because the

victim’s read does not invalidate the copy in Trojan’s private
cache (Step 2 in the left path of Figure 5). However, Spy
is able to distinguish whether the victim accessed this cache
line. Trojan’s original PREFETCHW invalidated the copy in
Spy’s private cache. Thus, if Spy now accesses this cache
line, he will get an L L C hit if the victim has accessed this
cache line after Trojan’s prefetch (Step 3 in the left path of
Figure 5); otherwise, he will get a remote private cache hit
(Step 3 in the right path of Figure 5). We recall that Spy
can distinguish these two situations by timing the access (the
difference is over 30 cycles on our desktop processor). Based
on this, we build Prefetch+Reload. Similar to previous cache
attacks, each iteration in this attack contains three steps, as
shown in Figure 5:
Step 1: Trojan performs PREFETCHW on the target cache line

and becomes the exclusive owner of this cache line.
Step 2: The attacker waits for the victim’s behavior: if the

victim accesses this cache line, its coherence state will
become S, meaning the copy in the L L C is now valid.

Step 3: Spy accesses this cache line and times the access to
determine it was a remote private cache hit or an L L C
hit. If it was a remote private cache hit, then the victim
did not access this cache line; otherwise the victim did
access.

L L C presence. Prefetch+Reload requires that the target shared
cache line is present in the L L C , so that Spy can get an L L C
hit in Step 3, if the victim has accessed this cache line. This is
naturally true for inclusive LLCs, since all the cache lines in
the private cache are also present in the L L C . However, it is not
guaranteed for non-inclusive LLCs. In those caches, a cache
line is directly brought into the private cache when loaded from
DRAM, bypassing the L L C ; it usually goes to the L L C when
evicted from the private cache due to cache replacement [46],
[47]. Thus, strictly speaking, it is the attacker’s responsibility
to ensure the presence of this cache line in the L L C , if it
is non-inclusive. For example, before the attacker starts the
attack loop, he can first build set conflicts in his private cache to
evict this cache line to the L L C .

In fact, empirically we found that in Step 1, when
PREFETCHW invalidates the copies of the target cache line
in Spy and the victim’s private caches, this cache line will
be placed in the L L C if it does not already exist. Therefore,
in practice the attacker does not need to explicitly place this
cache line in the L L C .

C. Prefetch+Prefetch Attack
Following the Prefetch+Prefetch covert channel attack, we

also build the Prefetch+Prefetch side channel attack. The
attacker learns if the victim accessed the shared cache line
by timing PREFETCHW. In contrast to the Prefetch+Reload
side channel attack, each iteration in this attack only has two
steps:
Step 1: The attacker prefetches the target shared cache line

using PREFETCHW, and times this operation to learn
whether the victim accessed this cache line in the last
iteration.

C
ha

nn
el

 C
ap

ac
ity

 (
K

B
/s

)

0 0

B
it

E
rr

or
 R

at
e

(%
)

C
ha

nn
el

 C
ap

ac
ity

 (
K

B
/s

)

0 0

B
it

E
rr

or
 R

at
e

(%
)

C
ha

nn
el

 C
ap

ac
ity

 (
K

B
/s

)

0 0

B
it

E
rr

or
 R

at
e

(%
)

C
ha

nn
el

 C
ap

ac
ity

 (
K

B
/s

)

0 0

B
it

E
rr

or
 R

at
e

(%
)

Prefetch+Reload capa. Prefetch+Load capa. Prefetch+Prefetch capa. Prefetch+Reload error rate Prefetch+Load error rate Prefetch+Prefetch error rate

1000 30 1000 30 1000

800 800 800
20 20

600 600 600

10 10
400 400 400

30 1000 30

800
20 20

600

10 10
400

20
200 400 600 800 1000
Raw Transmission Rate (KB/s)

(a) Intel Core i7-6700

20
200 400 600 800 1000
Raw Transmission Rate (KB/s)

(b) Intel Core i7-7700K

20
200 400 600 800 1000
Raw Transmission Rate (KB/s)

(c) Intel Xeon Platinum 8124M

20
200 400 600 800 1000
Raw Transmission Rate (KB/s)

(d) Intel Xeon Platinum 8151

Fig. 6: The capacities and bit-error-rates of the prefetch-based channels on various Intel processors.

Step 2: The attacker waits for the victim’s behavior.
As explained earlier in Section III, in Step 1 above, if the

victim accessed this cache line, PREFETCHW executes slower;
if the victim did not access, PREFETCHW executes faster.

In contrast to most previous cross-core cache attacks, which
can only work on the L L C and require repeatedly evicting the
target cache line to DRAM (e.g., Flush+Reload), the proposed
prefetch-based attacks work on the private cache. Thus, the
target cache line is always kept in the on-chip cache hierarchy.
Compared to cross-core L L C attacks, cross-core private cache
attacks have two benefits. First, higher bandwidth, since cache
accesses are fast and are usually much faster than DRAM
accesses. This is especially important when the attacks are
used as covert channels. Second, stealthier, since there are
less cache misses, especially L L C misses involved in the
attacks [60]. To the best of our knowledge, the proposed
prefetch-based attacks are the first cross-core private cache
side channel attacks that can work regardless of the L L C
inclusivity.

V I . E VA L UAT I O N

We evaluate the proposed covert channel and side channel
attacks on modern Intel processors. For covert channel attacks,
we evaluate the channel capacities, comparing them to previ-
ous cache covert channels on CPU. For side channel attacks,
we demonstrate how they can be used to leak information
from common applications. In addition, we also show how
our attacks strengthen transient execution attacks.

A. Evaluation of Prefetch-Based Covert Channel Attacks
We implement Prefetch+Load, Prefetch+Prefetch, and

Prefetch+Reload on four Intel processors, including two desk-
top processors and two server processors. Note that although
Prefetch+Reload is introduced as a side channel attack in
Section V, it can be a covert channel attack as well. Table I I
lists the specifications of the four tested processors. The
two desktop processors have inclusive LLCs, and the server
processors have non-inclusive LLCs.

We use one shared cache line between the sender and
receiver to transmit secrets. Although using more shared cache
lines or using channel coding techniques (e.g., [2]) may further

improve the channel capacity [2], [7]; here we do not include
them since we aim at showing the conservative results (i.e.,
the lower bounds).

TA B L E II: The specifications of the tested processors.

Desktop processors Server processors
Platform Core Core Xeon Platinum Xeon Platinum

i7-6700 i7-7700K 8124M 8151
Microarchitecture Skylake Kaby Lake Skylake-SP Skylake-SP
Num of cores 6 4 N/A6 N/A
Frequency 3.4 GHz 4.2 GHz 3.0 GHz 3.4 GHz
L L C type Inclusive Inclusive Non-inclusive Non-inclusive

We measure the channel capacity and bit error rate of each
attack, under different transmission intervals. Although the raw
transmission rate increases when decreasing the transmission
interval, the bit error rate may also increase, especially when
the interval is too short. To find the best transmission rate,
we use the channel capacity metric (as in [48], [61]). This
metric is computed by multiplying the raw transmission rate
with 1 −H (e), where e is the bit error rate and H is the binary
entropy function. The results are shown in Figure 6. The bit
error rates of all three attacks stay low (lower than 0.6%) and
are almost constant, when the raw transmission rate is under a
threshold (e.g., 660 KB/s for Prefetch+Reload in Figure 6(a)).
Thus, the channel capacity increases proportionally to the raw
transmission rate. It reaches the peak when the raw trans-
mission rate is around this threshold. Beyond this threshold,
the increasing error rate causes a decrease in the channel
capacity. The peak channel capacities of the three attacks
are summarized in Table III. Prefetch+Reload always has
lower capacity than the other two attacks because more cache
operations are involved in each iteration of Prefetch+Reload.

Our prefetch-based attacks are faster than almost all ex-
isting cache attacks on x86 CPUs. First, for attacks tested on
desktop processors, the ring interconnect contention based
attack [48] is reported with a very high capacity which is
518 KB/s on a 4.0 GHz desktop processor. Flush+Reload

6We use Intel Xeon Scalable processors on Amazon AWS EC2 platform,
and we leased four physical cores on the tested processors for our experiments.

P
re

fe
tc

h
 L

a
te

n
cy

 (
cy

cl
e

s)

e

i

0

TA B L E III: The maximum capacities of the prefetch-based
channels.

Desktop processors Server processors
Platform Core Core Xeon Platinum Xeon Platinum

i7-6700 i7-7700K 8124M 8151
(3.4 GHz) (4.2 GHz) (3.0 GHz) (3.4 GHz)

instruction cache (L1I cache). However, since we map the
instruction pages as data blocks in the attacker’s address space,
the same cache lines containing those instructions are brought
to the attacker’s L1D cache. Thus, although PREFETCHW can
only prefetch cache lines into L1D cache, it can still leak the
victim’s access patterns to instructions.

Prefetch+Reload

Prefetch+Load

631 KB/s

709 KB/s

782 KB/s

840 KB/s

394 KB/s

586 KB/s

476 KB/s

680 KB/s 300

Prefetch+Prefetch 721 KB/s 822 KB/s 556 KB/s 605 KB/s

200

and Flush+Flush have capacities of 298 KB/s and 496
KB/s on a 3.6 GHz desktop processor [2], respectively.
Prime+Scope [38], the optimized attack for Prime+Probe,
achieves 438 KB/s on a 3.5 GHz desktop processor. Second,
most of the attacks that were tested on server processors,
including the L1 LRU attack [5], the directory Prime+Probe at-
tack [47], and the Flush+Coherence attack [7] have capacities
of less than 200 KB/s. The directory version of Prime+Scope
achieves 387 KB/s.

To the best of our knowledge, our attacks are only slower
than Streamline [62]. This attack claims to achieve a capacity
of 1801 KB/s. However, it has such a high channel capacity
because the sender and receiver use 64 MB shared data to
transmit secrets; our results are based on one shared cache
line (64 B).

B. Evaluation of Prefetch-Based Side Channel Attacks
1) Side Channel Attack on Cryptographic Code: Our

first attack targets cryptographic libraries, where the access
patterns to some instructions are related to the value of the
cryptographic key. More specifically, we target the square-
and-multiply algorithm [63] which is used in GnuPG 1.4.13
for ciphers such as R S A [64] and ElGamal [65]: leaking the
exponent e of this algorithm leaks the private key. As shown
in Algorithm 3, in each loop iteration, it first executes a s q r
and a mod instruction. Then, if the exponent bit is “1”, a mul
and another mod instruction are executed; otherwise they are
skipped. Thus, by monitoring the access pattern to the cache
lines that contain s q r and mul, the attacker is able to leak
each bit of the exponent e and therefore the decryption key.

Algorithm 3: Square-and-multiply Exponentiation
Input: base b, modulo m, exponent e = (e n 1 . . .e 0) 2
Output: b mod m

r ← 1
for i = n − 1; i > = 0; i − − do

r ← r 2 mod n
if e = = 1 then

r ← r � b mod n

Implementation. As done in the Flush+Reload attack on
GnuPG [1], we use mmap to map the pages that contain
s q r and mul into the attacker’s address space. Note that
during the execution of the victim (GnuPG), the cache lines
containing those instructions are brought into the victim’s L1

100

Bit "0" Bit "1" Square
Multiply

1000 1050 1100 1150 1200

Sample ID

Fig. 7: A segment of the prefetch latencies measured in
Prefetch+Prefetch while attacking GnuPG; part of the the
exponent e shown here is “111001011001”.

Results. For simplicity, we only show the attack results of
Prefetch+Prefetch on the Intel Xeon Platinum 8151 processor.
However, we have performed this attack on other proces-
sors listed in Table II too, using both Prefetch+Prefetch and
Prefetch+Reload. Here we use a waiting latency of 500 cycles
in each iteration of Prefetch+Prefetch. Figure 7 shows the
timing measurement results from the attacker for 200 samples:
a lower prefetch latency (less than 100 cycles) indicates that
the victim did not access the target cache line during the last
iteration; a higher prefetch latency (around 200 cycles) means
the victim did access. As explained above, an access to s q r
followed by an access to mul indicates a bit “1”, and two
consecutive accesses to s q r (one from the current iteration,
one from the next iteration) indicate a bit “0” (in the current
iteration). Thus, part of the exponent e shown in Figure 7 is
“111001011001”. The average attack accuracy is 96.2%.

2) Side Channel Attack on Keystroke Timing: Our second
attack focuses on leaking the precise timing information of
keystrokes, i.e., detecting when a keyboard input occurs. This
leakage is important since it can assist reconstructing typed
words from users [66]–[68]. Previous work shows that certain
functions in graphics libraries are called when a keystroke
happens (e.g., [2], [69]). Thus, we can monitor the accesses to
the cache lines containing these functions to detect keystrokes.
Implementation. We attack an address in the shared GDK
library which is invoked when processing keystrokes. Specifi-
cally, we launch gedit as the victim, and input keystrokes in it.
At the same time, we run the prefetch-based attacks to monitor
accesses to the address selected in the GDK library, and record
the timing measurement results. The attacker process raises an
alarm when a keystroke is detected.
Results. Figure 8 shows the timing trace collected by
Prefetch+Reload when the user is typing “abcdefg1234” in
gedit, on our Intel Core i7-6700 processor. Again, the attack

R
e

lo
a

d
 L

a
te

n
cy

 (
cy

cl
e

s)

A
cc

ur
ac

y

has been done on the other desktop processor too (but not on
the server processors since EC2 instances do not come with
GUI). As one can observe, when a keystroke occurs, the reload
operation (in Step 3 of Prefetch+Reload) takes around 50
cycles to finish; it takes over 80 cycles to reload when there
is no keystroke. This significant timing difference makes
keystrokes very detectable. During the attack, we observe zero
false positives and zero false negatives.

120

1.0

0.9

0.8

0.7

0.6 Prefetch+Prefetch
Flush+Reload

0.5
200 400 1000 10000

Window Size (cycles)
100

80

60

40

20
0.0E+0

a b c d e f g 1 2 3 4
2.0E+9 4.0E+9 6.0E+9 8.0E+9

Time (cycles)

Fig. 9: The accuracy of Prefetch+Prefetch and Flush+Reload
on our Intel Core i7-6700 processor, with different waiting
window sizes.

accuracy, Flush+Reload needs a waiting window with over
4000 cycles.

Fig. 8: The access latencies measured in Step 3 of
Prefetch+Reload when a user types “abcdefg1234” in gedit;
we monitor address 0x7b980 of libgdk.so.7

3) Windowless Prefetch+Prefetch: Using the terminology
in prior work [38], PREFETCHW has two important properties:
1) PREFETCHW is preserving, meaning the measurement
(prefetching and timing the prefetch) does not change the
state in the absence of the victim’s event; 2) PREFETCHW is
also concurrent, meaning it detects the events that temporally
overlap with it. With these two features, Prefetch+Prefetch can
be used in a windowless way (no waiting window between two
consecutive prefetches is necessary). We verify this using the
following experiment.

We use two processes, the victim and attacker. The victim
process first waits a random amount of time, and then triggers
an event (accessing the target shared cache line). This process
terminates after triggering the event. The attacker process
runs Prefetch+Prefetch with a waiting window in each attack
iteration to detect the victim’s event. The attacker process
terminates after detecting the event or after the victim process
terminates. We run this experiment with different window sizes
and repeat the experiment for 1000 times for each window
size. Figure 9 shows the attacker’s detection accuracy on our
Intel Core i7-6700 processor. Note that the results on other
processors in Table II are similar. For comparison, we also
show the accuracy of Flush+Reload on the same processor.
For Prefetch+Prefetch, the attacker’s detection accuracy does
not change when the window size varies; the attacker always
has a very high detection accuracy which is around 1. This
indicates that Prefetch+Prefetch, unlike prior attacks such as
Flush+Reload, can always be used as a windowless attack.
Such a windowless attack has much higher temporal resolution
than a windowed attack since the latter’s resolution is bounded
by the window size. For example, to reach 95% detection

7We found the appropriate library and address to monitor following the
method in prior work [8].

C. Prefetch-Based Channels in Transient Execution Attacks

Transient execution attacks such as Spectre [26] and Melt-
down [27] usually require a microarchitectural covert channel
to transfer the secrets to the attacker. Currently, most transient
execution attacks (e.g., [26]–[29], [70]) use the Flush+Reload
channel because it is simple, reliable, and ubiquitous. Here we
demonstrate that prefetch-based channels can also work with
transient execution attacks to leak secrets, and may even work
better than Flush+Reload. We use Spectre v1 as an example to
show the details and benefits of using prefetch-based channels
in transient execution attacks.
Higher bandwidth. When using Flush+Reload, the sender
operation in Spectre is a memory access where the ad-
dress depends on the secret value. Since Prefetch+Reload
and Prefetch+Prefetch use the same sender function as
Flush+Reload, a victim program vulnerable to Spectre
with Flush+Reload is also vulnerable to Spectre with
Prefetch+Reload and Prefetch+Prefetch. We have verified this
using the Spectre v1 PoC code [71]. We modify it accordingly
such that Prefetch+Reload or Prefetch+Prefetch is used in the
attacker code; the victim remains the same. In addition, as
observed in prior work [27], the leakage rate of a transient
execution attack is significantly affected by the capacity of
the covert channel used in the attack. Since Prefetch+Reload
and Prefetch+Prefetch have much higher capacities than
Flush+Reload, Spectre works faster with these two channels.
For example, on our Intel Core i7-6700 processor, when
leaking an 8-bit secret in each transmission, the leakage
rate of Spectre is 3.02 times and 1.61 times as fast when
using Prefetch+Prefetch and Prefetch+Reload, respectively, as
compared to Flush+Reload. The results on other processors
are shown in Appendix A.
More leakage in the transient window. When using Spectre
with Flush+Reload, the data access for sending (encoding) the
secret in the transient window is a slow DRAM access, since
this data was flushed by the attacker. In contrast, the data
access for secret encoding is a remote private cache hit when

N
u

m
 o

f
L

e
a

ke
d

 B
yt

e
s

N
u

m
 o

f
L

e
a

ke
d

 B
yt

e
s

*
*

*

N
u

m
 o

f
L

e
a

ke
d

 B
yt

e
s

N
u

m
 o

f
L

e
a

ke
d

 B
yt

e
s

using Prefetch+Reload or Prefetch+Prefetch, which is usually
faster than a DRAM access. This indicates that within the same
transient window, more encoding operations can be performed
using the two prefetch-based channels than Flush+Reload,
and thus more secrets may be leaked. An example Spectre
v1 gadget that can benefit from this is shown in Listing 3.
There are n operations in the branch, where each operation
accesses a secret and encodes it to a cache index. The secrets
are array1[x] to array1[x+n] (when x is out of bounds); each
of the secrets is encoded to an index of a sub-array in array2.
The more of these n operations we can perform in the transient
window, the more secrets we can leak out at once.

Other transient execution attacks. All of the three prefetch-
based channels can be used in transient execution attacks when
the attacker has full control of the gadget (e.g., Meltdown).
As shown above, Prefetch+Reload and Prefetch+Prefetch
has faster encoding operations than Flush+Reload, enabling
more leakage in a transient window. The same is true
for Prefetch+Load, since a remote private cache hit for
PREFETCHW is usually faster than a DRAM access. In a
Meltdown PoC with the three prefetch-based channels, we can
reliably leak 8 bytes in the transient window on Our Intel Core
i7-6700 processor; we can only leak 6.1 bytes on average when
using Flush+Reload. An example gadget to achieve is shown in
Appendix B.

i f (x+n < a r r a y 1 s i ze)
{

y0 = a r r a y 2 [0] [a r r a y 1 [x] 4 0 9 6] ;
y2 = a r r a y 2 [1] [a r r a y 1 [x +1] 4 0 9 6] ;
. . .
yn = a r r a y 2 [2] [a r r a y 1 [x+n] 4 0 9 6] ;

}

Listing 3: The Spectre v1 code example when a bounds
check is followed by multiple secret accessing and encoding
operations. This code is essentially a for loop in a conditional
branch; we show the unrolled version for clarity.

16

14

12

10

8

6

4

2
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

Flush+Reload Prefetch+Prefetch

(a) Intel Core i7-6700
16

18

16

14

12

10

8

6

4

2
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

Flush+Reload Prefetch+Prefetch

(b) Intel Core i7-7700K
16

This gadget might be found in a victim; it is essentially the
original Spectre v1 gadget with multiple secrets accessed and
encoded in the branch (instead of one). Additionally, in the
scenario where the attacker has control over the gadget (e.g.,
spectre-type-meltdown),8 the attacker can build such a gadget
to leak multiple secrets in one transient window and thus
accelerate the attack. We still prove this with the Spectre v1
PoC code and modify the attacker code to use Prefetch+Reload
or Prefetch+Prefetch. We also modify the victim code to
simulate the gadget in Listing 3 where n secrets are accessed
and encoded in the branch. We run this code and collect the
amount of these n secrets the victim can transmit within one
transient window, and draw the histograms in Figure 10. We
omit the results when leaking by Prefetch+Reload since its
encoding stage is same as the one of Prefetch+Prefetch.

On the desktop processors, the victim can transmit up to 17
8-bit secrets speculatively when using Prefetch+Reload or
Prefetch+Prefetch, while the victim can transmit at most 8
secrets when using Flush+Reload. However, on server proces-
sors, the amount of transmitted secrets when using prefetch-
based channels is only slightly larger than the one when
using Flush+Reload. This is because on these processors, the
latency of a remote private cache hit is much longer, compared
to desktop processors (160 cycles vs. 90 cycles). Note that
although same-core private cache attacks, such as the L1
LRU attack [5], can also achieve more secret encodings in
a transient window than Flush+Reload, these attacks are less
practical, because they are limited by the number of private
cache sets. In these attacks, secret values are encoded into the
cache set index instead of cache line index.

8Spectre can be used for exception suppression in Meltdown.

14 14
0.69 0.91

12 12

10 10

8 8

6 6

4 4

2 2
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

Flush+Reload Prefetch+Prefetch Flush+Reload Prefetch+Prefetch

(c) Intel Xeon Platinum 8124M (d) Intel Xeon Platinum 8151

Fig. 10: The distributions of the amount of secret bytes that
can be accessed and encoded in a transient window, when
leaking by Flush+Reload and Prefetch+Prefetch, respectively.

V I I . DI S C US S I O N

A. Attack Reliability
According to Intel [43], a prefetch instruction will not fetch

any data when the request buffer between the L1 and L2
cache is full. This may reduce the performance of the prefetch-
based attacks, when SMT is available and a memory-intensive
thread is located on the same core as the attacker thread.
We verified this by running s t r e s s -m 1 in a co-located
thread (i.e., the hyperthread sibling) of the attacker thread:
this causes many prefetch instructions from the attacker to be
ignored, which significantly reduces the attack performance.
For example, on our Intel Core i7-6700 processor, the channel
capacity of Prefetch+Prefetch is reduced to 56 KB/s. However,
SMT enables many security vulnerabilities (e.g., [72]) and
thus is often suggested to be disabled. In fact, if SMT is
available, the attacker can always launch same-core private
cache attacks instead. Our cross-core private cache attacks
target the scenarios where same-core attacks are impractical
or impossible.

B. Prefetch-Based Attacks on AMD

Modern AMD processors also support PREFETCHW; this
instruction was originally invented by AMD [55], and was
later adopted by Intel. We performed the same experiments as
the ones in Section II I on AMD desktop and server processors.
However, from our experiments, PREFETCHW does not cause
any coherence state changes on data with read-only permis-
sion; it only works on data with write permission. Thus, we
believe that AMD processors actually have permission checks
for PREFETCHW.

C. Related Work

Prefetch-based attacks. Gruss et al. [73] made two obser-
vations about prefetch instructions on Intel processors. They
found that the execution time of a prefetch instruction, such as
PREFETCHT0, leaks the translation levels of inaccessible
kernel addresses. Using this, they built an attack to break
Kernel Address Space Layout Randomization (KASLR). They
also observed that prefetch instructions change the cache state
of inaccessible kernel memory, but recent work [74] proved
this incorrect. In fact, their observation is the result of transient
execution caused by a Spectre gadget in the kernel, not the
prefetch instruction.

Very recently, Lipp et al. [75] observed that on AMD
processors, the timing (and power consumption) of a prefetch
instruction on an inaccessible kernel address leaks the trans-
lation level and T L B state of this address. They used this to
break K A S L R and leak kernel memory (with Spectre) on
AMD processors. These two prefetch attacks are orthogonal to
our attacks. They focus on specifically attacking the kernel; we
instead focus on building general cache timing attacks.

Regarding hardware prefetch attacks, Shin et al. [76] at-
tacked OpenSSL, leaking the private key by leveraging the
Intel stride prefetcher. Rohan et al. [77] reverse-engineered
the stream prefetcher on Intel processors, using it to build a
covert channel.
Cache coherence vulnerabilities. Although we are the first
to propose cross-core private cache side channel attacks lever-
aging cache coherence protocol invalidations, cache coherence
protocols have been exploited in many different attacks. Trip-
pel et al. [78] discovered that a transient write may change
the coherence state of the target data, which can be used as
a covert channel in transient execution attacks. In addition,
previous studies [26], [79], [80] mention that “bouncing” cache
lines between private caches may be used as a replacement for
CLFLUSH or set conflicts in Spectre and Rowhammer attacks.
However, in this method, coherence states are manipulated by
write operations. This means it requires that at least part of
the target cache line happens to contain writable data (unless
Meltdown-RW [81], [82] can be exploited). Unfortunately, as
discussed in [80], this requirement is impractical for general
side channel attacks.

Prior work [37], [83] built cross-core attacks on AMD and
ARM processors, respectively, based on cache coherence. An
Evict+Reload attack on Intel processors with non-inclusive

L L C s was proposed in [47]. In these three attacks, the at-
tacker learns the victim’s behavior by distinguishing between
remote private cache hits and DRAM accesses. A variant of
Flush+Reload attack on x86 processors was proposed in [7]. It
works by distinguishing between remote private cache hits and
L L C hits. These attacks are more general than the ones
discussed earlier, but they all suffer from low bandwidth as
DRAM accesses are involved in the attacks.

D. Mitigations

Our attacks can be prevented through modifications on
the microarchitecture behavior of PREFETCHW. The complete
protection is two-fold. First, PREFETCHW should perform
write permission checks, just as a regular memory write
instruction, and trigger a fault or ignore this instruction if the
target data is not writable. Second, PREFETCHW should
execute in constant time. These modifications may introduce
some performance overhead. We do not suggest eliminating
PREFETCHW since it is important for improving write perfor-
mance.

Similar to prior cache attacks, our attacks also work by
manipulating and monitoring cache states. Thus, defenses
against prior cache attacks (e.g., [84]–[88]) may also work on
our attacks. For example, DAWG [85] allows replicated cache
copies of the data shared across security domains: each domain
gets their own copy of this data in cache. Thus, the attacker
cannot monitor the coherence state changes from a victim who is
in another domain, which would stop our attacks.

V I I I . CO N C L U S I O N

In this paper, we proposed a new cache eviction method
as well as two new two cross-core cache side channel attacks
that work with both inclusive and non-inclusive LLCs. One of
the prefetch instructions on x86 processors, PREFETCHW,
prepares the data for future writes by modifying the coherence
state of the data. In this work, we made two important mi-
croarchitectural observations on PREFETCHW. First, it works
on data with read-only permission. Second, its execution
time is related to the coherence state of the target data.
Given these observations, the coherence state modifications by
PREFETCHW enable significant security vulnerabilities. Using
PREFETCHW, we first built two covert channel attacks which
have very high capacities. We also demonstrated that these
high-capacity covert channels enable more powerful transient
execution attacks. We then slightly modified the covert channel
attacks to build two side channel attacks and showed that these
attacks leaked information from real-world applications.

I X . AC K N OW L E D G E M E N T

We thank the anonymous IEEE S&P 2022 reviewers
for their insightful feedback. We would also like to thank
Daniel Weber for the help on the Meltdown implementation,
and Daniel Gruss for his comments on the preprint. This
work is supported in part by US National Science Founda-
tion #1422331, #1535755, #1617071, #1718080, #1725657,
#1910413, and #2011146.

´

¨

¨

R E F E R E N C E S

[1] Y. Yarom and K. Falkner, “Flush+Reload: A high resolution, low noise,
L3 cache side-channel attack,” in USENIX Security Symposium, 2014.

[2] D. Gruss, C. Maurice, K . Wagner, and S. Mangard, “Flush+Flush: a fast
and stealthy cache attack,” in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA), 2016.

[3] Y. A. Younis, K . Kifayat, Q. Shi, and B. Askwith, “A new Prime and
Probe cache side-channel attack for cloud computing,” in IEEE
International Conference on Computer and Information Technology;
Ubiquitous Computing and Communications; Dependable, Autonomic
and Secure Computing; Pervasive Intelligence and Computing, 2015.

[4] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in IEEE Symposium on Security and
Privacy (S&P), 2015.

[5] W. Xiong and J. Szefer, “Leaking information through cache LRU
states,” in IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), 2020.

[6] S. Briongos, P. Malagon, J. M. Moya, and T. Eisenbarth,
“Reload+Refresh: Abusing cache replacement policies to perform
stealthy cache attacks,” in USENIX Security Symposium, 2020.

[7] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence pro-
tocol states vulnerable to information leakage?,” in IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2018.

[8] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in USENIX Security
Symposium, 2015.

[9] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–bringing access-
based cache attacks on AES to practice,” in IEEE Symposium on Security
and Privacy (S&P), 2011.

[10] C. Percival, “Cache missing for fun and profit,” 2005.
[11] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-

sures: the case of AES,” in Cryptographers’ track at the RSA conference,
2006.

[12] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox: Practical cache attacks in JavaScript and
their implications,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2015.

[13] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared cache attack
that works across cores and defies VM sandboxing–and its application to
AES,” in IEEE Symposium on Security and Privacy (S&P), 2015.

[14] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off
of my cloud: Exploring information leakage in third-party compute
clouds,” in ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2009.

[15] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: High-speed
covert channel attacks in the cloud,” in USENIX Security Symposium,
2012.

[16] Y. Zhang, A. Juels, M. K . Reiter, and T. Ristenpart, “Cross-VM side
channels and their use to extract private keys,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2012.

[17] Y. Zhang, A. Juels, M. K . Reiter, and T. Ristenpart, “Cross-tenant
side-channel attacks in PaaS clouds,” in ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2014.

[18] R. Hund, C. Willems, and T. Holz, “Practical timing side channel
attacks against kernel space ASLR,” in IEEE Symposium on Security
and Privacy (S&P), 2013.

[19] O. Acıiçmez, “Yet another microarchitectural attack: Exploiting I-
cache,” in ACM Workshop on Computer Security Architecture, 2007.

[20] O. Acıiçmez and W. Schindler, “A vulnerability in RSA implementations
due to instruction cache analysis and its demonstration on OpenSSL,” in
Cryptographers’ Track at the RSA Conference, 2008.

[21] A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin, Y. Oren, and Y.
Yarom, “Prime+Probe 1, JavaScript 0: Overcoming browser-based side-
channel defenses,” in USENIX Security Symposium, 2021.

[22] L . Groot Bruinderink, A. Hulsing, T. Lange, and Y. Yarom, “Flush,
Gauss, and Reload–a cache attack on the BL ISS lattice-based signature
scheme,” in International Conference on Cryptographic Hardware and
Embedded Systems, 2016.

[23] A. Shusterman, L . Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and Y.
Yarom, “Robust website fingerprinting through the cache occupancy
channel,” in USENIX Security Symposium, 2019.

[24] C. Disselkoen, D. Kohlbrenner, L . Porter, and D. Tullsen, “Prime+Abort: A
timer-free high-precision L3 cache attack using Intel TSX,” in
USENIX Security Symposium, 2017.

[25] T. Hornby, “Side-channel attacks on everyday applications: Distinguish-
ing inputs with Flush+Reload,” BlackHat USA, 2016.

[26] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in IEEE Symposium
on Security and Privacy (S&P), 2019.

[27] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J.
Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX
Security Symposium, 2018.

[28] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T.
Prescher, and D. Gruss, “ZombieLoad: Cross-privilege-boundary data
sampling,” in ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2019.

[29] S. van Schaik, A. Milburn, S. Osterlund, P. Frigo, G. Maisuradze, K .
Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data load,” in
IEEE Symposium on Security and Privacy (S&P), May 2019.

[30] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and C. W.
Fletcher, “MicroScope: Enabling microarchitectural replay attacks,” in
International Symposium on Computer Architecture (ISCA), 2019.

[31] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin, Y.
Yuval, B. Sunar, D. Gruss, and F. Piessens, “LVI: Hijacking transient
execution through microarchitectural load value injection,” in IEEE
Symposium on Security and Privacy (S&P), 2020.

[32] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “NetSpec-
tre: Read arbitrary memory over network,” in European Symposium on
Research in Computer Security, 2019.

[33] C. Trippel, D. Lustig, and M. Martonosi, “Checkmate: Automated
synthesis of hardware exploits and security litmus tests,” in IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018.

[34] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom,
“CacheOut: Leaking data on Intel CPUs via cache evictions,” in IEEE
Symposium on Security and Privacy (S&P), 2021.

[35] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti, B.
Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: Exploiting
speculative execution through port contention,” in ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), 2019.

[36] M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z. N. Zhao, X . Zou, T.
Unterluggauer, J. Torrellas, C. Rozas, A. Morrison, et al., “Speculative
interference attacks: Breaking invisible speculation schemes,” in ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2021.

[37] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross processor cache
attacks,” in ACM on Asia conference on computer and communications
security (Asia CCS), 2016.

[38] A. Purnal, F. Turan, and I. Verbauwhede, “Prime+Scope: Overcoming
the observer effect for high-precision cache contention attacks,” in ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2021.

[39] M. K . Qureshi, “New attacks and defense for encrypted-address cache,” in
ACM/IEEE Annual International Symposium on Computer Architec-ture
(ISCA), 2019.

[40] M. Werner, T. Unterluggauer, L . Giner, M. Schwarz, D. Gruss, and S.
Mangard, “ScatterCache: Thwarting cache attacks via cache set
randomization,” in USENIX Security Symposium, 2019.

[41] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierarchy-
aware cache replacement policy (SHARP): Defending against cache-
based side channel atacks,” in Proceedings of the Annual International
Symposium on Computer Architecture (ISCA), 2017.

[42] M. K . Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018.

[43] “Intel® 64 and IA-32 architectures optimization reference manual.”
Available at https://software.intel.com/content/www/us/en/develop/
download/intel-64-and-ia-32-architectures-optimization-reference-
manual.html.

[44] P. Conway and B. Hughes, “The AMD Opteron northbridge architec-
ture,” IEEE Micro, 2007.

[45] “Intel QuickPath architecture,” 2012. Available at http://www.intel.com/
pressroom/archive/reference/whitepaperQuickPath.pdf.

[46] “Intel® Xeon® Scalable Processor: The foundation of data
centre innovation,” 2017. Available at https://simplecore-
ger.intel.com/swdevcon-uk/wp-content/uploads/sites/5/2017/10/UK-
Dev-Con Toby-Smith-Track-A 1000.pdf.

[47] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, “Attack directories, not caches: Side channel attacks in
a non-inclusive world,” in IEEE Symposium on Security and Privacy
(S&P), 2019.

[48] R. Paccagnella, L . Luo, and C. W. Fletcher, “Lord of the Ring (s): Side
channel attacks on the CPU on-chip ring interconnect are practical,” in
USENIX Security Symposium, 2021.

[49] A. Moghimi, J. Wichelmann, T. Eisenbarth, and B. Sunar, “Memjam: A
false dependency attack against constant-time crypto implementations,”
International Journal of Parallel Programming, 2019.

[50] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: A timing attack on
OpenSSL constant-time RSA,” Journal of Cryptographic Engineering,
2017.

[51] L . Armasu, “OpenBSD will disable Intel Hyper-Threading to
avoid Spectre-like exploits (updated),” 2018. Available at
https://www.tomshardware.com/news/openbsd-disables-intel-hyper-
threading-spectre,37332.html.

[52] T. Claburn, “RIP Hyper-Threading? ChromeOS axes key Intel CPU fea-
ture over data-leak flaws – Microsoft, Apple suggest snub,” 2019. Avail-
able at https://www.theregister.co.uk/2019/05/14/intel hyper threading
mitigations/.

[53] A. Marshall, M. Howard, G. Bugher, B. Harden, C. Kaufman, M. Rues,
and V. Bertocci, “Security best practices for developing Windows Azure
applications,” Microsoft Corp, 2010.

[54] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and A. Jaleel, “A high-
resolution side-channel attack on last-level cache,” in Annual Design
Automation Conference (DAC), 2016.

[55] “3DNow! technology manual,” 2000. Available at https://www.amd.
com/system/files/TechDocs/21928.pdf.

[56] “mmap(2) — Linux manual page.” Available at https://man7.org/linux/
man-pages/man2/mmap.2.html.

[57] “pthread mutex lock(3p) — Linux manual page.” Available at https:
//man7.org/linux/man-pages/man3/pthread mutex lock.3p.html.

[58] “taskset(1) — Linux manual page.” Available at https://man7.org/linux/
man-pages/man1/taskset.1.html.

[59] A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density by
using KSM,” in Proceedings of the linux symposium, 2009.

[60] M.-M. Bazm, T. Sautereau, M. Lacoste, M. Sudholt, and J.-M. Menaud,
“Cache-based side-channel attacks detection through Intel cache moni-
toring technology and hardware performance counters,” in International
Conference on Fog and Mobile Edge Computing (FMEC), 2018.

[61] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM addressing for cross-CPU attacks,” in USENIX Se-
curity Symposium, 2016.

[62] G. Saileshwar, C. W. Fletcher, and M. Qureshi, “Streamline: a fast,
flushless cache covert-channel attack by enabling asynchronous collu-
sion,” in ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2021.

[63] D. M. Gordon, “A survey of fast exponentiation methods,” J. Algorithms,
1998.

[64] R. L . Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM, 1978.

[65] T. Elgamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” IEEE Trans. Inf. Theor., 2006.

[66] K . Zhang and X. Wang, “Peeping Tom in the neighborhood: Keystroke
eavesdropping on multi-user systems.,” in USENIX Security Symposium,
2009.

[67] D. X . Song, D. A. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on ssh.,” in USENIX Security Symposium, 2001.

[68] M. Kurth, B. Gras, D. Andriesse, C. Giuffrida, H. Bos, and K. Razavi,
“NetCAT: Practical cache attacks from the network,” in IEEE Symposium
on Security and Privacy (S&P), 2020.

[69] D. Wang, A. Neupane, Z. Qian, N. B. Abu-Ghazaleh, S. V. Krish-
namurthy, E. J. Colbert, and P. Yu, “Unveiling your keystrokes: A
cache-based side-channel attack on graphics libraries.,” in Network and
Distributed System Security Symposium (NDSS), 2019.

[70] C. Canella, D. Genkin, L . Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, et al., “Fallout: Leaking
data on Meltdown-resistant CPUs,” in ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2019.

[71] “SpectrePoC.” Available at https://github.com/crozone/SpectrePoC.
[72] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,

M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order
execution,” in USENIX Security Symposium, 2018.

[73] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch side-
channel attacks: Bypassing SMAP and kernel ASLR,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2016.

[74] M. Schwarzl, T. Schuster, M. Schwarz, and D. Gruss, “Speculative
dereferencing: Reviving Foreshadow,” in International Conference on
Financial Cryptography and Data Security, 2021.

[75] M. Lipp, D. Gruss, and M. Schwarz, “AMD prefetch attacks through
power and time,” in USENIX Security Symposium, 2022.

[76] Y. Shin, H. C. Kim, D. Kwon, J. H. Jeong, and J. Hur, “Unveiling
hardware-based data prefetcher, a hidden source of information leakage,”
in ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2018.

[77] A. Rohan, B. Panda, and P. Agarwal, “Reverse engineering the stream
prefetcher for profit,” in IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW), 2020.

[78] C. Trippel, D. Lustig, and M. Martonosi, “MeltdownPrime and Spec-
trePrime: Automatically-synthesized attacks exploiting invalidation-
based coherence protocols,” arXiv preprint arXiv:1802.03802, 2018.

[79] J. Horn, “CPU security bug: Information leak using speculative ex-
ecution,” 2017. Available at https://bugs.chromium.org/p/project-zero/
issues/attachmentText?aid=287305.

[80] A. Fogh, “Row hammer, java script and MESI,” 2016. Avail-
able at https://dreamsofastone.blogspot.com/2016/02/row-hammer-java-
script-and-mesi.html.

[81] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” arXiv preprint arXiv:1807.03757, 2018.

[82] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner, F.
Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in USENIX Security Sympo-
sium, 2019.

[83] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “Armaged-
don: Cache attacks on mobile devices,” in USENIX Security Symposium,
2016.

[84] G. Saileshwar, S. Kariyappa, and M. Qureshi, “Bespoke cache enclaves:
Fine-grained and scalable isolation from cache side-channels via flexible
set-partitioning,” in International Symposium on Secure and Private
Execution Environment Design (SEED), 2021.

[85] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative exe-
cution processors,” in Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018.

[86] “Security best practices for side channel resistance.” Available at
https://www.intel.com/content/www/us/en/developer/articles/technical/
software-security-guidance/best-practices/security-best-practices-side-
channel-resistance.html.

[87] B. C. Vattikonda, S. Das, and H. Shacham, “Eliminating fine grained
timers in Xen,” in ACM workshop on Cloud computing security work-
shop, 2011.

[88] R. Martin, J. Demme, and S. Sethumadhavan, “Timewarp: Rethinking
timekeeping and performance monitoring mechanisms to mitigate side-
channel attacks,” in Annual International Symposium on Computer
Architecture (ISCA), 2012.

*

* *
*
*
*
*
*
*
*

AP P E N D I X

A. The Leakage Rate of Spectre v1

TA B L E I: The leakage rate of Spectre v1 when using
Prefetch+Reload and Prefetch+Prefetch, respectively, normal-
ized to Flush+Reload.

Desktop processors Server processors
Model Core Core Xeon Platinum Xeon Platinum

i7-6700 i7-7700K 8124 8151
(3.4 GHz) (4.2 GHz) (3.0 GHz) (3.4 GHz)

Prefetch+Reload 1.61 2.40 1.57 1.64

Prefetch+Prefetch 3.02 3.94 2.01 2.08

B. The Meltdown Gadget

d e f i n e e n cod e (x , b) ((((x) > > (b 8)) & 0 x f f))
d e f i n e SPACING 4096
c h a r mem [8] [SPACING * 2 5 6] ;

u i n t 6 4 t s e c r e t = (u i n t 6 4 t) s e c r e t a d d r ;
memaccess (mem[0] + e nc od e (s e c r e t , 0) SPACING) ;
memaccess (mem[1] + e nc od e (s e c r e t , 1) SPACING) ;
memaccess (mem[2] + e nc od e (s e c r e t , 2) SPACING) ;
memaccess (mem[3] + e nc od e (s e c r e t , 3) SPACING) ;
memaccess (mem[4] + e nc od e (s e c r e t , 4) SPACING) ;
memaccess (mem[5] + e nc od e (s e c r e t , 5) SPACING) ;
memaccess (mem[6] + e nc od e (s e c r e t , 6) SPACING) ;
memaccess (mem[7] + e nc od e (s e c r e t , 7) * SPACING) ;

Listing 1: The example Meltdown gadget where an access to
the 64-secret is followed by eight secret encoding operations.

