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Abstract

The effect of target geometry on coating microstructure and morphology is correlated to changes in
deposition conditions, plasma characteristics, and film growth during planar and hollow cathode
sputtering. The sputtering plasma properties for the two target geometries were characterized via
Langmuir probe analysis as a function of power density and Ar pressure to determine the evolution of
ion density for each configuration. Films were then synthesized at the low (0.4 W cm ™ %) and high (1.2
W cm™?) power densities and characterized using x-ray diffraction, scanning electron microscopy,
and electron backscatter diffraction to link changes in texturing, morphology, and microstructure
with variations in ion density and sputtering deposition conditions caused by target geometry. It was
observed that varying target geometry led to an over threefold increase in deposition rate, homologous
temperature, and ion density, which altered the morphology and texture of the film without significant
changes to the grain size.

1. Introduction

Magnetron sputtering is a highly tailorable physical vapor deposition (PVD) technique that enables deposition
of a vast array of materials, where planar magnetron sputtering is the most commonly used configuration as it
allows for unidirectional deposition and high deposition rates [1, 2]. Direct current (DC) magnetron sputtering
can effectively deposit conductive materials ranging from single elements to complex alloys, while radio
frequency (RF) or reactive sputtering techniques, which utilize high-frequency voltages or flow reactive gases,
respectively, are typically used to deposit oxide films, dielectrics, or other non-conductive materials [2—4].
Modified sputtering configurations, including high-power impulse magnetron sputtering (HIPIMS) and
ionized physical vapor deposition (I-PVD), have demonstrated the ability to change deposition pathways and
film growth mechanisms by ionizing sputtered atoms and increasing overall ion bombardment on the substrate
surface during deposition [2, 5-9]. However, studies using non-planar sputtering target geometries to alter film
microstructures have been limited. For example, a foundational comparison is still lacking between planar
cathode and hollow cathode (also known as inverted cylindrical magnetron (ICM)) sputtering, even though they
are two commonly utilized sputtering configurations that provide very distinct angles of incidence during
deposition. Understanding the effects of target geometry on plasma characteristics and subsequent film growth
presents a novel route to manipulate film morphology and microstructure, which provides access to unexplored
microstructures and material properties in sputtered films.

Planar cathodes produce plasma densities that are orders of magnitude lower than HIPIMS and I-PVD, yet,
planar sputtering can achieve uniform coatings on surfaces within its line-of-sight by leveraging unidirectional
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deposition via techniques such as collimation and long throw sputtering [2, 10, 11]. Qualitative tools for planar
film deposition, such as structure zone maps, have been developed to predict changes in grain size,
microstructure, and morphology, which enable the technique to tailor deposited film mechanical, optical,
thermal, and electronic properties [1, 12—15]. In contrast, due to its target geometry, hollow cathode sputtering
is affected by additional factors such as greater plasma densities and a 360° line-of-sight, which in turn affect the
microstructure and morphology beyond current structure zone maps representations [1, 12, 15-18]. Typically,
ICMs and their plasma discharges have been used in research for off-axis sputtering, where the substrate is
outside of the cathode, to coat non-planar and large area substrates ranging from optical lenses to
microelectronics [19-24]. To a lesser extent, some studies have investigated ICM sputtering within the cathode
volume, analyzing coating wires and adhesion [15, 16, 25-27]. Furthermore, a few studies have explored this
target geometry as an alternate deposition configuration for coating substrates with convoluted complex
topologies [16, 28, 29].

Recent work on 3D nano- and micro-lattices has demonstrated that coating techniques can increase the
material workspace for additively manufactured materials and improve functionality by accessing novel material
property spaces [30]. In general, sputter coated nano- and micro-lattices have mostly employed planar target
geometries and focused on the coated lattice material properties; some studies have also investigated coating
uniformity and observed thickness gradients resulting from the unidirectional deposition of the planar cathode
[31-34]. Garcia-Taormina et al demonstrated using a hollow cathode that changing target geometry could
potentially improve coating coverage on micro-lattice structures by increasing line-of-sight during deposition
[28]. Thus, in order to enable further exploration of deposition within complex target geometries, such as the
hollow cathode, the correlations between cathode geometry and film growth warrant further research.

In this study, a comprehensive comparison between planar and hollow cathode sputtering using Cu-Al
targets, focusing on the influence of target geometry on plasma characteristics, deposition conditions, and film
microstructure is presented. Plasma conditions were characterized using a Langmuir Probe at applied power
densities ranging from 0.4 to 1.2 W cm ™ and Argon pressures ranging from 3 to 30 mTorr. Coatings were then
synthesized at the high and low power densities to highlight the effects of changing ion density, deposition rate,
and homologous temperature on the film microstructure and morphology. The films were subsequently
characterized via x-ray diffraction (XRD), scanning electron microscopy (SEM), and electron backscatter
diffraction (EBSD) to observe variations in texture, feature size, and cross-sectional microstructure. Ultimately,
this work links target geometry as a variable to change the plasma characteristics, demonstrating a novel route to
manipulate and expand coating morphology and microstructure.

2. Methods

Films were deposited on (100) 25 mm X 25 mm Si substrates in a vacuum chamber via DC hollow and planar
cathode sputtering using 99.99% Cu-2wt.%Al targets. The target composition was selected since sputtering with
Cuand Cu-Al alloys is well documented under planar conditions and these material systems can be easily
machined for the hollow cathode geometry[1, 16, 35]. The hollow cathode target (Kurt ] Lesker Company) had
an inner radius of 4.76 cm, outer radius of 5.08 cm, and length of 16.51 cm, while the planar target was a flat disk
with aradius of 3.81 cm. In the hollow cathode configuration, the substrate was inserted into the volume of the
hollow target (see supplementary material) and, as such, the sputtering working distance in both the planar and
hollow cathode equaled the cylindrical target radius of 4.76 cm. Prior to sputtering coatings, the current-voltage
or [-V characteristics of the sputtering discharge plasmas at the substrate surface were obtained using a
cylindrical Langmuir probe (radius 0.254 mm) with a W wire tip (length 12.7 mm), using a similar probe
construction as seen in the work done by Fang and Marcus [36]. Plasma measurements were taken at deposition
power densities of 0.4 W cm %,0.6Wem %0.8Wem 2, 1.0Wem ™ 2,and 1.2 W cm ™2 with Ar pressures of 3, 6,
12,and 30 mTorr in the hollow cathode and Ar pressures of 3 and 6 mTorr in the planar cathode. Power density
was defined as the applied sputtering power divided by the surface area of the sputtering target; the planar
sputtering target had a surface area of 46 cm® and the hollow cathode had a surface area of 494 cm”. The probe tip
was positioned at the same working distances as the substrates with respect to the hollow and planar cathode
target surfaces and was biased from —80V to 80V. The W filament probe tip was replaced before the coating
thickness reached 2 microns, which was approximately 1% of the tip diameter, to prevent significant material
build up from affecting probe accuracy. The measured I-V curves were graphically utilized to determine the ion
saturation current, ion flux, and electron temperature. Ion densities, #;, were calculated using the following
equation, which is derived from the Bohm sheath theory. I;; is the saturation current, T, is the electron
temperature, Ay, is the known area of the probe tip, m1; is the ion mass, and k is Boltzman’s constant [37-39].
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Table 1. Summary of the hollow and planar cathode sputtering parameters and measured deposition conditions.

Power Density (W Argon Pressure Sputtering Rate (nm Ion Density (1 0"
Sample cm ) (mTorr) s ) Homologous Temperature (T/T ) cm )
HC1 0.4 3.00 1.10 0.10 0.70+0.21
HC2 0.4 6.00 0.77 0.13 0.70 £0.30
HC3 0.4 12.00 0.86 0.15 0.61+£0.01
HC4 0.4 30.00 1.02 0.12 0.53+0.14
PLNR1 0.4 3.00 0.29 0.04 0.40£0.01
PLNR2 0.4 6.00 0.28 0.05 0.29+£0.03
HC5 1.2 3.00 2.25 0.20 2.024+0.34
HC6 1.2 6.00 2.12 0.23 2.31£0.55
HC7 1.2 12.00 2.61 0.23 1.394+0.22
HCS 1.2 30.00 3.18 0.22 1.114+0.11
PLNR3 1.2 3.00 0.82 0.06 0.66 £0.04
PLNR 4 1.2 6.00 0.72 0.07 0.43 +0.04
n; = L — )
0.6 - e Aprope <

i

Following plasma characterization, 1 ym thick films were synthesized at the low and high power densities at
each of the varying gas pressures. A summary of the synthesis conditions and local plasma properties for the
deposited coatings can be seen in table 1. Film thickness was determined by the deposition rate multiplied by the
total deposition time. To ensure consistent film thicknesses at the different sputtering parameters and target
geometries, deposition time was adjusted so that each resulting film was 1 gm thick. The deposition rates were
measured using an Ambios XP-2 profilometer and the homologous temperature (T /T,,) was measured using
k-type thermocouples (Thermoelectric). The deposited films were characterized using XRD, SEM, and EBSD to
study the film texturing, crystallinity, and surface morphology. A Rigaku Ultima-IV diffractometer was used to
obtain XRD spectra with 26 scans performed on the range of 30° to 110° at a rate of 1° min ™~ ' and step size of
0.08° using Cu Ko radiation. The top surface and cross-sectional surface morphologies were imaged using a
Nova NanoSEM 450 Field Emission SEM. Images were taken using the immersion lens at an accelerating voltage
of 10kV and spot size of 4.0. From the SEM micrographs, the average feature sizes were obtained by averaging
200 measurements from each sample using Image-]J software. EBSD was performed on film cross-sections using
aHelios G4 PFIB UXe DualBeam FIB/SEM and data was analyzed using the Oxford Instruments Aztec Crystal
software. The cross-sections were polished using the Xe ion beam and subsequently analyzed with EBSD at an
accelerating voltage of 15kV and current of 3.2 nA to examine grain sizes and orientations. Average grain widths
for each cross-section were determined by measuring 50 grains per sample using the Image-]J software.

3. Results and discussion

3.1.Plasma analysis and film texturing

A fundamental understanding of the influence of target geometry on sputtered film microstructure and
morphology should consider the plasma conditions, deposition pathways, and film growth mechanisms of
sputtered particles. Therefore, Langmuir probe analysis was conducted to analyze the evolution of the plasma’s
ion density with respect to power density and pressure to investigate differences in ion production and
bombardment for planer and ICM geometries. Figure 1 presents measured ion densities recorded over a range of
sputtering power densities and pressures as well as corresponding XRD patterns taken at the low and high power
densities (0.4 W cm ™2 and 1.2 W cm ™). Power density, which is the applied power divided by the surface area of
the sputtering target, was chosen as a unifying parameter between the two configurations to normalize
differences in target surface area. Figure 1(a) shows that the measured ion density is dependent on both power
density and Ar pressure, increasing with applied power (as electron density and energy increases to more
frequently ionize neutral gas atoms) and decreasing with increasing gas pressures (due to higher particle collision
rates reducing electron energy and overall ionization). These observations agree with a previous study conducted
by Metwaly and Elbashar that characterized a hollow cathode plasma and observed a decrease in electron
temperature and ion density at higher gas pressures as well as an increase in ion density with increasing current
densities [40]. Ion density has also been linked to pressure via Paschen’s Law, which explains that the necessary
potential to ionize a gas atom is directly proportional to the pressure and the spacing of electrodes; thus, a greater
potential is needed to ionize gas at a higher pressure [41]. Over the measured range of power densities and Ar
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Figure 1. (a) Plotted Langmuir probe measured ion densities plots for hollow and planar cathode sputtering plasmas as a function of
power density at varying Ar pressures. (b) x-rayX-ray diffraction (XRD) patterns for the films sputtered at the low power density (0.4
W cm~2), which are indicated by the black oval on the left side of figure 1(a). (c) XRD patterns for the films sputtered at the high power
density (1.2 W cm ™ ?), which are indicated by the black oval on the right side of figure 1(a). Hollow cathode samples and
measurements are represented by a solid line, the planar cathode samples and measurements have a dashed line. Respective gas
pressures are color coded and the main XRD intensity peaks are labeled.

pressures, the hollow cathode exhibited greater ion densities and a steeper ion density slope than the planar
cathode, which indicates that ion density increases at a faster rate in the ICM; these differences are due to the
changing cathode geometry extending electron mean free paths [17, 18].

Given the correlations between power density, argon pressure, and ion density identified by Langmuir probe
measurements, samples were sputtered at each pressure at the low and high power densities, as indicated by the
circled regions in figure 1(a), and analyzed using XRD to show changes in film texture. The corresponding XRD
patterns for the planar and hollow cathode sputtered films are depicted in figure 1(b) (0.4 W cm™ %) and 1(c) (1.2
W cm ™ %), where the sputtering pressures are represented by the color of the XRD patterns. At both power
densities, the planar films have strong (111) texturing, while the ICM sputtered films display primarilya (111)
texturing with additional peaks. Table 1 provides a summary of the sputtering parameters and plasma
conditions for each film. From this table, it is seen at the same power density and pressure that hollow cathode
sputtering yields greater deposition rates, homologous temperatures, and ion densities than the planar
configuration. The presence of non (111) planes in the ICM sputtered samples is likely due to the wider range of
angles of incidence and increased sputtering rates decreasing particle mobility and altering film growth
directions during deposition, which can limit the formation of the lowest energy (111) planes. Additionally, it is
seen in the hollow cathode samples that higher deposition rates in conjunction with lower ion densities may
have further increased the random texturing, yielding greater amounts of higher energy (non (111)) planes. For
example, in figure 1(c), the high-power density ICM sample sputtered at 30 mTorr had the largest (220) peak.
Altogether, Langmuir probe analysis highlighted that transitioning from a planar to a hollow cathode target
geometry alters the plasma ion density and the deposition environment during sputtering, while XRD showed
changes in texture due to varying particle mobility during film growth.

3.2. Surface morphology characterization

Figures 2 and 3 link deposition conditions to film microstructure and morphology in the low and high-power
density samples, respectively. The as-sputtered top surface morphologies and measured feature sizes for the
hollow and planar cathode samples sputtered over the range of Ar pressures at the low power density (0.4 W
cm %) are depicted in figure 2. Comparing films deposited by the two target geometries at the same Ar pressure
(see figures 2(a) versus (e) and (b) versus (f)), the hollow cathode tends to yield more voided and porous top
surface film morphology with significantly larger feature sizes. For the planar films, increasing the gas pressure
from 3 to 6 mTorr did not significantly change film morphology, but did reduce feature size by decreasing the
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Figure 2. Scanning electron microscopy (SEM) micrographs of the as-deposited top surface morphologies at 0.4 W cm ™2 power
density for the hollow cathode (a)—(d) and planar cathode (e)—(f) films sputtered at gas pressures between 3 to 30 mTorr. The hollow
cathode images have a solid border, the planar cathode images have a dashed border, and gas pressures are color coded. Feature sizes
for each film are shown to the right of the corresponding SEM image.

energy of the deposited flux and thus overall adatom mobility. In the ICM sputtered films, changes in deposition
parameters, such as Ar pressure, lead to greater variation in film morphology and feature size. Voids and
porosity in hollow cathode films sputtered within the target volume has been reported in literature and can be
attributed to higher deposition rates and a wider range of angles of incidence with the surface compared to the
planar cathode [16, 18]. However, given the increased ion density in the ICM, it is apparent that additional
factors influence the change in film morphology, which can be observed when comparing films deposited at
different Ar pressures. For example, voids around crystallites, such as those present in figures 2(a)—(c), which
were sputtered at 3, 6, and 12 mTorr respectively, originate from adatom mobility and film growth induced by
ion bombardment. Island growth occurs as adatoms coalesce and this in turn leads to void formation due to
adatom-depleted regions [42—44]. Figure 2(d) highlights the inverse of this relationship, forming smaller top
surface features and adatom-depleted regions compared to figures 2(a)—(c), which can be attributed to the
increase in Ar pressure to 30 mTorr limiting ion bombardment and adatom mobility by lowering the ion
density.

Figure 3 presents the as-sputtered top surface morphologies and measured feature sizes for the hollow and
planar cathode samples sputtered over the range of Ar pressures at the high power density (1.2 W cm ™). Table 1
shows that the corresponding deposition rates more than doubled for both configurations and the ion density
increased at a faster rate in the ICM than the planar cathode. Additionally, homologous temperature increased in
the hollow cathode, but remained relatively constant for the planar geometry. The planar films (figures 3(e) and
(f)) display a similar morphology to the low power density planar samples (figures 2(e) and (f)) with an increase
in feature size that can be attributed to greater particle energy during deposition at the high power density. In
contrast, a distinct change in morphology is observed when comparing the low and high power density ICM
sputtered films (figures 2(a)-(d) and figures 3(a)—(d), respectively). At the high power density, greater deposition
rates caused feature size to decrease compared to the low power density samples because of growing islands
competing for surface area. Given the wide range of angles of incidence during ICM sputtering, it would be
expected that higher deposition rates would also yield a more voided morphology; however, it was observed that
the high power density films in figures 3(a)—(d) achieved a denser top surface morphology than the low power
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Figure 3. Scanning electron microscopy (SEM) micrographs of the as-deposited top surface morphologies at 1.2 W cm ™2 power
density for the hollow cathode (a)—(d) and planar cathode (e)—(f) films sputtered at gas pressures between 3 to 30 mTorr. The hollow
cathode images have a solid border, the planar cathode images have a dashed border, and gas pressures are color coded. Feature sizes
for each film are shown to the right of the corresponding SEM image.

density samples in figures 2(a)—(d). This is due to the greater homologous temperature and ion density
increasing deposition energy and particle mobility during film formation. The samples sputtered at 3, 6, and 12
mTorr (figures 3(a)—(c)) highlight this change in film growth, as increased adatom mobility and surface diffusion
allow the films to achieve denser top surface morphologies by preventing the formation of adatom depleted
zones. It should be noted that unlike the 3, 6, and 12 mTorr samples, the film sputtered at 30 mTorr (figure 3(d))
shows residual voids on the top surface due to the greater sputtering pressure limiting densification by reducing
ion bombardment and adatom mobility. In general, as power density increases over this range, the dominant
growth mechanisms in the planar cathode remain constant, while, due to its target geometry, ICM sputtering
transitions from adatom mobility and diffusion limited film growth to growth with enough particle mobility to
enable the formation of denser coating morphologies. This demonstrates that the hollow cathode has competing
factors influencing film formation including higher deposition rates, wider range of angles of incidence, growing
homologous temperatures, and greater change in ion density.

3.3. Orientation, grain size, and global morphology

From the previous section, distinct relationships between target geometry and coating morphology were
established, which can be further evaluated by studying the film’s microstructure. Figure 4 presents EBSD grain
orientation maps for hollow cathode (4a, 4b, and 4e) and planar cathode (4¢,4d) films sputtered at both the low
(0.4 W cm™?) and high power (1.2 W cm ™) densities as a function of ion density, where increasing ion density is
denoted by the arrow. The hollow cathode cross-sections in figures 4(a), (b), and (e) revealed a columnar
microstructure, grain widths of roughly 70-80 nm, and a wide range of grain orientations. Similar columnar
microstructures and grain sizes were observed in the planar cathode samples in figures 4(c) and (d); however, the
planar samples displayed a higher degree of (111) grain orientations. The vertical column (figures 4(a)—(c)) is
used to compare the cross-sectional microstructures of samples sputtered at the same power density (1.2 W

cm %) with increasing ion density and homologous temperature, while the horizontal row (figures 4(c)—(e)) is
used to compare cross-sectional microstructure for samples sputtered at similar ion densities at the low and high
power densities. Although changes in target geometry and sputtering conditions led to over a threefold increase
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Figure 4. Electron backscatter diffraction (EBSD) grain orientation maps for planar (dashed border) and hollow cathode (solid
borders) sputtered films. The vertical column (a)—(c) shows samples sputtered at the same power density (1.2 W cm 2, green border)
with increasing ion densities. The horizontal row (c)—(e) displays samples sputtered with similar ion densities at both the low (0.4 W
cm 2, gray border) and high (1.2 W cm™2) power densities. The inverse pole figure (IPF) triangle defining grain orientations is to the
right of the EBSD scans.

in ion density, homologous temperature, and deposition rate, all grain orientation maps revealed similar Zone T
microstructures and grain sizes for all samples. This could be due to limited change in bulk diffusion over the
range of particle energies and homologous temperatures observed in this study, which in turn would prevent the
formation of Zone 2 /3 microstructures as shown in the Anders structure zone map predictions [12].
Additionally, for the samples with higher ion density, the effects of increased energy from ion bombardment
could be limited by the greater deposition rates as the adatoms lose energy when colliding with newly sputtered
particles. This is supported by previous works, which have shown that the ion-to-neutral atom ratios can affect
microstructure, texturing, and morphology [6, 45]. However, regardless of changes in bulk diffusion, a
columnar structure similar to planar sputtered films was not predicted for the ICM sputtered samples due to the
ICM’s wide range of angles of incidence, as previous work has shown that altering the deposition angle during
unidirectional PVD can change the film growth direction [6]. The observed columnar microstructure
potentially indicates that target geometries that deposit material equally from all directions with respect to the
substrate, such as the hollow cathode, can achieve similar microstructures to perpendicular unidirectional
deposition. Thus, target geometry could alter top surface morphology by varying adatom mobility without
changing bulk diffusion and the resulting film microstructure.

To highlight the differences in the evolution of hollow cathode film morphology as compared to the planar
geometry, a graphical summary of the top surface (red border) and cross-sectional (blue border) morphologies
as a function of ion density and homologous temperature is shown in figure 5. The planar film highlighted in the
expanded circle in figure 5 demonstrates that unidirectional deposition can achieve a dense fully formed top
surface layer even at low homologous temperatures and ion densities. This is possible as film coarsening can still
occur at low fluxes and limited angular distributions during deposition. In contrast, due to the more complex
target geometry, the hollow cathode sputtered films show a wide range of top surface and cross-sectional
morphologies that are clearly influenced by the sputtering plasma and deposition environment. The change in
target geometry causes a competition between the increased angles of incidence, homologous temperature, and
ion bombardment on the particle mobility during film growth. An increase in either homologous temperature
or ion density results in film densification and a less voided top surface morphology, as diffusion and adatom
mobility increase. Thus, in addition to traditional relationships observed in planar magnetron sputtering that
can be used to alter film properties like grain size and texturing, more complex target geometries, like the hollow
cathode, can also be used to influence film morphology by altering ion bombardment and angle of incidence
during deposition. Although the plasma properties within the hollow cathode are linked to its deposition
parameters, which prevent arbitrarily varying ion and electron densities like other I-PVD techniques, sputtering
within the hollow cathode volume can begin to bridge traditional and ion-assisted sputtering to further
manipulate coating morphology and microstructure.
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Planar Cathode

Hollow Cathode

lon Density (102 cm™)

Figure 5. Graphical summary of planar and hollow cathode top-surface and cross-sectional morphologies with respect to ion density
(x-axis) and homologous temperature (T/T,,) (y-axis), where coating thickness is shown in the z-axis. The as-sputtered top surface
morphologies are outlined in red and the cross-sectional morphologies are outlined in blue; all boxes are roughly 1.5 micron in length.
Sample labels correspond to table 1.

4. Conclusion

Sputtering target geometry was linked to plasma characteristics and coating morphology in order to provide a
fundamental understanding of the impact of cathode shape on film growth. Langmuir probe analysis of the
sputtering plasmas revealed that the hollow cathode yields greater ion densities than the planar configuration at
the same deposition conditions. For both target geometries, ion density decreased at higher gas pressures and
increased at higher power densities. In addition, it was shown that ion density changes at a greater rate with
respect to power density in the hollow cathode. For films synthesized at 0.4 W cm™*and 1.2 W cm ™2, it can be
seen that ICM sputtered samples have larger feature sizes and greater fluctuation in film morphology and
microstructure with respect to the deposition conditions. This is caused by competing factors influencing
growth that are not apparent in planar deposition, such as different angles of incidence, increased deposition
rates, larger variation in homologous temperatures, and greater ion bombardment. Due to changes in
temperature, particle energy, and ion density, it is observed that films sputtered inside the hollow cathode
volume can transition from voided to dense top surface morphologies as increased particle mobility aids
uniform film growth and prevents adatom depleted regions. Interestingly, cross-sectional EBSD
characterization revealed that target geometry can alter the top surface morphology but changes in
microstructure and grain size were limited. Overall, this study offers insight into the global impact of target
geometry on film growth in order to expand morphological and microstructural regimes, which can be used to
guide sputtering with non-planar systems, like the hollow cathode.
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