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Abstract. Kuramoto networks constitute a paradigmatic model for the investigation of collective behavior
in networked systems. Despite many advances in recent years, many open questions remain on the
solutions for systems composed of coupled Kuramoto oscillators on complex networks. In this article,
we describe an algebraic method to find equilibria in this kind of system without approximation. To
do this, we use a recently introduced algebraic approach to the Kuramoto dynamics, which results in
an explicitly solvable complex-valued equation that captures the dynamics of the original Kuramoto
model. Using this new approach, we obtain equilibria for both the nonlinear original Kuramoto and
complex-valued systems considering the case of homogeneous natural frequency. We then completely
classify all equilibria in the case of complete graphs originally studied by Kuramoto. Finally, we
study equilibria in networks of coupled oscillators with phase-lag in generalized circulant networks,
multilayer networks, and also random networks.
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1. Introduction. A paradigmatic system for understanding the collective behavior of cou-
pled nodes is given by the Kuramoto model, which was introduced by Yoshiki Kuramoto in
1975. This model can be described as a set of coupled phase-oscillators that interact through
a nonlinear function, usually considered to be a sine function [1, 2]. Studies of this mathe-
matical model have revealed several previously unknown and nontrivial phenomena that arise
from the dynamics and pattern of connections in this type of system, such as phase synchro-
nization, remote synchronization, cluster synchronization, chimera states, and Bellerophon
states [3, 4, 5, 6, 7, 8, 9]. In this sense, this model has been used as a theoretical approach for
studying collective behavior and emergent phenomena in different fields, spanning from social
interactions to biology and physics [4, 5, 10, 11].
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Many recent mathematical studies have focused on possible solutions of the Kuramoto
model—specifically, the equilibrium points of the system [12, 13, 14, 15, 16]. One of the pos-
sible ways to mathematically analyze coupled Kuramoto oscillators is by considering a mean-
field approach in the thermodynamic limit, i.e., N — oo, where IV is the number of oscillators
in the system [17, 18]. In this case, it is possible to define the critical coupling strength where
the system transitions to synchronization [19, 20]. Using this approach, Medvedev has shown
the existence of equilibrium points (twisted states) for small-world networks, where nonlocal
connections play an important role [21]. Also, the mean-field approximation is an important
strategy in the analytical treatment of coupled oscillators, where the dynamics of the entire
system is reduced to a few variables [11, 22]. An interesting approach is given by the discrete
state mean-field Kuramoto model [23]. Furthermore, many other approaches have been used
in order to explore the role of topology in the synchronization of Kuramoto oscillators. Recent
advances have shown different synchronization phenomena in complex networks [6, 7, 17].

An important question in this context is the possibility of finding equilibrium points given
a specific network of Kuramoto oscillators [24, 25, 26, 27]. Many authors have explored the
role of the connection architecture in the existence and stability of equilibrium points, which
affects the process of transition to a global phase-synchronized state. Interestingly, Townsend,
Stillman, and Strogatz have recently shown some examples in which, somewhat counterintu-
itively, the stability of the synchronized state depends most strongly not on the density of
connections in the network, but on the specific pattern of connections, highlighting the im-
portance of a particular network’s structure on Kuramoto dynamics [26]. Even though these
results represent a great advance in the understanding of the collective behavior, they reach
an inherent difficulty: the Kuramoto model is originally described by a nonlinear equation,
which imposes a limitation to the analytical treatment, where methods of linearization and
approximations are usually necessary. In recent work [28], a novel analytical approach to
Kuramoto oscillators was introduced—the complex-valued approach—which results in an ex-
plicitly solvable complex-valued equation that captures the dynamics of the original, nonlinear
Kuramoto model. Specifically, using the explicit expression for the complex-valued approach
and an iterative, operator-based approach, we showed in [29] that (1) the trajectories of the
two systems (the original, nonlinear Kuramoto model and the complex-valued system) can
match precisely for long times, and (2) this approach can thus provide a unified, geometri-
cal insight into the transient behavior of the networks. While the original Kuramoto model
is defined in terms of real numbers, the complex-valued one is defined in terms of complex
numbers, where the argument corresponds to the solution of the original Kuramoto model.

In this work, we now use this analytical approach to study the equilibria in coupled
Kuramoto oscillator networks. Because the complex-valued approach has an explicit solution,
we can approach this problem using very straightforward techniques, where no approximations
are needed. We show that the equilibria of the complex-valued approach correspond to those
of the original, real-valued, and nonlinear Kuramoto model, using algebraic techniques on the
adjacency matrix of an individual network model. The main ingredient of our analysis is the
use of Euler’s formula and some important properties of the matrix exponential. The results
from this work provide insight into both the structure of equilibria in the original Kuramoto
model, in addition to providing new insight into the complex-valued analytical form we have
introduced in previous work.
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This work is organized as follows. We first show that some eigenvectors of the network
adjacency matrix are equilibrium points for the novel complex-valued approach (section 2). We
next show that the equilibrium points for the complex-valued approach are also equilibrium
points for the original (nonlinear) Kuramoto model. Utilizing this result, we extend our
analysis to the case where the network can be understood as a circulant graph (section 3),
focusing also on the typical case of all-to-all coupling (complete graph) (section 3.1). With
this result obtained, we then extend our analysis of equilibria to four new cases: (i) equilibria
in networks of Kuramoto oscillators with phase-lag, which leads to an interplay between
attractiveness and repulsiveness in the coupling term (section 4); (ii) equilibria in generalized
circulant networks (section 5); (iii) equilibria in multilayer networks (section 6); and (iv) a new
method for designing equilibria in Erdés—Rényi random graphs by applying specific changes
to the adjacency matrix (section 7). Taken together, these results extend the analysis of
equilibria in networks of Kuramoto oscillators to cases that could not be considered previously,
demonstrating the utility of our complex-valued analytical approach.

2. Equilibrium points of Kuramoto models. The original Kuramoto model can be defined
as the dynamical system governed by the equation

do; S
(2.1) rr :wi—i-eZaij sin(6; — 6;),
j=1

where 0; is the phase of the ith oscillator, w; is its natural frequency, € is the coupling strength,
N is the number of oscillators in the network, and A = (a;;) defines the adjacency matrix.
We initially consider a;; = 0 if 7 and j are unconnected and 1 if connected, and later consider
weighted adjacency matrices with real-valued entries. In this paper, we deal with the homo-
geneous Kuramoto model, where w; = w for all ¢ € [1, N]. In this case, considering a suitable
rotating frame of reference, without loss of generality, we can assume w = 0.

Following [28, 29|, starting with the original (homogeneous) Kuramoto model, we can
extend this to a complex-valued approach, obtaining a new dynamical system, governed by
the following equation (throughout the paper, we denote i = v/—1):

40 =
(2.2) ditz = eZaij[sin(Gj — 01) — iCOS(@j — 01)] y
j=1

Note this expression now implies 6; € C. As shown in [28], the above equation is equivalent to

d . .
(2.3) %(ele) = cAel?,
where A is the adjacency matrix. By letting « = €, we have
d
(2.4) di:' =cAzx.

Let 8 = 0. +160;, be the decomposition of 8 into the real and imaginary parts. Then we have

(2.5) 2 — ei0re—0im _ o6 i
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By (2.5), we can observe that 6, is the argument of the solution . This naturally leads to
the following definition.

Definition 1. We say that 0y € [—m, @)V is an equilibrium point of the complez-valued
approach— (2.2)—if for all time t > 0, 6(t) = 0y. Equivalently

arg(z(t)) = arg(e®“zg) = arg(zo) = 6o,

where zy = e,

Remark 1. It is important to emphasize that the original Kuramoto model and our
complex-valued approach are two distinct dynamical systems. We find that by iterating the
explicit expression for the complex-valued system over short intervals, the trajectories of the
two systems can precisely match for long times [29]. This approach thus offers analytical,
mechanistic insights into the transient dynamics of Kuramoto networks, where the dynamics
can be captured in terms of the eigenmodes of the system [29]. In this work, we analyze
the equilibrium points of both systems. At the equilibrium points considered here, the two
models are equivalent. Since the systems have this equivalence in this context, we use the
same variable 6 to refer to both systems.

We also recall the definition of equilibrium points in the theory of differential equations
(see [30] for further discussions).

Definition 2. Consider the differential equation

(2.6) o(t) = f(6(1)),

where O(t) = (01(t),02(t),...,0n(t)). We say that Oy is an equilibrium point for (2.6) if
f(@9) = 0. In other words, O(t) = Oy is a solution of the following differential equation with
wnitial condition

In the context of the original Kuramoto model equation (2.1) (note that we have set
w=0), 8g = (01,04,...,0N) is an equilibrium point if and only if for all 1 <i < N

N
Z Qi Sin(ej — 92) = 0.
j=1

Remark 2. In this article, we concentrate on the classical notion of equilibrium points
as discussed in Definitions 2 and 1. In our subsequent work, we will discuss a more general
notion of equilibria in Kuramoto networks, namely, those solutions in which 6;(t) — 6;(t) is a
constant for all time .

In the following discussion, we develop an effective method to find equilibrium points of
the original Kuramoto model—(2.1)—and the complex-valued approach—(2.2).
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We start with the following lemma.

Lemma 1. Let B be a matriz. Suppose X\ is an eigenvalue of a matric B and v is an
associated eigenvector. Then

e’y =ev
Proof. By definition we have
B _ — B"
€= nl
= n!

Applying both sides to v we have
o o
B" AT
B, _ _ _ A
e'v—E n!U_E Jv=¢v.
n=0 n=0 [}

A direct consequence of the above lemma is the following.

Proposition 1. Suppose xo = €9 is an eigenvector of A associated with a real eigenvalue .
Then g is an equilibrium point of the complex Kuramoto model in the sense of Definition 1.

Proof. By Lemma 1 for B = et A, we have

Because A € R we have

Aet

arg(z(t)) = arg(e"“xg) = arg(zg) = Oo. -

Next, we show that the above equilibrium points are also equilibrium points for the original
Kuramoto model equation (2.1).

Proposition 2. Suppose g = €0 is an eigenvector of A = (aij) associated with a real
eigenvalue \. Then Oy = (01,02,...,0N) is an equilibrium point of the original Kuramoto
model:

;&
7 .
i 6;_1 a;jsin(f; — 0;).

Proof. By Definition 2, we need to show that for all 1 <i < N

N
Z Qi sin(Gj - (91) =0.
Jj=1

First of all, since x( is an eigenvector, we know that for all 1 <: < N

N
E aijelgj = Al
i=1

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license



Downloaded 06/14/23 to 129.100.255.24 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

EQUILIBRIA IN KURAMOTO OSCILLATOR NETWORKS 807

Taking the conjugation of both sides and noting that a;; € R and A € R, we have

N
E a,-je_lej = Xe 1,
j=1

We recall Euler’s formula,

(2.7) sin(x) =

eit _ o—iz
2i ’

thanks to which

A(0,-0,) _ —i(0;-0:)

sin(ﬂj — 92) = o
Hence
N N
(2i) Z a;jsin(0; — 0;) = Z ajj [61(91_91) — e_‘(ef_ei)}
J=1 J=1
N N
Jj=1 J=1
=A—A=0.
This completes the proof. |

Remark 3. We state many results assuming that equilibrium points have a zero first
coordinate, that is, the phase of the first oscillator is 0. Since at equilibrium points all
oscillators have a constant phase, this assumption is not a real loss of generality, but rather it
is a normalization obtained as part of the choice of the rotating frame of reference. However,
we remind the reader that adding a fixed phase to all coordinates of an equilibrium point gives
another equilibrium point.

3. Equilibrium points for circulant networks. We apply Propositions 1 and 2 to find
equilibrium points of the the Kuramoto model when the topological structure of the net-
work is circulant. More precisely, let C' be a symmetric circulant matrix with first column

[co, 1y ..., cn—1]. Then the Circulant Diagonalization Theorem ensures that, defining
‘ 27 2mj(n — 1)\
(3.1) o) = (o, =, ... =~ for j=0,...,n—1,
n n
the vector w(()j ) = €10 ig an eigenvector of C' associated with the (real) eigenvalue

. ) o
Aj = o+ 1wl + cnoow 4 -+ I

See also [26].
By Propositions 1 and 2, we have the following.

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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Proposition 3. For 0 < j<n—1, let

’ n ’ ’ n
Then

1. 0(3:) is an equilibrium point of the compler-valued—(2.4);
2. 0Y) is an equilibrium point of the original Kuramoto model—(2.1).

Based on these results, Figure 1 portrays a graphic representation of an equilibrium point
for a circulant network of Kuramoto oscillators, which is also called a “twisted state.” Here,
a system with N = 50 oscillators connected with a ring network, where each node has & = 10
connections in both directions. This solution follows (3.1) with j = 1 (panel (a)), which
is equivalent to taking the 2nd eigenvector of the matrix A. This leads to an equilibrium
point where the oscillators’ phases are equally spaced between 0 and 27 (represented in color
code). Moreover, we also consider the case where the equilibrium point follows (3.1), but with
j = 3 (panel (b)), which is equivalent to taking the 4th eigenvector of A. In this case, the
distribution of the phases changes, but it is still an equilibrium point. This kind of solution
is also known as “twisted states.”

Then we use the equilibrium points represented in Figures 1(a) and 1(b) as initial con-
ditions for the temporal evolution of the system. The spatiotemporal dynamics for both the
numerical (original) Kuramoto model and the complex-valued version (analytical) is repre-
sented in (c) and (d), where the oscillators’ phases are represented in color code, and the
initial conditions are given, respectively, by the solutions depicted in (a) and (b). We observe
that the initial configuration remains as time evolves, which corroborates the solution as an
equilibrium point for both cases. The oscillators’ natural frequency is given by w = 207, and
the coupling strength is given by e = 1.0.

Furthermore, one can observe that there is a difference between the dynamics of these two
cases, where the “shape” of these waves differs as the equilibrium point changes. In this case,
the wave pattern in (c) depicts diagonal structures with a lower slope (in comparison with
the horizontal line) than (d) since the solutions are given by the 2nd and 4th eigenvectors,
respectively.

3.1. Complete classification of equilibrium points for complete graphs. A particular
case of circulant networks is given by complete networks, in which every oscillator is connected
to any other. In other words, the topological connection is given by the complete graph K.
In this case, based on the previous results, we can give an exhaustive characterization of
equilibrium points.

Let An be the adjacency matrix of K. We have the following proposition.

Proposition 4. Let 8y = (01,...,0N) be an initial condition such that
N
Z el = .
k=1
Then €19 is an eigenvector of An associated with the eigenvalue A = —1. Consequently, 0 is

an equilibrium point of the complex-valued approach, (2.2), and the original Kuramoto model,
(2.1).
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Figure 1. Graphic representation of an equilibrium point for a circulant network following (3.1) with j =1
(a) and N = 50 nodes. This is equivalent to taking the 2nd eigenvector of the matriz A. The phase of each
oscillator is represented in color code, which is equally distributed between —m and w. We also consider the
case with j = 3, which is equivalent to taking the 4th eigenvector of the matriz A (b). This kind of equilibrium
point is also known as a ‘“twisted state.” Spatiotemporal dynamics for both the original Kuramoto model and
the new complez-valued one (analytical) depict the same behavior. Here, the initial conditions for panel (c) are
given by the equilibrium point represented in (a), while for panel (d) they are given by (b). In both cases, the

difference between the oscillators’ phases remains as time evolves.

Proof. We have
ei91 Z]kv—]_ elek O
(Av+ID) [ | = : :
ex PN 0
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In other words, €' is an eigenvector of Ay associated with the eigenvalue A = —1. By
Propositions 1 and 2, 6y is an equilibrium point of the complex-valued approach, (2.2), and
the original Kuramoto model, (2.1), as claimed. [ |

We can go further to classify all equilibrium points of the classical Kuramoto model (2.1).
Suppose 8y = (01,...,0x) is an equilibrium point of the Kuramoto model equation (2.1) not
encompassed by Proposition 4, that is, satisfying

N

Z et #0.

=1

By taking the conjugate of both sides, this also implies that

N
Z e 10 £ .
i=1

Since 6y = (01, ...,0N) is an equilibrium point, for all 1 <i < N
N
(3.2) > sin(6; — 6;) = 0.
j=1

Using Euler’s formula (2.7), equation (3.2) becomes

N N
Z el(05=0:) _ Z e~ 1(0,-0:) _ (.
Jj=1 j=1

We can rewrite this as

N

N
e—lei Z 619j - 619i § :e—lej —0.
Jj=1

=1
We then see that
N i0.
o0, _ 2uj=1€"
e = N
Zj:l e
As the right-hand side does not depend on i, we conclude that
210 — 210 vV1<i,7<N.

Assuming, up to a rotation of the frame of reference, that #; = 0 (see Remark 3), the above
equation then implies that

el = V1< j<N.

In other words 6; € {0,7}. It is straightforward to check that if §; € {0, 7}, then 6y is indeed
an equilibrium point of (2.1). Note that the property 6; = 0 for all j is a special case of this
condition. In summary, we just proved the following.
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Proposition 5. The point 6y = (01, ...,0N) is an equilibrium point of the Kuramoto model
(2.1) if and only if @y satisfies one of the following conditions:

1. The 0;s differ by integer multiples of .
N .

2. Y e = 0.
i=1

4. Equilibrium points for phase-lag coupled oscillators. In this section, we generalize the
results in the previous section to find equilibrium points for the Kuramoto networks where
the oscillators are coupled with phase-lag.

The original Kuramoto model can be described, in this case, as

db; al
(4.1) ditl :wl'—i-ézaij Sin(ej —Hi—(ﬁ),

7j=1

where N is the number of oscillators, € is coupling strength, A = (a;;) defines the adjacency
matrix, and ¢ is the phase-lag. Using this new parameter ¢ we can transition from a purely
attractive coupling (¢ = 0) to a purely repulsive one (¢ = 7). Here, following the same idea
described in section 2, we assume all intrinsic frequencies w; to be equal and consider the
rotating frame, in which w; = 0 (for all ¢ € [1, N]).

Furthermore, using the same technique of complexification, the complex-valued approach
can be described as

db;

N
(4.2) E = EZ aij (Sin(ej — 01 — ¢) — iCOS(@j — 91 — gb)) .
j=1

By Euler’s formula we have

isin(0; — 6; — ¢) +cos(0; — 0; — ¢) = ei(05—=0:—9)

The complex-valued approach becomes

. db; —i0, Y —i¢ i0;
IE:€€ ’Zai]’e e,
=1
Equivalently
N
. do. o
jelfi = = ¢ Z aijeﬂ%l@j.

dt ,
7j=1

Let x; = ei%. Then % = ieie"%. Therefore the above equation becomes
N

dﬂ?i —i¢

dt =€ Z aije a:j.
=1

The general solution of this linear ODE is

(4.3) x = eEx(0),

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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where ¢ = (21,...,2y) and K = ee 17 A.

Finally, we explain how to get a real solution out of the complex solution for the complex-
valued approach described by (4.2). Let @ = 6, + i0;y, be the decomposition of € into the
real and imaginary parts. Then we have

(44) €Tr = eiercfeim — 679im€i0m,

We see that 0, is thus the argument of the analytical solution x. In particular, we can take
0.c € [, 7.
We have the following definition which naturally generalizes Definition 1.

Definition 3. We say that 8y € [—m, |V is an equilibrium point of the phase-lag complea-
valued approach, (4.2), if for all times t > 0

ee*i‘bAtxO)

arg(x(t)) = arg(e = arg(zo) = 6o,

where zy = el

We have the following proposition about equilibrium points of the complex-valued ap-

proach.

Proposition 6. Suppose o = €19 is an eigenvector of A = (a;j) associated with the eigen-
value \. Suppose further that A\e™'® € R. Then 0y = (01,02, ...,0N) is an equilibrium point
of the phase-lag complez-valued approach (4.2):

do;

N
Cth _ Ej;%’j (sin(@; — 0; — ¢) —icos(§; —0; — ¢)) .

Proof. Because xq is an eigenvector of A associated with \, we have Axy = Axzg. There-
fore, applying Lemma 1 with B = tee "¢ A, we have

—ig —ig
ZL’(t) _ etee A:L’() _ 6t€e )\wO'

Taking the argument of both sides, we have

arg(z(t)) = arg(et“_id)/\mo) = Im(tee*id’)\) arg(xg) = arg(zo) = Oo.

Here we use the crucial assumption that A\e™¥ € R. We conclude that g is an equilibrium
point of the phase-lag complex-valued approach in the sense of Definition 3. |

Next, we show that the equilibrium points described in Proposition 6 are equilibrium
points of the original phase-lag Kuramoto model (4.1) as well (note that we have set w = 0).
This is a direct generalization of Proposition 2.

Proposition 7. Suppose xg = €% is an eigenvector of A = (aij) associated with the eigen-
value \. Suppose further that \e™® € R (or equivalently —¢ + arg(\) is an integer multiple
of m ). Then 0y = (61,02,...,0n) is an equilibrium point of the phase-lag Kuramoto model
(4.1):

dbi -~
o= GZaij sin (6; — 0; — ¢).
j=1

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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Proof. We need to show that for 1 <¢ < N

N
Zaij sin (9] - 91 - qb) =0.
J=1

First of all, since x( is an eigenvector, we know that for all 1 <: < N

N
E aijelgj = Aelf,
Jj=1

Taking the conjugation of both sides and noting that a;; € R, we have

N
g aijeﬂgj = de 10,
Jj=1

By Euler’s formula (2.7)

ei(gj _01_¢) — e_i(oj_ei_¢)
2i

sin(Qj — 01 — qb) =

Hence

N N
(21) Z a;j sin(Gj —0; — ¢) = Z aij [ei(Gj—Gi—qs) o e_i(gj_ei—@}
Jj=1 j=1

N N
— o0 g Z ai;el% — il Z azze 10
j=1 J=1
= de 1% — \el?
= Xe ¥ — \e—i6 = 0.
The last inequality comes from the assumption that Ae i € R. This completes the proof. W

Note that by the same argument, we have the following slightly more general statement.

Proposition 8. Let g = e'% = (e, ... ). Suppose that for each 1 < i < N, there
exists a pair (N, ¢;) such that Nie 1% ¢ R and

N
Z aijeleﬂ' = )\ielei.
j=1
Then 6y = (01,02, ...,0N) is an equilibrium point of the phase-lag Kuramoto model (4.1):

Ao~ .
EZEZG,‘jSlH(@j—Qi—(ﬁi) VlSZSN
j=1
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Figure 2. Graphic representation of equilibrium points for phase-lag Kuramoto oscillators. Here, a network
with N = 50 is considered, where the adjacency matriz is given by ring network, where each node has k = 10
connections in both directions. Moreover, the solutions are given by the 2nd eigenvector of the matriz A
with ¢ = 1.00 (a), and ¢ = 7w/2. The effect of the phase-lag is observed in the rotation of the solution.
Spatiotemporal dynamics for this system (phase-lag Kuramoto oscillators) is represented in (c) and (d), where
the initial conditions follow the equilibrium points represented in (a) and (b), respectively. Both the original
Kuramoto model and the complez-valued (analytical) approach depict the same behavior, where the dynamics
remains the same as time evolves, and the equilibrium points can be understood as traveling waves.

Remark 4. Proposition 7 is a special case of Proposition 8, i.e., the case when \; = A for
all 1 <4< N.

We then use computational analyses to further illustrate the equilibrium points for phase-
lag Kuramoto oscillators. Figure 2 depicts a graphic representation of this kind of solution for
coupled Kuramoto oscillators. Here, the network is given with the same configuration as in
Figure 1: N = 50 oscillators coupled in a ring network with k& = 10, coupling strength given

(© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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by € = 1.0, and natural frequency given by w = 20w. Furthermore, the equilibrium points
represented here are given by the 2nd eigenvector of the matrix K, which has information
about the network topology, as well as the phase-lag factor ¢. Here, we consider ¢ = 1.00
(panel (a)), and ¢ = 7/2, where one can observe that the role of this factor is given by a
rotation in the solution in the circle.

In addition to that, Figures 2(c) and 2(d) illustrate the spatiotemporal dynamics of the
networks considering the initial conditions given by the solutions represented in panels (a) and
(b). Here, the wave pattern is observed for the whole analysis, in both the original Kuramoto
model and the complex-valued (analytical) approach, which corroborates the findings about
these equilibrium points. The only difference between panels (c) and (d) is the rotation in the
solution observed in panels (a) and (b), therefore leading to a shifting in the oscillators’ phases.

Example 1. Let us consider a network with 4 nodes, with their topological connection
given by the following adjacency matrix:

0 011
1 0 01
A_ll()O
0110

This is a circulant matrix which is not symmetric. By the Circulant Diagonalization
Theorem, we can see that v = (1,i,—1,—i)7 is an eigenvector of A associated with the
eigenvalue A = —(1 4 i). Note that we have v = €' with 8y = (0,3, 7, —%). Additionally,
we have

A= —(1+i) = V265,

Let ¢ = %. Then Xe7¥ = —\/2 € R. By Propositions 7 and 6 we know that 6y is an

equilibrium point of the Kuramoto model associated with A with phase-lag ¢ = 7. Concretely,
the Kuramoto model is described by the following system of differential equations:

Y1 = sin(fs — 01 — T) +sin(0y — 61 — T),
% = sin(01 — 92 — %) + Sin(94 — (92 — %),
B = sin(6) — 03 — =) +sin(fy — 05 — ),
D = sin(fy — 04 — T) +sin(f3 — 04 — I).

Figure 3 portrays a graphic representation of the equilibrium point for this example (panel
(a)). Moreover, panel (b) brings the spatiotemporal dynamics for this network when the initial
condition is given by the equilibrium point represented in (a). In this case, the dynamics is
given by a traveling wave and corroborates the solution being an equilibrium point.

5. Equilibrium points for generalized circulant networks. In this section, we discuss
equilibrium points for Kuramoto networks, where the connection architecture is given by
circulant matrices associated with a group GG. Here, we use the results obtained in the sections
3 and 4 to explore the features of the equilibrium points. First, we recall their definitions (see
[31] for a more thorough discussion.)
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Figure 3. A network following the description of Example 1 is analyzed, where panel (a) shows an equilib-
rium point for this system given by 6o = (0,7/2, 7, —m/2). Panel (b) shows the dynamics of this network when
the equilibrium point represented in (a) is used as the initial condition.

nodes

Definition 4. Let G be a finite group. A matriz C is called G-circulant if it has the form

C= (CT*10)770'€G7
where ¢y € C for g € G.

Remark 5. When G = Z/n, we recover the notion of “circulant matrices” discussed in
section 3.

The following proposition is proved implicitly in [31, section 1.2].

Proposition 9. Let x : G — C* be a 1-dimensional representation of G. Then vy =
(x(0))Leq is an eigenvector of any G-circulant matriz C. The corresponding eigenvalue is

Yy, = Z cox(0).

oeG

Proof. For all o € G, the 7-component of the column vector Cv, is given by

(Cog)r = 3 er10x(0).
oelG

1

Letting g = 770, we have 0 = 7g. Hence

(Coy)r = Z cgX(79)

geG

=) cox(g)x(7)

geG

=x(7) > cox(9)

geG
=Y\ x(7) = Yy (vy)r-
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Here we use the fact that x(7g) = x(7)x(g), as x is a 1-dimensional representation of G.
Since this is true for all 7 € G, we conclude that v, is an eigenvector of C' associated with
the eigenvalue Y, . |

Let n = |G|. Then by Lagrange’s theorem, ¢” = 1 for all 0 € G. Therefore

x(0)" =x(c") =x(1) = 1.
We conclude that y(¢) must be an nth root of unity. Therefore, we can define

27
arg(vy) = (arg(x(0))sec € ?Zn-
By Propositions 7 and 6, we have the following.

Proposition 10. Suppose the topological connection of oscillators is given by a G-circulant
matric A = (a;j). Let x, vy, Yy, arg(vy) be as above and ¢ = arg(Yy). Then

1. arg(vy) is an equilibrium point of the original phase-lag Kuramoto model

dh
o ZGZaijsm(ijﬁifqb);

J=1

2. arg(vy) is an equilibrium point of the associated phase-lag complex-valued approach

d9; . :
% = eZaij (Sln(ej - 91 - ¢) - ICOS(ej - 61 - ¢)) .
j=1

6. Equilibrium points for multilayer networks. In this section, we construct some exam-
ples of noncirculant networks that have interesting equilibrium points. We do so by applying
a recent result on the join of two circulant graphs [32]. First, we introduce the following
convention. In the following, the operator * denotes vector concatenation:

T T
) )"

($la"'7xm)T*(y17"'ayn == ($1,---,$m,y17~-7yn

We also denote by w, = e a fixed primitive n-root of unity in C.
We start with the following observation (see also [32, section 2]).

Proposition 11. Let A be an (k1 + k2) x (k1 + ko) matriz of the form

4= (e, ")

Here C = circ(cy, ..., cx,) and D = circ(dy, . ..,dy,) are circulant matrices of respective
sizes k1 X k1 and ko X ko, [oz]kl,;€2 1s a k1 X ko matrix whose entries are equal to o € R, and
(Bl ks @8 @ kg X k1 matriz whose entries are equal to f € R. For 1 < j <k; —1 let

_ J 2j (k1—1)j T _ T
wj = (Lwy ,wylsewy 7,0...,0)" = vk, % (0,0,...,0)
—_———

ko zeros
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with
) (ki=1)j\T
v]7k1 (1’(")‘]1 ’wkj’ ’wkll )
For1<j<ky—1,let
2 (k2=1)j\T T
zj=(0...,0,L,w] w, ... wp" N =(0,0,...,0) v 1,
N————
k1 zeros
with
_ J 25 (k2—=1)j\T
Vg, = (1,wk2,wk2, ... ,wk; ).

We have the following:

1. w; is an eigenvector of A associated with the eigenvalue

C _ J 2 . (k1—=1)j
)‘j =co+ Chy —1Wy, + Cly —2Wy,, + + ClWy, .

2. Similarly, z; is an eigenvector associated with the eigenvalue

AP = o+ diy1w], + diy—owiy) + - + d1w,(£271)j.

Proof. By the Circulant Diagonalization Theorem, v, is an eigenvector of C with respect
to the eigenvalue )\jc. By definition, we have

T C T
Aw; = Cvjy, * (tj,tj, . ,tj) = )‘j Vjk, * (tj,tj, .. ,tj) .
~— —

n — k terms n — k terms

Here

k—1
tj = 5 Z w;j .
i=0
By the assumption 1 < j < k1 — 1, we can see that ¢; = 0. Therefore, we conclude that
Aw i = AJC w g-
This proves the first statement. The second statement can be proved by the same

argument. [

Let us consider a special case when C = D and C is a symmetric circulant matrix (so
in particular k1 = k2 = k). In this case, w; and z; are both eigenvectors with respect to the
same eigenvalue )\jC. Note that by assumption C' is symmetric, so A}, € R. Furthermore, for
any ¢ € [0,2m), w; + el?z ;j is an eigenvector with respect to )\Jé. We observe that

. ¢, _ .. ig,
wi+evz; =vjp*xe Vg

_ J o2 (k=1)j i¢ i¢ J ip, 27 igp (k=1)j\T
= (Lwy,w, ..., wy ,e‘¢,e‘¢wk,e‘¢wk ,...,e'¢wk )
= (6191, el . el il ollhia eleZk)T,
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where

05 = (01,0, 0k, Ope1, Opsa, . Oog)) T

(. 2 or(k—1)j , 2mj ok —1)j r
_<07k7"'7 k' ?¢’k+¢7"'7 k: +¢ *

By this argument and Propositions 2 and 1, we have the following.

Proposition 12. Let C be a symmetric k X k circulant matriz, and let o, 8 be two arbitrary
real numbers. Consider the following matriz:

A‘Qﬁkk%ﬁ'

For each 1 < j <k —1, and for any ¢ € [0,27), let

: orj  2m(k—1)j , 2mj 27(k —1)j T
0(()]7(;5): Ovﬂv"'a ’/T( )j7¢7ﬂ+¢7---a ’/T< )j+¢ .
k k k
1. 9(]: ) s an equilibrium point of the complex-valued approach.
2. OOM)) s also an equilibrium point of the original Kuramoto model.

Remark 6. Proposition 12 can be generalized to the case where we join d identical circulant
networks. We refer interested readers to [32, section 5] for further details.

Based on the results depicted in this section, we perform computational analyses for the
example demonstrated in Proposition 12. Then Figure 4(a) shows the graphic representation
of an equilibrium point for a network with N = 50 nodes following 8y with p = 1. Furthermore,
the phases of the first N/2 nodes is represented by the bigger circle, while the phases of the
last N/2 nodes is given by the smaller ones. Here, the network is described by a noncirculant
graph represented by matrix A, where C follows a ring network with £ = 5, a = 0.25, and
B = 0.75. A graphic representation of this noncirculant matrix is given by Figure 4(b).

Moreover, Figure 4(c) represents the spatiotemporal patterns for both the original Ku-
ramoto model and the complex-valued (analytical) approach. Here, the analyses use the
equilibrium point represented in Figure 4(a) as the initial condition, so we can observe the
wave pattern as time evolves.

7. Equilibrium points for random networks. Our analytical approach allows us to “de-
sign” a twisted state (equilibrium point) on an undirected random network, given by an Erdds—
Réyni graph with N = 100 and p = 0.25 (Figure 5(a)). We first evaluate the eigenspectrum
of this random matrix numerically, and then decompose the matrix using its eigenvectors
and eigenvalues (A = VDV'). Eigenvalues were arranged in ascending order by their real
part. We then modified the 2nd and 3rd last eigenvectors by applying the sine and cosine
functions, respectively, to the phase given by (3.1). Finally, we set the eigenvalues associated
with these eigenvectors to be equal and scaled appropriately. Then, using VDV’ we create
a modified matrix A’ (Figure 5(b)), which is used as the adjacency matrix for the simula-
tions with the original KM. With this modification cos(6p) and sin(8g) are eigenvectors of

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license



Downloaded 06/14/23 to 129.100.255.24 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

820 NGUYEN, BUDZINSKI, DOAN, PASINI, MINAC, AND MULLER

.
e\ \ 2 08
\ 1 07
3 \\ Kl 06
’- — 10 05
Ll g 04
/] 18 !
03
y o/ 02
/ 2 :
{1,..,25} 0.1
-3 0
(26, ... , 50} 10 20 3 40 50
1

analytical

30
nodes nodes

Figure 4. An equilibrium point for a noncirculant network with N = 50 is graphically represented in (a),
where the phase of each node is depicted in color code. Here, the graph is given by the matriz represented in
(b), which is composed by circulant matrices. The spatiotemporal dynamics for this system when the equilib-
rium point (a) is used as initial condition is represented in panel (c) for both the original Kuramoto model
and the complez-valued (analytical) approach. The matriz and the equilibrium point follow the example in
Proposition 12.

the new weighted adjacency matrix associated to the same real eigenvalue A\. Consequently
1% = cos(0g) +isin(By) is an eigenvector of the new matrix A’ associated with the eigenvalue
A. By Proposition 2, we know that 6 is an equilibrium point of the new system associated with
A’. Finally, it is important to note that these results were for these two eigenvalues scaled by
approximately one order of magnitude, which demonstrates that this result does not depend
on the modified eigenvalue-eigenvector pairs dominating the resulting system dynamics.

The equilibrium point for these systems is then represented in Figure 5(c), which is given
by (3.1). Using this phase configuration as initial condition for the simulation leads the
systems to different states: in the case of the random matrix, the system reaches a phase
synchronized state (R = 1); in the case of the modified matrix, the system stays in a twisted
state, which is a phase locked but not phase synchronized state (R = 0); see Figure 5(d).
These features can be observed in the spatiotemporal dynamics of these networks, which are
depicted in Figures 5(e) and (f), respectively.

8. Discussion and conclusions. In this paper, we have analyzed equilibria in Kuramoto
systems. To do so, we have used a complex-valued version of the Kuramoto model [28], which
allows us to further investigate equilibria in the original nonlinear Kuramoto model. In this
context, we have shown that some of the eigenvectors of the adjacency matrix are equilibrium
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Figure 5. We modify a random (Erdds—Rényi) matriz in order to produce an equilibrium point given by a
twisted state. Here, the original matriz (a) is modified (b) due to changes in some of the eigenvectors. The
equilibrium point (c) is then used as the initial condition to the simulation. The Kuramoto order parameter
(R(t)) as a function of time shows that for the random matriz, the system reaches a phase synchronized
state, while for the modified matriz, the system stays in a wave (“twisted”) state. The spatiotemporal patterns
corroborate these features ((e) and (f)).

points for the original Kuramoto model and also for the complex-valued approach. These
results thus indicate there is a strong correspondence between the original Kuramoto model,
which is given by nonlinear differential equations, and the complex-valued one, which admits
an exact analytical solution for individual realizations of the system and on finite graphs [29].
Using this approach, we are able to extend the analysis of equilibria in Kuramoto networks
to new conditions not previously considered.

Based on the general result presented in section 2, where we have shown that we can find
equilibrium points by using the eigenvectors of the adjacency matrix for Kuramoto systems,
we first considered equilibria for the well-known case of circulant networks. We then moved
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on to study the case of global, all-to-all connections (complete graph on N nodes), which is
the case first studied by Kuramoto, where we have completely characterized the equilibrium
points.

We then analyzed equilibrium points for phase-lag oscillators, where the imaginary part of
the eigenvalues becomes important. This result allows us to understand equilibria in Kuramoto
systems with an interplay between attractive and repulsive coupling, due to the phase-lag
parameter. We also have analyzed the case of generalized circulant graphs, where the eigen-
vectors and eigenvalues can also be imaginary, therefore affecting the equilibria of this kind
of system.

Furthermore, we have studied equilibria in the case of multilayer networks, where the
system can be analyzed as the join of circulant networks. Based on [32], we have found
equilibrium points for this kind of system, which opens the possibility of application in several
systems for the study of spreading dynamics, neuroscience, synchronization, technical system,
and others [33, 34, 35, 36].

Finally, we have used the ideas developed in this paper to “design” an equilibrium point
in a random network. In this case, we have shown a procedure to change the adjacency
matrix in order to create new equilibria in the system. This shows the utility of our analytical
approach and extends the study of equilibria to a class of networks beyond the circulant
graphs considered previously. Based on this result, future work can extend these ideas to the
controlling Kuramoto systems, demonstrating the utility of analyzing the original, nonlinear
Kuramoto model through the lens of the complex-valued approach [28, 29].

Throughout this paper, we have shown a novel approach to investigate equilibria in Ku-
ramoto networks. Based on our complex-valued approach for Kuramoto oscillators, we can
now study, analytically, networks of Kuramoto oscillators under new and more varied con-
ditions. Our study reveals a strong correspondence with the original, nonlinear Kuramoto
model, where we can now track, analytically, individual realizations of oscillator networks and
push further investigations of the rich dynamics that this kind of system offers.

Appendix. Computational analyses. The solution for the original Kuramoto model is
given by the numerical integration of (2.1), where we use Euler’s method with a time step of
10~ On the other hand, the analytical solution is obtained through the evaluation of (4.3)
using a mathematical tool called Expokit [37], which is designed to solve exponential matrix
equations. Here, we used a windowed approach to the propagation of the solution, where
the final solution for each window is the initial condition for the subsequent one. A detailed
explanation of this point can be found in [29)].
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