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Abstract

Graph Neural Networks (GNNs) are recently developed machine learning approaches that exploit
the advances in Neural Networks for a wide range of graph applications. While GNNs achieve
promising inference accuracy improvements over conventional approaches, their efficiency suffers
from expensive computation and intensive memory access in feature aggregation and combina-
tion phases, leading to large inference latency. Recent studies proposed mixed-precision feature
quantization to address the memory access overhead. However, its linear approximation and
computation complexity become the main constraints for the overall GNN accuracy and performance.
In this paper, we propose segmented quantization to partition the feature range into segments
and customize linear approximation within each segment based on original value density, and
conduct efficient mixed-precision computing between quantized feature and full precision weights.
Segmented quantization helps to achieve high inference accuracy while maintaining low com-
putation complexity. We also devise the hardware accelerator to fully explore the benefits of
segmented quantization. Our experiments show that up to 5% average accuracy and up to
6.8× performance improvements can be achieved over the state-of-the-art GNN accelerators.
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1 Introduction

Graph Neural Networks (GNNs) are recently
developed machine learning approaches that
adopt Neural Network processing in graph anal-
ysis applications (Hamilton, Ying, & Leskovec,
2017; Kipf & Welling, 2016; Thekumparampil,
Wang, Oh, & Li, 2018; Veličković et al., 2017; Xu,
Hu, Leskovec, & Jegelka, 2018), e.g., local com-
munity detection in social networks, and research
correlation in publication databases. While GNNs
achieve better accuracy over traditional graph
analyzing solutions, they are both memory access

intensive and computation-intensive, making it
challenging to achieve high processing efficiency
— on the one hand, the neural network processing
requires intensive parallel computing and weight
reusing; on the other hand, the non-euclidean
graph topology leads to irregular memory accesses
and large memory overhead.

Several prior works have been proposed to
reduce the computation and memory overheads
in GNNs. Graph sampling reduces the computa-
tion strength by processing sampled nodes and
edges in the original graph (Hamilton et al.,
2017). Developing hardware GNN accelerators
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exploits massive parallelism during computation
and memory accesses (Liang et al., 2020; Yan
et al., 2020). Quantization reduces the mem-
ory intensity with reasonable accuracy loss (Feng
et al., 2020). Specifically, quantization represents
the original weights or features using fewer bits
such that less computation and memory accesses
are required. However, the approximation from
quantization leads to an inevitable accuracy drop
than the original models. To balance the trade-off
between performance and computing costs, exist-
ing GNN quantization schemes quantize features
rather than weights (Feng et al., 2020) since the
amount of the feature data within GNNs is signifi-
cantly larger than that of weights, making feature
quantization more beneficial for computing cost,
which the quantization on weights has much less
effect on.

While these GNN quantization methods effec-
tively improve memory performance by reducing
the amount of feature data access from memory.
It faces two main limitations. One is that GNN
quantization adopts linear approximation during
quantization, which exhibits significant approxi-
mation errors.

On the other hand, due to the power-law distri-
bution of the node degree, node features in GNN
might suffer irregular distribution due to the mes-
sage aggregation. This makes existing non-linear
quantization approaches unsuitable for GNN fea-
ture quantization. Keeping original weights helps
to mitigate the issue but the overall approximation
error remains non-negligible due to the feature
quantization. Previous studies explore more fine-
grained configuration for bit-depth, which poten-
tially leads to the second issue. The other one is
that such mixed-precision quantization leads to
bit-gaps between different features and weights,
and thus demands run-time rematching(i.e. quan-
tization/dequantization) to support computing,
which introduces extra computation overhead and
slowdowns the overall processing. Therefore, we
make our goal to solve two problems: How to
decrease approximation error in GNN feature
quantization without introducing more bit-depth?
How to reduce the rematching overhead in GNN
feature quantization?

In summary, We adopt segmented quanti-
zation in two considerations: 1) Feature access
introduces the majority of computing overhead in
GCN, thus raising the demand for quantizing node

features instead of both features and weights to
achieve the best trade-off between accuracy and
efficiency. However, it is challenging to conduct
mixed-precision computing without introducing
rematching overhead. 2) Linear and non-linear
quantization approaches are inadequate to han-
dle the feature quantization in GNN since nodes
have irregular connectivities in GCNs and produce
the irregular distribution of intermediate results
values.

To this end, we propose segmented quanti-
zation to address the above issues. Segmented
quantization partitions the range of feature data
into several segments and adopts different lin-
ear approximation functions within each segment.
And the pre-computing scheme helps to reduce the
rematching overhead from mixed-precision GNN
quantization. We summarize our contributions as
follows.

• We propose the segmented quantization strat-
egy to address the approximation error in tra-
ditional linear quantization. Segmented quan-
tization adopts linear approximation within a
smaller range, which reduces the overall quanti-
zation error by mitigating the error within each
segment.

• We propose to reduce the computation overhead
by merging quantization in pre-computation,
which combines precision conversion and full-
precision multiplication to O(q) shift-add oper-
ation where q is the number of quantized bits.

• We devise the hardware enhancements to sup-
port the segmented quantization with compu-
tation reduction. The proposed hardware is
lightweight and can be easily integrated into
general GNN accelerators.

• We evaluate the proposed segmented quantiza-
tion. The experimental results indicate that our
approach outperforms the state-of-the-art GNN
accelerators with up to 5% average accuracy
and up to 6.8× performance improvements.

2 Related Work

2.1 Graph Neural Networks

Graph Neural Networks (GNNs) adopts Neu-
ral Networks components in graph processing
(Hamilton et al., 2017; Kipf & Welling, 2016;
Thekumparampil et al., 2018; Veličković et al.,
2017; Xu et al., 2018). To update a node in the
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graph, a GNN requires the information not only
from the node itself but also neighboring nodes
that are one- or multiple- hops away. A typical
GNN consists of multiple layers and, within each
layer, a node first gathers the information and
then combines the information and produces a
latent representation, i.e., an aggregation phase
and a combination phase. A GNN layer can be
represented by the function in Equation (1).

H l
u = σ(Comb(Aggr(H l−1

u , H l−1
v ,W l

a),W
l
c)), v ∈ N(u)

(1)
where σ(·) is the activation function, the H l

u is
the feature of node u in layer l, N(u) is the
neighbor set of node u, W l

a and W l
c are learn-

able weights. There are two main functions: the
aggregation function Aggr(·), and the combina-
tion function Comb(·). The aggregation function
accumulates the messages from neighbors to pro-
duce intermediate results while the combination
function embeds the intermediate results further
to the expected output of the layer.

There are two types of aggregation functions:
(a) In GraphSage (Hamilton et al., 2017), the
aggregation is done based on the graph structure,
e.g., max/average/mean. There are no weight
parameters in aggregation. (b) In GAT (Veličković
et al., 2017), the aggregation can be represented
using Equation (2), which contains the learnable
attention weights W l

a in Equation (3).

Aggr(H l−1
u , H l−1

v ) =
∑

v∈N(u)

αl
u,vH

l−1
v (2)

where
αl
u,v = W l

a · (H
l−1
u ⊕H l−1

v ) (3)

The combination function can be presented as
Equation (4).

H l
u = W l

cV
l
u (4)

The combination is performed on aggregation
results V l

u and always contains learnable weights
W l

c . H l
u represents the output features of the

current layer. Common combination functions
include single-layer perceptron, multilayer percep-
tron (MLP), and RNNs.

Recent studies revealed that GNN are both
computation-intensive and memory access inten-
sive, making it challenging to achieve high process-
ing efficiency (Yan et al., 2020). On the one hand,
the neural network processing such as combination

functions involves massive matrix multiplication
and accumulation with reused weights; on the
other hand, the non-euclidean graph topology
leads to irregular memory accesses and large mem-
ory access latency, specifically, on feature data. For
example, GCN has 11.6 DRAM byte per Ops dur-
ing aggregation phase and 0.06 Dram byte per Ops
during combination phase (Yan et al., 2020). The
irregular memory access of node features, which
suffers from poor locality issues, makes it a major
bottleneck in GNN computing.
GNN Accelerators. Hardware-based GNN
accelerators, e.g., HyGCN (Yan et al., 2020),
EnGN (Liang et al., 2020), and several prior works
(Auten, Tomei, & Kumar, 2020; Chen et al.,
2021; Geng et al., 2020, 2021; Kiningham, Re, &
Levis, 2020; Li, Louri, Karanth, & Bunescu, 2021)
have been proposed to accelerate GNN process-
ing. A GNN accelerator usually consists of tens
to hundreds of processing units, each of which
can operate independently on a subset of fea-
tures for aggregation or combination processing.
To achieve a good tradeoff between high process-
ing precision and die cost, the processing units
operate on 16/32-bit fixed-point values, and leave
optimization spaces for quantizations.

2.2 Quantization in GNNs

Quantization is a widely adopted technique for
achieving efficiency in CNN models (Han, Mao,
& Dally, 2015; Hubara, Courbariaux, Soudry, El-
Yaniv, & Bengio, 2016; Jacob et al., 2018; Long,
Lee, Kim, & Mukhopadhyay, 2020; Marchisio et
al., 2020; Qu et al., 2020; Wang, Liu, Lin, Lin,
& Han, 2019; Zhu, Han, Mao, & Dally, 2016).
Most CNN quantization approaches chose to rep-
resent full-precision weights with fewer bits such
that the dot product computation can be acceler-
ated at runtime, e.g., BNN (Hubara et al., 2016)
represents weights using binary weights such that
multiplication can be replaced by shifts in dot
product computation.

To quantize the data, similar as those to quan-
tize the inputs and intermediate data in CNNs
(Wang et al., 2019), we need value conversion
from the original precision to quantized values
at runtime. That is, the quantization on H from
its full-precision to q bits can be represented in
Equation (5).
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H ′ = ⌊
2q

a− b
(H − b)⌋ (5)

where H and H ′ as values before and after
quantization, respectively; q is quantized bit-
depth, a and b are the empirical/trained maximal
and minimal values of H, respectively; and ⌊·⌋
is the floor function. It is worth mentioning that
the floor function can be replaced by the round
function for less quantization error. Quantization
can effectively reduce the computing cost, specif-
ically, data sizes, with fewer bits representations,
however, it might bring an accuracy drop due
to the floor function in Eq.5. To balance the
trade-off between accuracy and efficiency, previ-
ous studies explored mixed-precision quantization
that quantizes the DNN model with different
bit-depth assignments to the weights based on sen-
sitivity such as hessian measurement(Dong, Yao,
Gholami, Mahoney, & Keutzer, 2019).

However, in GNNs, the importance of the fea-
tures in different nodes and layers will vary based
on the input graph. Therefore, it is challenging
to decide the bit-depths of such input-dependent
cases properly with hessian measurement.

To address such issue, (Feng et al., 2020) pro-
posed an input aware GNN quantization scheme,
that assigns different bit-depth to the feature
quantization depends on inputs. However, various
bit-depths leave quantized values on different bit-
depth representations, which require dequantiza-
tion first to enable computations between features
and weights then quantization to data move-
ment efficient format. Therefore, in this paper we
want to: 1) reduce accuracy drop of quantiza-
tion without involves more bit-depths; 2) accel-
erate inevitable rematching between feature and
weights.

3 Motivation

In this section, we motivate our design by present-
ing the two major issues in GNN quantization:
computation overhead and inference accuracy loss.
Fig. 1(a) presents the generalized two-step lin-
ear quantization process. Given a set of original
values in [b,a], the linear quantization approach
first maps the values to a line through scaling
y = αx+ β where α is the slope and β is the zero
point of the line. The mapping is linear so that, for
a group of values, if they are clustered in [b, a], are

also clustered on the scaling line. The linear quan-
tization then divides the destination range to 2q

equally sized sub-ranges and using flooring to map
all values in each sub-range to one quantized value.
The second step adopts approximation and thus
introduces quantization errors. The total error is
the sum of the difference between the precise value
on the scaling line (blue line in the figure) and
the quantized value (black horizontal line in the
figure).

• Non-negligible accuracy loss. Given quan-
tization is a lossy process in CNN/GNN, it
is critical to design good trade-offs between
the inference accuracy and the quantization bit
depth. Fig. 1(b) reveals the quantization error
is proportional to the slope, or the range of
y-axis. Given four values along the x-axis, if
we use a scaling line with a large slope, which
has the four values mapped to 0, 1, 2, and 3,
respectively and each value takes the quantized
integer value, i.e., there is zero quantization
error. However, if we use a scaling line with a
small slope, which has the four values mapped
to 0 or 1, we would have two values exhibit
25% quantization error while two other val-
ues have zero error. This observation matches
the naive practice, i.e., using more quantiza-
tion bits tends to produce better accuracy. We
will exploit this property in our design in the
next section. While it is feasible to choose one
quantization bit-depth for the whole network,
recent studies have revealed that it is more ben-
eficial to have mixed quantization. For exam-
ple, (Wang et al., 2019) showed that different
CNN layers have different ideal quantization bit
depths, (Dong et al., 2019) designed a hessian-
based strategy to assign bit-depth to different
parts of the model. For GNN quantization,
it is promising to adopt different quantization
bits for nodes exhibiting different structural
characteristics (Feng et al., 2020). However,
mixed-precision quantization requires rematch-
ing (i.e. quantization/dequantization) steps to
enable computations between values from differ-
ent bit-depths. The amount of these rematching
operations grows with the number of bit-depth
deployed. And these scenarios limited the effi-
ciency of arbitrary mixed-precision quantization
and drove us to think about how to effectively
reduce the error within the same precision. As
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Fig. 1 (a) Linear quantization error. And (b) Comparison between 1-bit and 2-bits quantizations.

an alternative to linear quantization, (Imani et
al., 2020) recently proposed non-linear quanti-
zation appraoch, to partition the value ranges
to several non-equal intervals and represent all
values in one interval with a typical value, e.g.
cluster center. However, they focused on non-
linear quantization on activation functions and
deployed pairs of < input table, output table >

lookup tables to enable efficient computation
for PIM (processing-in-memory) architecture,
which is difficult to be adapted to GNN acceler-
ators with a limited number of processing units.
Another critical observation is, the sizes of fea-
tures and weights are very imbalanced in GNNs.
As shown in Fig 2, in two layers GNN models
with hidden size as 16, weight sizes only take
0.5%-4% of all on the CORA dataset. Addi-
tionally, in GNN, though the feature access is
irregular and suffered from poor locality, due
to the randomness and sparsity of the graph
structure; while the weight access is much reg-
ular with better locality since they are shared
among all nodes within one layer. This indi-
cates that we can focus on the quantization of
the feature while keeping full precision weights
to maintain original values as much as possi-
ble. Therefore, it could be valuable if we can
come up with a quantization method that: on
the one hand, uses non-linear quantization to
reduce approximation error without introduc-
ing more bit-depths; on the other hand, reduces
non-linear quantization overhead to fit it bet-
ter to the memory-bottlenecked GNN feature
quantizations.

• Mixed-precision computation overhead.
GNN quantization adopts linear quantization

Fig. 2 Comparisons between the data size of features and
weights in GNN models. The weights within GNN occupies
less than 5% data size.

rather than bit truncation, which tends to intro-
duce extra computation overhead at run-time.
To enable general computing, existing GNN
quantization schemes (Feng et al., 2020) con-
vert the quantized values to full precision values
before computation with full-precision weights,
and from the full precision results to quan-
tized data after computation, which achieves
better memory efficiency but leads to increased
computation overhead at runtime. Addition-
ally, the benefit of low-bit values on computa-
tion is under-exploited. Therefore, a comput-
ing scheme, that enables efficient computation
between quantized features and full-precision
weights is desired.

In summary, to achieve better accuracy and
efficiency trade-off within GNN quantization, we
expect an approach to i) reduce approxima-
tion error introduced by linear quantization and
ii) conduct mixed-precision computing between
quantized features and full-precision weights.
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Fig. 3 Segmented quantization when m=3 and q=3. (a) The segment partition. (b) Boundary shrinking. (c) Code Assign-
ment. (d) Determine the scaling line in each segment. There are 3 segments: #1 as leftmost, #2 as middle and #3 as
rightmost green field.

4 Design

In this section, we first present the segmented
quantization design for reducing quantization
errors. We then discuss its application for reduc-
ing computation overhead at runtime. At last,
we elaborate the hardware design to fully explore
segmented quantization in GNN accelerators.

4.1 The Segmented Quantization

As discussed in section 3, non-linear quantiza-
tion can reduce approximation error effectively yet
less suitable for the GNN accelerators. To bal-
ance between accuracy and efficiency, we adopt
segmented quantization, to leverage the benefit
from non-linear scaling while keeping space effi-
ciency of linear quantization. Intuitively, we split
original value range and bit levels into smaller seg-
ments, and calibrate each segment separately, so
that more accurate scaling can be accomplished.

We depict the quantization steps in Fig. 3,
our proposed segmented quantization works as fol-
lows: a) It first partitions the feature range to m

(m >1) segments(shown as Fig. 3(a)). b) Then it
shrinks the original value boundary based on the

statistical minimum and maximum values (shown
as Fig. 3(b)), as the equally splitting does not
guarantee the real statistical boundaries. c) Next
it adopts crowd aware code assignment based on
the density of each segment (shown as Fig. 3(c).
d) In the end the quantization scaling lines are
determined by boundaries and codes of the seg-
ments (shown as Fig. 3(d)). By controlling the
hyper-parameter m, we can balance the trade-off
between linear and non-linear quantizations. Dur-
ing quantization we using the statistic updated
scaling lines to quantize the full precision input
values to q-bit quantized values. Assume we have
m = 3 and q = 3 in the following discussion.

For each segment, we record not only its full-
precision value range but also the range of the
quantized values, e.g., segment #1 is to quantize
full-precision values in [b1, a1] to integer values
in [2,5], which can be used to determine its scal-
ing line. For quantization, given a full-precision
value, we use the segment boundary to determine
its corresponding segment index and then use
the segment’s scaling line to determine its quan-
tized integer value. For de-quantization similarly,
we reverse the process after finding its segment
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index and scaling line. Next, we discuss the design
challenges in segmented quantization.

• Crowd aware code assigning. It is critical
to determine the number of encoded quantiza-
tion levels for each segment. When we use q-bit
quantization, the quantized values from all seg-
ments share the 2k codes, and these codes are
equally distributed along the y-axis(scaled origi-
nal value). However, the number of quantization
codes can be dynamically assigned to different
segments. For example, we may assign the quan-
tized value ranges [0,1], [2,5], and [6,7] to the
three segments, respectively, i.e., values in seg-
ment #1 use four codes while values in segment
#0 use two codes. Alternatively, we may assign
more codes to segment #0 if we have more
values in segment #0.
One key observation in Fig. 1(b) is that the
approximation error is linear to the sum of
the difference between the scaled value and
its quantized value. The error is also linear
to the scaled range. Assigning more codes in
one segment can effectively reduce the total
approximation error in that segment. Therefore,
in this paper, we adopt a simple crowd-aware
code assignment strategy, i.e. we assign more
codes to the segment that contains more full-
precision values. Specifically, we stats the num-
ber of inputs dropped into each segment during
training, and assign the codes based on the
value density of each segment. The code num-
ber assignment follows Equation (6) during the
training,

Qi = Max((
Ci

N
×QN ), 2), ∀i ∈ 1, 2, ...,m (6)

where the Qi as code number assigned to seg-
ment i, N as the total number of original values
and Ci as the number of original values fall
into segment i, QN as the total number of bits
can be used for quantization(i.e. quantization
bit depth). Hereby doing this, we can assign
more codes to the crowed segments and there-
fore reduce approximation error from flooring,
as more floors are assigned to them. We also
use the Max(·) function to ensure that each
segment receives at least two code numbers.
The reason is that nodes with degrees usually
produce (i.e., accumulate) large but infrequent
features, which are few but critical for their

neighbors. We use the Max(·) function to avoid
high errors on these nodes to ensure these
features can be appropriately quantized. This
strategy works well in our experiments. We shall
evaluate other assignment strategies in future
work.

• Determine the scaling line in each seg-
ment. To find the segment index before quanti-
zation and decide scaling line, it is important to
record the segment boundaries, e.g., x=b+step

separates segments #0 and #1. In the seg-
mented quantization, we initialize the segment
size to be 1/m of the input value range, as shown
in Fig. 3(a). Then we shrink the boundaries
based on the statistical minimum and maxi-
mum values of each segment to get their real
original value ranges. Next, we would apply the
Equation (6) to assign the codes to each seg-
ment. To determine the scaling line for each
segment, we utilize the same strategy as linear
quantization described in Section III for each
segment. As shown in the figure, the scaling line
depends on both the smallest and the largest
real values in the range and the number of codes
in each segment. To ensure full coverage for
the future input feature, the segment bound-
aries for the segment index looking up remain
unchanged.

4.2 Quantization-aware Computing

After adopting the linear quantization for fea-
tures, a quantized GNN contains full precision
weight data and quantized feature data such that
it needs a dequantization step to convert quan-
tized features to full precision values and then
conduct the full precision computation (in particu-
lar, multiplication) between weights and features.
This process can be formulated as Equation (7).

V = W ×H = W (
a− b

2q
H ′ + b) (7)

where V is the full precision output; W and H ′

are the full-precision weight and quantized fea-
ture, respectively; q is the bit-depth; and a, b are
the maximum and minimum values. Comparing
to the multiplication before and after the lin-
ear quantization, adding the dequantization step
requires extra computation cycles. Assume a GNN
accelerator adopts a typical shift-add multiplica-
tion implementation on 32-bit fixed-point values,
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the full-precision multiplication finishes after 32
shift-add operations while dequantization adds
32+1=33 extra operations.

We study the process and observe that the
low efficiency comes from two factors: a) it does
not explore the fact that fewer bits are used in
quantized values; and b) dequantization is expen-
sive at runtime. We, therefore, propose to reduce
computation strength through pre-computation.

Strength reduction through pre-
computation. The computation in Equation (7)
can be transformed as follows.

V = W (
a− b

2q
H ′ + b) = AH ′ +B (8)

A =
a− b

2q
W , B = Wb

Given a, b, q, and W are constant values, we
can pre-compute A and B so that adopting linear
quantization would require 32+1=33 operations
at runtime, or only one extra operation compar-
ing to the baseline. In addition, the multiplication
AH ′ in the equation involves a full-precision value
A and a q-bit quantized value H ′, which can be
implemented using q shift-add operations, rather
than 32 operations in the baseline. To summarize,
a multiplication with linear quantization can be
implemented in q+1 operations, achieving a big
improvement from 65 operations in the baseline.

4.3 The Hardware Design

In this section, we fully exploit the potentials from
segmented quantization in hardware. Fig. 4 illus-
trates the extra hardware on top of a generic GNN
accelerator EnGN (Liang et al., 2020). The same
design principle can be applied to other GNN
accelerators (Auten et al., 2020; Chen et al., 2021;
Geng et al., 2020, 2021; Kiningham et al., 2020;
Li et al., 2021; Yan et al., 2020).

In the figure, the GNN accelerator consists of
an array of 128×16 PEs (processing units), a mem-
ory controller, and several buffers (feature buffer,
weight buffer, edge buffer, and output buffer).
Each PE contains one 32-bit ALU and implements
multiplication using shift-adding. The memory
controller is responsible for scheduling the accesses
to the DRAM module and for parallelizing the
computation and memory accesses. While each PE
consists of several registers to enable faster pro-
cessing, the accelerators integrate several on-chip

Fig. 4 An overview of our quantization adaptive hardware
design. To support the quantization aware computing, the
additional Quantization Adaptive Units (Grey Field) are
added to the baseline architecture.

global buffers to cache frequently used feature and
weight data. The results are temporarily buffered
in the output buffer to enable parallel processing.

We enhance the accelerator with three hard-
ware components: Q-config buffer, Q-adaptive
controller, and Segment index detector (SID).

• Q-config buffer. Given the segment index and
its specific approximation line in segmented
quantization, we integrate a Q-config buffer so
that it holds the meta-data of each segment,
i.e., the segment value range in full-precision,
its quantized value range, the A and B values
in Equation (8).

• Q-adaptive controller. Segmented quantiza-
tion, while converting a large number of multi-
plication operations using Equation 8, still need
to perform many full-precision operations, e.g.,
the aggregation as shown in Equation 2. For this
purpose, we integrate the Q-adaptive controller
to determine the correct computing model, con-
trol the PEs and operand loading, and the
timing to start/stop individual operations.

• Segment Index Detector (SID). After fetch-
ing a quantized feature value v from memory,
we need SID to determine its segment index
according to the quantization for that feature.
Since the maximal q and m values in our exper-
iments are 4 and 4, respectively, we implement
each SID as a 32-bit register and populate the
2-bit segment index for each of 16 quantized val-
ues. We then right-shift 2v bits and pick up the
lowest order 2-bit as the segment index. Given
EnGN can enable parallel processing of 128 new
features, we need 128 32-bit registers in SID.
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We evaluate the extra hardware cost in the
accelerator. The additional hardware cost comes
mainly from our Q-buffers, which are relatively
tiny compare to overall buffers and PEs. Based on
evaluation on Cacti (Thoziyoor, Ahn, Monchiero,
Brockman, & Jouppi, 2008), the total overhead is
less than 1% and thus is very modest.

5 Experiments

5.1 Experiment Setup

We evaluated our method to answer the following
research questions:

• Does the segmented quantization improve infer-
ence accuracy in GNN quantization?

• Does the pre-computing scheme improve run-
time performance in GNN quantization?

• How much is the overhead brought by our
quantization scheme?

• How does the performance affected by the
choices of segment numbers?

GNN model and datasets. To evaluate
the proposed designs, we implemented five com-
monly used GNN models — GCN(Kipf & Welling,
2016), GraphSage-Pool(GS-Pool)(Hamilton et al.,
2017), AGNN(Thekumparampil et al., 2018),
GAT(Veličković et al., 2017), and GIN(Xu et
al., 2018). The models were designed for semi-
supervised node classification tasks. We used 2
layers as described in the original papers with
hidden size as 16. We compared their accuracy
and performance using four widely used datasets:
CORA (CR), CiteSeer (CS), PubMed (PB),
Amazon-Computers (AMAZON) when adopting
different full-precision and quantization schemes.
The statistical details of the datasets are shown
in Table 1. In our experiment, we used seg-
ment number m = 3. We evaluated the accuracy
under i)full-precision model, ii) uniformly quan-
tized model in which both features and weights
are quantized linearly, iii) linear quantized model
in which only features are quantized linearly and
iv) segmented model in which features are quan-
tized by segmented quantization. To fully exploit
the potential of different quantization schemes, we
employed quantization aware training (Park, Yoo,
& Vajda, 2018) for each quantized model. For each
training epoch, we follow three steps of comput-
ing: (1) Configure quantization parameters based

on training data (i.e., detect scale and zero point
of each segment). (2) Compute GNN inference
output with quantized features. (3) Update GNN
weights with gradient calculated in full precision
backward propagation.

Accelerator baseline and simulation. For
performance evaluation, we used a cycle-accurate
in-house simulator. We set EnGN (Liang et al.,
2020) as the baseline and then enhanced its
hardware components to enable segmented quan-
tization. The system configurations are shown in
table 2. For comparison purposes, we simulated
inference execution for q=3.

Table 1 Dataset Details

#Nodes #Edges #Features
CORA (CR) 2,708 10,556 1,433
CiteSeer (CS) 3,327 9,104 3,703
PubMed (PB) 19,717 88,648 500

Amazon Computer (AMAZON) 13,381 245,778 767

Table 2 System Configuration

HyGCN EnGN

Baselines

1GHz@32 SIMD 16 cores
and 32X128 arrays,

22MB+128KB Buffer,
256GB/s HBM 1.0

1GHz@128X16 arrays,
32 PE units VPU,
1600KB Buffer,
256GB/s HBM 2.0

Quantization
Units

128KB Q-Buffer,
128 Comparison Units

128KB Q-Buffer,
128 Comparison Units

5.2 Inference Accuracy

We first compared the top-1 inference accu-
racy when using different schemes, i.e., full-
precision full, uniform (uniform), linear quan-
tization (linear), and segmented quantization
(segmented). We summarized the results in Table
3 when using 3-bit and 4-bit quantization, respec-
tively.

From the table, we observed that segmented

achieved overall better accuracy over linear

and uniform. uniform over 3-bit and 4-bit
had higher accuracy drop comparing to linear

and segmented, which indicated the effective-
ness of feature quantization in GNNs. segmented
showed overall better accuracy from linear,
which indicated the improvement from our pro-
posed method. It is worth mention that the GIN
models showed overall lower accuracy since they
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Table 3 Accuracy of full-precision, uniform quantization, linear quantization and segmented quantization applied
models. The quantized bits are q = 3 and q = 4.

Dataset Model Full Uniform (3bit) Linear (3bit) Segmented (3bit) Uniform (4bit) Linear (4bit) Segmented (4bit)

CR

AGNN 0.812 0.768 0.778 0.812 0.8 0.82 0.818
GCN 0.802 0.77 0.776 0.792 0.768 0.792 0.806

GS-Pool 0.814 0.77 0.796 0.804 0.798 0.8 0.806
GAT 0.828 0.762 0.822 0.788 0.812 0.818 0.83
GIN 0.752 0.21 0.538 0.634 0.522 0.66 0.734

CS

AGNN 0.722 0.686 0.682 0.692 0.688 0.718 0.704
GCN 0.73 0.69 0.702 0.692 0.702 0.728 0.732

GS-Pool 0.7 0.698 0.702 0.71 0.702 0.706 0.71
GAT 0.724 0.674 0.728 0.704 0.708 0.718 0.732
GIN 0.612 0.214 0.308 0.47 0.29 0.498 0.56

PB

AGNN 0.782 0.728 0.752 0.76 0.752 0.764 0.774
GCN 0.784 0.698 0.74 0.764 0.764 0.772 0.786

GS-Pool 0.762 0.73 0.71 0.738 0.734 0.732 0.752
GAT 0.768 0.714 0.722 0.748 0.736 0.754 0.768
GIN 0.74 0.414 0.428 0.598 0.424 0.612 0.664

AMAZON

AGNN 0.808 0.732 0.35 0.656 0.718 0.488 0.7
GCN 0.882 0.836 0.748 0.806 0.826 0.842 0.874

GS-Pool 0.914 0.438 0.91 0.91 0.392 0.924 0.92
GAT 0.898 0.698 0.846 0.852 0.882 0.892 0.882
GIN 0.656 0.268 0.296 0.346 0.262 0.372 0.602

are originally designed for graph level classifica-
tions, therefore less fitted to the datasets of node-
classification tasks. However, due to its unique
message-passing scheme, we included it in our
evaluation.

Comparing to full, the 3-bit and 4-bit
segmented had 3.5%-4.5% and 0.5%-1.8%, respec-
tively, average accuracy loss for citation datasets.
These results represented an improvement from
5.9%-9.6% and 2.5%-4.0% accuracy loss in 3-bit
and 4-bit with linear. The average accuracy
improvements on the same dataset achieved up to
5%.

Linear had a larger accuracy loss when choos-
ing q=3 for PubMed. This is because PubMed
has a higher edge density so that feature val-
ues tend to be too close to be differentiated by
fewer-bit quantization. As we discussed in Section
3, choosing q = 4 helps to gain large improve-
ment in linear on densely connected graphs such
as that in PubMed. In comparison, segmented

achieved less accuracy drop when decreasing q=4
to q=3 for PubMed. We further evaluated the sen-
sitivity of accuracy to more bit-depths choices.
The results are shown in Fig. 5. It indicated that
segmented has overall better accuracy on differ-
ent bit-choices. And segmented suffered the least
accuracy drop with fewer bits, which indicated it
is also more robust to the aggressive quantization
compare to uniform and linear. This is because
segmented can allocate more codes to the segment
that has more values, which reduces the overall
approximation error. There is also an observation

that in some cases the GCN with quantized fea-
tures (i.e., linear and segmented) perform better
than the full precision feature. It is because the
quantizations potentially remove minor noises in
the features. This phenomenon shows the bene-
fit of quantizing features only and further motives
mix-ed precision computing within GNN quanti-
zations.

For the Amazon dataset, 4-bit segmented

exhibits no clear accuracy improvement over
linear and uniform. For the cases that linear

outperforms segmented, linear has a higher or
close to the baseline accuracy. This indicates that
the quantization bit-depth is sufficient, it might
be possible to choose a smaller q in practice.

We conduct paired t-tests on uniform, linear,
and segmented quantization results. While using
3-bit quantization, the p-value between segment
and uniform is 0.006, and the p-value between
segment and linear is 0.008; while using 4-bits
quantization, the p-value between segment and
uniform is 0.005, and the p-value between seg-
ment and linear is 0.01. In summary, segmented
quantization shows accuracy improvements when
bit-level is insufficient to represent original val-
ues in crowd ranges, thanks to its dynamically
arranged and segmented fitting design.

5.3 Performance

We then compared the runtime performance from
different schemes and summarized the results
(when q=3) in Fig. 6. Specifically, uniform

uniformly quantized features and weights with
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Fig. 5 Accuracy on different quantization bit-depth choices of GCN(left), GAT(middle) and GIN(right) on PubMed(PB)
dataset, where y-axis as accuracy, x-axis as bit-depth.

Fig. 6 Performance comparison (when q=3) in speedup (log scale).

no rematching computing during runtime and
no quantization-aware computing (i.e., no shift-
adding but 32-bit Fixed-point operation as com-
puted by baseline accelerators); linear quantized
feature only with no pre-computing and thus con-
ducted rematching computing during runtime and
conducting full-precision GNN computing; Fur-
thermore, segmented models equipped segmented
quantization with segmented weights and pre-
computing schemes. The results were normalized
to the full-precision baseline and plotted on the
log scale.

From the figure, uniform, linear and
segmented achieved up to 69×, 32× and 219×
speedups over the full-precision baseline, respec-
tively. That is, segmented achieved 1.1×-6.8×
speedups over linear. All of the quantization
schemes benefited from less bit representation and
shown less amount memory access. linear per-
formed worse than uniform, with 7.3× and 10.2×
average speedup. respectively. The reason is that

it suffered from additional rematching computa-
tions. And segmented reduced the computing cost
of these rematching and lead to higher speedup
than both linear with 14.1× average speedup,
which demonstrated the effectiveness of the pre-
computing mechanism. Also, our quantization-
aware computing leads to higher speedup over
uniform since it costs only three shift-adding
operations to calculate full-precision outputs
instead of fixed 32-bits operations adopted by
baselines.

The improvements for the CiteSeer dataset are
larger because this dataset has a large feature-
length and low edge density, leading to more
multiplication than accumulation operations. In
contrast, the improvements for the AMAZON
dataset are relatively low because this dataset
has high edge density and short feature-length,
whose aggregation operations demand more full
precision rather than mixed-precision operations.
Among models, GCN and GAT showed the best
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Fig. 7 Performance comparison (when q=3) in DRAM access (log scale).

performance improvements because GAT requires
heavy feature/weight computation and thus bene-
fits more from segmented quantization. For GCN,
the optimization such as stage re-ordering (Liang
et al., 2020) decreases aggregation on the same
precision values, leading to more feature combin-
ing operations.

We also implemented segmented quantiza-
tion using HyGCN as the baseline GNN accel-
erator. We observed 1.6× to 1.9× performance
improvements over linear quantization. GCN was
designed mainly to speed up GNN models that
have skewed aggregation computation so that the
pre-computation optimization has fewer opportu-
nities.

To evaluate the overhead of the method, we
further look into the DRAM access, shown in Fig.
7. Note we use log values to give a more normal-
ized view of the access amount. uniform achieved
best memory access reduction with 41.4MB aver-
age access compare to the full precision model as
full with 3327.12MB average access. linear and
segmented had larger amounts of accesses due to
full-precision weights with 43.08MB and 48.98MB
average access, respectively. Though segmented

suffers most memory access due to pre-computed
weights A and B in Equation. (8), the over-
head is small. In terms of access reduction from
full, segmented had 0.2% less reduction com-
pared with the uniform) on average. The GAT
and GraphSage suffered the most overhead since
the GAT takes more weights for multi-head atten-
tion, and Sage dataflow is not adaptive to the
ENGN reordering dataflow, which is why it had
redundant weight access.

Concerning the potential overhead brought by
more segments with scaled pre-computed weights,
next, we evaluated the sensitivity of runtime and
memory access to the choices of the segment num-
ber m. We evaluated the speed up and DRAM
access changes with different segment number m

selections. The results are shown in Fig. 8. Though
more segments led to less speedup, the changes
were tiny. For example, there were at most 0.1×
speedup drop in GCN and less than 0.01× speedup
drop in GAT when m = 8. The speedup over full
precision baseline is 60.89× and 4.08× when m =
8, which still outperformed uniform and linear

on the same bit-depth. Additionally, the DRAM
access increases are also endurable. For exam-
ple, with m = 8 there were 0.49MB and 2.15MB
weight accesses in GCN and GAT, respectively.
These weight accesses are very few compared to
larger feature accesses, which were 54.23MB and
63.99MB in GCN and GAT, respectively. This
demonstrates our assumption that the acceptable
weight increment in GNNs would not have an
unacceptable impact on the performance due to
the weight sharing and unbalanced ratio between
feature and weight sizes.

To summarize, the proposed segmented quan-
tization with pre-computation optimization effec-
tively reduces the inference latency for a wide
range of GNN models and is generally applicable
to different GNN accelerators.

6 Discussions

Studies towards quantization have recently gained
momentum in reducing the memory and comput-
ing overhead of Deep Neural Networks(DNN). The
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Fig. 8 (a) Speedup(Log10 Scaled) of GNNs using our approach over full-precision baseline and (b) Memory footprint(MB)
of GNNs using our approach, in different segment number m.

latest works focus on non-linear quantization to
better distribute the given bit levels and cause less
approximation loss. (Miyashita, Lee, & Murmann,
2016; Zhou, Yao, Guo, Xu, & Chen, 2017) pro-
pose power-of-two quantization approaches which
assign more bits around middle points of the
original value range. (Fang et al., 2020) divides
the original value range into two dense central
regions and two sparse tail regions. However, the
approaches target the bell-like distributed origi-
nal data, therefore less adaptive to various data
distributions. In contrast, the segmented quantiza-
tion adapts to various distributions as there is no
predefined density for bit-level assignment. (Liu
et al., 2021) searches optimal value range among
pieces in the original range and adopts mixed-
precision quantization between layers. However,
the approach only uses the optimal range instead
of a set of ranges (i.e., segments), which might
introduce inductive biases that limit generalizabil-
ity. Compared to these approaches, our approach
shows better flexibility to various distributions of
full-precision feature values and potentially per-
forms better. Moreover, the segmented quantiza-
tion supports mixed-precision computing between
quantized features and full-precision weights of
GNNs, which are not considered in prior quanti-
zation approaches.

We plan to exploit segment configuration
schemes in the future works. Given the differ-
ences between nodes within the same graph, recent
works adopt different quantizing configurations
(e.g. bit after quantization) for different nodes
(Feng et al., 2020; Tailor, Fernandez-Marques, &
Lane, 2020). These studies demonstrated that the
optimal configurations of segments (i.e. how many
segments m are used) can also vary across the
nodes within the same graph to gain the best
efficiency and accuracy trade-off. Therefore, we

will further explore the optimized configuration
scheme for the segmented quantization by lever-
aging static node patterns (e.g. degree of the
nodes).

7 Conclusion

In this paper, we investigated the challenges in
GNN quantization and proposed segmented quan-
tization, a novel GNN quantization method that
effectively reduces the quantization error and cost
for GNNs. Targeting a more accurate and effi-
cient GNN quantization scheme, we leveraged
segmented scaling to exploit more accurate quan-
tized value representation with non-linear scaling,
we further applied a pre-computing scheme to
improve the performance of mixed-precision quan-
tizations in GNNs. Additionally, we proposed a
hardware design to cooperate with our quan-
tization scheme. We demonstrated its general
applicability by integrating the proposed design
on different GNN accelerators. Our experimental
results showed that the scheme achieves significant
accuracy and performance improvements over the
state-of-the-art.
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