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Abstract. We prove that the convex peeling of a random point set in dimen-
sion d approximates motion by the 1/(d + 1) power of Gaussian curvature.
We use viscosity solution theory to interpret the limiting partial differential
equation. We use the Martingale method to solve the cell problem associated
to convex peeling. Our proof follows the program of Armstrong-Cardaliaguet
[3] for homogenization of geometric motions, but with completely different
ingredients.

1. Introduction

1.1. Overview. The ordering of multivariate data is an important and challenging
problem in statistics. One dimensional data can be ordered linearly from least
to greatest, and the study of the distributional properties of this ordering is the
subject of order statistics. An important order statistic is the median, or middle,
of the dataset. In statistics, the median is generally preferred over the mean due
to its robustness with respect to noise. In dimensions d ≥ 2, there is no obvious
generalization of the one dimensional order statistics, and no obvious candidate
for the median. As such, many different types of orderings, and corresponding
definitions of median, have been proposed for multivariate data. One of the first
surveys on the ordering of multivariate data was given by Barnett [4]. More recent
surveys are given by Small [19] and Liu-Parelius-Singh [14].

In his seminal paper, Barnett [4] introduced the idea of convex hull ordering. The
idea is to sort a finite set X ⊆ Rd into convex layers by repeatedly removing the
vertices of the convex hull. The process of sorting a set of points into convex layers
is called convex hull peeling, convex hull ordering, and sometimes onion-peeling, as
in Dalal [9]. The index of the convex layer that a sample belongs to is called its
convex hull peeling depth. This peeling procedure will eventually exhaust the entire
dataset, and the convex hull median is defined as the centroid of the points on the
final convex layer. Convex hull ordering is used in the field of robust statistics, see
Donoho-Gasko [10] and Rousseeuw-Struyf [17], and is particularly useful in outlier
detection, see Hodge-Austin [12].
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Since affine transformations preserve the convexity of sets, the convex layers of
a set of points are invariant under affine transformations. Using this symmetry,
Suk-Flusser [20] use convex peeling to recognize sets deformed by projection. This
is important, for example, in computer vision, where a common task is the recog-
nition of objects viewed from different angles. There are also some applications
of convex hull peeling to fingerprint identification, see Poulos-Papavlasopoulos-
Chrissikopoulos [16], and algorithmic drawing, see Hodge-Austin [12].

In this paper, we show that the convex layers of a random set of points converge
in the large sample size limit to the level sets of the solution of a partial differential
equation (PDE). The solutions of our PDE have the property that their level sets
evolve with a normal velocity given by the 1/(d + 1) power of Gaussian curvature
multiplied by a spatial weight. When the weight is constant, our PDE is known
as affine invariant curvature motion, see Cao [7], and affine flow, see Andrews
[1], and in two dimensions as affine curve shortening flow, see Angenent-Sapiro-
Tannenbaum [2], Moisan [15], and Sapiro-Tannenbaum [18]. We use the level-set
method of Evans-Spruck [11] to make sense of the limiting equation.

The high level outline of our proof is identical to that of Armstrong-Cardaliaguet
[3], who supplied the prototype for quantitative homogenization of random geomet-
ric motion.

Figure 1.1. Peels K1+⌊kn/10⌋ for k = 0, ..., 9 of the convex peeling
K1, ...,Kn of 105 points selected independently and uniformly at
random from the three different shaded sets.

1.2. Main Result. The convex peeling of a set X ⊆ Rd is the nested sequence of
closed convex sets defined by

K1(X) = conv(X) and Kn+1 = conv(X ∩ int(Kn(X))),

where conv(X) denotes the convex hull of X and int(K) denotes the interior of K.
Several examples of convex hull peeling are displayed in Figure 1.1.

It is convenient to encode the convex peeling of X as a function, by stacking the
interiors of the peels:

(1.1) hX =
∑
n≥1

1int(Kn(X)).

We call hX : Rd → N∪{+∞} is the convex height function of X. We are interested
in the shape of hX for random finite sets X ⊆ Rd. The starting point of our work
is the following result.
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Theorem 1.1 (Dalal [9]). There is a constant C > 0 such that, if Xn ⊆ Rd consists
of n points chosen independently and uniformly at random from the unit ball B1,
then C−1n2/(d+1) ≤ E[maxhXn ] ≤ Cn2/(d+1).

We strengthen the above result to
E [maxhXn

] ∼ n2/(d+1),

and we show that the rescaled height functions n−2/(d+1)hXn
converge almost surely

to the limit
α (d+1)

2d (1− |x|2d/(d+1)),

where α > 0 depends only on dimension. In fact, we prove something stronger:

Theorem 1.2. Let U ⊆ Rd be convex, open, and bounded, let f ∈ C(U) satisfy
f > 0, and, for m > 1, let Xm ∼ Poisson(mf). For every ε > 0, there is a δ > 0
such that
(1.2) P[sup

Ū

|m−2/(d+1)hXm
− αh| > ε] ≤ exp(−δ(logm)−2m1/3(d+1)),

where α > 0 depends only on dimension, and h ∈ C(Ū) is the unique viscosity
solution of

(1.3)
{
〈Dh, cof(−D2h)Dh〉 = f2 in U

h = 0 on ∂U.

Note that cof(A) denotes the cofactor matrix of A, which is the unique continuous
map such that cof(A) = det(A)A−1 when A is invertible. The inner product on
the left-hand side of the PDE (1.3) is the Gaussian curvature of the level sets of h
multiplied by the square norm of the gradient |Dh|2 (see Section 1.4). The notion
of viscosity solution is defined in Section 3. The notation X ∼ Poisson(f) indicates
that X is a random subset of Rd whose law is Poisson with density f .

We remark that (1.2) gives a quantitative probabilistic estimate, but does not
give a convergence rate for m−2/(d+1)hXm

→ αh, since we are not able to quantify
the dependence of δ on ε. Indeed, the proof of Theorem 1.2 approximates h by
simpler piecewise sub- and supersolutions, and the number of pieces required de-
pends in some way on the regularity of h, which may not be smooth. We refer to
Problem 1.5 for more dicussion.

While we stated our main Theorem for a Poisson cloud, we can recover from The-
orem 1.2 the same result for a sequence of independent and identically distributed
(i.i.d.) random variables.

Corollary 1.3. Assume that
∫
U
f dx = 1. Let Y1, Y2, Y3, · · · be a sequence of

i.i.d. random variables with probability density f and set
Zm = {Y1, Y2, . . . , Ym} .

For every ε > 0, there is a δ > 0 such that
(1.4) P[sup

Ū

|m−2/(d+1)hZm − αh| > ε] ≤ exp(−δ(logm)−2m1/3(d+1)),

where h ∈ C(Ū) is the unique viscosity solution of (1.3). In particular,
(1.5) m−2/(d+1)hZm

−→ αh uniformly and almost surely as m→ ∞.

There are three natural problems worth mentioning.
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Problem 1.4. Determine the constant α in Theorem 1.2. When d = 2 numerical
simulations suggest α = 4/3.

Problem 1.5. Determine the scaling limit of the fluctuations m−2/(d+1)hXm −αh
in Theorem 1.2. Our proof of Theorem 1.2 does not quantify the dependence of δ
on ε. The regularity of the limiting h should have an effect on this dependence.
Some results on the regularity of h can be found in Andrews [1] and Brendle-Choi-
Daskalopoulos [6]. However, even in the case h is smooth, we expect our bound is
sub-optimal.

Problem 1.6. Prove uniqueness of solutions in the case f ≥ 0. Our proof of
Theorem 1.2 requires f > 0. As we see from the non-convex example in Figure
1.1, the geometric interpretation as motion by a power of Gauss curvature becomes
degenerate in the case f = 0. Looking forward to Section 3, the uniqueness of
solutions depends upon our being able to perturb subsolutions to strict subsolutions.
When f > 0, this is easily achieved by homogeneity. When f is allowed to vanish,
strictness must be obtained in a different way. For example, one could add ε|x|2
to make the super level sets concave. However, making such perturbations work in
general appears to require curvature bounds for the level sets, which are currently
unavailable in our setting.

1.3. Game Interpretation. To formally derive the PDE (1.3), we observe that,
for arbitrary X ⊆ Rd, the height function hX satisfies the dynamic programming
principle:

(1.6) hX(x) = inf
p∈Rd\{0}

sup
p·(y−x)>0

[1X(y) + hX(y)] for all x ∈ Rd.

As in Kohn-Serfaty [13], this leads to an interpretation of the convex height function
as the value function of a two-player zero-sum game.

In the convex hull game, the players take turns defining a sequence of points
x0, p0, x1, p1, x2, p2, ... ∈ Rd. The game starts at a point x0 ∈ Rd. After xk is
defined, player I chooses any pk ∈ Rd satisfying pk 6= 0. After pk is defined, player
II chooses any point xk+1 ∈ Rd satisfying pk · (xk+1−xk) > 0. Players I and II seek
to minimize and maximize, respectively, the final score

∑
k≥1 1X(xk). In particular,

we see that player I seeks to, in the fewest possible moves, isolate play to a half-space
that is disjoint from the set X. Meanwhile, player II seeks to land on the set X as
often as possible. An optimal choice for player I is to choose pk so that the halfspace
{x : pk · (x − xk) > 0} is disjoint from A := {x : hX(x) ≥ hX(xk)}. Since A is
convex, such as choice pk exists, and for this choice we have hX(xk+1) ≤ hX(xk)−1
for any feasible choice of xk+1 ∈ X by player II. An optimal choice for player II is
to choose xk+1 ∈ X so that pk · (xk−1 −xk) > 0 and hX(xk+1) = hX(xk)− 1. Such
a point xk+1 ∈ X is guaranteed to exist by the definition of convex peeling. Thus,
each step of the game moves exactly to the previous convex layer, and the convex
height function hX(x0) is precisely the final score under optimal play started at x0.

To explain the limiting equation, let Xm ∼ Poisson(mf) for large m > 0.
Let us assume, even though it is discontinuous, that the rescaled height function
h = m−2/(d+1)hXm is smooth, has uniformly convex level sets, and non-vanishing
gradient. As discussed above, the optimal choice for player I when xk = x is
p = −Dh(x), or any scalar multiple thereof. Thus, the dynamic programming
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principle (1.6) becomes
sup

Dh(x)·(y−x)<0

[m−2/(d+1)1X(y) + h(y)− h(x)] = 0.

Formally speaking, the dynamic programming principle implies that, on average,
the set

{y ∈ Rd : Dh(x) · (y − x) < 0 and h(y) ≥ h(x)−m−2/(d+1)}
should have one point. That is, its probability volume

∫
A
f(y) dy should be pro-

portional to m−1. Taylor expanding h to compute the volume, we obtain
〈Dh(x), cof(−Dh(x))Dh(x)〉 ≈ Cf(x)2,

for a constant of proportionality C. That is, h should satisfy (1.3), up to the
constant C, which is not determined by this heuristic argument.

1.4. Geometric interpretation. We can give a precise geometric interpretation
of (1.3). The Gaussian curvature of the level surfaces of h is given by Giga [21]

κG =
〈Dh, cof(−D2h)Dh〉

|Dh|d+1
,

provided h ∈ C2 and Dh 6= 0. Therefore we can formally rewrite (1.3) as

(1.7) |Dh|κ
1

d+1

G = f
2

d+1 .

This equation has the property that the level sets {h = t} move with a normal
velocity given by

(1.8) ν = κ
1

d+1

G f−
2

d+1 .

To see why, consider nearby level sets h = t and h = t + ∆t. Let ∆x denote the
normal distance between these level sets at some point x ∈ Rd. Then |Dh(x)| ≈
∆t/∆x and hence

∆x ≈ κ
1

d+1

G f−
2

d+1∆t.

This implies that h(x) is the arrival time of the boundary ∂U as it evolves with
a normal velocity given by (1.8). When f is constant, this geometric motion is
known as affine invariant curvature motion, or the affine flow. Cao [7] derived
affine invariant curvature motion as the continuum limit of affine erosions. A similar
geometric flow (motion by Gauss curvature) was derived by Ishii-Mikami [23] for
the wearing process of a non-convex stone.

1.5. Representation formulas for solutions. Assume that f is a radial func-
tion, that is f(x) = f(r) where r = |x|. We look for a solution of (1.3) in the form
h(x) = v(r) where v is a decreasing function. Using the alternative form (1.7) we
see that

v′(r) = −r
d−1
d+1 f(r)

2
d+1 .

Integrating and using the boundary condition limr→∞ v(r) = 0 we have

v(r) = −
∫ ∞

r

v′(s) ds =

∫ ∞

r

s
d−1
d+1 f(s)

2
d+1 ds.

Therefore we find that

(1.9) h(x) =

∫ ∞

|x|
r

d−1
d+1 f(r)

2
d+1 dr.
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We give some applications of this formula below.
Example 1 (Uniform distribution on a ball). Suppose that f(x) = 1

|B1| for x ∈ B1

and f(x) = 0 otherwise, where B1 denotes the unit ball. Then we have

(1.10) h(x) =
d+ 1

2d|B1|
2

d+1

(
1− |x|

2d
d+1

)
.

The (normalized) maximum convex depth in this case is

αh(0) =
α(d+ 1)

2d|B1|
2

d+1

.

Example 2 (Standard normal distribution). Suppose that f(x) = (2π)−d/2e−|x|2/2.
Then

(1.11) h(x) =
1

(2π)
d

d+1

∫ ∞

|x|
r

d−1
d+1 e−

r2

d+1 dr.

The maximum convex depth in this case is

αh(0) =
α

2

(
d+ 1

2π

) d
d+1

Γ

(
d

d+ 1

)
.

Due to the affine invariance of (1.3), we can scale the solution formula (1.9) by
any affine transformation. For example, suppose that

f(x) = |A|f(|Ax+ b|),
where A ∈ Rd×d is a non-singular matrix, b ∈ Rd, and |A| is the absolute value of
the determinant of A. Then we have

(1.12) h(x) =

∫ ∞

|Ax+b|
r

d−1
d+1 f(r)

2
d+1 dr.

Example 3 (Normal distribution). Suppose that

f(x) = |2πΣ|− 1
2 exp

(
−1

2
(x− µ) · Σ−1(x− µ)

)
,

where µ ∈ Rd is the mean and Σ ∈ Rd×d is the covariance matrix. Then

(1.13) h(x) =
1

(2π)
d

d+1

∫ ∞

|Σ− 1
2 (x−µ)|

r
d−1
d+1 e−

r2

d+1 dr.

1.6. Distribution of points among layers. We show here how Theorem 1.2 can
be used to deduce the distribution of points among the convex layers. Let
(1.14) Nm(i) = # {Xm ∩Ki(Xm) \Ki+1(Xm)} ,
be the number of points on the ith convex layer for Xm ∼ Poisson(mf).1 Note that
the ith convex layer is approximately the level set {hXm = i}. Since m− 2

d+1hXm →
αh as m→ ∞ it is possible to show that for any 0 < a < b

(1.15) lim
m→∞

1

m

⌊bm
2

d+1 ⌋∑
i=⌊am

2
d+1 ⌋

Nm(i) =

∫
a≤αh≤b

f dx almost surely.

1The discussion is equally valid for a sequence of m i.i.d random variables with probability
density f as in Corollary 1.3.
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(b) Standard normal distribution

Figure 1.2. Comparison of the distribution of points among con-
vex layers with the continuum limit (1.16). In each figure the
vertical axis is the number of points and the horizontal axis is the
convex layer index.

By the co-area formula and (1.7) we have∫
a≤αh≤b

f dx =
1

α

∫ b

a

∫
{αh=r}

f

|Dh|
dS dr =

1

α

∫ b

a

∫
{αh=r}

f
d−1
d+1 κ

1
d+1

G dS dr,

where κG denotes the Gaussian curvature of the level set {αh = r}. It is tempting
to set b− a = m− 2

d+1 to get

(1.16) lim
m→∞

m− d−1
d+1Nm(btm

2
d+1 c) = 1

α

∫
{αh=t}

f
d−1
d+1 κ

1
d+1

G dS almost surely.

This does not follow directly from Theorem 1.2 and would require a far more careful
analysis of the continuum limit. We leave such an analysis to future work, and
proceed with discussing applications. For convenience, let us set

(1.17) N(t) =
1

α

∫
{αh=t}

f
d−1
d+1 κ

1
d+1

G dS.

Note that if f(x) = f(r) is radial, then h(x) = h(r) and κG = r−(d−1) for
r = h−1(α−1t). Therefore

(1.18) N(t) =
d|B1|
α

f(r)
d−1
d+1 r

d(d−1)
d+1 , where r = h−1(α−1t).

Example 4 (Uniform distribution revisited). For a uniform distribution on the
unit ball we have

(1.19) N(t) =
d|B1|

2
d+1

α
(1− ct)

d−1
2 , where c = 2d|B1|

2
d+1

α(d+ 1)
.

Figure 2(a) shows a simulation comparing N(t) to the distribution of points among
convex layers for n = 105 i.i.d. random variables uniformly distributed on the unit
ball. Another simulation averaged over 100 trials and shown in Figure 1.3 suggests
there is a boundary layer phenomenon. The first convex layer has significantly more
points than nearby subsequent layers.



8 THE LIMIT SHAPE OF CONVEX HULL PEELING

0 200 400 600 800 1000 1200

0

20

40

60

80

100

120

140

160

10 20 30 40 50 60 70 80 90

144

146

148

150

152

154

156

158

Figure 1.3. Simulation showing evidence of a boundary layer
near the first convex layer. The figure on the right is zoomed
in to show the sharp decrease in the number of points between the
first and subsequent convex layers.

Example 5 (Normal distribution revisited). For the standard normal distribution
we have

(1.20) N(t) =
d|B1|
α

(
r√
2π

) d(d−1)
d+1

exp

(
−r

2(d− 1)

2(d+ 1)

)
,

where r = r(t) satisfies αh(r) = t, or

t =
α

(2π)
d

d+1

∫ ∞

r

s
d−1
d+1 e−

s2

d+1 ds.

Figure 2(b) shows a simulation comparing N(t) to the distribution of points among
convex layers for n = 105 i.i.d. normally distributed random variables.

1.7. Overview of proof and the cell-problem. The proof of Theorem 1.2 in-
volves solving a cell problem, which in homogenization theory refers to a family of
simpler problems whose solutions describe the local behavior of the random func-
tion of interest. When looking for a cell problem for convex hull peeling, we seek
a simpler convex peeling problem that has convenient symmetry and invariance
properties, and can locally approximate a general convex peeling problem.

Let Ym ∼ Poisson(m) and define the standard parabola
P = {x ∈ Rd : xd >

1
2 |x

d|2},
where

xd = (x1, . . . , xd−1).

The cell problem for convex peeling is the convex peeling of the set Y1 ∩ P . In
particular, we show that almost surely

(1.21) lim
r→∞

1

r
hY1∩P (red) = α,

and we establish a convergence rate of O(
√
r) up to logarithmic factors. To see

why the function hY1∩P (red) should have linear growth in r, we note that the set
P ∩ {xd < r} contains on average n = O(r(d+1)/2) points from Y1, and so by
Theorem 1.1 we expect O(n2/(d+1)) = O(r) convex layers in this region.



THE LIMIT SHAPE OF CONVEX HULL PEELING 9

We call hY1∩P the cell problem for convex peeling due to a family of symmetries
that are inherited from convex peeling, which allow us to essentially use (1.21) to
prove our main result. Indeed, we first note that convex peeling is invariant to
affine transformations, that is, we have
(1.22) hYm∩P = ha(Ym∩P ) ◦ a
for any nonsingular affine transformation a. The first important consequence of
this affine symmetry is the scale property
(1.23) hYm∩P (red) ∼ hY1∩P (m

2/(d+1)red).

To see this, we use (1.22) with the affine transformation am defined by

amx = (m1(d+1)xd,m2/(d+1)xd),

noting that amP = P and amYm ∼ Y1. Second, if a is any affine transformation on
Rd satisfying aed = ed, then applying again (1.22) we have
(1.24) hYm∩aP (red) ∼ hYsm∩P (red),

where s = |det(Da)| > 0. Combining the two affine symmetries (1.23) and (1.24)
with the cell problem (1.21) we have

(1.25) hYm∩aP (red) ≈ α(sm)2/(d+1)r,

provided r � m−2/(d+1). Thus, the solution of the cell problem (1.21), coupled
with convenient affine invariances, allows us to solve a whole family of cell problems
hYm∩aP for Poisson clouds with arbitrary intensity m, and general parabolas aP .
It is worth noting that that Gaussian curvature κG of the parabla aP at the origin
is given by κG = s−2, and so s2/(d+1) = κ

−1/(d+1)
G .

To solve the cell problem, i.e., prove (1.21), we first make the observation that
the peeling of the parabola Y1 ∩ P has a spatial homogeneity that is not initially
evident. Indeed, let H = {x ∈ Rd : xd > 0}, define π : P → H by

π(x) = (x1, x2, . . . , xd−1, xd − 1
2 |x

d|2)

and set s = hX1∩P ◦ π−1. Since π is not affine, the function s is not the depth
function for a convex peeling. However, we can interpret s as the depth function for
another type of peeling that we call semiconvex peeling. While the points removed
in each layer of convex peeling are those that can be touched by half-spaces, the
points removed by semiconvex peeling are exactly those touched by downward facing
parabolas x0−P , i.e., the images of halfspaces under the bijection π. See Figure 2.1
for an illustration of semiconvex peeling. Since π(P ) = H and π(Y1) ∼ Poisson(1),
the depth function s describes the semiconvex peeling of a unit intensity Poisson
point cloud above a halfspace, and we can immediately see that the process is
distributionally invariant with respect to translations in Rd−1. These additional
symmetries of semiconvex peeling allow for a Martingale proof of convergence, which
is given in Section 2.

The solution of the cell problem locally describes the convex depth function and
can be used to derive the limiting PDE (1.3). Indeed, assume that m−2/(d+1)hXm

is uniformly close to a smooth function h. Let x0 ∈ U and assume, after making
an orthogonal transformation if necessary, that Dh(x0) = |Dh(x0)|ed. Let a be an
affine transformation with aed = ed for which

x0 + aP ≈ {x ∈ B(x0, r) : h(x) > h(x0)}.
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In particular, defining s := |det(Da)| we have s2/(d+1) = κ
−1/(d+1)
G , where κG is the

Gaussian curvature of the level set of h at x0. Making a localization approximation
Xm ∼ Yf(x0)m for small r > 0 we have

|Dh(x0)| ≈
1

r
(hx0 + red)− h(x0))

≈ 1

rm2/(d+1)
(hXm(x0 + red)− hXm(x0))

≈ 1

rm2/(d+1)
hYf(x0)m∩aP (red)

≈ αf(x0)
2/(d+1)κ

−1/(d+1)
G ,

where we used the solution of the cell problem (1.25) in the last line. This can be
compared with the geometric form of the continuum PDE given in (1.7). We note
that the arguments above are merely formal, and are meant to give some of the
main ideas that motivated Theorem 1.2 and our proof techniques. We make these
arguments rigorous in the remainder of the paper.

1.8. Outline. In Section 2, we study a related peeling process called semiconvex
peeling. This process has some additional symmetries that allow for a Martingale
proof of convergence. In Section 3, we discuss the solution theory of the limit-
ing PDE. This is essentially standard, except for a folklore theorem on piece-wise
smooth approximation of viscosity solutions. In Section 4, we use the convergence
of semiconvex peeling to control local regions of the convex peeling and prove our
main result. This requires some delicate geometric arguments to translate between
our two notions of peeling.

1.9. Acknowledgments. The first author was partially supported by NSF-DMS
grant 1500829. The second author was partially supported by the National Science
Foundation and the Alfred P Sloan Foundation.

2. Semiconvex Peeling

2.1. Definitions. In this section we study an a priori different peeling problem
that we call semiconvex peeling. In Section 4, we will see that this is the “cell
problem” for convex peeling. That is, it is the problem obtained by blow-up of the
limiting convex peeling problem. For now, we simply study a different problem.

Consider the parabolic region
P = {x ∈ Rd : xd >

1
2 |x

d|2},

where
xd = (x1, ..., xd−1).

Consider also the half space
H = {x ∈ Rd : xd > 0}.

We call a set S ⊆ H semiconvex if its complement is a union of sets of the form
H ∩ (x − P ) for x ∈ H. Note that this implies S is closed. This definition is
analogous to the complement of a convex set being a union of open half spaces.
The semiconvex hull of a set X ⊆ H is defined to be

semi(X) = H \
⋃

{x− P : x ∈ H and (x− P ) ∩X = ∅}.
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Figure 2.1. The semiconvex peeling of a Zd−1×{0}-periodic Pois-
son cloud X ⊆ H. The shading indicates alternating semiconvex
layers.

The semiconvex peeling of a set X ⊆ H is defined by
S1(X) = semi(X) and Sn+1(X) = semi(X ∩ int(Sn(X))).

The semiconvex height function of a set X ⊆ H is defined to be

sX =
∑
n≥1

1int(Sn(X)).

Note that sX takes values in N ∪ {∞} a priori. Of course, when X ⊆ H is locally
finite, sX is everywhere finite. See Figure 2.1 for an example.

Throughout the paper, C and c denote positive constants that may vary in each
instance, but depend only on dimension. We always assume C > 1 and 0 < c < 1.

2.2. Monotonicity. Semiconvex peeling is monotone in the following sense.

Lemma 2.1. If X ⊆ Y ⊆ H, then sX ≤ sY . More generally, if S̃n ⊆ H is a
sequence of semiconvex sets that satisfy S̃n+1 ⊆ S̃n and X ⊆

⋃
n≥1 ∂S̃n ∪

⋂
n≥1 S̃n,

then sX ≤
∑

n≥1 1S̃n
.

Proof. The second statement follows from the identity
semi(X) = ∩{K semiconvex : X ⊆ K ⊆ H}

and induction on n. The first statement follows from the second. □

2.3. Tail Bounds. Like the convex height function, the semiconvex height function
has a dynamic programming principle.

Proposition 2.2. For all x ∈ H we have
sX(x) = inf

y∈x+∂P
sup

z∈X∩(y−P )

(1X(z) + sX(z)),

where the empty supremum is interpreted as 0.

Proof. Let Xn = X ∩ int(Sn(X)) so that Sn+1(X) = semi(Xn), and set X0 = X.
Note that Xn ⊃ Xn+1 and sX(x) = n if x ∈ Xn \Xn+1 for all n ≥ 0. Let x ∈ H
and set n = sX(x). Thus, x 6∈ int(Sn+1(X)) and so there exists ỹ ∈ H such that
(ỹ−P )∩Xn = ∅ and x ∈ ỹ − P . Let t ≥ 0 such that y := ỹ−ted satisfies x ∈ y−∂P ,
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which is equivalent to y ∈ x+ ∂P . Since ỹ−P ⊃ y−P we have (y−P )∩Xn = ∅,
and so sX(z) ≤ n− 1 for all z ∈ y − P . Therefore

inf
y∈x+∂P

sup
z∈X∩(y−P )

(1X(z) + sX(z)) ≤ n = sX(x).

If n = 0, then the other inequality is trivial, so we may assume n ≥ 1. Let
y ∈ x+ ∂P . Then we have x ∈ y − P . If (y − P ) ∩Xn−1 = ∅, then we would have
that x 6∈ int(Sn(X)), which is a contradiction since sX(x) = n. Therefore, there
exists z ∈ (y − P ) ∩Xn−1 and so

sup
z∈X∩(y−P )

(1X(z) + sX(z)) ≥ 1 + n− 1 = n = sX(x).

Since y ∈ x+ ∂P was arbitrary, the proof is complete. □

The dynamic programming principle given in Proposition 2.2 has the natural in-
terpretation as a two-player zero-sum game. We prove upper and lower tail bounds
by constructing strategies in this game. In both cases, we construct trees of disjoint
regions in H, and trade the exponential tree growth against exponential bounds
for the Poisson process. Our upper bound strategy adapts an argument from Dalal
[9]. Our lower bound strategy is new.

•
x()

•
x+

•
x−

•
x++

•
x+−

•
x−+•

x−−

Figure 2.2. A tree of points for the lower bound strategy.

For later applications, we need these bounds to be localized. For r > 0, we define
the cylinder

Qr = {x ∈ Rd : xd ∈ (0, r) and x21 + · · ·+ x2d−1 < r2}

and its upper boundary

∂+Qr = {x ∈ Rd : xd = r and x21 + · · ·+ x2d−1 < r2}.
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Lemma 2.3. If r ≥ 1 and X ∼ Poisson(1H), then

P[sX∩Qr
(red) ≤ cr] ≤ e−cr.

Proof. Step 1. We may assume that X = Y ∩ H, where Y ∼ Poisson(1Rd). We
build a tree by exploring the Poisson cloud Y downward from red. We define a tree
of points xu ∈ Y indexed by words u in the alphabet A = {−,+}d−1. Begin by
setting x() = red. For v ∈ A and t > 0, we define the region

Pv,t = {x ∈ P : 2 < xd ≤ 2 + t and vkxk > 0 for k = 1, ..., d− 1}.

If u ∈ Ak, v ∈ A, and xu ∈ Y is already defined, we choose tuv > 0 and xuv ∈
Y ∩ (xu − Pv,tuv ) with tuv > 0 as small as possible. Using the Poisson law, we see
that xuv and tuv exist almost surely.

Our tree is chosen to that it provides a strategy for the maximizer in the semi-
convex hull game. Observe that, if y ∈ xu + ∂P , then there is a v ∈ A such that
xuv ∈ y − P . Thus, if xuv ∈ H for all v ∈ A, the dynamic programming principle
implies

sX(xu) ≥ 1 + min
v∈A

sX(xuv).

Thus, by induction, we see that

sX(red) ≥ max{n : xu ∈ H for all u ∈ An}.

Next, observe that the set Pv,t was chosen in such a way that xuv ∈ xu −Q2+tuv .
That is, if xu ∈ H, then xu ∈ Qr. This gives the localization

sX∩Qr (red) ≥ max{n : xu ∈ H for all u ∈ An}.

It remains to control the right-hand side.
Step 2. Fix a word u = v1 · · · vn ∈ An and consider its initial segments uk =

v1 · · · vk. Observe that the sets

Pk = xuk−1
− Pvk,tuk

are disjoint. Thus, by the Poisson law, the sequence of random heights tuk
are

independent. Since the sections have volume satisfying

|Pv,t| ≥ ct,

the Poisson law of Y gives
E[etuk ] ≤ eC

and, by independence,

E[e(xu)d−r] = E[etu1
+···+tun ] =

n∏
k=1

E[etuk ] ≤ eCn.

Applying Chebyshev’s inequality and summing over words u ∈ An, it follows that

P
[
max
u∈An

(r − (xu)d) ≥ r

]
≤ eCn−r.

Combining this with the previous step, we see that

P[sX∩Qr
(red) < n] ≤ P[max

u∈An
(r − (xu)d) ≥ r] ≤ eCn−r.

Setting n = dcre yields the lemma. □
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•x

• • •S(x)

∂H

Figure 2.3. A tree of parabolic caps from the upper bound strategy.

To prove an upper bound, we employ the only canonical strategy for the mini-
mizer: choosing y = x. To estimate the performance of this strategy, we build a
tree of parabolic caps. See Figure 2.3 for a picture in dimension d = 2. This is a
straightforward adaptation of a lemma from Dalal [9].
Lemma 2.4. If r, t ≥ 1 and X ∼ Poisson(1H), then

P[sX∪(H\Qr)(red) ≥ Crt] ≤ e−rt.

Proof. Step 1. For x ∈ Zd, let
S(x) = {y ∈ Zd : yd = xd − 2 and |yd − xd|∞ ≤ 2}

and observe that the set
Ωx = (x− P ) \

⋃
y∈S(x)

(y − P )

satisfies
Ωx ⊆ x−Q4.

For a picture of these parabolic caps in d = 2, see Figure 2.3. As in Dalal [9], the
dynamic programming principle implies that

sX(x) ≤ #(X ∩ Ωx) + max
y∈S(x)

sX(y)

holds for all x ∈ Zd.
Step 2. For x ∈ Zd with xd = 2n > 0, let

T (x) = {y ∈ (Zd)n+1 : y1 = x and yk+1 ∈ S(yk).

Since sX(yn+1) = 0, the previous step implies that

sX(x) ≤ max
y∈T (x)

n∑
k=1

#(X ∩ Ωyk
) = max

y∈T (x)
#

(
X ∩

n⋃
k=1

Ωyk

)
.

Since

#T (x) ≤ eCxd and
∣∣∣∣∣

n⋃
k=1

Ωyk

∣∣∣∣∣ ≤ Cxd,

the Poisson law together with a union bound gives
P[sX(x) ≥ t] ≤ eCxd−t.
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Replacing t by Cxdt yields the lemma for r > 0 an even integer. Obtain the
remaining r by observing that r 7→ sX(red) is non-decreasing. □
2.4. Localization. Using the tail bounds, which are already localized, we obtain
full localization of semiconvex peeling. The essential idea is that, if the structure
of X \Qβr is affecting the value of sX(red), then some point on ∂+Qβr has height
less than some point on ∂+Qr. If β > 1 is large, then the tail bounds imply this is
unlikely. This situation is depicted in Figure 2.4.

Qαr Qr

•red
•x

•y

•
z W

Figure 2.4. A schematic of localization failure.

Lemma 2.5. There is an β ≥ 1 such that, if r ≥ 1, then
P[sX∩Qβr

(red) 6= sX∪(H\Qβr)(red)] ≤ e−r.

Proof. Suppose sX∩Qβr
(red) < sX∪(H\Qβr)(red) for some β ≥ 1 large and to be

determined. Write X1 = X ∩Qβr and X2 = X ∪ (H \Qβr). By hypothesis, there
is a least n ≤ sX1

(red) such that Sn(X1) ∩Qr 6= Sn(X2) ∩Qr.
By monotonicity, Sn(X1) ⊆ Sn(X2). Thus, we can choose a point x ∈ Qr ∩

Sn(X2)\Sn(X1). By the definition of semiconvex peeling, there is a y ∈ H such that
x ∈ (y−P ), (y−P )∩X1∩ int(Sn−1(X1)) = ∅, and (y−P )∩X2∩ int(Sn−1(X2)) 6=
∅. Since Qr ∩ Sn−1(X1) = Qr ∩ Sn−1(X2) and X1 ∩ Qβr = X2 ∩ Qβr, we have
(y − P ) \Qβr 6= ∅. Making β ≥ 1, there must be a z ∈ (y − P ) ∩Qβr with

z ∈W = (Zd−1 × R) ∩ ∂+Qβr/3.

See Figure 2.4 for a schematic of our situation. Observe that
sX∩(zd+Qβr/3)(z) ≤ sX∩Qβr

(z) ≤ sX∩Qβr
(x) ≤ sX∪(H\Qr)(red).

Using the tail bounds in Lemma 2.3 and Lemma 2.4, the probability this happens
for fixed z ∈W is at most exp(−cβs). Since #W ≤ Cβd−1rd−1, the lemma follows
by a union bound. □
2.5. Concentration. The localization of semiconvex peeling allows us to periodize
our problem. That is, we are able to replace the half space H by a cylinder over
a torus. The primary advantage of this is that the semiconvex peels Sn(X) on the
cylinder are a priori Lipschitz graphs over compact sets. This additional regular-
ity allows us run a Martingale argument. We follow Armstrong-Cardaliaguet [3],
replacing their ingredients with our analogues.
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For L ≥ 1, consider the (LZd−1 × {0})-periodization
XL = (X ∩ (− 1

2L,
1
2L)

d−1 × (0,∞)) + L(Zd−1 × {0}).

The point cloud XL is the LZd−1-periodic extension of X ∩ (− 1
2L,

1
2L)

d−1× (0,∞).
Localization immediately yields the following.

Lemma 2.6. If r ≥ 1 and L ≥ Cr, then
P[sX(red) 6= sXL(red)] ≤ e−r.

Proof. This is immediate from Lemma 2.5. □

Our present goal is to prove the following fluctuation bound.

Lemma 2.7. For r ≥ t ≥ C and L ≥ Cr,

P[|sXL(red)− E[sXL(red)]| ≥ (logL)2(log r)r1/2t] ≤ Ce−ct2/3 .

For the remainder of this subsection, we write X in place of XL.
There is a natural filtration associated to the semiconvex peeling of X. Let Fn

be the σ-algebra generated by Sn(X) and X \ int(Sn(X)). For r ≥ 1, we study the
Martingale

Yn = E[sX(red)|Fn].

We prove concentration by obtaining bounds on the increments.
We measure the increments using a swapping trick. Let X̃ be an independent

copy of X and define the swapped point clouds

Xn = (X \ int(Sn(X))) ∪ (X̃ ∩ int(Sn(X))).

The swapped point cloud Xn is obtained by switching from X to X̃ after n peels.
The key observation is that, since X and X̃ are independent, the swapped cloud

Xn has the same law as X. Moreover, we have E[Xn|Fn] = E[X|Fn], and thus
Yn+1 − Yn = E[sX(red)|Fn+1]− E[sX(red)|Fn]

= E[sXn+1(red)|Fn+1]− E[E[sXn(red)|Fn+1]|Fn]

= E[sXn+1
(red)− sXn

(red)|Fn+1],

where in the last line we use that sXn
and Fn+1 are conditionally independent given

Fn. To understand the increment Yn+1 − Yn, it suffices to relate the peelings of
the point clouds Xn and Xn+1. This is tractable because the point clouds Xn and
Xn+1 differ only in the strip int(Sn(X)) \ int(Sn+1(X)). We see below that the
height of this strip controls in the increment.

The upper bound on the increments is easy, since it corresponds to the case
where the strip has zero height and the increment is 1.

Lemma 2.8. Almost surely, Yn+1 − Yn ≤ 1.

Proof. From the definitions, we obtain Xn+1 ⊆ Xn ∪ ∂Sn+1(X). Thus, the sets

S′
m =

{
Sm(X) if m ≤ n+ 1

Sn+1(X) ∩ Sm−1(Xn) if m ≥ n+ 2

are decreasing, semiconvex, and satisfy Xn+1 ⊆ ∪m≥1∂S
′
m. Using Lemma 2.1, we

obtain sXn+1 ≤
∑

m 1S′
m

≤ sXn + 1Sn+1(X) ≤ sXn + 1. Conclude by the swapping
trick described above. □
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The lower bound on the increments is harder, since the depth of the strip is
a priori unbounded. It is here that we use the simplifications afforded by the
periodization. The (LZd−1×{0})-periodicity implies that the boundary ∂Sn(X) is
the graph of a LZd−1-periodic and CL-Lipschitz function over the hyperplane ∂H.

Lemma 2.9. Almost surely, P[Yn − Yn+1 ≥ C(logL)2t|Fn] ≤ exp(−t).

Proof. The proof is divided into three steps. First, we show that, if the increment
is large, then there must be many points of X̃ contained in a parabolic sector of the
strip Sn(X) \ Sn+1(X). Second, we show that this is exponentially unlikely unless
some parabolic sector of the strip has large volume. Third, we show that parabolic
sectors of the strip with large volume is exponentially unlikely. The Lipschitz
regularity of the peels allows us to consider only polynomially many parabolic
sectors.

Step 1. We prove that, almost surely, Yn − Yn+1 ≤ Zn, where

Zn = sup{#(X̃ ∩ (y − P ) ∩ Sn(x)) : y ∈ Sn(x) \ Sn+1(X)}.

By the swapping trick, we must show

E[sXn(red)|Fn] ≤ Zn + E[sXn+1(red)|Fn+1].

We add some peels to Xn+1 to obtain a peeling of Xn and then conclude by mono-
tonicity. We need to add peels to absorb the points

Xn \Xn+1 = X̃ ∩ int(Sn(X)) \ Sn+1(X).

Consider
S′
m = Sm(Sn+1(X) ∪ (int(Sn(X)) ∩ X̃)).

Observe that, if y ∈ int(S′
m) \ Sn+1(X), then (y− P )∩ X̃ ∩ ∂S′

l 6= ∅ for 1 ≤ l ≤ m.
It follows that

S′
Zn

= Sn+1(X).

Consider the following nested semiconvex sets:

S′′
m =


Sm(X) if m ≤ n

S′
m−n if n < m < n+ Zn

Sm−n−Zn+1(Xn+1) if m ≥ n+ Zn.

That is, we insert S′
1, ..., S

′
Zn−1 in between the Sn(Xn+1) and Sn+1(Xn+1). By

construction, we have Xn ⊆ ∪m≥1∂S
′′
m. The monotonicity from Lemma 2.1 implies

that sXn+1 ≤
∑

1K′′
m

≤ sXn + Zn. Since S′
1, ..., S

′
Zn−1 are Fn+1-measurable, we

have Yn − Yn+1 ≤ Zn.
Step 2. We prove that, almost surely, Zn ≤ C(logL)Wn, where

Wn = 1 + sup{|(y − P ) ∩ Sn(X)| : y ∈ Sn(X) \ intSn+1(X)}.

That is, Wn is 1 plus the largest volume of a parabolic section of the strip Sn(X) \
Sn+1(X). Note that Wn is unchanged if we restrict y to lie in ∂Sn+1(X). Since
∂Sn+1(X) is a CL-Lipschitz graph over the set (R/LZ)d−1×{0}, it has area CLd−1.
We may therefore select, in an Fn+1-measurable way, points y1, ..., yN with N ≤
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CLC , such that, for any y ∈ ∂Sn+1(X), there is a yk with y − P ⊆ yk − P and
|(yk − P ) ∩ Sn(X)| ≤Wn. Using the Poisson law and a union bound, we see that

P[Zn ≥ tWn|Fn+1] ≤ P[max
k

#(X̃ ∩ (yk − P ) ∩ Sn(X)) ≥ tWn|Fn+1]

≤ CLC exp(−ct)
≤ C exp(−ct− C logL).

In particular, E[Zn|Fn+1] ≤ C(logL)Wn.
Step 3. We prove that, almost surely, for t ≥ 1, P[Wn ≥ C(logL)t|Fn] ≤ exp(−t).

When combined with steps 1 and 2, this gives the lemma. Fix t ≥ 1. Using the
CL-Lipschitz regularity of ∂Sn(X), we can choose, in an Fn measurable way, CLC

many points yk such that, if y ∈ ∂Sn(X) and |(y − P ) ∩ Sn(X)| ≥ t, there is a
yk ∈ y − P such that |(yk − P ) ∩ Sn(X)| ≥ 1

2 t.
In the event that Wn ≥ t, there is a yk ∈ Sn(X) \ Sn+1(X). In particular, there

is a yk such that X̃ ∩ (yk − P ) ∩ int(Sn(X)) = ∅. The Poisson law and a union
bound implies P[Wn ≥ t|Fn] ≤ CLC exp(−ct) ≤ C exp(−ct− C logL). □

We interpolate the increment bounds with Azuma’s inequality to obtain concen-
tration. This is standard, but we include a proof for completeness.

Lemma 2.10. For t, n ≥ e, P[|Yn − Y0| ≥ C(logL)2(log n)n1/2t] ≤ exp(−t2/3).

Proof. For β ≥ 1, define the truncated increments

Zn = (Yn+1 − Yn)1|Yn+1−Yn|≤β

and observe that

P[|Yn − Y0| ≥ β] ≤
n−1∑
k=0

P[|Yk+1 − Yk| > β]

+ P

[∣∣∣∣∣
n−1∑
k=0

Zk − E[Zk|Fk]

∣∣∣∣∣ ≥ β −

∣∣∣∣∣
n−1∑
k=0

E[Zk|Fk]

∣∣∣∣∣
]
.

If β = C(logL)2(log n)t2/3, then the increment bounds imply, almost surely,

P[|Yk+1 − Yk| > β] ≤ exp(−(log n)t2/3)

and
E[Zk|Fk] ≤ exp(−(log n)t2/3).

Azuma’s inequality implies

P[|Yn − Y0| ≥ β] ≤ ne−(logn)t2/3 + exp(− 1
2n

−1β−2(β − ne−(logn)t2/3)2).

Setting β = C(logL)2(log n)n1/2t and assuming t ≥ C, this becomes

P[|Yn − Y0] ≥ C(logL)2(log n)n1/2t] ≤ exp(−t2/3).

Making the constant larger, we may assume t ≥ 1. □

We now adapt the above estimate to prove the main fluctuation bound.
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Proof of Lemma 2.7. Since L ≥ Cr, the upper tail bound Lemma 2.4 implies

P[sX(red) 6= Yrt] ≤ Ce−crt.

On the other hand, Lemma 2.10 implies

P[|Yrt − E[sX(red)]| ≥ C(logL)2(log r)r1/2t] ≤ e−t2/3 .

Assuming r ≥ t ≥ 1, these combine to give the lemma. □

2.6. Convergence. Note that in this subsection we return to the general semicon-
vex peeling problem, where X ∼ Poisson(1H) has not been periodized. In light of
the fluctuation bounds in Lemma 2.7, all that remains is to control the expectation
of sX(red). This is achieved by proving approximate additivity.

Lemma 2.11. For r ≥ C and t > 0

E[|sX((r + t)ed)− sX(red)− sX(ted)|] ≤ C(log r)3r1/2.

Proof. By Lemma 2.6 and Lemma 2.4, we may assume that X = XL is (LZd−1 ×
{0})-periodic for some L = Cr2. Consider the quantities

n− = inf
Rd−1×{r}

sX and n+ = sup
Rd−1×{r}

sX .

Using the a priori Cr2-Lipschitz regularity of ∂Sn(X) and the fluctuation bounds
in Lemma 2.7, we obtain

0 ≤ E[n+ − n−] ≤ C(log r)3r1/2.

Note that Sn+(X) ⊆ Rd−1 × (r,∞) ⊆ Sn−(X). We use this to define two peelings:

S−
n =

{
Sn(X) if n ≤ n−

Sn−n−(X ∩ Rd−1 × (r,∞)) if n > n−

and

S+
n =

{
Sn(X) if n ≤ n+

Sn+(X) ∩ Sn−n+(X ∩ Rd−1 × (r,∞)) if n > n+.

Using the monotonicity from Lemma 2.1, we conclude∑
1S−

n
≤ sX ≤

∑
1S+

n
.

This implies

n− + sX∩Rd−1×(r,∞)((r + t)ed) ≤ sX((r + t)ed) ≤ n+ + sX∩Rd−1×(r,∞)((r + t)ed).

Since
EsX∩Rd−1×(r,∞)((r + t)ed) = EsX(ted),

taking expectations yields the lemma. □
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2.7. Fluctuations. We prove our main theorem about semiconvex peeling.

Theorem 2.12. There is a constant α > 0 such that, if X ∼ Poisson(1H) and
r ≥ t ≥ 1, then

sX∩QCr
≤ sX ≤ sX∪(H\QCr),

P
[
inf

∂+Qr

sX∩QCr
≤ αr − (log r)3r1/2t

]
≤ C exp(−ct2/3),

and

P

[
sup
∂+Qr

sX∪(H\QCr) ≥ αr + (log r)3r1/2t

]
≤ C exp(−ct2/3).

Proof. Define α > 0 by

α = lim inf
r→∞

1

r
E[sX(red)].

By Lemma 2.3 and Lemma 2.4 we have 0 < α <∞. We claim that

(2.1) |E[sX(red)]− αr| ≤ C(log r)3r1/2.

The proof of (2.1) is split into two parts.
1. We first show that

(2.2) α = lim
r→∞

1

r
E[sX(red)].

To see this, define g(r) = E[SX(red)]+ r3/4. Applying Lemma 2.11 with t ≥ r ≥ C
we deduce

g(t+ r) = g(t) + g(r) + E[SX((t+ r)ed)− SX(red)− SX(ted)]

+ (t+ r)3/4 − r3/4 − t3/4

≤ g(t) + g(r) + C(log r)3r1/2 + (t+ r)3/4 − r3/4 − t3/4

≤ g(t) + g(r) + C(log r)3r1/2 − r3/4(1− 3
4 (r/t)

1/4)

≤ g(t) + g(r) + C(log r)3r1/2 − 1

4
r3/4 ≤ g(t) + g(r)

for C sufficiently large. It follows that for any r ≥ C and n ∈ N we have g(nr) ≤
ng(r). Now, let ε > 0 and choose r0 ≥ C so that g(r0) ≤ (α + ε)r0. Let r > 2r0
and write r = nr0 + k where n ∈ N and r0 ≤ k ≤ 2r0. We have

g(r) = g(nr0 + k) ≤ g(nr0) + g(k) ≤ ng(r0) + g(k) ≤ (α+ ε)nr0 + g(k).

It follows that lim supr→∞ g(r)/r ≤ α+ ε, which completes the proof of (2.2).
2. We now prove (2.1). We note that Lemma 2.11 with t = r ≥ C yields

E[|sX(2red)− 2sX(red)|] ≤ C(log r)3r1/2.
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Thus, for any k ≥ 1 and r ≥ C we have

E[|sX(2kred)− 2ksX(red)|] = E

[∣∣∣∣∣
k∑

i=1

2k−isX(2ired)− 2k−i+1sX(2i−1red)

∣∣∣∣∣
]

≤
k∑

i=1

2k−iE[|sX(2ired)− 2sX(2i−1red)|]

≤ C

k∑
i=1

2k−i(log(2i−1r))3(2i−1r)1/2

≤ C(log r)32kr1/2.

Therefore,
|E[sX(red)]− αr| = |E[sX(red)− 2−ksX(2kred) + 2−ksX(2kred)− αr]|

≤ C(log r)3r1/2 + |E[2−ksX(2kred)]− αr|.

Sending k → ∞ and invoking (2.2) completes the proof of (2.1).
We now apply Lemma 2.6 and Lemma 2.7 to find that

P
[
sX∩QCr

(red) ≤ αr − (log r)3r1/2t
]
≤ C exp(−ct2/3)

and
P
[
sX∪(H\QCr)(red) ≥ αr + (log r)3r1/2t

]
≤ C exp(−ct2/3).

A union bound over polynomially many points in ∂+Qr yields the theorem. □

3. Viscosity Solutions

3.1. Existence and uniqueness. We now discuss the basic theory of the limiting
equation (1.3). We assume the reader is familiar with Crandall-Ishii-Lions [8]. We
use viscosity solutions to interpret the non-linear partial differential equation
(3.1) 〈Dh, cof(−D2h)Dh〉 = f2 in U,

where U ⊆ Rd is open and bounded and f ∈ C(U) is non-negative.
While the left-hand side of (3.1) is not elliptic for general functions, it is elliptic

on the set of quasi-concave functions. That is, the functions u whose super level set
{u > k} is convex for all k ∈ R. This is a natural class of functions for our study.
In order to use standard viscosity machinery, we modify the operator outside the
domain of ellipticity.

Lemma 3.1. The function F : Rd × Rd×d
sym → R defined by

F (p,A) =

{
〈p, cof(−A)p〉 if 〈q, p〉 = 0 ⇒ 〈q, Aq〉 ≤ 0

0 otherwise

is continuous. If p ∈ Rd, A,B ∈ Rd×d
sym, and A ≤ B, then F (p,A) ≥ F (p,B). If

p ∈ Rd, A ∈ Rd×d
sym and B ∈ Rd×d, then F (Btp,BtAB) = det(B)2F (p,A).

Proof. When p 6= 0, the expression 〈p, cof(−A)p〉 computes the determinant of −A
restricted to the subspace p⊥ = {q ∈ Rd : 〈q, p〉 = 0}. Observe that this determi-
nant is zero on the boundary of the set where the constraint 〈q, p〉 ⇒ 〈q, Aq〉 ≤ 0
holds. It follows that F is continuous. Since A is non-positive on p⊥ when the
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constraint holds, it follows that F is non-increasing in A. For the last property, we
use the continuity of F to assume that A,B are invertible. We compute

〈Btp, cof(−BtAB)Btp〉 = 〈Btp,det(−BtAB)(−BtAB)−1Btp〉
= det(B)2〈p,det(−A)(−A)−1p〉
= det(B)2〈p, cof(−A)p〉.

Similarly, we see that the condition 〈q, p〉 = 0 ⇒ 〈q, Aq〉 ≤ 0 is equivalent to the
condition 〈q,Btp〉 = 0 ⇒ 〈q,BtABq〉 ≤ 0. □

We obtain comparison when f is positive by Ishii’s lemma.

Theorem 3.2. If U ⊆ Rd is open and bounded, f ∈ C(U) satisfies f > 0 on U ,
and u ∈ USC(U) and v ∈ LSC(U) are, respectively, a viscosity subsolution and
supersolution of

F (Dh,D2h) = f2 in U,

then maxU (u− v) = max∂U (u− v).

Proof. Let us suppose for contradiction that the conclusion fails. In this case, we
may choose τ > 1 and ε > 0 such that maxU (u− τv) = ε+max∂U (u− τv). Note
that τv is a viscosity subsolution of

F (Dh,D2h) = τd+1f2 in U.

Since f > 0 on the closed set U , there is a δ > 0 such that τd+1f2 ≥ δ + f2 on U .
We now need only prove strict comparison; see Crandall-Ishii-Lions [8]. □

Remark 3.3. The above comparison result holds without imposing any quasi-
concavity hypothesis on u or v. This works because the positivity of f forces the
supersolution u to be quasi-concave; see Barron-Goebel-Jensen [5]. We expect that
comparison theorem holds for f ≥ 0 when the supersolution u is quasi-concave.
This would require a deeper adaptation of the viscosity tools.

To prove existence of solutions to our boundary value problem (1.3), we need
barrier functions to show that the boundary values are attained. Since the zero
function is a subsolution, we need only obtain upper barriers.

Lemma 3.4. The function

ψ(x) = 2x
2

d+1

d (1− 1
2 |x

d|2)
d−1
d+1 ,

where
xd = (x1, ..., xd−1),

satisfies

(3.2)


F (Dψ,D2ψ) ≥ 1 in B1 ∩ {xd > 0}
ψ ≥ 0 on B1 ∩ {xd ≥ 0}
ψ = 0 on B1 ∩ {xd = 0}.

Proof. For t > 0, consider the function
ψt(x) = t1−dxd + t2(1− 1

2 |x
d|2).

Observe that ψt satisfies (3.2) classically. Compute
ψ(x) = inf

t>0
ψt(x) = ψt(x)(x),



THE LIMIT SHAPE OF CONVEX HULL PEELING 23

where
t(x) = x

1/(d+1)
d (1− 1

2 |x
d|2)−1/(d+1)

Since ψ is continuous, the ellipticity of F implies that ψ satisfies (3.2) in the sense
of viscosity. Since ψ is smooth in B1∩{xd > 0}, it also satisfies (3.2) classically. □

We obtain existence by a standard application of Perron’s method.

Theorem 3.5. Suppose U ⊆ Rd is bounded open and convex and f ∈ C(Ū) satisfies
f > 0. There is a unique u ∈ C(Ū) that satisfies

(3.3)
{
F (Du,D2u) = f2 in U

u = 0 on ∂U

in the sense of viscosity.

Proof. Rescaling, we may assume that U ⊆ B1/2 and f ≤ 1. For every p ∈ ∂U with
inward normal np ∈ Rd, choose an orthogonal matrix Op ∈ Rd×d such that Opnp =
ed. Using Lemma 3.1 and Lemma 3.4, we see that the functions ψp(p+x) = ψ(Opx)
are supersolutions of (3.3) that satisfy ψp(p) = 0. The zero function is a subsolution
of (3.3) that achieves the boundary conditions. Since we have a comparison principle
from Theorem 3.2, the supremum of all subsolutions is equal to the infimum of all
supersolutions, and this object is the unique solution of (1.3). □

Another application of our barrier is Hölder regularity.

Corollary 3.6. The unique solution u ∈ C(Ū) from Theorem 3.5 satisfies the
Hölder estimate ‖u‖C2/(d+1)(U) ≤ β, where β depends only on diamU and max f .

Proof. Rescaling, we may assume that U ⊆ B1/2 and f ≤ 1. By Barron-Goebel-
Jensen [5], u is quasi-concave. Suppose x, y ∈ U and u(x) < u(y). Let V = {u >
u(x)}, which is convex and open. Choose z ∈ ∂V such that |y − z| = dist(y, ∂V ).
Choose an orthogonal matrix O ∈ Rd×d such that O(y − z) = |y − z|ed. Let
ψ̃(z+w) = u(x)+ψ(Ow), where ψ is from Lemma 3.4. Note that F (Dψ̃,D2ψ̃) ≥ 1

in V and ψ̃ ≥ k ≥ u on ∂V . By Theorem 3.2, we obtain u(y) ≤ ψ̃(y). In particular,
u(y) ≤ ψ̃(y) = u(x) + 2|y − z|2/d+1 ≤ u(x) + 2|y − x|2/d+1. □

3.2. Simple Test Functions. We construct a family of simple test functions that
form a complete family for the operator F . Recall the function

φ(x) = xd − 1
2 (x

2
1 + · · ·+ x2d−1)

which satisfies F (Dφ,D2φ) = 1. We build our test functions by distorting φ.

Definition 3.7. A simple upper test function is a function of the form
ψ = σ ◦ φ ◦ a,

where σ ∈ C∞(R), σ′ ≥ 0, σ′′ ≥ 0, a ∈ C∞(Rd,Rd), Da constant, and detDa = 1.

Definition 3.8. A simple lower test function is a function of the form
ψ = σ ◦ φ ◦ a,

where σ ∈ C∞(R), σ′ ≥ 0, σ′′ ≤ 0, a ∈ C∞(Rd,Rd), Da constant, and detDa = 1.

The following formalizes what we mean by complete family.

Lemma 3.9. Suppose u ∈ C∞(Rd) and F (Du(x), D2u(x)) > 0.



24 THE LIMIT SHAPE OF CONVEX HULL PEELING

(1) For every small ε > 0, there is a δ > 0 and a simple upper test func-
tion ψ such that ψ(x) = u(x), ψ(y) > u(y) for 0 < |y − x| < δ, and
F (Dψ(x), D2ψ(x)) ≤ (1 + ε)F (Du(x), D2u(x)).

(2) For every small ε > 0, there is a δ > 0 and a simple lower test func-
tion ψ such that ψ(x) = u(x), ψ(y) < u(y) for 0 < |y − x| < δ, and
F (Dψ(x), D2ψ(x)) ≥ (1− ε)F (Du(x), D2u(x)).

Proof. Part 1. Observe that Du(x) 6= 0 and that D2u(x) is negative definite on
the half space orthogonal to Du(x). Using Lemma 3.1 and the definition of simple
test function, we can make an affine change of variables so that

x = 0, Du(0) = |Du(0)|ed, and D2u(0) =

[
−(1− ε)|Du(0)|Id−1 v

vt γ

]
,

where v ∈ Rd−1 and γ ∈ R. For β > 0 to be determined ψ = σ ◦ φ, where
σ(s) = u(0) + β−1|Du(0)|(eβs − 1).

Note that σ ∈ C∞(R), σ′ ≥ 0, and σ′′ ≥ 0. Moreover,

ψ(0) = u(0), Dψ(0) = Du(0), and D2ψ(0) =

[
−|Du(0)|Id−1 0

0 β|Du(0)|.

]
Making β > 0 large, we obtain D2ψ(0) > D2u(0). By second order expansion,
we can choose δ > 0 so that ψ(y) > u(y) for 0 < |y − x| < δ. Finally, compute
F (Dψ(0), D2ψ(0)) = (1− ε)1−dF (Du(0), D2u(0)).

Part 2. Observe that Du(x) 6= 0 and that D2u(x) is negative definite on the
half space orthogonal to Du(x). Using Lemma 3.1 and the definition of simple test
function, we can make an affine change of variables so that

x = 0, Du(0) = |Du(0)|ed, and D2u(0) =

[
−(1 + ε)|Du(0)|Id−1 v

vt γ

]
,

where v ∈ Rd−1 and γ ∈ R. For β > 0 to be determined ψ = σ ◦ φ, where
σ(s) = u(0) + β−1|Du(0)|(1− e−βs).

Note that σ ∈ C∞(R), σ′ ≥ 0, and σ′′ ≤ 0. Moreover,

ψ(0) = u(0), Dψ(0) = Du(0), and D2ψ(0) =

[
−|Du(0)|Id−1 0

0 −β|Du(0)|.

]
Making β > 0 large, we obtain D2ψ(0) < D2u(0). By second order expansion,
we can choose δ > 0 so that ψ(y) < u(y) for 0 < |y − x| < δ. Finally, compute
F (Dψ(0), D2ψ(0)) = (1 + ε)1−dF (Du(0), D2u(0)). □

3.3. Piece-wise approximation. For the purposes of proving the scaling limit of
convex peeling, it is useful to recall the viscosity analogue of Galerkin approxima-
tion. When there is a comparison principle, Perron’s method implies more than
just the existence of a solution. In fact, it implies that the solution is the uniform
limit of piece-wise smooth subsolutions and supersolutions. We obtain a slightly
stronger version where the pieces are all simple upper or lower test functions.

Definition 3.10. A piece-wise supersolution of F (Dh,D2h) = f2 in U is a function
u ∈ C(U) for which there is a finite list of simple upper test functions ψk and balls
Brk(xk) such that

(1) ψk ≥ u in Brk(xk) ∩ Ū ,
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(2) F (Dψk, D
2ψk) > supBrk

(xx)∩U f
2 in Brk(xk),

(3) for every x ∈ Ū , there is a k such that x ∈ Brk/3(xk) and u(x) = ψk(x).

Definition 3.11. A piece-wise subsolution of F (Dh,D2h) = f2 in U is a function
u ∈ C(Ū) for which there is a finite list of simple lower test functions ψk and balls
Brk(xk) such that

(1) ψk ≤ u in Brk(xk) ∩ Ū ,
(2) F (Dψk, D

2ψk) < infBrk
(xx)∩U f

2 in Brk(xk),
(3) for every x ∈ Ū , there is a k such that x ∈ Brk/3(xk) and u(x) = ψk(x).

Observe that a piece-wise supersolution is a viscosity supersolution and that the
set of piece-wise supersolutions is closed under pairwise minimum. The analogous
facts are true for piece-wise subsolutions.

Before proving a general approximation result, observe that Lemma 3.9 only
provides simple approximations when F (Du(x), D2u(x)) > 0. Finding a piece-wise
approximation when Du(x) = 0 requires an ad hoc argument.

Figure 3.1. The piece-wise approximation of a downward
parabola by simple lower test functions.

Lemma 3.12. Suppose β > 0 and consider the function

u(x) = −d+1
2d β|x|

2d
d+1 ,

which satisfies F (Du(x), D2u(x)) = βd+1 in Rd \ {0}. For every R, ε > 0, there
is a piece-wise subsolution v ∈ C(BR) of F (Dv,D2v) = βd+1 + ε in BR such that
|v − u| < ε in BR.

Proof. For every x ∈ Rd \ {0}, we can use Lemma 3.9 to select a simple upper test
function ψx and a radius rx > 0 such that ψx ≤ u+ ε, 0 ∈ {ψx > u} ⊆ Brx(x), and
F (Dψx, D

2ψx) < βd+1 + ε in Brx(x). Indeed, we take that ψ the lemma produces
and add a small positive constant. Select any r > 0 such that u(x) > − 1

2ε in Br.
By compactness, we may select finitely many xk such that

B̄R \Br ⊆ ∪k{ψxk
> u}.

Consider the function
v(x) = max{u(x),max{ψxk

(x) : x ∈ Brk(x)}}.

Now, v is a viscosity subsolution of F (Dv,D2v) = βd+1+ε. Moreover, v is a piece-
wise subsolution in BR \ B̄r. To fix the piece in Br, we select a σ ∈ C∞(R) such
that σ′ ≥ 0 ≥ σ′′, σ(s) = s if s ≤ −ε and σ(s) = − 1

2ε if s ≥ − 1
2ε. Then w = σ ◦ v

is a piece-wise subsolution of F (Dw,D2w) = βd+1 + ε in BR. A schematic of w
appears in Figure 3.1. □
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Now that we can approximate test functions whose gradient vanishes, we prove
our general approximation result.
Theorem 3.13. Let u, f ∈ C(Ū) be as in Theorem 3.5. For any ε > 0, there is a
piece-wise supersolution u ∈ C(Ū) and a piecewise subsolution u ∈ C(Ū) such that
u− ε ≤ u ≤ u ≤ u ≤ u+ ε in Ū .
Proof. By the comparison result from Theorem 3.2, it is enough to show that the
infimum of all piecewise supersolutions is a subsolution and that the supremum of
all piecewise subsolutions is a supersolution. This would be a folklore theorem were
it not for the fact that we demand the pieces have a special form.

We first consider the subsolution case. Let
u = sup{v ∈ C(Ū) a piecewise subsolution of (3.3)}

and suppose for contradiction that u is not a supersolution. Since 0 is a piecewise
subsolution, we see that u ≥ 0. Using Lemma 3.4 and Theorem 3.2, we see that
supU u < ∞ and u ≤ 0 on ∂U . Since u is a bounded supremum of continuous
functions, it is lower semicontinuous. Thus, the supersolution condition must fail
in the interior and we may select Br(x) ⊆ U and smooth w ∈ C∞(Br(x)) such that
w(x) = u(x), w < u in Br(x) \ {y}, and F (Dw,D2w) < infBr(x) f

2 in Br(x).
Since F is continuous, we may replace w by y 7→ w(y)−β|y−x|2 for some β > 0

so that D2w(x) is negative definite on the subspace {q ∈ Rd : q · Dw(x) = 0}.
In this case, we see that either Dw(x) = 0 or F (Dw(x), D2w(x)) > 0. Applying
either Lemma 3.9 or Lemma 3.12, we can make r > 0 smaller and replace w with
a piecewise subsolution of F (Dh,D2h) = f2 in Br(x).

Since u is merely lower semicontinuous at this stage of the proof, we do not
know how to choose piecewise subsolutions such that vk ∈ C(Ū) such that vk → u
uniformly. However, since w is continuous, for any compact K ⊆ {u > w}, we can
choose a piecewise subsolution v ∈ C(Ū) such that v > w on K. Indeed, we find a
piecewise subsolution above φ in a neighborhood of every point in K, choose a finite
cover, and then compute the maximum of the finite set of piecewise subsolutions.

We choose a piecewise subsolution v ∈ C(Ū) and δ > 0 such that v ≤ u and
v > w + 2δ on Br(x) \Br/2(x). We then define

v′(y) =

{
max{v(y), (w + δ)(y)} if y ∈ Br(x)

v(y) otherwise,
which is a piecewise subsolution of the global problem satisfying v(x) > u(x),
contradicting the definition of u.

The supersolution case is symmetric and easier, since F (Dw(x), D2w(x)) >
f(x)2 implies that Dw(x) 6= 0. □
Remark 3.14. Our naive use of compactness in the above proof destroys any hope
of quantifying the number of pieces in the approximation. However, it is clear from
the definitions that the number of pieces depends on the regularity of the solution.

4. Convex Peeling

4.1. Comparison lemmas. We now explain the relation between convex and
semiconvex peeling. Recall the parabolic region P and half space H defined in
Section 2. Consider the bijection π : P → H given by

π(x) = (x1, ..., xd−1, xd − 1
2 (x

2
1 + · · ·x2d−1)).
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Since detDπ = 1, if X ∼ Poisson(1P ), then π(X) ∼ Poisson(1H). Moreover, the
sets (y − P ) ∩H for y ∈ H are exactly the sets π(P ∩ H̃) where H̃ ⊆ Rd is a half
space such that P ∩ H̃ is bounded. From this it follows that, if X ⊆ P contains a
sequence {xn} ⊆ X with ed · xn → ∞, then

π(Kn(X)) = Sn(π(X)) and sπ(X) ◦ π = hX .

In particular, if X ∼ Poisson(1P ), then the above holds almost surely.
Using the monotonicity from Lemma 2.1 and its immediate analogue for convex

peeling, we prove a local connection between convex and semiconvex peeling. Both
of the following lemmas make use of the geometry illustrated in Figure 4.1.

π−1(Q2)
Q2

π

Figure 4.1. The local behavior of the transformation π.

Lemma 4.1. If X ⊆ Rd and
K1(X) ⊆ P ∪ (2ed +H),

then
hX ≤ s(π(X)∩Q2)∪(H\Q2) ◦ π in π−1(Q2)

Proof. Observe that, if H \Q2 ⊆ Y ⊆ H, then
sY ∪(Rd\(2ed−P )) = sY in H.

Now consider Y = (π(X) ∩Q2) ∪ (H \Q2). Using the hypothesis K1(X) ⊆ P , we
obtain

hX∪(2ed+H) = sY ∪(Rd\(2ed−P )) ◦ π.
By monotonicity

hX ≤ hX∪(2ed+H).

Conclude by combining the above three observations. □

Lemma 4.2. If n ≥ 1, X ⊆ Rd and
Kn(X) ⊇ (2ed + P ) \ (4ed +H),

then
hX ≥ sπ(X)∩Q2

◦ π in π−1(Q2) \Kn(X).
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Proof. Consider the intersection of a parabolic region and a cylinder
Q = {x ∈ 2ed + P : x21 + · · ·+ x2d−1 < 4}.

The hypothesis Kn(X) ⊇ (2ed + P ) \ (4ed +H) implies that
hX = hX∪Q in π−1(Q2) \Kn(X).

By the discussion above,
hX∪Q = sπ(X∪Q) ◦ π.

By monotonicity,
sπ(X∪Q) ◦ π ≥ sπ(X)∩Q2

◦ π.
Conclude by combining the above three observations. □
4.2. Local height functions. Combining the above comparison lemmas and the
fluctuation bounds from Theorem 2.12, we constrain the local behavior of the convex
height function of a Poisson cloud. Recall that if X ∼ Poisson(1P ), then π(X) ∼
Poisson(H) and sπ(X) ◦ π = hX holds almost surely. In particular, Theorem 2.12
suggests that hX ≈ max{0, αφ}, where

φ(x) = xd − 1
2 (x

2
1 + · · ·+ x2d−1).

Using the comparison lemmas, we use this idea to show that φ forms a local barrier
for convex height functions.

Definition 4.3. A local height function for a set X ⊆ B1 is a function h : B1 → N
such that h = hY |B1 for some finite set Y ⊆ Rd that satisfies Y ∩ B1 = X. Let
H(X) denote the set of local height functions of X ⊆ B1.

We consider perturbations of φ of the form φ̃ = σ ◦ φ where σ ∈ C1(R) satisfies
either σ′ > 1 or 0 < σ′ < 1. Note that φ̃ has the same level sets as φ, but they
evolve at different rates. We show the two types of perturbations form upper and
lower barriers, respectively.

Lemma 4.4. If σ ∈ C∞(R) satisfies σ′ > 1 + λ > 1 and σ′′ ≥ 0, m > 2,
X ∼ Poisson(m1B1

), and ψ = αm
2

d+1σ ◦ φ, then

(4.1) P[sup
B1

(h− ψ) = sup
B1/3

(h− ψ) for some h ∈ H(X)]

≤ C exp(−cλ2/3(logm)−2m1/3(d+1)).

Proof. We use Lemma 4.1 to show that the event in (4.1) is contained in polynomi-
ally many events that are controlled by Theorem 2.12. We may assume that m ≥ C
is large in what follows.

Define, for z ∈ B2/3, the map

τz(x
d, xd) =

(
m

1
d+1 (xd − zd),m

2
d+1 (xd − zd − zd · (xd − zd))

)
,

where xd = (x1, ..., xd−1). Observe that detDτz = m, τz(0) = 0, and τz({φ >
φ(z)}) = P . Moreover, for any r ≤ cm1/(d+1), observe that (π ◦ τz)−1(Qr) ⊆ B1.

Let ε > 0 be a universal constant determined later. If the event in (4.1) occurs,
then we can choose z, w ∈ B2/3, r > 0, and n ∈ N such that

r = εm1/(d+1),

z ∈ (π ◦ τw)−1(Qr),
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{h ≥ h(z)}

{ϕ ≥ ϕ(w +m−2/(d+1)red)}

{h ≥ h(z)− n}

{ϕ ≥ ϕ(w)}
•
z

•
w

Figure 4.2. A diagram of the level sets in the proof of Lemma 4.4.

{φ ≥ φ(w)} ⊇ B2/3 ∩ {h ≥ h(z)− n},
and

n ≥ α(1 + 1
2λ)r.

This is depicted in Figure 4.2. Moreover, we may select w from a predetermined
list of C(mλ−1ε−1)C many points in B2/3.

We now reduce to a large deviation event parameterized by w. Applying Lemma
4.1 to the point set X ∩ {h ≥ h(z) − n} and making ε > 0 sufficiently small, we
obtain

sup
∂+Qr

s(π◦τw)(X)∩QCr
≥ α(1 + 1

4λr).

Let Ẽw denote the above event. Since, when m > 0 is large and ε > 0 is small,
(π ◦ τw)(X) ∩QCr ∼ Poisson(1QCr

), Theorem 2.12 implies

P[Ẽw] ≤ C exp(−λ2/3c(log r)−2r1/3).

Recalling that r = εm1/(d+1) and summing over the polynomially many w yields
the lemma. □

The next lemma would be symmetric to the previous lemma, were it not for
the fact that we allow σ′ = 0. Flat spots are necessary for lower test functions, as
demonstrated in the previous section. Handling the flat spots requires an additional
appeal to the Poisson law, which is used to control the set of points where the
infimum in (4.2) is achieved to lie close to the non-flat part of the test functions.
With the geometry under control, we are able to deform from the case 0 ≤ σ′ <
1− λ < 1 to the case 0 < σ′ < 1− 1

2λ < 1.

Lemma 4.5. If σ ∈ C∞(R) satisfies 0 ≤ σ′ < 1 − λ < 1 and σ′′ ≤ 0, m > 2,
X ∼ Poisson(m1B1

), and ψ = αm
2

d+1σ ◦ φ, then

(4.2) P[inf
B1

(h− ψ) = inf
B1/3

(h− ψ) for some h ∈ H(X)]

≤ C exp(−cλ2/3(logm)−2m1/3(d+1)).
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{ϕ ≥ ϕ(w +m−2/(d+1)red)}

{h ≥ h(z)}

{ϕ ≥ ϕ(w)}

{h ≥ h(z)− n}
•
z

•
w

Figure 4.3. A diagram of the level sets in the proof of Lemma 4.5.

Proof. Step 1. We first handle the case 0 < σ′ < 1− λ < 1, which is symmetric to
the previous lemma. We use Lemma 4.1 to show that the event in (4.2) is contained
in polynomially many events that are controlled by Theorem 2.12. We may assume
that m ≥ C is large in what follows.

Define, for z ∈ B2/3, the map

τz(x
d, xd) =

(
m

1
d+1 (xd − zd),m

2
d+1 (xd − zd − zd · (xd − zd))

)
,

where xd = (x1, ..., xd−1). Observe that detDτz = m, τz(0) = 0, and τz({φ >
φ(z)}) = P . Moreover, for any r ≤ cm1/(d+1), observe that (π ◦ τz)−1(Qr) ⊆ B1.

Let ε > 0 be a universal constant determined later. If the event in (4.2) occurs,
then we can choose z, w ∈ B2/3, r > 0, and n ∈ N such that

r = εm1/(d+1),

z ∈ (π ◦ τw)−1(Q2r \Qr),

{φ ≥ φ(w +m−2/(d+1)red)} ∩B2/3 ⊆ {h ≥ h(z)},
{φ ≥ φ(w)} ∩B2/3 ⊆ {h ≥ h(z)− n},

and
n ≤ α(1− 1

2λ)r.

This is depicted in Figure 4.2. Moreover, we may select w from a predetermined
list of C(mλ−1ε−1)C many points in B2/3.

We now reduce to a large deviation event parameterized by w. Applying Lemma
4.2 to the point set X ∩ {h ≥ h(z) − n} and making ε > 0 sufficiently small, we
obtain

inf
∂+Qr

s(π◦τw)(X)∩QCr
≤ α(1− 1

4λr).

Let Ẽw denote the above event. Since, when m > 0 is large and ε > 0 is small,
(π ◦ τw)(X) ∩QCr ∼ Poisson(1QCr

), Theorem 2.12 implies

P[Ẽw] ≤ C exp(−λ2/3c(log r)−2r1/3).
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Recalling that r = εm1/(d+1) and summing over the polynomially many w yields
the lemma.

Step 2. In the case 0 ≤ σ′ ≤ 1− λ < 1, we first prove

(4.3) P[ inf
B1\B1/3

(h− ψ) ≥ 1 + inf
B1/3

(h− ψ) for some h ∈ H(X)]

≤ C exp(−cλ2/3(logm)−2m1/3(d+1)).

This is essentially immediate once we observe that the bound (4.2) established in
step 1 only needs the assumption 0 < σ′ to hold qualitatively. We observe that, if
the event in (4.3) holds, then the event in (4.2) holds for σ̃(s) = σ(s)+(2αm

2
d+1 )−1s.

Thus, provided m ≥ C, we have 0 < σ̃ < 1− 1
2λ and can apply step 1.

Step 3. We now establish the result for 0 ≤ σ′ ≤ 1 − λ < 1. We make an
additional appeal to the Poisson law of X. First, by a standard covering argument,
we may replace the outer ball B1 with the ball Bd to give ourselves more room to
work. Second, we may assume that {σ = 0} = {σ′ = 0} = [0,∞).

We now constrain the geometry of the set where the infimum in (4.2) is achieved.
Fix δ > 0 and observe that
(4.4) P[ min

Bδ(x)
h > min

Bδ/2(x)
h for all Bδ(x) ⊆ Bd] ≥ 1− C exp(−cδdm).

Indeed, if minBδ(x) h = minBδ/2(x) h holds, then X ∩ Bδ(x) has no points on one
side of a hyperplane intersecting Bδ/2(x). For fixed Bδ(x), the Poisson law gives
an upper bound of C exp(−cδdm) on the probability of this occuring. The bound
(4.4) follows by covering Bd with polynomially many small balls and computing a
union bound.

The event (4.4) excludes the possibility that the infimum in (4.2) occurs at some
x with Bδ(x) ⊆ {ψ = 0}. That is, when the event in (4.4) holds, then x ∈ Bd−δ

and infBd
(h− ψ) = (h− ψ)(x) implies x ∈ {φ < Cδ}.

Next, observe that we can choose affine a : Rd → Rd and τ ∈ C∞(R) such that
|Da− I| ≤ Cδ, |τ ′ − 1| ≤ Cδ, τ ′′ ≤ 0, and ψ̃ = αm

2
d+1 τ ◦ σ ◦ φ ◦ a satisfies

ψ̃ ≥ ψ in B1/3

and
ψ̃ < ψ − 1 in {φ < Cδ} \Bd/2.

In particular, if the events in (4.2) and (4.4) hold, then

inf
Bd\Bd/2

(h− ψ̃) ≥ 1 + inf
B1/3

(h− ψ̃).

Here we used the integrality of h to conclude the inequality on {φ ≥ Cδ} \Bd/2.
Set δ = ελ and rescale (4.3) by the affine map a. Since a is within Cελ of the

identity, making ε > 0 small universal allows us to conclude (4.2). □

4.3. Scaling limit. We now prove our main theorem by combining the piecewise
approximations from Section 3 with the above barrier lemmas. The essential idea is
that piecewise subsolutions and supersolutions form global barriers for the convex
peeling. The only remaining difficulty is to incorporate the arbitrary weight density.
For this, we use a standard stochastic domination trick.

Lemma 4.6. If Y ∼ Poisson(1Rd×(0,∞)), f ∈ L1
loc(Rd), and f ≥ 0, then

Yf = {x ∈ Rd : (x, y) ∈ Y for some y ∈ (0, f(x))} ∼ Poisson(f).
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Moreover, if f ≤ g, then Yf ⊆ Yg. □

The above lemma provides us with a means of locally and monotonically ap-
proximating a Poisson cloud with varying density by a Poisson cloud of constant
density. That is, to bound hYmf

from above, it is enough to bound hYmg from above
for some piecewise constant g ≥ f . Similarly for bounding below.

Proof of Theorem 1.2. Let U ⊆ Rd be open bounded and convex, f ∈ C(Ū) be
positive, and let u ∈ C(Ū) be the unique solution of (3.3). By Theorem 3.13, we
may select a piecewise subsolution and supersolution u, u ∈ C(Ū) of (3.3) such that
u− ε ≤ u ≤ u ≤ u ≤ u+ ε.

Let Xm = Ymf ∼ Poisson(mf). Using the definition of piecewise supersolution,
we can cover the event

sup(m−2/(d+1)hXm
− αu) > ε

with finitely many simple events as follows. Let ψk = σk ◦ φ ◦ ak ∈ C∞(Uk) for
1 ≤ k ≤ Nε denote the finitely many upper test functions that make up u, where
Uk is an open ellipsoid such that Uk = a−1

k (Brk(xk)) for some ball Brk(xk). Thus,
if hXm is too large, then there must be some k such that

(4.5) sup
a−1
k (Brk

(xk))

(hXm
−m2/(d+1)αψk) = sup

a−1
k (Brk/3(xk))

(hXm
−m2/(d+1)αψk).

Recall that
F (Dψk, D

2ψk) > sup
a−1
k (Brk

(xk))∩U

f2 in Brk(xk).

Let sk = supBrk
(xk)∩U f

2 and choose λk > 0 such that

F (Dψk, D
2ψk) = (σ′

k ◦ φk ◦ ak) ≥ sk(1 + λk) in a−1
k (Brk(xk)).

Since Xm ∩ a−1
k (Brk(xk)) ⊆ Xm,k := Ymsk1a−1

k
(Brk

(xk))
, we see that the event (4.5)

is contained in the event that Xm,k has a local height function h on a−1
k (Brk(x))

such that

sup
a−1
k (Brk

(xk))

(h−m2/(d+1)αψk) = sup
a−1
k (Brk/3(xk))

(h−m2/(d+1)αψk).

This is equivalent to

sup
Brk

(xk)

(h ◦ a−1
k −m2/(d+1)ασk ◦ φ) = sup

Brk/3(xk)

(h ◦ a−1
k −m2/(d+1)ασk ◦ φ).

Applying Lemma 4.4, this event has probability bounded by

Ck exp(−ck(logm)−2m1/3(d+1)).

Summing over k the probability is bounded by
Nε∑
k=1

Ck exp(−ck(logm)−2m1/3(d+1)) ≤ NεQε exp(−qε(logm)−2m1/3(d+1)),

where qε := min1≤k≤Nε
ck and Qε := max1≤k≤Nε

Ck. The subsolution bound is
identical, using Lemma 4.5 in place of Lemma 4.4. □
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Proof of Corollary 1.3. Let Xm ∼ Poisson(mf). Conditioned on #Xm = k, hXm

and hZk
have the same distribution. Since #Xm is Poisson with mean m we have

P[sup
Ū

|m−2/(d+1)hZm
− αh| > ε] ≤ m!em

mm
P[sup

Ū

|m−2/(d+1)hXm
− αh| > ε].

The proof is completed with an application of a version of Stirling’s formula m!em ≤
emm+1/2 for m ≥ 1. □
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