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1. Introduction

Rogue waves have been a subject of intensive theoretical and
experimental studies in mathematical and physical communities in
the past decade. Hundreds of papers and several books have been
published on it, and more are still coming. Rogue waves are often
defined as “waves that come from nowhere and leave without a
trace” [1]. For example, they can be localized wave excitations that
arise from the constant-amplitude background, reach higher am-
plitude, and then retreat back to the same background, as time
progresses. Almost all rogue waves that have been theoretically
derived or experimentally observed belong to this category (see
[2-6], among many others).

However, there exists another type of waves that “come from
nowhere but leave with a trace”. Specifically, these waves also
arise from the constant-amplitude background (thus “come from
nowhere”), stay localized, and reach higher amplitude. Afterwards,
instead of retreating back to the same constant background with
no trace, they evolve into localized waves on the constant back-
ground that persist at large time, thus leaving a trace. The first
report of such peculiar waves seems to be in [7] for the Davey-
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Stewartson-II equation, where a two-dimensional localized wave
arose from the constant background and then split into two local-
ized lumps at large time (see Fig. 4 of that paper). Later, a similar
but one-dimensional solution was reported in [8] for the Sasa-
Satsuma equation. These peculiar waves resemble rogue waves in
the first half of evolution, but contrast them in the second half of
evolution. Due to these peculiar behaviors, let us call them partial-
rogue waves. Note that although two examples of partial-rogue
waves can be seen in [7,8], there was no explanation for their
appearance, as if they were pure accidents. It was also unclear
whether additional types of partial-rogue waves could be found
in those two systems.

In this paper, we predict partial-rogue waves in the Sasa-
Satsuma equation through large-time asymptotic analysis on its
rational solutions. We show that, among a class of rational so-
lutions in this equation that can be expressed through determi-
nants of 3-reduced Schur polynomials, partial-rogue waves arise if
and only if these rational solutions are of certain orders, where
the associated generalized Okamoto polynomials have real but not
imaginary roots, or imaginary but not real roots. We further show
that, at large negative time, these partial-rogue waves approach the
constant-amplitude background, but at large positive time, they
split into several fundamental rational solitons, whose numbers
are determined by the number of real or imaginary roots in the
underlying generalized Okamoto polynomial. Our asymptotic pre-
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dictions are compared to true solutions, and excellent agreement
is observed.

2. Preliminaries

The Sasa-Satsuma equation was proposed as a higher-order
nonlinear Schrodinger equation for optical pulses that includes
some additional physical effects such as third-order dispersion
and self-steepening [9,10]. Through a variable transformation, this
equation can be written as

Up = Uyxx + 6]ul?tuy + 3u(ul?)s. (21)

Sasa and Satsuma [9] showed that this equation is integrable.
2.1. A class of rational solutions

Soliton solutions on the zero background in this equation were
derived by Sasa and Satsuma in their original paper [9]. Later, ra-
tional solutions on a nonzero background, including rogue waves,
were also derived [8,11-19]. The solutions that will be the start-
ing point of this paper are a certain class of rational solutions,
whose t functions are determinants of 3-reduced Schur polyno-
mials, i.e., determinants of Schur polynomials with index jumps of
three. These solutions are different from Sasa-Satsuma rogue waves
derived by the bilinear method in [16,17], which were determi-
nants of 2-reduced Schur polynomials. In the language of Darboux
transformation, our solutions of 3-reduced Schur polynomials cor-
respond to a scattering matrix admitting a triple eigenvalue. Such
solutions have been studied in [8,14] by Darboux transformation.
However, their solutions are not general nor explicit for our pur-
pose. For this reason, we will first present general and explicit
expressions for this class of rational solutions through Schur poly-
nomials. Derivation of these solutions by the bilinear method will
be provided in the appendix.

Before presenting these solutions, we need to specify the
nonzero background. Through variable scalings, we can normal-
ize the background amplitude to be unity. Then, this background
can be written as

ifo (x+6t)—a3t)

Upg(x,t) =e (2.2)

where « is a free wavenumber parameter, which cannot be re-
moved since the Sasa-Satsuma equation (2.1) is not Galilean-
invariant. But o can be restricted to be positive, since the Sasa-
Satsuma equation is invariant under the axes reflection of (x, t) —
(—x, —t), and negative-o solution can be related to positive-a so-
lution through this axes reflection.

To present these explicit rational solutions, we also need to in-
troduce elementary Schur polynomials. These polynomials S ;(x)
with ® = (x1, x2, ...) are defined by the generating function

o0 . oo .
Zsj(x)ef =exp ije]
=0 j=1

In addition, we define S;(x) =0 when j <O0.

Our expressions for general rational solutions whose 7 func-
tions are determinants of 3-reduced Schur polynomials are given
by the following theorem.

(2.3)

Theorem 1. When o = 1/2, the Sasa-Satsuma equation (2.1) admits
bounded (N1, Ny)-th order rational solutions

EN1.Ny plla(x+60—t]

Ny (2.4)

UN; Ny (X, 1) =

where N1 and N3 are arbitrary non-negative integers,
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fNi.N; =000, 8Ny.N; = 01,0, (2.5)
[1.1] [1.2]
Ol Okl
kl le
k,11,]) )
le (¢3l 1,3j—] 1<i<N;, 1<j<N; ’ (27)
matrix elements in a[ I are defined by
min(i, j) p2 v
(L1]) _ 1
d)l J Z <—2) :
v=0 4p0
Si_ ,,(x, (k,l) +vs) S;_ e (k,D +vs), (2.8)
vectors x, k,) = (x“, xziJ, ---) are given by
X5 (k. 1) = pr(X + 6t) + Brt + k6 + 16, +ar 1, (2.9)
X, (kD) = pr(x+6t) + frt — koy — 16, +ay j, (2.10)
Br and 6, are coefficients from expansions
- p(K)
3 r
K) = k", In Ok’ 211
p()gﬂr [po_la]zr (211)

the function p (x) with expansion p (k) = Y e, prk" and real expan-
sion coefficients p; is defined by the equation

Qi[p ()] = @ |:e" +2e7%/2 cos (?;c)} , (2.12)
with
Qi (p) = +p, (2.13)

— + -
—la  p+ix
po = iﬁ/Z, the real vector s = (s1, S2, - -
sion

-) is defined by the expan-

2 —
n [(ﬂ) (p(") po)} Zsr/c (2.14)
pik ) \p (k) + po p—
the asterisk “*’ represents complex conjugation, and
@,1,---,a3N;—1,1), (@1,2,-+-,03N,—2,2) (2.15)

are free real constants.

The proof of this theorem by the bilinear method will be given
in the appendix.

Note 1. When we choose pg = +/3/2, the first few coefficients of
pr, Br, Oy, and s, are

121/6 12-1/6 1
== == =, 216
P1 5 P2 5 P3 We (2.16)
9 9 33/6 1943
— 2121/8, =22 =Y 217
Pr=g Pa=g iz Pi=— (217)
121/6 —i (2.18)
6 = -, h=————, 63=0, 218
V3-i 121/6(J§—i)
s1=0, sp,=0, s3= ! (2.19)
1=Y, 2=V, 3= 40- .

If we choose pg = —ﬁ/2, then p, and B, would switch sign, 6,
change to 6/, and s; remain the same.



B. Yang and J. Yang

[oa]

3

Fig. 1. Graph of the fundamental rational soliton |uq (x, t)| in Eq. (2.20). Left: 3D plot.
Right: density plot. The horizontal axes are X = x + (33/4)t.

Note 2. If we choose pg = —+/3/2 and keep all internal parame-
ters (ar.1, ar2) unchanged, then the resulting solution i (x, t) would
be related to the solution u(x,t) with pg = «/§/2 as u(x,t) =
u*(—x, —t).

Note 3. Internal parameters as, 1 and asp,z (n=1,2,---) do not
affect solutions in Theorem 1, for reasons which can be found in
[20]. Thus, we will set them as zero in later text.

The simplest solution of this class — the fundamental rational
soliton, is obtained when we set N7 =0 and Ny =1 in Theorem 1.
In this case, the solution has a single real parameter a2, which
can be normalized to zero through a shift of the x axis. The result-
ing solution, for both pg = ++/3/2, is

up(x, £) = 1l (x, t)ell2 x+60—gtl, (2.20)
where

ur(x,t) = % (2.21)
and

k=x+ ?r (2.22)

is a moving coordinate. The graph of this solution is plotted in
Fig. 1. This solution is a rational soliton moving on the constant-
amplitude background (2.2) with velocity —33/4. Its 3D graph
shows a W-shape along the X direction and has sometimes been
called a W-shaped rational soliton in the literature [8,18]. Its
height, i.e., max(|u1]), is 2.

2.2. Generalized Okamoto polynomials

We will show in later text that rational solutions in Theorem 1
contain partial-rogue waves but are not all partial-rogue waves.
The question of what solutions in Theorem 1 are partial-rogue
waves turns out to be closely related to root properties of gen-
eralized Okamoto polynomials. So, we will introduce these polyno-
mials and examine their root structures next.

Original Okamoto polynomials arose in Okamoto’s study of ra-
tional solutions to the Painlevé IV equation [21]. He showed that
a class of such rational solutions can be expressed as the loga-
rithmic derivative of certain special polynomials, which are now
called Okamoto polynomials. These original polynomials were later
generalized, and the generalized Okamoto polynomials provide a
more complete set of rational solutions to the Painlevé IV equation
[22-25]. In addition, determinant expressions for the original and
generalized Okamoto polynomials were discovered [22-25].

Let p;(z) be Schur polynomials defined by

> pi@el =exp (ze +€?), (2.23)
=0
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with p;j(z) =0 for j <0. Then, generalized Okamoto polynomials
Qn;y, N, (2), with Ny, N> being nonnegative integers, are defined as

Qny, N, (2) =Wron[pa, ps, - -+, P3N;—1, P1, P4, - -, P3N, —2],
(2.24)
or equivalently,
D2 P1 D3—-N{—N,
P3N{—-1 P3N;-2 P2N{—N,
Z) = , 2.25
QN],NZ( ) P1 Po DP2—-N{—N, ( )
DP3N,—2 P3N,-3 DP2N,—N;—1

since p;.ﬂ(z) = pj(z) from the definition of p;(z) in Eq. (2.23),
where the prime represents differentiation. The first few Qn,, n,(2)
polynomials are

15
Q1,o(Z)=§(Z +2),

1 % 4 2
Qz,o(Z)Z%(Z + 102" 4 20z* + 40),
Qo,1(2) =z,

1 5
Q1,1(Z)=5(—z +2)

Q e 20
2,1(2)—2—02(2 —20),
Qo,2(2) = %(Z4 +42% — 4,

1 4 2
Q1,2(Z)=§(—Z +4z° +4),

1 6 4 2
Q2,2(Z)=%(—Z +10z* — 20z° + 40).

Note that our definition of generalized Okamoto polynomials is dif-
ferent from that by Clarkson in Refs. [24,25]. Denoting the Qm; »(2)
polynomial introduced in [24,25] as Q,[,E]n(z), then our polynomial
Qny, N, (2) is related to Q,[,E],,(z) as

(1) [C]
Q (Z)_ lesNzQNZ_N],_NZ (\/52/2), Nl ZNZ,
TR 2, 0l V32/2), Ni<N
VN1 Ny €Ny =Ny, Ny ) 1= N2,
(2.26)

1 2 .
where y,\(,l), N, and y,f,l)’ N, are certain real constants.

Clarkson [24] observed an interesting symmetry relation be-
tween Q,E?,L(z) and Q,Ef,]n(iz) based on examples (see Eq. (4.9) in
that paper). Using that symmetry and the above polynomial con-
nection (2.26), we obtain symmetry relations for our polynomials
QNy, N, (2) as

1 .

Qny N —N,(2) =bre 2T MiN2 Qu, y, (i2), Ny>Np,  (227)
]. .

QNy—Ni—1.N, (2) = bye 2T M2 Q. no(i2), Ny <Nz, (2.28)

where

dny, N, = N2 4+ N2 — NyNa + Ny (2.29)

is the degree of the Qn, n,(z) polynomial, by = £1 is the sign
of the ratio between coefficients of the highest z-power terms in
Qn,,N,(2) and Qn,, N,—N, (2), while by = +£1 is the sign of the ra-
tio between coefficients of the highest z-power terms in Qn,,n,(2)
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Fig. 2. Roots of generalized Okamoto polynomials Qn; n,(z) in the complex z plane
for 0 < N1, N2 < 3. In all panels, —5 < Re(z), Im(z) <5.

and Qn,—n,-1,N,(2). In the special case of N =0, the symmetry
(2.27) further reduces to

QNN (2) = Qny,0(32).

For our partial-rogue wave problem, it turns out from later text
that we need generalized Okamoto polynomials which have either
real or imaginary roots, but not both. In addition, zero cannot be
a root. To identify such polynomials, we plot in Fig. 2 roots of
QnN;,N, (2) in the complex z plane for 0 < Ny, N < 3. We can see
from this figure that the polynomials that fit our requirements are
Qn;.0(2) and Qn;, N, (2) polynomials, which lie in the first column
and on the diagonal of Fig. 2, respectively. The Qn,,0(z) polyno-
mials in the first column have only imaginary roots but not real
roots. The Qn, n,(z) polynomials on the diagonal have only real
roots but not imaginary roots, which is not surprising given the
connection between Qn; n; and Qn, 0 polynomials in Eq. (2.30).
For both types of polynomials, zero is not a root. All other poly-
nomials in Fig. 2 have both real and imaginary roots, and are thus
not useful for the partial-rogue problem. We note by passing that
these root structures in Fig. 2 are consistent with the two symme-
tries of generalized Okamoto polynomials in Eqgs. (2.27)-(2.28).

Multiplicity of these nonzero real or imaginary roots is also im-
portant to us. Our numerical checking shows that nonzero roots
are all simple for every generalized Okamoto polynomial. This will
make our results of the next section a bit simpler.

(2.30)

3. Partial-rogue waves

According to our definition, partial-rogue waves are localized
waves that “come from nowhere but leave with a trace”. Thus, we
impose the following boundary conditions

[a (x46t)—a3t]

u(x,t) — el t - —oo or x — 00, (3.1)

where o = 1/2. In addition, we require u(x, t) not to approach this
constant-amplitude background as t — +o0.
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3.1. Two theorems on partial-rogue waves

Only a small portion of rational solutions in Theorem 1 are
partial-rogue waves. This is not surprising, since the fundamen-
tal rational soliton in Fig. 1 is not a partial-rogue wave already. We
will show that a rational solution in Theorem 1 is a partial-rogue
wave only if the associated generalized Okamoto polynomial has
either imaginary or real roots, but not both. This result is summa-
rized in the following two theorems, for imaginary roots and real
roots, respectively.

Theorem 2. If the generalized Okamoto polynomial Qn, n,(z) has
imaginary but not real roots, and each imaginary root is simple, then
the rational solution uy, n,(x,t) in Theorem 1 with pg = —ﬁ/z is
a partial-rogue wave. In addition, when t >> 1, this solution splits into
n fundamental rational solitons i1 (x — xg‘), £) el *+60=5t1 ywhere n is
the number of imaginary roots in Qn, n,(z), and 1 <k <n. The location

x(()k) of the k-th fundamental rational soliton is given by
3/4
0_ 33 w3, 2w
X ——Zf—lzo Wt +‘12—1/6A , (32)

where zg‘) is the k-th imaginary root of Qn, n,(2), and A® isa zg‘)-

dependent O (1) quantity whose expression will be given by Eq. (4.22) in
later text (upon replacing its zg with zg‘) and A with A®). The error of
this fundamental rational soliton approximation is O (|t|~1/2). Expressed
mathematically, if t > 1, and x is in an O (1) neighborhood ofxgk), ie.,

|x — xg<)| = 0(1), then

N k il _1 _
v, (%, 0 = B (x = xg”, 0 @273 Lo 72 (33)
When t — +o0 and x is not in an O (1) neighborhood of any x(()k), or
when t — —oo for all x, the solution approaches the constant-amplitude
background (2.2), i.e.,
il 1

UN; N, (X, £) — ell2 B0 =gt], (3.4)
Theorem 3. If the generalized Okamoto polynomial Qn, n,(z) has real
but not imaginary roots, and each real root is nonzero and simple, then
the rational solution un, n,(x, t) in Theorem 1 with po = «/5/2 isa
partial-rogue wave. In addition, when t > 1, this solution splits into n
fundamental rational solitons ti1(x — xg‘), t) ellz ®+60—5t1 \where n is
the number of real roots in Qn, n,(2), and 1 < k < n. The location xg‘)
of the k-th fundamental rational soliton is given by

33 (k) Ea 1/2 2

®)
2% S A®, (35)

X —
where z(()k) is the k-th real root of Qn, N, (2), and A® isq zf)k)-dependent
0 (1) quantity whose expression will be given by Eq. (4.22) in later text
(upon replacing its zg with zg‘) and A with A®). The error of this fun-
damental rational soliton approximation is O (|t|~1/2). Mathematical
expressions of these results are the same as those in Egs. (3.3)-(3.4) of

Theorem 2, except for the different formula (3.5) for the soliton’s location
(k)

Xo .
0

Proofs of these two theorems will be given in the next section.

These two theorems, together with root structures of gener-
alized Okamoto polynomials in Fig. 2, predict that rational solu-
tions un, o0(x,t) (N1 >1) with pg = —ﬁ/Z, as well as un, n, (%, )
(N1 > 1) with pg = ﬁ/Z, are partial-rogue waves. As t — —o0,
they approach the constant-amplitude background. As t — +oo,
they split into several fundamental rational solitons, and the num-
ber of such fundamental solitons is equal to the number of real
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or imaginary roots in the underlying generalized Okamoto poly-
nomial. These results are not dependent on values of internal pa-
rameters dr 1,0, (r=1,2,---). This is not surprising, since when
[t] > 1, those internal parameters in the solution will play a less
significant role.

3.2. Analytical expressions for simplest partial-rogue waves

The simplest partial-rogue wave in the up, o(x,t) family is
uq,0(x,t) with pg = —ﬁ/Z, whose explicit expression is

o1,0(X, t)

(x+6t)7%t]’ (3.6)
00,0(X, t)

ui,0(x,t) =

where

R 1 2 11 _ 2 _
O0(X, t) = (5 [XT1(7<)] +x;r1(k)) (5 [Xl 1(k)] +x2’](k)>

P1
+ xT (k)x O+ —= .

X{ (k) = p1X+ k61 +a11,
x11(k) = p1x — ko5 +ai 1,
X3 1(k) = pa&k + (9p2/2)t + kb2 +az 1,
Xy 1 (k) = p2X + (9p2/2)t — k03 +az 1,

X is as defined in Eq. (2.22), i.e., X = x + 33t/4, (p1, p2) values
are opposite of those in Eq. (2.16) and (01, 63) values the complex
conjugates of those in Eq. (2.18) since pg = —+/3/2, and (a1,1,a2,1)
are free real constants.

From the above solution expression, it is easy to see that
through a shift of the (x,t) axes, we can normalize

a11=a21=0 (3.7)

without any loss of generality. For similar reasons, this zero nor-
malization of a;;; and a1 can be achieved for all partial-rogue
waves up, o(x,t) and un, n, (x,t).

Under this parameter normalization, expressions for oo and
01,0 in Eq. (3.6) can be reduced to

00,0(R, t) =4+ 243¢% + 24%% — 12+/3% 4 9%*
+ 54tk (2 - ﬁ&) , (3.8)

o1.0(®, t) = —2 + 6iv/3 + 243¢2 — 12k — (3 T giﬁ) 2
+6 (31 - 2J§) 2 4ot
—27t [i + /342 (2i + ﬁ) R+ zﬁfcz] . (39)

which do not contain any free parameters. The graph of this so-
lution, in the (x,t) plane, will be plotted in Fig. 3(a) of the next
subsection.

The simplest partial-rogue wave in the upn; n,(x,t) family is
uy,1(x,t) with pg = V/3/2. Under parameter normalization (3.7),
this uq,1(x,t) solution still contains a free real parameter aj .
However, we have found that this u 1(x,t) solution can be sim-
plified as

01,0, ) il 3 xH60—§11.
00,0(X, )

where functions 09,0 and oy, are as given in Eqgs. (3.8)-(3.9), and

ur1(x,t) = (3.10)
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Fig. 3. Density plots of partial-rogue waves |ujo(x,t)| (a), |uzo(x,t)| (b), and
luso(x, t)| (c), with pg = —+/3/2 and internal parameter values in Eqs. (3.13), (3.14),
and (3.15), respectively. The horizontal axes are X = x + (33/4)t.

22/3
§=&+ma1,2, (311)
5 25/3 24/3 2
t=t— 3136 a12+3“/6 (3.12)

Thus, under a shift of the (X,t) axes, the uq 1(x,t) solution with
free parameter a;, reduces to the uqo(x,t) solution given in
Egs. (3.6) and (3.8)-(3.9). This uj 1(x, t) solution, in the (X,t) plane
with a2 =3, will be plotted in Fig. 5(a) of the next subsection.
Since the uq 1(x, t) solution is equivalent to the uq o(x,t) solu-
tion, one may wonder if uy, n,(x,t) solutions are equivalent to
un;,0(x,t) solutions in general, ie., for all Ny > 1, even though
un; N, (x, t) contains more free parameters than uy, o(x, t). This is
an interesting question that merits further studies in the future.

3.3. Numerical verifications of the two theorems

Next, we numerically verify these two theorems. First, we con-
sider Theorem 2. Based on Fig. 2, this theorem predicts that ratio-
nal solutions u1 g, u2,0, and usz, with pg = —«/§/2, are partial-
rogue waves. To verify this, we take internal parameters in these
three solutions respectively as

a;1=daz1 =0, (3.13)
aj,1=a1=0, as1=2, as1 =-3, (3.14)
aj1=a31=0, a41=2, as; =-3, a;1 =ag1 =0. (3.15)

The corresponding true solutions are plotted from Theorem 1 and
displayed in Fig. 3. As can be seen, these are indeed partial-rogue
waves that arise from the constant background but do not retreat
back to it, in agreement with Theorem 2.

Theorem 2 also predicts that, as t — +o0, these partial-rogue
waves would split into several fundamental rational solitons. Fig. 3
confirms that this is indeed the case. The reader may notice that
individual fundamental solitons at large time in Fig. 3 appear to
have different heights, while Theorem 2 predicts these fundamen-
tal solitons should approach the same height. It turns out that this
discrepancy is due to the fact that the time shown in Fig. 3 is
not large enough. We have checked that as time increases fur-
ther, all these humps indeed approach the same height 2, which
is the height of the fundamental rational soliton (2.20). To demon-
strate, we choose the |uy o(x, t)| solution in Fig. 3(b), and track the
heights of its two humps versus time. The corresponding graphs
are plotted in the left panel of Fig. 4. The height 2 of the funda-
mental soliton is also shown for comparison. One can see that the
heights of both humps monotonically approach the height of the
fundamental soliton as t — +o0, in agreement with Theorem 2.

To show further quantitative comparison, we again choose the
luz.0(x, t)| solution in Fig. 3(b). This time, we track true locations of
its two humps at each large time, and compare them to predicted
locations (3.2) in Theorem 2. The errors of these predictions, de-
fined as the absolute difference between true and predicted hump
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21 —— hump height (L) 03}
—— hump height (R)

- error decay (L)
—— error decay (R)

= = === limiting value

10 5000 10000 20 100 1000 10000
t

Fig. 4. Quantitative comparison between the true partial-rogue solution of Fig. 3(b)
and its prediction from Theorem 2. Left: graphs of the two humps’ heights versus
time (upper one for the left hump and lower one for the right hump); the theoret-
ical limiting value of 2 is also shown (as dashed line) for comparison. Right: errors
versus time for predicted locations of the two humps at large time; the |t|~1/2 de-
cay is also plotted for comparison. (For interpretation of the colors in the figure(s),
the reader is referred to the web version of this article.)

locations, versus time are plotted in the right panel of Fig. 4. This
panel shows that the errors decay at the rate of 0 (|t|~1/2), which
matches our error estimate in the asymptotics (3.3). Thus, Theo-
rem 2 is fully confirmed.

Now, we examine peak amplitudes of these partial-rogue
waves in Fig. 3. The peak amplitude of uqo(x,t) in Fig. 3(a) is
found to be approximately 2.8371, which is reached at (x,t) ~
(—0.2595, 0.0836). Recalling that the amplitude of our background
has been normalized to unity [see (2.2)], this means that the
uq,0(x, t) solution can reach a peak amplitude that is 2.8371 times
the background amplitude. This 2.8371 value is similar to peak am-
plitudes of fundamental rogue waves in the Sasa-Satsuma equation
as reported in [11-17,19].

For the other two partial-rogue waves uz o(x,t) and us3g(x,t)
in Fig. 3(b, c), their peak amplitudes are approximately 2.8718 and
2.8519, respectively.

Next, we numerically confirm Theorem 3. Based on Fig. 2, this
theorem predicts that rational solutions uq1(x,t), uz2(x,t), and
us3(x,t) with po = +/3/2 are partial-rogue waves. To verify this,
we take internal parameters in these three solutions respectively
as

a11=01=0, a1 =3, (3.16)
1,1 =021=04,1=051=0, a12=a22=0a42=3, (317)
1,1 =021 =041 =051 =071 =0ag 1 =0,

(12 =032 =042 =052 =072 = 3. (3.18)

The corresponding true solutions are plotted from Theorem 1 and
displayed in Fig. 5. We can see that these are indeed partial-rogue
waves, in agreement with Theorem 3. We have also done quantita-
tive comparison between these true partial-rogue waves and their
theoretical predictions in Theorem 3, similar to what we did in
Fig. 4. That comparison also confirmed Theorem 3 quantitatively.
Details will be omitted for brevity.

Regarding peak amplitudes of these partial-rogue waves in
Fig. 5, their values are approximately 2.8371, 3.0165 and 3.2472,
respectively.

4. Proofs of theorems

The proofs of Theorems 2 and 3 follow the asymptotic analysis
we developed in [26-28] for rogue patterns in integrable systems
and lump patterns in the Kadomtsev-Petviashvili I equation.
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Fig. 5. Density plots of partial-rogue waves |uj 1(x,t)| (a), |uz2(x,t)| (b), and
lus 3(x, )| (c), with pg = ﬁ/Z and internal parameter values in Egs. (3.16), (3.17),
and (3.18), respectively. The horizontal axes are X = x + (33/4)t.

Proof of Theorem 2. To prove Theorem 2, we first rewrite oy in
Eq. (2.6) as a larger determinant with simpler matrix elements [26,
29]

, (41)

where N = Nq + N2, N = max(3Nq, 3N, — 1),
oD _ hg,‘isgi_j (x7 k. D+ (j—Ds), i <Nip,
Mo e SNy —j-1 (R (kD + (= Ds), 0> Ny,

{ hh 1S3 (%7 (kD + (i — Ds), j<Ni,
hy ' S3Gi—Np—i1 (% (kD) + (i —1)s), j> Ny,

and ho = p1/2po. Next, we apply the Laplace expansion to Eq. (4.1)
and get

Okl = Z

0<vq <l)2<~~<l)N§N—1

det d®Dx det wkD (42

1<ij<N  "Vi T a<ij=n BV

To analyze oy ’s large-time behavior, we need large-time asymp-
totics of Sj(x,i(k, ) + vs). Notice that for |x| > 1 and |t| > 1,

X1k, 1) ~ p1(x+66) + pit = pi&, (4.3)

where % is as defined in (2.22), and I =1, 2. Similarly,

X3 (e, D) ~ poR + pat, X3 (k, 1) ~ p3k + ust, (44)
where
M2 =9p2/2, u3=12ps. (4.5)

Thus, when |t| > 1 and % = 0(|t|'/2), we have the following
leading-order asymptotics

Sj (x5 (kD) +vs) ~ Sj(v), (4.6)
where
V= (p15\(9 M2t9 07 Os"')' (4'7)

By comparing the definition of Schur polynomials S;(v) in (2.3) to
the definition of p;(z) polynomials in (2.23), we see that

Si(v) = (uat)? pj(2), (4.8)
where
7= 21X (4.9)

ot

Using these results and similar ones for S;(x; (k,) + vs), we find
that the leading-order term of oy in Eq. (4.2) is

7

011~ g™ (12D QF, @), 1> 1, (410)
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where mg and ng are certain positive integers. Since pg < 0 in The-
orem 2, 4y < 0. Thus, for large negative time, z in Eq. (4.9) is real.
Then, Eq. (4.10) tells us that, if Qn, n,(z) does not have real roots
as assumed in Theorem 2, the above leading-order asymptotics
for o, would not vanish. Since this asymptotics is independent
of (k,I), then o1,0/00,0 would approach 1 when t — —oo, which
means that

%(x+6t)7%t]’ ¢

UN, N, (%, £) — el — —00, (411)

in view of Eq. (2.4).

When t > 1, z in Eq. (4.9) is imaginary. If this z value is not
near an imaginary root zo of the Qn, n,(z) polynomial, i.e., X —
Xo| > 1, where

(4.12)

then the leading-order asymptotics (4.10) does not vanish either.
For similar reasons as above, un, n, (x, t) would approach the back-
ground eflz*+60-31 35 well,

When t > 1 and |X — Xg| = 0(1), the z value from Eq. (4.9) is
near zg, and the leading-order asymptotics (4.10) breaks down. In
this case, a more refined asymptotic analysis is needed. The start-

ing point is a more refined asymptotics for S (xf k,D) + vs),

Si(x (kD) +vs)=5S; (V) (1+0(™), (413)
where
i = (xlf,(k, ), paX + fat, ust, 0,0, - - ) . (414)

Here, the fact of s; =0 has been utilized. Let us split v; and Vv as

Vi =w+ (0, p2&, 3t, 0,0, ), (4.15)
V) =W+ (a1,2 — a1, p2X, u3t, 0,0, ), (4.16)
where

w= (x{l(k,l),mt,o,o,m). (417)

Then, using the definition (2.3) of Schur polynomials, we can read-
ily find that

Sj (& (k. D +vs) =[S;(W) + pa&o Sj_2(W) + 3t Sj_3(w)]

x (1+0(t™h), (4.18)
Sj (x5 (k.1) + vs) = [S;j(W) + (a1,2 — a1,1)S j—1(W)

+p2X0 Sj—2(W) + 3t Sj_3(W)]

x (1+0(tI™), (419)
where

4 P (A))
. _ iz [ Ma

Sj(w) = (u2t)’“ p;j (7\/@ )
_ 2. p1(X —Xo) + k61 + 16} +a1,1)
= (42t)"“ pj <20+ Tt . (4.20)

Similar asymptotics can be obtained for S; (] (k,[) + vs).

Now, we use these refined asymptotics of S; (%7 (k, ) + vs) to
determine the leading-order asymptotics of oy from Eq. (4.2). This
leading-order asymptotics comes from two index-vector contribu-
tions, one being v=(0,1,2,---,N—2, N—1), and the other being
v=(0,1,2,---,N —2, N). For the first index vector, there are two
sources of contributions to deti<; j<n q>§f‘v~’]_). One is when the S ;(w)
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term in (4.18)-(4.19) is chosen in each d>i(k‘;? element. In view of
Eq. (4.20), this part of the contribution amounts to

hy® (12t) ™~V (py (R — Ro) + k61 + 167 +a1.1) Qpy, n, (20).

where mg and ng are the same as those in Eq. (4.10). The other
source of contributions to detj<j j<n ¢§f‘;i) comes from taking the
Sj(w) term of (4.18)-(4.19) in all columns of the <I>,.(f<‘;lj) matrix, ex-
cept for a single column where the S;_1(w), S;_»(wW), and S;_3(w)
terms of (4.18)-(4.19) are chosen. Recalling the %o formula (4.12),
this part of the contribution amounts to

N
hg® (1at) M0V 3" [(01.2 - 01,1)Q](-1)(Zo) + %Zo QJ(-Z) (20)
=1

+5q® (Zo)] ,
"2

where Q}l)(z) is the Qn,,N,(2) determinant (2.25), but with its j-
th column modified so that its first N1 elements become zero, and
its remaining elements are the original p,(z)’s with their indices
n reduced by one each, and Q;Z)(z), Q]@(z) are the Qn, n,(2)
determinants (2.25) but with p,(z) indices n of their j-th col-
umn reduced by two and three, respectively. Contributions to
deti<i j<N \I—'Eﬁ;ﬂ) of (4.2) can be obtained similarly.

For the second index vector of v =(0,1,2,---,N —2,N) in
Eq. (4.2), leading-order contributions to det;<; j<n d),.(f‘l;lj,) only come
from choosing the Sj(w) term of (4.18)-(4.19) in each @;_kl’)? ele-
ment, and this contribution amounts to

hg ™" ()™ V2 Qy, , (20)

in view of the relation p}ﬂ(z) = pj(2). A similar result can be

obtained for det;<; j<n wgk},}ﬂ)_

Collecting these results, we find that the leading-order contri-
bution to oy in Eq. (4.2) is

011 ~ g™ (12" QR y, (20) [(P1(R — Ro) + kb1 + 165 + A)

% (p1(& — Ro) — koF — 161 + A) +h52], (4.21)
where
S [0 @) + 2200 20 + 2 0]

w2
Qu,.w, (20)

A=ay1+

)

(4.22)

and a1 = a3 —ay 1. If Ny =0, where the parameter a; ; does not
arise in the uy, n,(x,t) solution (2.4), then the a, Q}l)(zo) term in
the above A formula would disappear. Since the imaginary root zg
of Qn,,n,(2) is simple according to our assumption, Q,’\,LN2 (z0) #
0. Thus, the above leading-order asymptotics of oy does not van-
ish. This asymptotics, when inserted into Eq. (2.4), gives a funda-
mental rational soliton i1 (x — X, t)e!l2 ®*69=8t] where the soliton
position xo can be obtained from Xp and A as

33 N A

X=——t+X% — —, (4.23)
4 p1

which is the same as Eq. (3.2) in Theorem 2 since p; = —121/6/2

here. The relative error of the leading-order asymptotics (4.21)
of oy is 0(|t|~"/?), which leads to an error of O(|t|~"/?) in
the above fundamental-soliton approximation. This completes the
proof of Theorem 2. O
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Proof of Theorem 3. The proof of Theorem 3 is very similar to
that of Theorem 2, and only very minor changes are needed. In
this case, po > 0 and py > 0. Thus, for large negative time, z in
Eq. (4.9) is imaginary. Then, if Qn; n,(z) does not have imagi-
nary roots as assumed in Theorem 3, the leading-order asymptotics
(4.10) for oy, would not vanish. Hence, the asymptotics (4.11)
holds, i.e., the solution un, n,(x,t) approaches the uniform back-
ground (2.2) when t — —o0.

When t > 1, z in Eq. (4.9) is real. If this z value is near a real
root zo of Qn,.N,(2), i.e., | —Xo| = O(1), where

(4.24)

then the leading-order asymptotics (4.10) breaks down, and a more
refined asymptotics is needed. This more refined asymptotics is al-
most identical to that we developed in the proof of Theorem 2,
starting from Eq. (4.13), because that refined asymptotics does
not depend on the sign of pg. In particular, Eq. (4.23) still holds
here, except that the %o formula should be updated to (4.24) now.
Since p; = 121/6/2 here, we then get Eq. (3.5) in Theorem 3. The
rest of Theorem 3 can be similarly obtained. Thus, Theorem 3 is
proved. O

5. Other types of rational solutions

Rational solutions in Theorem 1 also contain other types of so-
lutions. One other type is “waves that come from somewhere but
leave without a trace” — the opposite of partial-rogue waves we
considered earlier in this paper. Such solutions obviously exist, be-
cause the Sasa-Satsuma equation is invariant under the (x,t) —
(—x, —t) transformation. Thus, from every partial-rogue wave, we
can get such a new wave. This way of getting such new solutions
will change the background condition (2.2) though. If we want to
preserve that background, then we can just switch the sign of pg
in Theorems 2 and 3, and the resulting solution would be “waves
that come from somewhere but leave without a trace” instead of
partial-rogue waves. As an example, we show in Fig. 6(a) such a
solution by switching the sign of pg in the partial-rogue wave of
Fig. 3(b). It is noted that a simpler solution of this type has been
reported earlier in [14] (see Fig. 7(b) there). This type of solutions,
although different, are closely related to partial-rogue waves. Thus,
it is reasonable for us to call them partial-rogue waves as well for
simplicity.

These partial-rogue waves are obtained when the associated
generalized Okamoto polynomials have real but not imaginary
roots, or imaginary but not real roots. As one can see from Fig. 2,
most generalized Okamoto polynomials are not like that. For such
polynomials, the associated rational solutions in Theorem 1 would
not be partial-rogue waves. Instead, they would be solutions which
split into several fundamental (or lower-order) rational solitons as
time approaches both £oo. As an example, we choose (N1, N2) =
3,1) and po = «/§/2. The corresponding Q3 1(z) polynomial has
four nonzero real roots and two imaginary roots, all of which
are simple, see Fig. 2. Thus, a simple extension of our earlier
asymptotic analysis predicts that, as t approaches —oo, this so-
lution would split into two fundamental rational solitons, but as
t approaches +oo, it would split into four fundamental rational
solitons. To illustrate, we choose all internal parameters a1, dr 2
as zero. The resulting true solution from Theorem 1 is displayed
in Fig. 6(b). This solution shows that, out of the interaction and
collision of two fundamental rational solitons, four fundamental
rational solitons emerge, in agreement with our predictions. This
phenomenon is unusual and fascinating.
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Fig. 6. Other types of rational solutions in Theorem 1. (a) A wave that comes from
somewhere but leaves without a trace. This solution is obtained from |uz o (x,t)| of
Fig. 3(b), but with its pg value flipped from —+/3/2 to +/3/2. (b) A wave that comes
and leaves with traces. This is the |u3 1(x, t)| solution with pg = +/3/2 and all in-
ternal parameters as zero. In both panels, the horizontal axes are X = x + (33/4)t.

6. Summary

In this article, we have asymptotically and numerically studied
partial-rogue waves in the Sasa-Satsuma equation. We have shown
that, among a class of rational solutions in this equation that can
be expressed through determinants of 3-reduced Schur polyno-
mials, partial-rogue waves would appear if these rational solu-
tions are of certain orders, whose associated generalized Okamoto
polynomials have real but not imaginary roots, or imaginary but
not real roots. We have further shown that, these partial-rogue
waves asymptotically approach the constant-amplitude background
as time goes to negative infinity, but split into several fundamental
rational solitons as time goes to positive infinity. Our asymptotic
predictions are compared to true solutions both qualitatively and
quantitatively, and excellent agreement has been obtained.

In earlier work [26-28], we linked rogue and lump patterns in
the space-time plane to root structures of certain special polyno-
mials in the complex plane. In that work, all roots of the special
polynomials contributed to the space-time patterns of solutions.
A distinctive feature of our present work is that, the question of
partial-rogue waves and their large-time behaviors is linked to
only real and imaginary roots of the underlying special polyno-
mials (i.e., generalized Okamoto polynomials). Other complex roots
of these polynomials are irrelevant. This feature vaguely resembles
an earlier work in [30], where superluminal kinks in the semiclas-
sical sine-Gordon equation were linked to real roots of Yablonskii-
Vorob’ev polynomials. This wide variety of connections between
nonlinear wave dynamics and certain types of roots in special
polynomials is a remarkable phenomenon, and it reflects the rich-
ness of wave behaviors in nonlinear partial differential equations.

From a broader perspective, some other solutions are also re-
lated to partial-rogue waves. For example, in a two-dimensional
multi-component long-wave-short-wave interaction system [31],
some solutions describing a resonant collision between lumps and
homoclinic orbits are such that the underlying lumps do not exist
at large negative time but arise and persist at large positive time.
But such solutions may not be called partial-rogue waves since
they are not localized in space at intermediate times due to the
nonlocal homoclinic-orbit component.
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Appendix A

In this appendix, we briefly derive rational solutions given in
Theorem 1.

It has been shown in [17] that the Sasa-Satsuma equation (2.1)
under boundary conditions (2.2) admits the following solutions

u(x.t) = pilaCer6n ot 11,0 7 (A1)
70,0 ly=r=s=0
where
[1,1] [1,2]
T T
Tt Tkz
[LJ1 _ (k,11,])
Tl <¢ i) ]llJ> ; (A3)
m /7 1<v=Nj,1=u<N;
N7 and Ny are arbitrary non-negative integers, (5’],15’],.. 1%})
and ( ]5“, ]5”,4 , ]H]) are arbitrary sequences of non-negative
indices,
kLL] _ (kll])’

= AiB , (A4

P i® P=4. £0.1(P)=110,1(a). €0, (P)="0,J (@) )
. k . i

et = 1 <_P_}°‘> (_PJF}“) D@ (p5)

p+q q+io q— 1o

1
E1(p)=px+ P2y +p’t+ ——r+ ——s+&(p)., (A6)
p—ix p+ia
1
=qx — —r 4+ s+ , A7

n;(@=q PEoL no.y@. (A7)

p is an arbitrary real number, & 1(p) and &p2(p) are arbitrary real
functions of p, A; and B; are differential operators

1 i
ﬂizﬁ[fl(p)ap] , Bj= (A.8)

1 j
71 @]
and fi(p), f2(q) are arbitrary real functions, if the above 7} sat-
isfies the dimension reduction condition

(O + 05 + 9x) T 1 = CTy 1, (A.9)

where C is some constant. The above result can be made even
more general by allowing each of p and q to take different val-
ues in different blocks of the determinant (A.2) [17,20]. But that
generalization is not necessary for our purpose.

Different ways to satisfy the dimension reduction condition
(A.9) will lead to different types of solutions to the Sasa-Satsuma
equation. One type of such solutions — rogue waves, were derived
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in [17]. To derive rational solutions in Theorem 1, a different di-
mension reduction is needed. Following the ‘W-p treatment we
developed in [20,32], we first introduce the function Qi(p) as
given in Eq. (2.13), i.e

Qi(p) =

— + — + D, (A10)
p—lx p+ix
which is the coefficient of the exponential (3, + 9 + dx) e,
When o =1/2 as in Theorem 1, the equation @;(p) =0 has a
pair of double real roots pg = ++/3/2. In this case, we can show
from [20] that the dimension reduction condition (A.9) would be

satisfied if we choose

(LI _ o (kIL )
: , Al1l
Tl (¢3’ ”31—1)151'5N,,1sjsN1,p=po ( )
Wi(p)
fi(p) = , (A12)
Wi(p)
the function ‘W1 (p) is determined from the equation
Q1(po) 2 V3
Qi(p) =~ [ Wi(p) + ———=cos | =~ InWi(p) | |.
3 vWi(p) 2
(A13)
and f2(q) = f1(q). To introduce free parameters into these solu-

tions, we choose &y j(p) as

oo
g.0= a1 In" Wi(p),

r=1

1=1,2, (A14)

where @, are free real constants.

Lastly, we simplify the matrix-element expression in Eq. (A.4)
and derive a more explicit expression without differential opera-
tors in it. This can be done by following the technique developed
in [20,29]. Repeating such calculations, we then derive the solution
formulae in Theorem 1, where free real parameters a; ; are related
to ar of (A.14) as

ar, | = ar,] — by, (A15)
b, is the real expansion coefficient of the function

K
In [p( )“’0} Zbr/c (A16)

and the real function p(x) is as defined in Eq. (2.12). It is noted
that Eq. (2.12) admits three branches of p(k) functions, which are
related to each other as p(xe27/3), where j=0, 1,2 (see Remark
3 in Ref. [20]). However, since p(k) in the current problem must
be a real function, i.e,, its Taylor expansion p (k) = Y oo prk" must
have real coefficients p;, only one of those three branches is al-
lowed.
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