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Abstract—We provide a mutual information lower bound that
can be used to analyze the effect of training in models with
unknown parameters. For large-scale systems, we show that
this bound can be calculated using the difference between two
derivatives of a conditional entropy function. We provide a step-
by-step process for computing the bound, and apply the steps to
a quantized large-scale multiple-antenna wireless communication
system with an unknown channel. Numerical results demonstrate
the interplay between quantization and training.

Index Terms—Information rates, training, entropy, large-scale
systems.

I. INTRODUCTION

MANY systems have unknown parameters that are esti-
mated during a training-phase with the help of known

prescribed training signals. This phase is followed by a data
phase, where knowledge of the estimated parameters is used to
process the data. It is generally assumed that the parameters
are constant during these two phases, the total duration of
which is called the coherence time. It is often of great interest
to optimize the training time for a given coherence time,
since time in the training phase, while useful for parameter
estimation, generally takes away from time in the data phase.
In a communication system, the parameters of interest often

include the channel, which is typically unknown and learned at
the receiver with the help of pilot signals sent by the transmit-
ter. For example, [1] analyzes a multi-antenna model where
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a capacity lower-bound is obtained by using the minimum
mean-square error (MMSE) estimate of the channel, and the
residual channel error is treated as Gaussian noise. This lower
bound is maximized over various parameters, including the
fraction of the coherence time that should be dedicated to
training. A similar optimization is considered in [2], where the
power allocation and training duration are chosen to achieve
the maximum sum-rate in a multiuser system. Such “one-shot
learning,” where the parameters are estimated only during
the training phase, can be augmented by further refinement
during the data phase [3], [4]. However, this refinement can
suffer from error propagation [5], and we do not consider this
herein.
We develop a framework to analyze one-shot training that

does not require the parameters to appear linearly in the
model, nor does it require additive Gaussian noise; rather,
it requires the system to be time-invariant and memoryless,
and a certain entropy to be computed in the large-scale system
limit. This differentiates us from the previous efforts to analyze
training, which assume that the unknown parameters appear
linearly in the system model [1]–[4], [6], or appear in a
linearized version of the model [7], [8], often by employing
the Bussgang decomposition [9]. Herein, large-scale refers to
infinite block lengths (time duration) or infinite-dimensional
inputs and outputs, or both. The fact that the large-scale
system entropy can sometimes be computed even when the
small-scale system entropy cannot is exploited for our training
analysis.
To demonstrate how to apply the developed framework,

we consider a quantized large-scale multiple-input-multiple-
output (MIMO) communication system, where the optimal
training time and the corresponding data rate are investigated.
By leveraging the large-scale results on certain entropies
in [10]–[12], we are able to derive expressions for the data rate
with training symbols and study the relationship between the
optimal training time and various design parameters, includ-
ing the ratio between the numbers of transmit and receive
elements, the ratio between the blocklength and the number
of transmit elements, and the number of resolution bits at both
transmitters and receivers. Various conclusions on the interplay
between training and the number of bits of resolution at the
transmitter and receiver are provided.
This work is organized as follows. We first summarize some

traditional methods to derive optimal amounts of training; then
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in Section II, the problem for large-scale systems is formulated
and the main results for computing the mutual information
lower bound are stated; in Section III, the results developed
in Section II are applied to a large-scale quantized MIMO
communication system; Section IV concludes.

A. Brief Background and Prior Work

Consider a system model that has input and output processes
X = (x1,x2, . . .) and Y = (y1,y2, . . .), which comprise vec-
tors xt and yt whose dimensions are M and N respectively.
The input and output are connected through a conditional
distribution parameterized by a vector or matrix G, whose
value is unknown and whose size can be a function of T .
We assume that G is constant during a coherence time block
with length T , and then changes independently in the next
block (same length T ), and so on. The system is supplied
with known inputs during a “training phase” to learn the
parameters, after which the system is used during its “data
phase.” The unknown parameters are assumed to have a known
distribution, and the number of unknown parameters is allowed
to be a function of T .
A classical way to analyze the effects of training computes

a lower bound on the mutual information between the input
and output, as in [1], [2], [7], [8],

1
T
I(xT ;yT ) ≥ T − τT

T
I(xτT+1;yτT+1|xτT ,yτT ), (1)

where xt and yt are the tth vector input and output of
the system, xt = [xᵀ

1 , · · · ,x
ᵀ
t ]ᵀ collects all of the vectors

x1, . . . ,xt into one long vector, (·)ᵀ denotes “transpose,”
yt = [yᵀ

1 , · · · ,y
ᵀ
t ]ᵀ, and τT is the number of training symbols

in one coherence block. We assume 0 ≤ τ < 1 is the
fraction of the blocklength devoted to training, and τT is
integer for convenience. (We choose this in favor of using
$τT % throughout.) The case τ = 0 is interpreted as having no
training; in other words, xτT and yτT are empty. The optimal
training fraction

τopt = argmax
τ

(1− τ)I(xτT+1;yτT+1|xτT ,yτT ) (2)

then maximizes the lower bound (1). Although such analysis
is frequently used, the right-hand side of (1) can be difficult to
compute and is itself often approximated or lower bounded.
For example, in [1], a wireless communication system with
Rayleigh block-fading channel and additive Gaussian noise is
considered, and the mutual information in (1) is lower bounded
by treating the estimation error of the MMSE estimate of
the channel as independent additive Gaussian noise. However,
this form of analysis is often intractable when the parameters
appear nonlinearly, or the additive noise is non-Gaussian,
and explicit estimates of the unknown parameters are
unavailable.
We leverage the fact that, sometimes, even with nonlinear

models, the large-scale limits of the conditional entropies
used to compute (1) are tractable. This provides us with
a method to solve (2) for a large-scale system. In the
next section, we provide the problem statement and main
results.

II. PROBLEM STATEMENT AND MAIN RESULTS

A. Problem Statement

We reframe (2) as a large-scale limit problem. Let T → ∞,
and define the ratios

α =
N

M
, β =

T

M
. (3)

It is possible, although not required, thatM andN (the dimen-
sions of the input and output) also grow to infinity with T ,
so that β is finite. The large-scale limit of the conditional
mutual information I(xτT+1;yτT+1|xτT ,yτT ) in (2) is

I′(X;Y) = lim
T→∞

1
N

I(xτT+1;yτT+1|xτT ,yτT ). (4)

The normalization by 1/N is needed to keep this quantity
finite if N → ∞, and this limit (assuming that it exists)
typically depends on α, β, and τ . The optimal training time
in (2) then becomes

τopt = argmax
τ

(1 − τ)I ′(X ;Y). (5)

We wish to solve (5). The value of this analysis depends on our
ability to compute I ′(X ;Y), and we show that this quantity
can be computed as the derivative of a certain entropy.

B. Assumptions and Definitions of Useful Quantities

We first make some assumptions and definitions that are
used by the main results. The bound in (1) is determined by
the distribution of the triple (xT ,yT , G), and we make the
following assumption:

A1: p(yT |xT , G) =
T∏

t=1

p(yt|xt, G), (6)

p(xT ) = p(xτT )
T∏

t=τT+1

p(xt), (7)

where p(yt|xt, G) is a time-invariant conditional distribution
for all t = 1, 2, . . . , T and p(xt) is a time-invariant distribution
for all t = τT + 1, τT + 2, . . . , T .

Equation (6) says that the system is memoryless and time-
invariant (given the input and parameters) and (7) says that
the input xt’s are independent and identically distributed (iid),
and independent of xτT for all t > τT . We use p(xτT ) and
p(xt) to denote the distributions of xτT and xt, respectively.
Under A1, the distributions of (xT ,yT , G) are described by
the set of distributions

P(T, τ) = {p(y|x, G), p(G), p(xτT ), p(xτT+1)}. (8)

These distributions are used to calculate all of the entropies
and mutual informations throughout. The entropies and mutual
informations are “ergodic” in the sense that they are averaged
over independent realizations of G.
Define:

H′(Yε|Xδ) = lim
T→∞

1
N

H(yετT+1|xδτT ,yετT ), (9)

H′(Yε|Xδ+) = lim
T→∞

1
N

H(yετT+1|xδτT+1,yετT ), (10)
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with δ, ε ∈ [0, 1
τ ), again assuming these limits exist. Here,

H can refer to either discrete or continuous entropy. We treat
δτT , ετT again as integers to avoid excessive use of the
ceiling or floor notation. We drop the subscripts ε and δ in
H′(Yε|Xδ) and H′(Yε|Xδ+) when ε = 1 or δ = 1. For
example, H′(Y|X) = H′(Yε|Xδ)|δ=1,ε=1 and H′(Y|X+) =
H′(Yε|Xδ+)|δ=1,ε=1. With (9) and (10), we further make the
following assumptions:

A2: H′(Y|X+) = lim
ε↘1

H′(Yε|Xε+), (11)

H′(Y|X) = lim
ε↘1

H′(Yε|X). (12)

Notice that H′(Yε|X) in (12) is H′(Yε|Xδ)|δ=1, where δ is
dropped since δ = 1, which is effectively taking limδ↘1 before
limε↘1.
Assumptions A1–A2 in (6), (7), (11), and (12), are impor-

tant for the main result (Theorem 1). A1 is often met in
practice for a memoryless and time-invariant system with
iid input in the data phase that is independent of the input
and output during training. However, we do not have a
complete characterization of the processes X and Y that meet
Assumption A2. Nevertheless, A2 may be verified on a case-
by-case basis by examining H′(Yε|Xε+) and H′(Yε|X) with
ε ≥ 1 using Corollary 1(b) in Appendix A.
Define

H(Yε|Xδ) = lim
T→∞

1
NτT

H(yετT |xδτT ), (13)

I ′(Xε;Yε) = lim
T→∞

1
N

I(xετT+1;yετT+1|xετT ,yετT ),

(14)

I(Xε;Yε) = lim
T→∞

1
NT

I(xT
ετT+1;y

T
ετT+1|xετT ,yετT ),

(15)

where xT
t = [xᵀ

t ,x
ᵀ
t+1, · · · ,x

ᵀ
T ]

ᵀ, and yT
t =

[yᵀ
t ,y

ᵀ
t+1, · · · ,y

ᵀ
T ]

ᵀ. Similarly, we drop the subscripts ε
and δ in I′(Xε;Yε), I(Xε;Yε), and H(Yε|Xδ) when ε = 1 or
δ = 1. Observe that, in particular, I(X0;Y0) corresponds
to the large-scale limit of the mutual information between
the input and output as shown in the left-hand side of (1),
the only difference being the extra normalization factor 1/N
needed to keep the limit finite. Taking the limit of (1) yields

I(X0;Y0) ≥ (1− τ)I ′(X ;Y). (16)

For this inequality to be useful, we need to be able to compute
the right-hand side of (16) as a function of τ . A method to
do this is one of our main results.

C. Main Results

Theorem 1: Under Assumptions A1 and A2,

I ′(X;Y) = lim
ε↘1

∂H(Yε|X )
∂ε

− lim
ε↘1

∂H(Yε|Xε)
∂ε

. (17)

Proof: Please see Appendix A. !
Theorem 1 shows that the right-hand side of (16) can be

calculated as a derivative using (17) as long as H(Yε|Xδ) is
available. We describe the process of computing this.

Computation of H(Yε|Xδ): An expression for H(Yε|Xδ)
may be derived from H(Yε|X ) (where δ = 1) when this latter
quantity is available. In some cases H(Yε|X ) can be obtained
through methods employed in statistical mechanics by treating
the conditional entropy as free energy in a large-scale system.
Free energy is a fundamental quantity [13], [14] that has been
analyzed through the powerful “replica method,” and this,
in turn, has been applied to entropy calculations in machine
learning [15]–[18] and wireless communications [10]–[12],
in both linear and nonlinear systems.
The entropy H(Y|X ) (where δ = ε = 1) is considered

in [15]–[18], where the input is multiplied by an unknown
vector as an inner product and then passes through a non-
linearity to generate a scalar output. In [15], [16], [18],
the inputs are iid, while orthogonal inputs are considered
in [17]. The entropy H(Yε|X ) for MIMO systems is con-
sidered in [10]–[12], where the inputs are iid in the training
phase and are iid in the data phase, but the distributions in the
two phases can differ. In [10], a linear system is considered
where the output is the result of the input multiplied by
an unknown matrix, plus additive noise, while in [11], [12]
uniform quantization is added at the output.
As we now show, the expression for H(Yε|X ) for ε ≥ 1

can be leveraged to compute H(Yε|Xδ) for all ε, δ > 0.
We consider the case when the input xt is iid for all t, and
the distribution set P(T, τ) defined in (8) can therefore be
simplified as

P(T, τ) = {p(y|x, G), p(G), p(x)}. (18)

The following theorem assumes that we have H(Yε|X ) avail-
able as a function of τ for all ε ≥ 1.
Theorem 2: Assume that Assumption A1 is met, xt are iid

for all t, H(Yε|X ) defined in (13) exists and is continuous in
τ ∈ (0, 1) and ε ≥ 1. Define

F (τ, ε) = H(Yε|X ). (19)

Then

H(Yε|Xδ) = u · F
(
uτ,

ε − u

δ
+ 1

)
, (20)

for all ε, δ ∈ (0, 1
τ ], where u = min(ε, δ).

Proof: According to (13) and (19), we have

F (τ, ε) = lim
T→∞

1
NτT

H(yετT |xτT ),

which is computed using P(T, τ) defined in (18). When δ ≥
ε > 0, we have

H(Yε|Xδ) = lim
T→∞

1
NτT

H(yετT |xδτT ) (21)

= lim
T→∞

1
NτT

H(yετT |xετT )

= lim
T→∞

ε

N τ̃T
H(yτ̃T |xτ̃T ). (22)

where τ̃ = ετ . Therefore, (19) and (22) yield

H(Yε|Xδ) = ε · F (τ̃ , 1) = ε · F (ετ, 1). (23)
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When ε > δ > 0, let τ̃ = δτ , and then (21) yields

H(Yε|Xδ) = lim
T→∞

δ

N τ̃T
H(yετ̃T/δ|xτ̃T )

= δ · F
(
τ̃ ,

ε

δ

)
= δ · F

(
δτ,

ε

δ

)
. (24)

By combining (23) and (24), we obtain (20). !
With Theorems 1 and 2, we may summarize the process of

obtaining solving (5).

D. Steps for Computing Optimal Training Fraction

Summary: We assume that the input dimension M , the out-
put dimension N , and the coherence time (block of symbols)
T have the ratios defined in (3). The unknown parameters
of the system are constant within the block, and change
independently in the next block. The first τT symbols of each
block are used for training and the remaining T − τT are for
data. The input xt are iid for all t = 1, . . . , T . Using results
from Appendix A, the computation then follows these seven
steps:
1) Verify Assumption A1 (6)–(7) based on the set of distri-

butions in (8).
2) Compute H(Yε|X ) defined in (13) for ε ≥ 1 and express

it as a function of τ and ε, as in F (τ, ε) (19).
3) Compute H(Yε|Xδ) defined in (13), for all ε, δ ∈ (0, 1

τ ]
by using Theorem 2 and F (τ, ε).

4) Compute H′(Yε|Xδ) and H′(Yε|Xε+) defined in (9)-(10)
by taking the derivative of H(Yε|Xδ) and H(Yε|Xε)
(Theorem 4 and Corollary 1(a) in Appendix A).

5) Verify Assumption A2 (11) by examining the expressions
of H′(Yε|Xε+) and verify (12) with Corollary 1(b) in
Appendix A.

6) Compute I ′(X;Y) by using (17).
7) Solve τopt using (5).

The solution to (5) is then an approximation of (2).
The results of the above process are most useful when the

number of unknowns scales with T . Otherwise, the results may
be uninteresting. For example, consider a system modeled as

yt = gxt + vt, t = 1, 2, . . .

where g is the unknown gain of the system, xt, yt are the
input and corresponding output, vt is the additive noise, τ is
the fraction of time used for training. This system is bilinear
in the gain and the input. We assume that vt is modeled as
iid Gaussian N (0, 1), independent of the input. The training
signals are xt = 1 for all t = 1, 2, . . . , τT , and the data
signals xt are modeled as iid Gaussian N (0, 1) for all t =
τT + 1, τT + 2, . . . An analysis that follows the steps above
produces

I(X0;Y0) ≥
1− τ

2 g log(1 + g2),

and therefore τopt = 0 maximizes this bound. This result
reflects the fact that g is learned perfectly for any τ >
0 because there is only one unknown parameter for τT training
symbols as T → ∞. Hence, trivially, it is advantageous to
make τ as small as possible.

The next section applies the results of this section to
a quantized MIMO system where the number of unknown
channel coefficients approaches infinity as T → ∞.

III. APPLICATION TO LARGE-SCALE

QUANTIZED MIMO SYSTEMS

We consider a large-scale MIMO system [12], [19]–[22]
modeled by

yt = f
(√

ρ

M
Gxt + vt

)
, t = 1, 2, . . . , (25)

where xt ∈ CM×1 models the transmitted signals from M
elements (transmitter antennas) at time t, yt ∈ CN×1 models
the received signals with N elements (receiver antennas),
G ∈ CN×M models the unknown baseband-equivalent wire-
less channel whose elements have iid real and imaginary
components with zero-mean half-variance common distribu-
tion pg̃(·), vt ∈ CN×1 models the additive white Gaussian
noise at the receiver whose elements are iid circular-symmetric
complex Gaussian CN (0,σ2), and f(·) is an element-wise
function that applies b-bit uniform quantization f(·) to
each element. The real and imaginary parts are quantized
separately.
The system model includes a coherence blocklength T

during which the channel is constant and after which it
changes independently to a new value. We consider a Rayleigh
environment, where the channel G has iid CN (0, 1) ele-
ments, and the corresponding pg̃(·) is N (0, 1

2 ). A frac-
tion τ of the total blocklength is used to learn the chan-
nel G by transmitting known training signals. We consider
N,M, T → ∞ with fixed ratios defined in (3) as an approx-
imation for finite but large input/output dimensions or long
blocklength.
We wish to determine the optimal training fraction τopt of

such systems defined in (5), and the corresponding optimal
achievable rate (in “bits/channel-use/transmitter”)

Ropt = max
τ

(1− τ)αI ′(X;Y), (26)

by using the process developed in Section II-D. First, to com-
pute I ′(X;Y), we make the following assumptions and define
several useful functions.

A. Assumptions and Definitions of Useful Quantities

We assume that the real and imaginary elements of the
transmitted vector xt are iid with zero mean and half variance
common distribution px̃(·) and are a-bit quantized signals in
both the in-phase and the quadrature branches. This creates a
22a-QAM constellation, with all possible symbols generated
with equal probability; the corresponding px̃(·) is uniform
among the 2a real and imaginary components. Throughout
this section we assume σ2 = 1, and thus the quantity ρ is
nominally the signal-to-noise ratio (SNR) because it represents
the ratio of the average signal energy (ρ/M) ‖Gxt‖2 = ρN
to noise variance Nσ2 = N , before quantization with the
function f(·).

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 15,2023 at 18:51:03 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: TRAINING-BASED MUTUAL INFORMATION LOWER BOUND FOR LARGE-SCALE SYSTEMS 5155

The b-bit quantizer f(·) has 2b−1 real quantization thresh-
olds defined as

rk = (−2b−1 + k)∆, for k = 1, 2, · · · , 2b − 1, (27)

where ∆ is the quantization step size. We define r0 = −∞,
and r2b = +∞ for convenience. The output of the quantizer
indicates the quantization level: f(w) = k for w ∈ (rk−1, rk]
and k = 1, . . . , 2b. When the input to the quantizer is a
complex number, its real and imaginary parts are quantized
independently. It is assumed throughout our numerical results
that ∆ is chosen such that f(w) = 1 or f(w) = 2b with
probability 1/2b when the input distribution on w is real
Gaussian with mean zero and variance (1+ ρ)/2. This choice
of ∆ ensures that ADCs are operating in a reasonable range,
but it only affects the numerical results in Section III-C.
In order to compute I ′(X;Y), we need to define some useful

quantities and functions: IAWGN(λ, p(·)), E(λ, p(·)), Ω(γ, s),
and χ(γ, s). Let IAWGN(λ, px̃(·)) and E(λ, px̃(·)) be

IAWGN(λ, px̃(·)) = − y[log2 x(e−|y−
√

λx|2)]
− log2 e, (28)

E(λ, px̃(·)) = x,y(|x−
∫

x · p(x|y)dx|2), (29)

where the expectation is with respect to the joint distribution
of (x, y):

p(x, y) = p(x) · 1
π
e−|y−

√
λx|2

= px̃(xR) · px̃(xI) ·
1
π
e−|y−

√
λx|2 , (30)

where xR and xI are the real and imaginary part of x and
p(x|y) is the distribution of x conditioned on y. Note that
(x, y) can be modeled as a single-input single-output additive
white Gaussian noise (AWGN) channel

y =
√

λx+ v, (31)

where v ∼ CN (0, 1) is independent of x. Then
IAWGN(λ, px̃(·)) is the mutual information between x and y,
and E(λ, px̃(·)) is the mean-square error (MSE) of the MMSE
estimate of x conditioned on y. We define IAWGN(λ, pg̃(·))
and E(λ, pg̃(·)) in a similar way by replacing px̃(·) in the
above expressions with pg̃(·).
We define Ω(γ, s) and χ(γ, s) as

Ω(γ, s) = −2
2b∑

k=1

∫

R
Ψk(

√
γz, s)

× log2 Ψk(
√

γz, s)
e−

z2
2

√
2π

dz, (32)

χ(γ, s) =
2b∑

k=1

∫

R
dz

e−
z2
2

√
2π

(Ψ′
k(
√

γz, s))2

Ψk(
√

γz, s)
, (33)

where

Ψk(w, s) = Φ

(√
2rk − w√

s

)

−Φ

(√
2rk−1 − w√

s

)
, (34)

Ψ′
k(w, s) =

e−
(
√

2rk−w)2

2s − e−
(
√

2rk−1−w)2

2s
√
2πs

, (35)

with rk defined in (27), and Φ(·) is the standard normal
cumulative distribution function.
We use a = ∞ to denote an unquantized transmitter and

assume the elements of xt are iid CN (0, 1); the corresponding
px̃(·) is then N (0, 1

2 ). We use b = ∞ to denote f(w) = w for
w ∈ R (quantizer is removed). In this case, IAWGN(λ, p(·)),
E(λ, p(·)) are as above, but Ω(γ, s) and χ(γ, s) are

Ω(γ, s) = log2(πes), χ(γ, s) = 1/s, (36)

and the computedH′(Y|X) andH′(Y|X+) are then differential
entropies.
We may now compute I ′(X;Y) for the MIMO quantizer

model.

B. I′(X;Y) for the System in Equation (25)

Theorem 3: For the system (25) with τT input-output train-
ing pairs (xτT ,yτT ),

I ′(X;Y) = Ω(ρqgqx,σ2 + ρ − ρqgqx)
−Ω(ρqg,σ2 + ρ − ρqg)

+
1
α
IAWGN(λx, px̃(·)) +

qxλx − λx

α ln 2
, (37)

where Ω(·, ·) is defined in (32), IAWGN(·, ·) is defined in (28),
(qg,λg, qx,λx) are the solutions of

λg = τβρ · χ(ρqg,σ2 + ρ − ρqg),
qg = 1− E(λg , pg̃(·)), (38)

λx = αρqg · χ(ρqgqx,σ2 + ρ − ρqgqx),
qx = 1− E(λx, px̃(·)), (39)

where E(·, ·) and χ(·, ·) are defined in (29) and (33). When
f(w) = w, Ω(·, ·) and χ(·, ·) in (32) and (33) are replaced
with (36).

Proof: The proof applies Theorems 1 and 2, and is detailed
in Appendix B. !
Unlike the analysis in [1]–[4] or [6]–[8], the theorem:

(i) provides a large-scale expression for I ′(X;Y), not a lower
bound; (ii) does not require worst-case noise analysis or
linearization of the quantizer f(·).
Although we compute large-scale limits, it is anticipated that

the results herein provide good approximations for systems
with finite M , N , and T simply by substituting the α and β
computed for the finite-dimensional system into the limiting
formulas. For example, the parameter β = T/M is the ratio
of the coherence time of the channel (in symbols) to the
number of transmitters and is therefore strongly dependent
on the physical environment. We may choose a typical value
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Fig. 1. Plots of Ropt vs α for a = 1, 2,∞, and b = 1 (solid curves)
and b = ∞ (dashed curves), and SNR = 10 dB, for β = 40 (see text for
explanation of this choice). The curves saturate at 2 for a = 1, and at 4 for
a = 2, while there is no saturation for a = ∞. Note for Ropt to achieve the
90% level (1.8a indicated by “*”), more receive elements are required when
comparing linear (b = ∞) versus one-bit (b = 1) receivers. For example,
with a = 2, observe that the “*” on the dashed curve is at α = 4, while
the “*” on the solid curve is at α = 28, indicating that α has to increase to
compensate for lack of resolution at the receiver.

as follows: Suppose we choose a 3.5 GHz carrier frequency
with maximum mobility of 130 km/h; the maximum Doppler
shift becomes fd = 130 km/h×3.5 GHz

3×108 m/s = 421 Hz, and the corre-
sponding coherence time is 9

16πfd
= 0.4 ms [23]. We consider

10 MHz bandwidth and assume that the system is operated at
Nyquist sampling rate (10 complex Msamples/second), which
produces T = 4000 discrete samples during each 0.4 ms
coherent block. In a system with M = 100 elements at the
transmitter, we obtain β = 40.
With the expression (37), we are now able to study the

effects of quantization on training.

C. Optimal Training Time and Achievable Rate for Various
Scenarios

In this section, we consider the results of (5) and (26) for
various scenarios, where we show how the optimal training
time and the achievable rate is affected by quantization (here
quantization means a, or b, or both are finite). Because of
quantization, the maximum achievable rate is 2a bits/channel-
use/transmitter, which we define to be the saturation rate.
We note that the large-scale results derived below can be
used for finite systems. For example, to determine the optimal
number of training symbols, we first solve the large-scale
problem (5) to get the optimal training fraction τopt, and then
the number of training symbols is just τoptT .

1) Lower Resolution at Receiver Requires More Receiver
Elements: In Fig. 1 we consider Ropt versus α for a = 1, 2;
the maximum rates per transmitter are then 2 bits and 4 bits
respectively (2a bits/channel-use/transmitter is considered as
the saturation rate). These asymptotes are approached as α is
increased, where larger α = N/M represents larger number
of receivers per transmitter. The unquantized results are also
shown for comparison. For example, by comparing the solid

Fig. 2. Plots of τopt vs α. Note that τopt is generally insensitive to α when
α is small, and decreases rapidly with α as Ropt approaches the saturation
rate 2a (after the markers, which indicate Ropt = 1.8a, same as in Fig. 1).
As α grows, eventually τopt · β < 1 (indicated by the solid cyan line),
at which point the number of training symbols is smaller than the number
of transmitter elements. Also shown in purple is the large-α result (42) for
10 dB SNR, a = 1 and b = 1.

curves (b = 1) versus the dashed curves (b = ∞), we can see
that to achieve the same rate, larger α is needed for (b = 1)
which indicates that more receiver elements are required to
compensate for the lack of resolution.
2) τoptT < M Is Sufficient for Quantized Systems When α

Is Large: In Fig. 2, we show that for a = 1, 2, when α is
large, the optimum number of training signals may be smaller
than the number of transmitters. Hence, unlike a linear system
where an explicit estimate of H is learned only if τoptT ≥ M ,
it is not necessary to learn all of the M ·N channel coefficients
in a quantized system when N - M . This is also shown to
a limited extent for a = 1 and b = 1 in [24], [25]. We further
show that, for all finite a, the optimum training time decreases
to zeros as α increases to infinity; especially, τopt decays as
(lnα)/α for large α when a = 1.
Specifically, for all τ > 0 and finite a, we have

lim
α→∞

αI ′(X;Y) = 2a, (40)

which yields limα→∞ Ropt = 2a, and limα→∞ τopt = 0. The
proof is shown in Appendix C. In the special case with a = 1,
when α is large, we have

for b = ∞, τopt ≈ 2
(

ρ + 1
ρ

)2 lnα

βα
, (41)

for b = 1, τopt ≈ 2
(

π

2
ρ + 1

ρ

)2 lnα

βα
. (42)

3) Linearization Can Sometimes Work Well at High SNR:
It is well-known that linearization at the receiver works well
at low SNR’s [7], [26]. We show that it sometimes also
works well at high SNR with quantized transmitters (a is
finite). By using the Bussgang decomposition [9], [26], we can
reformulate the system in (25) as

yt =
√

η

(ρ + 1)

(√
ρ

M
Gxt + vt

)
+ vq, (43)
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where vq is uncorrelated with
√ ρ

MGxt + vt, vq has zero
mean with covariance matrix (1 − η)I , and where η = 2/π
for b = 1, and η = 2

5π (1+2e−
∆2
ρ+1 )2 for b = 2. For tractability,

we assume that vq ∼ CN (0, (1 − η)I) and is independent of
G,xt, and vt.
The classical treatment of this model treats the estimated

channel as the “true” channel as in [1], while the estimation
error is treated as additive Gaussian noise, thereby furthering
the approximation. We obtain

ȳt =
√

ρeff/MḠxt + v̄t, (44)

where ρeff is the effective SNR

ρeff =
τβη2ρ2

[1 + (1− η)ρ][1 + ρ + τβηρ]
, (45)

Ḡ is the estimated channel whose elements are iid CN (0, 1),
and v̄t has iid CN (0, 1) elements. This model has achievable
rate

lim
M→∞

1
M

I(x; ȳ|Ḡ) = α log2(1 + ρeff − ρeff q̄x)

+ IAWGN(λ̄x, px̃(·)) +
q̄xλ̄x − λ̄x

ln 2
,

(46)

where (q̄x, λ̄x) are the solutions of

λ̄x = αρeff · χ(ρeff q̄x, 1 + ρeff − ρeff q̄x),
q̄x = 1− E(λ̄x, px̃(·)). (47)

The details for computing (46) are shown in Appendix D.
Note that limM→∞

1
M I(x; ȳ|Ḡ) is a function of τ through

ρeff in (45). We then define

RL = max
τ

(1− τ) lim
M→∞

1
M

I(x; ȳ|Ḡ). (48)

The path just described to obtain RL involves several
approximations, and hence it is unclear how closelyRL should
follow Ropt. However, a comparison between Ropt (26) and
RL (48) with a = 1, 2,∞ and b = 1, 2 for β = 40 is shown
in Fig. 3 with α = 10. We can see that RL is generally a
good approximation of Ropt when the SNR is below 6 dB,
but is also accurate above 6 dB in cases where Ropt ≈ 2a
(saturation rate) when SNR ≈ 6 dB; see especially the blue,
black, and green curves in Fig. 3.
4) Minimum Number of Receivers per Transmitter Is

Required for Quantized Systems: The values of α required
to achieve Ropt = 1.8 (90% level) for various SNR ρ
and b with a = 1 are shown in Fig. 4. It is clear that α
decreases as ρ increases, but there are asymptotes when ρ = ∞
for b = 1, 2, 3 as shown in the cyan lines because of the
quantization noise. This indicates that for quantized systems,
if α is below some minimum (cyan lines), no matter how large
the SNR is, certain data rates are not achievable. However,
when b = ∞, there is no asymptote since the channel can be
estimated perfectly, and the discrete transmitted signal can be
detected perfectly as ρ → ∞.

Fig. 3. Plots of Ropt and RL vs SNR with β = 40 and α = 10 for
a = 1, 2,∞ and b = 1, 2. Observe that RL is a good approximation of
Ropt below 6 dB SNR, and is sometimes also a good approximation for all
SNR, depending on where saturation (rate 2a) is reached.

Fig. 4. Plots of α versus SNR when Ropt = 1.8 (90% level), β = 40,
a = 1. The curves decrease as SNR increases and reach asymptotes as
ρ = ∞ that are shown in cyan with b = 1, 2, and 3, which indicates the
minimum number of receivers per transmitter required to maintain Ropt.
These asymptotes are the result of the quantization noise at the receiver that
restrict the α from going to zero as ρ = ∞. For linear receivers (b = ∞),
perfect channel estimation can be obtained as ρ = ∞, and therefore there are
no asymptotes. At low SNR, the slopes of the curves are similar to each other
because the additive (thermal) noise dominates the quantization noise, and the
effect of quantization can be treated as degradation in SNR that depends on b.

IV. DISCUSSION AND CONCLUSION

We provided a method to compute the mutual information
lower bound that can be used to analyze the effect of training
in models with unknown parameters. For large-scale systems,
we showed that this bound could be calculated using the
difference between two derivatives of a conditional entropy
function. This method was applied to a large-scale quantized
MIMO system, where we derived the mutual information and
studied how quantization and training influence one another.
Several training results were derived that were unique to
quantization effects at the transmitter and the receiver.
We believe that the analysis shown in Theorem 3 for the

model (25) can be generalized beyond Gaussian channels
and to other nonlinear functions f(·). In particular, since
a quantizer with sufficiently high resolution and number of
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levels can be used to approximate a well-behaved monotonic
function, it is conceivable that the theorem can readily be
adapted to any monotonic function. We view this as a possible
avenue for future work.
In addition, we believe that Assumption A2 is likely to be

superfluous for common system models, such as when the
distribution on xt is iid through the training and data phases,
and the transition probabilities can be written as a product as
in Assumption A1. However, we have not yet characterized for
which models A2 is automatically satisfied without additional
assumptions on H′, and think that this would be an interesting
research topic for further work.

APPENDIX A
PROOF OF THEOREM 1

We first show the derivative relationship between H′(Yε)
and H(Yε) defined below, and then generalize to the condi-
tional entropies which directly lead to the conclusion (17).
Define

H′(Yε) = lim
T→∞

1
N

H(y(ετT)+1|y(ετT )), (49)

H(Yε) = lim
T→∞

1
NτT

H(y(ετT )), (50)

which can be considered as H′(Yε|Xδ) and H(Yε|Xδ) with
δ = 0. For mathematical rigorousness, we keep the $·% notation
here. We show that, under some conditions, H′(Yε) is the
derivative of H(Yε).
Lemma 1: Suppose there exists a κ > 0 so thatH(yt+1|yt)

is monotonic in t when t ∈ [/(ε − κ)τT 0, $(ε + κ)τT %] as
T → ∞.
If H(Yε) and its derivative with respect to ε exist, we have

H′(Yε) =
∂H(Yε)

∂ε
. (51)

If both H(Yε) and H′(Yε) exist, we have

H(Yε) =
∫ ε

0
H′(Yu)du. (52)

Proof: Equation (52) is an integral equivalent of (51) and
we only prove (51) for simplicity. Without loss of generality,
we assume that H(yt+1|yt) is monotonically decreasing.
Using the definition of H(Yε) in (50), we have

1
κ
(H(Yε+κ)−H(Yε))

= lim
T→∞

H(y((ε+κ)τT ))−H(y(ετT ))
κNτT

= lim
T→∞

∑((ε+κ)τT)
t=(ετT)+1 H(yt|yt−1)

κNτT

≤ lim
T→∞

($(ε + κ)τT % − $ετT %)
κNτT

×H(y(ετT)+1|y(ετT ))

= lim
T→∞

1
N

H(y(ετT )+1|y(ετT )). (53)

Similarly to (53), we also have

lim
T→∞

1
N

H(y(ετT )+1|y(ετT )) ≤ 1
κ
(H(Yε)−H(Yε−κ)).

(54)

Let κ↘0 in both (53) and (54); because we assume that
the derivative of H(Yε) exists, these limits both equal
this derivative. Then, the definition of H′(Yε) in (49)
yields (51). !
Lemma 1 is a consequence of the entropy chain rule

and letting an infinite sum converge to an integral (standard
Riemann sum approximation). Such an analysis has also been
used in the context of computing mutual information; for
example [27]–[31]. Lemma 1 can be generalized to include
conditioning on X , thus leading to the following theorem,
provided that H(Yε|Xδ) and its derivative with respect to ε
exist.
Theorem 4: Assume A1 holds. For ε > 1,

H′(Yε|X) =
∂H(Yε|X )

∂ε
, (55)

H′(Yε|Xε+) =
∂H(Yε|Xε)

∂ε
. (56)

Proof: Under A1, for all δ ≥ 1, we have

H(yt+1|x(δτT ),yt) ≤ H(yt+1|x(δτT),yt−1)
= H(yt|x(δτT),yt−1), (57)

when $τT % + 1 ≤ t ≤ $δτT % − 1 or t ≥ $δτT % + 1. Here,
we use that the input is iid and the system is memoryless
and time invariant; the inequality follows from the fact that
conditioning reduces entropy. Therefore, ∀κ ∈ (0, ε − 1),
H(yt+1|x(τT),yt) is monotonically decreasing in t for t ∈
[/(ε − κ)τT 0, $(ε + κ)τT %] when τT > 2

ε−1−κ . Then,
Lemma 1 yields (55).
Also, for all δ > ε > 1 there exists a κ ∈ (0,min(ε −

1, δ − ε)), such that H(yt+1|x(δτT ),yt) is monotonically
decreasing in t for t ∈ [/(ε − κ)τT 0, $(ε + κ)τT %] when
τT > max( 3

ε−1−κ ,
2

δ−ε−κ ). Then, Lemma 1 yields

H′(Yε|Xδ) =
∂H(Yε|Xδ)

∂ε
. (58)

Assumption A1 yields

H′(Yε|Xδ) = H′(Yε|Xε+), (59)

where H′(Yε|Xε+) is defined in (10), and

H(Yε|Xδ) = H(Yε|Xε). (60)

Therefore, (58) becomes (56). !
Theorem 4 can now be used to finish the proof of Theo-

rem 1. By (14) and Assumptions A1–2,

I ′(X;Y) = H′(Y|X) −H′(Y|X+)
= lim

ε↘1
H′(Yε|X)− lim

ε↘1
H′(Yε|Xε+),

and together with Theorem 4, we have (17).
Assumption A1 is often met in a wireless communication

system, while whether Assumption A2 holds is not necessarily
obvious. We provide the following corollary to help check
Assumption A2.
Corollary 1: Assume A1 holds. (a) If xt are iid for all t,

then for all ε, δ > 0 and ε 3= δ,

H′(Yε|Xδ) =
∂H(Yε|Xδ)

∂ε
, (61)

H′(Y|X+) =
∂H(Yε|Xε)

∂ε

∣∣∣∣
ε=1

. (62)
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(b) If

lim
ε↘1

H′(Yε|X) = lim
δ↗1

H′(Y|Xδ), (63)

then Assumption A2 (12) is met.
Proof: (a) If xt are iid for all t, then (57) is valid for

all t ≤ $δτT % − 1 or t ≥ $δτT % + 1. Therefore, Lemma 1
yields (61). By taking ε = 1 and δ > 1, (61), (59), and (60)
then yield (62).
(b) For t ≥ $τT %+ 1, we have

H(yt+1|x(τT ),yt) ≤ H(yt|x(τT),yt−1).

Therefore,

lim
ε↘1

H′(Yε|X) ≤ H′(Y|X).

Conditioning to reduce entropy again yields

H(y(τT )+1|x(τT ),y(τT )) ≤ H(y(τT )+1|x(δτT ),y(τT)),

for any δ < 1 and therefore,

H′(Y|X) ≤ lim
δ↗1

H′(Y|Xδ).

Equation (63) then implies A2 (12).
!

APPENDIX B
PROOF OF THEOREM 3

A. Steps to Compute (37)

We now show the derivation of the expressions of
I′(X;Y),H′(Y|X+), and H′(Y|X) by using theorems devel-
oped in Section II, which can be computed from a sin-
gle entropy H(Yε|X ) = H(Yε|Xδ=1), where H(Yε|Xδ) =
limT→∞

1
NτT H(y(ετT )|x(δτT)). H(Yε|X ) can be obtained

from a quantity called asymptotic free entropy F through

H(Yε|X ) = −F(τβ, (ε − 1)τβ)
ατβ

, (64)

where F(βτ ,βd) is defined as F(βτ ,βd) =
limM→∞

1
M2 log2 p(y((βτ+βd)M)|x(βτM)), which has

been computed as (44) in [12], and is continuous in
βτ and βd.
Following the steps in Section II-D:
1) From the model (25), it is clear that Assumption A1 is

met, i.e.

p(yT |xT , G) =
T∏

t=1

p(yt|xt, G),

p(xT ) = p(xτT )
T∏

t=τT+1

p(xt),

where p(yt|xt, G) is a time-invariant conditional distrib-
ution for all t = 1, 2, . . . , T , and p(xt) is a time-invariant
distribution for all t = τT+1, τT+2, . . . , T . The dimen-
sion of G depends on the blocklength T through (3).
Furthermore, the input xt are iid for all t. Then, we can
express the system by a set of distributions defined as

P(T, τ) = {p(y|x, G), p(G), p(x)}, (65)

which are the conditional distribution of the system, the
distribution of G, and the input distribution.

2) For given α and β, we define F (τ, ε) = H(Yε|X ),
where the entropyH(Yε|X ) is computed through P(T, τ)
defined in (65). Then, (64) yields

F (τ, ε) = −F(τβ, (ε − 1)τβ)
ατβ

, (66)

3) Theorem 2 then yields H(Yε|Xδ) = u · F
(
uτ, ε−u

δ + 1
)

for all ε, δ > 0, where u = min(δ, ε). Then, (66) yields
H(Yε|Xδ) = − 1

ατβF(uτβ, (ε − u)τβ).
4) Corollary 1(a) in Appendix A then yields

H′(Yε|Xδ) =






−1
ατβ

∂
∂εF(ετβ, 0), ε < δ;

−1
ατβ

∂
∂εF(δτβ, (ε − δ)τβ), ε > δ.

for all ε, δ > 0. Since xt is independent of (xk,yk) when
t 3= k, we have H′(Yε|Xδ) = H′(Yε|Xε+), for all δ >
ε > 0.

5) Using F(·, ·) in [12] and Corollary 1(a), we can verify
that

H′(Y|X+) = lim
ε↘1

H′(Yε|Xε+),

and

H′(Y|X+) = − 1
ατβ

∂

∂ε
F(ετβ, 0)|ε=1. (67)

Moreover, using H′(Yε|Xδ), we have

lim
ε↘1

H′(Yε|X) = lim
δ↗1

H′(Y|Xδ).

Thus, Assumption A2 is met via Corollary 1(b), i.e.

A2: H′(Y|X+) = lim
ε↘1

H′(Yε|Xε+),

H′(Y|X) = lim
ε↘1

H′(Yε|X),

and therefore,

H′(Y|X) = lim
ε↘1

H′(Yε|X)

= − 1
ατβ

lim
ε↘1

∂

∂ε
F(τβ, (ε − 1)τβ).

6) Finally, Theorem 1 yields

I ′(X;Y) = −1
ατβ

lim
ε↘1

∂

∂ε
F(τβ, (ε − 1)τβ)

+
1

ατβ

∂

∂ε
F(ετβ, 0)|ε=1. (68)

By using the expression of F in [12], together with (68),
we can derive (37). Specifically, converting the expression
of F (44) in [12] to expressions with our notations, we get

F(βτ ,βd)
= α

[
−βτΩ(ρqg,σ2 + ρ − ρqg)

− βdΩ(ρqgqx,σ2 + ρ − ρqgqx)
]

−αIAWGN(λg, pg̃(·))− βdIAWGN(λx, px̃(·))

+α
(1− qg)λg

ln 2
+ βd

(1− qx)λx

ln 2
,
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where IAWGN(·, ·), E(·, ·), Ω(·, ·), and χ(·, ·) are defined
in (28), (29), (32) and (33), and (qg,λg, qx,λx) are the
solutions of (38) and (39). Thus, the first term in (68)
becomes

− 1
ατβ

lim
ε↘1

∂

∂ε
F(τβ, (ε − 1)τβ)

= − 1
ατβ

lim
ε↘1

∂

∂ε

{
α

[
−τβΩ(ρqg,σ2 + ρ − ρqg)

−(ε − 1)τβΩ(ρqgqx,σ2 + ρ − ρqgqx)
]

−αIAWGN(λg , pg̃(·))− (ε − 1)τβIAWGN(λx, px̃(·))

+
α(1− qg)λg

ln 2
+

(ε − 1)τβ(1 − qx)λx

ln 2

}
,

and the second term in (68) becomes

1
ατβ

∂

∂ε
F(ετβ, 0)|ε=1

=
1

ατβ

∂

∂ε

{
− αετβΩ(ρqg ,σ2 + ρ − ρqg)

−αIAWGN(λg, pg̃(·)) + α
(1 − qg)λg

ln 2

}
|ε=1.

Then, by combining the two equations above, we can
get (37).

APPENDIX C
Ropt AND τopt FOR LARGE α

To prove (40)–(42), we analyze b = ∞ and b = 1 separately.

A. Large α With b = ∞
I′(X;Y) can be computed by following the steps in

Section II-D. When b = ∞, (37) yields

αI′(X;Y) = 1
ln 2

(
α ln

(
1 +

ρ̄

σ̄2
Ex

)
− λxEx

)

+ IAWGN(λx, px̃(·)), (69)

where px̃(x) is the distribution of real/imaginary part of
elements of xt, ρ̄, σ̄2 are computed from

ρ̄ = ρqg, σ̄2 = σ2 + ρ(1− qg), (70)

with qg being the solution of (38), and Ex,λx are the solution
of (39), which is

λx =
α ρ̄

σ̄2

1 + ρ̄
σ̄2 Ex

, Ex = E(λx, px̃(·)). (71)

Then, (69) becomes

αI ′(X;Y) = α

ln 2
ln

(
1 +

ρ̄

σ̄2
Ex

)

− α

ln 2

ρ̄
σ̄2 Ex

1 + ρ̄
σ̄2 Ex

+ IAWGN(λx, px̃(·)). (72)

The mean-square error of the MMSE estimate is
E(λx, px̃(·)) defined in (29), which is upper-bounded by the
mean-square error of the LMMSE estimate, therefore we get

0 ≤ E(λx, px̃(·)) ≤
1

1 + λx
, (73)

Ex <
1
λx

, 0 ≤ ρ̄

σ̄2
Ex ≤ 1

α − 1
. (74)

Because ln(1 + w) − w
1+w is monotonically

increasing in w for w ≥ 0, (74) yields 0 ≤
α

(
ln

(
1 + ρ̄

σ̄2 Ex
)
−

ρ̄
σ̄2 Ex

1+ ρ̄
σ̄2 Ex

)
≤ α( 1

α−1 − 1
α ) = 1

α−1 .

Therefore, (72) yields IAWGN(λx, px̃(·)) ≤ αI ′(X;Y) ≤
1

ln 2(α−1) + IAWGN(λx, px̃(·)), thus

lim
α→∞

αI ′(X;Y) = lim
α→∞

IAWGN(λx, px̃(·)). (75)

As α → ∞, (71) and (74) imply that λx → ∞, and
therefore IAWGN(λx, px̃(·)) → H(x) which is the entropy of
x. For 22a−QAM moduation at the transmitter generated by
a-bit DAC’s, we have limα→∞ αI ′(X;Y) = H(x) = 2a for
any finite a, and (26), (5) then yield

lim
α→∞

Ropt = 2a, lim
α→∞

τopt = 0. (76)

This shows (40).
When a = 1, E(λx, px̃(·)) is upper-bounded by the MSE

obtained through a hard decision, or

Ex = E(λx, px̃(·)) ≤ 4Q(
√

λx). (77)

For large α, (71) and (77) imply that Ex decays exponentially
to zero, and therefore

λx ≈ αρ̄/σ̄2, (78)

αI ′(X;Y) = α

2 ln 2

( ρ̄

σ̄2
Ex

)2

+ IAWGN(λx, px̃(·)) + o(E2
x). (79)

Equation (76) implies that τopt is small when α is large,
and therefore, in the following approximations, we only keep
the dominant terms in τ . Equations (38) and (70) yield

qg ≈ ρ
1+ρτβ and ρ̄

σ̄2 ≈
(

ρ
1+ρ

)2
τβ, and (78) then yields

λx ≈ ρ2τβα/ (1 + ρ)2. It can be shown when a = 1 that
for some ν > 0, αI ′(X;Y) ≈ 2 − νe−

λx
2
√

λx, and that
therefore τopt ≈ argmaxτ (1− τ)(2− νe−

ν1ατ
2

√
ν1ατ) where

ν1 = ( ρ
1+ρ)

2β. Taking the derivative with respect to τ and
setting it equal to zero produces (41).

B. Large α With b = 1

We again compute I′(X;Y) by following the steps in
Section II-D. When b = 1, (37) yields

αI′(X;Y) = 4α
∫

R
[Q

(√
c̄z

)
log2 Q

(√
c̄z

)

−Q (Az) log2 Q (Az)]
e−

z2
2

√
2π

dz

− λxEx
ln 2

+ IAWGN(λx, px̃(·)), (80)

where

c̄ =
ρ̄

σ̄2
, A =

√
c̄(1− Ex)
1 + c̄Ex

,

ρ̄, σ̄2 are computed from (70) which are not functions of α,
and (Ex,λx) are the solution of (39), which can be expressed
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as

λx =
∫

R
dz

e−
z2
2

√
2π

αc̄

π(1 + c̄Ex)
e−A2z2

Q(Az)
,

Ex = E(λx, px̃(·)). (81)

Since 0 < Q(Az) < 1, (81) yields

λx ≥ αc̄

π(1 + c̄Ex)

∫

R
dz

e−
1+2A2

2 z2

√
2π

=
αc̄

√
1 + 2A2

π(1 + c̄Ex)
≥ c̄α

π(1 + c̄)
. (82)

Similar to (73), we have 0 ≤ E(λx, px̃(·)) = Ex ≤ 1
1+λx

.
Then, (81) and (82) yield

0 ≤ Ex <
1
λx

≤ π(1 + c̄)
c̄

· 1
α
.

Therefore, Ex becomes small for large α. A Taylor expansion
of (80) obtains

αI ′(X;Y)

=
α

π ln 2

∫

R

3A2 + 2A− 1
(1 +A2)(1 + (A+ ε)2)

× ε2e−
1+2A2

2 z2

√
2πQ(Az)

dz + IAWGN(λx, px̃(·)) +O(αE2
x),

where ε = (1+c̄)c̄Ex

(
√
c̄+A)(1+c̄Ex)

. Thus,

lim
α→∞

αI ′(X;Y) = lim
α→∞

IAWGN(λx, px̃(·)).

The remaining steps are similar to b = ∞ in Appendix C-A
and are omitted.

APPENDIX D
CALCULATION OF (46)

Since

lim
M→∞

1
M

I(x; ȳ|Ḡ) = lim
M→∞

1
M

H(ȳ|Ḡ)

− lim
M→∞

1
M

H(ȳ|Ḡ,x),

we compute the two terms separately as follows. When Ḡ
is known, the entropy lim

M→∞
1
MH(ȳ|Ḡ) can be computed

through

lim
M→∞

1
M

H(ȳ|Ḡ) = lim
M→∞

−1
βM2

log2 p(ȳ
(βM)|Ḡ)

= αΩ(ρeff q̄x, 1 + ρeff − ρeff q̄x)

+ IAWGN(λ̄x, px̃(·))−
(1− q̄x)λ̄x

ln 2
,

(83)

where lim
M→∞

1
M2 log2 p(ȳ(βM)|G) is available in [12] and

(q̄x, λ̄x) are the solutions of (47), and Ω(·, ·) and χ(·, ·) are
defined in (36).
Therefore, (83) yields

lim
M→∞

1
M

H(ȳ|Ḡ) = αΩ(ρeff q̄x, 1 + ρeff − ρeff q̄x)

+ IAWGN(λ̄x, px̃(·)) +
q̄xλ̄x − λ̄x

ln 2
.

(84)

Since the elements of Ḡ are iid CN (0, 1), for any given x, the
elements of

√ρeff
M Ḡx are iid CN (0, ρeffx

Hx
M ). Also, since the

elements of x are iid with zero mean and unit variance, ρeffx
Hx

M
converges to ρeff and the elements of

√ρeff
M Ḡx converge to

iid CN (0, ρeff) as M → ∞. Therefore,

lim
M→∞

1
M

H(ȳ|Ḡ,x) = αΩ(ρeff , 1). (85)

Then, (84) and (85) yield

lim
M→∞

1
M

I(x; ȳ|Ḡ)

= αΩ(ρeff q̄x, 1 + ρeff − ρeff q̄x)− αΩ(ρeff , 1)

+ IAWGN(λ̄x, px̃(·)) +
q̄xλ̄x − λ̄x

ln 2
= α log2(1 + ρeff − ρeff q̄x) + IAWGN(λ̄x, px̃(·))

+
q̄xλ̄x − λ̄x

ln 2
,

where (q̄x, λ̄x) are the solutions of (47), which finishes the
computation of (46).
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