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Waves traveling over a map of visual
space can ignite short-term predictions
of sensory input

Gabriel B. Benigno1,2,3, Roberto C. Budzinski1,2,3, Zachary W. Davis 4,
John H. Reynolds 4 & Lyle Muller 1,2,3

Recent analyses have found waves of neural activity traveling across entire
visual cortical areas in awake animals. These traveling waves modulate the
excitability of local networks and perceptual sensitivity. The general compu-
tational role of these spatiotemporal patterns in the visual system, however,
remains unclear. Here, we hypothesize that traveling waves endow the visual
system with the capacity to predict complex and naturalistic inputs. We pre-
sent a networkmodel whose connections can be rapidly and efficiently trained
to predict individual natural movies. After training, a few input frames from a
movie trigger complex wave patterns that drive accurate predictions many
frames into the future solely from the network’s connections. When the
recurrent connections that drive waves are randomly shuffled, both traveling
waves and the ability to predict are eliminated. These results suggest traveling
waves may play an essential computational role in the visual system by
embedding continuous spatiotemporal structures over spatial maps.

Five percent of synapses received by a neuron in the visual cortex
arrive through the feedforward (FF) pathway that conveys sensory
input from the eyes1–4. While these FF synapses are strong5, “hor-
izontal” recurrent connections coming from within the cortical region
make up about 80% of total synaptic inputs, with 95% of these con-
nections arising from a very local patch (2mm) around the cell4. The
anatomy of the visual system thus indicates that cortical neurons
interactwith other neurons across the retinotopically organizedmaps6

that assign nearby points in visual space to nearby points in a cortical
region via these horizontal connections. Models of the visual system
predominantly focus only on FF7,8 and feedback (FB)9 connections.
One result of this focus is that, in models of the visual system, neurons
in the visual cortex are often modeled as non-interacting “feature
detectors”with fixed selectivity to features in visual input (driven by FF
connections) that can be modulated by expectations generated in
higher visual areas (driven by FB connections). Neuroscientists have
long been interested in how horizontal connections shape neuronal
selectivity10,11 and “non-classical” receptive fields12–16. More recently,

neuroscientists have also been interested in adding these connections
to deep learning models to understand neuronal selectivity in the
visual cortex17,18. It remains unclear, however, how horizontal connec-
tions shape themoment-by-moment computations in the cortex while
processing visual input.

Recent analyses of large-scale recordings have revealed that hor-
izontal connections profoundly shape spatiotemporal dynamics in the
cortex. Traveling waves driven by horizontal connections have been
observed in the visual cortex of anesthetized animals19–24. The rele-
vance of traveling waves had previously been called into question, as
they were thought to disappear in the awake state25 or to be sup-
pressed by high-contrast visual stimuli22,26. Recent analyses of neural
activity at the single-trial level, however, have revealed spontaneous27

and stimulus-evoked28 activity patterns that travel smoothly across
entire cortical regions in awake, behaving primates during normal
vision. These neural traveling waves (nTWs) shift the balance of exci-
tation and inhibition as they propagate across the cortex, sparsely
modulating spiking activity as they pass29. Because they drive
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fluctuations in neural excitability27,30, nTWs show that neurons at one
point in a visual area (representing a small section of visual space) can
strongly interact with neurons across the entire cortical region. These
results thus indicate that cortical neurons may share information
about visual scenes broadly across the retinotopicmap through nTWs
generated by horizontal connections.

What computations, then, can be done with waves of neural
activity traveling across a map of visual space? To address this ques-
tion, we studied a complex-valued neural network (cv-NN) processing
visual inputs ranging from simple stimuli to natural movies. In these
networks, activity at each node is described by a complex number.
Complex numbers extend the arithmetic of the real number system,
and as with standard, real-valued neural networks, nodes receive
inputs based on connection weights, with the activity of each node
determined by an activation function. The network state is then
described by a vector of complex numbers, each element of which can
represent the activation of a small patch of neurons in a single region
of the visual cortex31,32. cv-NNs exhibit similar or superior performance
to standard, real-valued neural networks in many supervised learning
tasks33 and have been used effectively in explaining biological neural
dynamics34. Here, we modified the standard FF architecture used in
deep learning and computer vision to include horizontal recurrent
connections, where neurons in a single processing layer form a web of
interconnections similar to the horizontal connections in the visual

cortex. Horizontal recurrent connections are thought to provide
advantages17 over the standard FF architecture used in computer
vision tasks8,35; however, current methods for incorporating recurrent
horizontal fibers to convolutional networkmodels of the visual system
severely limit both the time window over which recurrent activity can
be considered and the easewithwhich the networks canbe trained17. In
recent work, we have introduced a mathematical approach to under-
stand the recurrent dynamics in a specific complex-valued model36.
Here, we leverage this understanding to train recurrent complex-
valued networks to process visual inputs, ranging from simple stimuli
to naturalistic movie scenes. The resulting networks can predict
learned movies many frames into the future, entirely from their
internal dynamics alone,without external input. During prediction, the
recurrent network exhibits prominent nTWs, ranging from simple
waves propagating out from a small local input28 to complex traveling
wave patterns37, raising the possibility that nTWs enable continuous
predictions of dynamic and naturalistic visual input.

Results
The cv-NN consists of an input layer sending movie frames to a
recurrently connected neural network. An individual movie frame,
serving as input to the network, is represented by a two-dimensional
grid of pixels (input frame, Fig. 1a), and each pixel projects to the
recurrently connected layer through FF connections (red lines, Fig. 1a).

Fig. 1 | A topographic recurrent network model encodes spatiotemporal
information of video frames via internal wave activity. a Schematic of the
complex-valued neural network (cv-NN) model. Nodes (circles) are arranged on a
two-dimensional grid and are recurrently connected (blue) locally in space like the
cortical sheet. A natural image input projects locally into the network via feedfor-
ward connections (red), mimicking retinotopy. b Example dynamic of the network
model. Due to the spatially local projection of the input image, an imprint of the
image is visible in the grid of network activity. Due to the local recurrent con-
nectivity, intrinsic wave activity is generated alongside the input projection. c Top
row: In a sequence of six frames, exactly one of the first five contains a point
stimulus, and the other frames do not. These frames are sequentially input to the
network. Second row: When the cv-NN has no recurrence, the stimulus projection
remains stationary. Third row: With recurrence, from the time of stimulus, cv-NN

activity contains a projection of the stimulus and a wave radiating outward. Fourth
row: Activity in a randomly connected recurrent neural network (RNN) following
stimulus onset has a spatially disorganized structure, reflecting its lack of topo-
graphy and distance-dependent time delays. Right: A linear classifier that received
the final network state in the no-recurrence case could not predict the time or
location beyond chance-level accuracy (5% overall), and in the random-RNN case,
could predict the time but not the location beyond chance (25% overall). In con-
trast, using the classifierwith the sixth with-recurrence network state allowed 100%
accuracy since the feedforward projection of the point stimulus triggered a
radiating wave that encoded the time and location of the stimulus in the sub-
sequent network states.N = 100 trials for each group.Mean± standard deviation of
5.09 ± 0.94, 100±0, and 24.42 ± 4.13, respectively. Source data are provided as a
Source Data file.
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The recurrently connected layer is arrangedona two-dimensional grid,
analogous to the retinotopic arrangement of neurons in visual regions.
Horizontal interconnections within the cv-NN then drive recurrent
interactions in the network (blue lines, Fig. 1a). Both FF and horizontal
recurrent projections in the cv-NN are matched to the approximate
scale of connectivity in visual cortex38,39 so that a single pixel in an
input movie drives a local patch of neurons, with overlapping hor-
izontal connections, in the cv-NN. Lastly, nodes in the recurrent layer
communicate with time delays approximating axonal conduction
speeds along horizontal fibers40, which have recently been shown to
shape spiking neural activity into nTWs29. The combination of FF input
and dense interconnections generates complex patterns of activity in
the recurrent layer (Fig. 1b). Here, we focus on these recurrent activity
patterns to understand their computational role for movie inputs
ranging from simple to complex.

nTWs can simultaneously encode stimulus position and time of
onset over spatial maps
To illustrate how nTWs propagating over sensorymaps could facilitate
visual computation, we first studied the dynamics generated in
response to a single point stimulus. Without recurrent connections, a
short point stimulus generates a small bump of activity that remains
centered on the point of input (“cv-NN without recurrence”, Fig. 1c).
With recurrent connections, however, the point stimulus generates a
wave that propagates out from the point of input (“cv-NN with recur-
rence”, Fig. 1c). We then studied these stimulus-evoked waves, which
are similar in form to those previously observed in the visual cortex of
awake primate28, in a simple decoding task. Specifically, we let the
point stimulus appear at a random time and stimulus location in a
series of input frames and then trained a linear classifier to decode the
time and location of stimulus onset from the network activity at the
final frame. As expected, in the cv-NN without recurrent connections,
the classifier performed at chance-level accuracy in this task (Fig. 1c,
right; “Methods”—“Stimulus prediction task”). With recurrence, how-
ever, the classifier selects the correct time and location of stimulus
appearance from the final network state with 100% accuracy. Finally,
while standard recurrent neural networks (RNNs) can encode time41, an
RNN with random connections (and hence lacking the local con-
nectivity and distance-dependent time delays in the cv-NN) also per-
forms at chance level in this task, which requires decoding both
stimulus location and onset time (Fig. 1c). This simple illustration
shows that traveling waves of neural activity when propagating on an
orderly retinotopic map can simultaneously encode stimulus location
and onset time, even after the stimulus is no longer present.

nTWs aid forecasting movie inputs from simple to complex
Can nTWs enable the processing of the complex, dynamic, and non-
stationary visual scenes that we encounter in our natural experience?
We approached this question in several steps. We first asked whether,
given an input frame from a movie, the cv-NN could be trained to
accurately predict the following frame. To perform this more com-
plicated task, we introduced a learning rule that requires training only
a linear readout of the recurrent layer (Fig. 2a). This procedure is
analogous to a complex-valued implementation of the reservoir
computing paradigm42, which has recently found wide applications in
nonlinear dynamics and physics. In the reservoir computing frame-
work, an input signal drives activity in a recurrently connected layer.
Activity in the recurrent layer is then decoded by a set of output
weights, which are trained to produce a target output signal. Because
of both its efficacy and relative efficiency in training, this framework
has proven promising for learning predictive models of chaotic
systems43,44, and reservoir computing has recently been used to learn
and predict a range of important systems in physics45,46. This training
process, however, has never before been applied to naturalistic movie
scenes. We find the cv-NN can be reliably and efficiently trained to

predict the next frame in a movie input (Supplementary Table 2,
Moving Bump Input). With a cv-NN trained on a movie, the predicted
next frame can then be provided as input in place of the originalmovie
(Fig. 2b). Recent work on neural networks for processing movies has
focused on predicting the next frame in a video sequence based on
training on a large database of inputs47–49. In some cases, these pre-
dictions can then be fed back as input, allowing the network to
recursively generate predictions from its own internal weights50–58. We
will call this process, where during prediction, a network receives no
external movie input and generates future predictions solely from its
internal structure, closed-loop forecasting (CLF). Previous work has
developed networks that can performaccurate CLF on the order of ten
frames into the future50–58, with predicted frames becoming increas-
ingly blurry. In this work, we asked a cv-NN to learn and perform CLF
on individual movies. We find that cv-NNs trained on an individual
movie can self-generate sharp forecasts of that movie many (25–100)
frames into the future while receiving no external input. This system
can be seen as a simple dynamical autoencoder, where a few input
frames can ignite the self-generation of successive frames from its
internal dynamics alone. This provides a framework that can give
insight into how the visual system could create predictions by con-
tinuously changing weights based on its sensory input to make short-
term extrapolations into the near future. The cv-NN is an effective
model for closed-loop forecasting of entire visual scenes, generating
accurate forecasts formovies of a few thousand pixels per frame using
only a few thousand recurrently connected nodes.

The visual cortex readily processes and operates on dynamic
visual inputs on timescales of milliseconds to seconds. We then asked
whether closed-loop forecasting in this system couldwork on the scale
of tens to hundreds of frames in an input movie. Starting with the first
half of a movie containing a simple moving bump stimulus tracing out
a trajectory in two-dimensional space (Fig. 2c), we find that the trained
cv-NN can produce the entire second half of the movie as output from
its trained synapticweights alone (Fig. 2d and SupplementaryMovie 1).
As in the previous example, activity in the recurrent layer exhibits a
dynamic spatiotemporal pattern extending beyond the immediate FF
imprint of the stimulus and structured by the recurrent connections in
the network (Fig. 2e and Supplementary Movie 1). These results
demonstrate that recurrent cv-NNs can produce simple video inputs
from their recurrent connections through this trainingprocess. Finally,
when we remove the recurrent connections, the cv-NN produces an
activity pattern that represents only the average of FF stimulus
imprints without having learned the underlying spatiotemporal
process47. In this case, the cv-NN no longer produces an accurate
closed-loop forecast (Fig. 2f). These results demonstrate the impor-
tance of both the spatiotemporal patterns in the cv-NN and the hor-
izontal recurrent dynamics generating them.

We find that closed-loop forecast performance in this system
depends on two key factors: (1) the ratio of horizontal recurrent
strength to feedforward input strength and (2) the spatial extent of the
recurrence. To study the first factor in detail, wemeasured closed-loop
forecast performance using an index of structural similarity (SSIM)59,
which quantifies the perceptual match between two images, ranging
between 0 (perfect mismatch) and 1 (perfect match). A threshold on
the SSIM, determined through test comparisons between an original
and noise-corrupted version of a movie, then provides a quantitative
criterion for a successful closed-loop forecast (see Supplementary
Fig. 2). We studied SSIM between movie frames produced by the
closed-loop forecast process and the ground truth atdifferent ratios of
recurrence to input (Fig. 3a; see also Supplementary Fig. 1 and
“Methods”—“Network connectivity” and “Network dynamics”). Once
the stimulus is removed and the closed-loop forecast begins (video
frame 1, Fig. 3a), forecast performance in cv-NNs with low recurrent
strength quickly drops close to zero (light blue line, Fig. 3a). By con-
trast, cv-NNs at optimal recurrent strength sustain closed-loop
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forecasts for long timescales (gray line, Fig. 3a), extending beyond 100
video frames into the future. Importantly, networks where recurrence
is too strong also performpoorly, with SSIMdropping near zerowithin
a short timeframe (copper line, Fig. 3a). Systematic quantification of
SSIM across ratios of recurrent strength to input strength reveals that
performance is best when the recurrence and input are approximately
balanced (Fig. 3b), in general agreement with the ratio of feedforward
to recurrently generated synaptic drive in visual cortex60,61. We next
studied performance as a function of the spatial extent of recurrent
connectivity. The best performance occurs for recurrent lengths on
approximately the same spatial scale as the moving bump stimulus
(Fig. 3c), with performancedropping for recurrent lengths outside this
range. This result demonstrates that recurrent connections aid closed-
loop forecasting when matched to the spatial scale of the input. Hor-
izontal recurrent connections in single visual regions span many dif-
ferent retinotopic scales9,62, which could enable processing stimuli at
multiple spatial scales or moving stimuli with changing scales by the
visual system.

The visual system readily processes richly textured and natur-
alistic visual scenes. To examine this type of stimulus in the cv-NN, we
considered naturalistic video inputs for next-frame prediction and
closed-loop forecasting. To do this, we used videos from the

Weizmann Human Action Dataset63. As above, we trained linear read-
out weights of the cv-NN on these individual naturalistic movie inputs
(Fig. 4a) and then tested whether, given the first half of the input
movie, the network could produce the second half in a closed-loop
forecast (Fig. 4b). Even with a muchmore sophisticated input than the
previous examples, the cv-NN can be trained rapidly and efficiently on
the natural movie inputs (Supplementary Table 2, Walking Person
Input). As in previous examples, at optimal values of the network
parameters (“Methods”—“Parameter optimization”), the cv-NN accu-
rately produces the natural movie using only its connection weights
(Fig. 4c, d and Supplementary Movie 2). In this case, the recurrent
connections in the cv-NN create complex wave patterns (Fig. 4e and
Supplementary Movie 2). The recurrent connections and their result-
ing complex activity patterns are important for success in this task, as
networks without recurrence do not produce accurate closed-loop
forecasts (Fig. 4f).

We then studied what specific features of the recurrent connec-
tions enable predicting naturalistic movie inputs. As in the moving
bump example, networks performbest when recurrence and input are
approximately balanced, and the performance quickly decays when
the recurrence is too weak or too strong (Fig. 5a, b). This result shows
that, as in the simple case of the moving bump, the complex

Fig. 2 | The network can forecast a simple video input many frames into the
future. a As in the classification example (Fig. 1), a video frame projects into the
network in a spatially local manner, and a recurrent network interaction occurs,
generating internal wave activity on top of the projection. The network outputs an
image from its network state via amatrix of trainable weights. Training entails one-
shot linear regression between a set of network states and the corresponding
desired output frames (the one-step-ahead next frames). Shown: a schematic
representation of the one-shot linear regression for one time step. bOnce training

of the readout weights is complete, closed-loop forecasting begins. To properly
test how well the network model learned the underlying spatiotemporal process
from the training data, it is deprived of ground-truth data of any kind during this
step. Instead, the forecast next frame at one time step serves as the input frame for
the following time step. c Video frames of the data: a bump tracing an orbit.
d Corresponding closed-loop forecasts generated by the network model with
optimal recurrence. e Network activity for the optimal-recurrence case. Cosine of
phase of activation is shown. f Closed-loop forecast in the case without recurrence.
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spatiotemporal predictions generated by the network depend on a
sophisticated interplay between input and recurrent connections. We
next studied the role of connection topography and distance-
dependent time delays. To do this, we started with networks that
achieve accurate predictions and randomly shuffled both the con-
nections and time delays, a control that removes the two key factors
for generating nTWs in large-scale spiking network models29 that
matchwaves observed in the visual cortex (Fig. 6a).We then compared
the closed-loop forecast performance and network activity in the
topographic and shuffled cases. In the topographic case, the cv-NN
produces accurate predictions and complex traveling wave patterns,
as before (Fig. 6b, c). The shuffled versions of the cv-NN, however,
produce spatiotemporally unstructured activity in the recurrent layer
(Fig. 6d) and do not achieve accurate closed-loop forecasts, even after
the cv-NN was retrained (Fig. 6e; see also Supplementary Table 3 and
Supplementary Movie 3). This result demonstrates that with all other
architectural features of the network held constant, a randomly con-
nected cv-NN that does not produce nTWs cannot be trained to per-
form CLF using the same procedure that was previously successful.
Shuffling only time delays in the cv-NN and then retraining also sub-
stantially drops closed-loop forecast performance (decreasing total
structural similarity from 0.99 to 0.02). Further, reducing the con-
duction speed in half and then retraining also results in a substantial
drop in performance (from 0.99 to 0.08). These two control analyses
demonstrate that successful closed-loop forecasts depend on a range
of time delays in the cv-NN. Finally, the specific spatiotemporal
structure of the input movie is also important: a cv-NN at the optimal
hyperparameters for a natural movie cannot be retrained to do closed-
loop forecasting on a randomized (phase-shuffled) version of the same
movie (Supplementary Table 1), demonstrating that the cv-NN utilizes
the specific spatiotemporal correlations in the movie to generate its
forecast. Taken together, these results demonstrate that the complex
spatiotemporal patterns generated by horizontal recurrent connec-
tions in the cv-NN enable performance on next-frame prediction and
closed-loop forecasting tasks for sophisticated natural movie inputs.

The nTW network model is capable of forecasting multiple
movies without retraining
We lastly sought to understand whether the cv-NN could perform
closed-loop forecasts onmultiplemovies it hadpreviously learned and
switch flexibly with changing inputs. To do this, we implemented a

simple competitive process (“Methods”—“Movie switching”) so that
the network could adapt its output based on the similarity of its pre-
diction to its input (Fig. 7a). Specifically, output weights for the cv-NN
were trained on individual movies (V1 and V2, cf. “Training” in Fig. 7a)
and stored in an aggregate matrix (V, cf. “Switching” in Fig. 7a). When
performing a closed-loop forecast, this extended network model can
receive new input from this previously learned set, and then rapidly
switch to closed-loop forecasting this new movie input within a few
frames without any retraining of weights in the individual output
matrices Vi (Fig. 7b and Supplementary Movie 4). This result demon-
strates that the process of closed-loop forecasting, mediated by hor-
izontal recurrent fibers in the network, cangeneralize to realistic visual
conditions with multiple, changing input streams.

Discussion
In this work, we have introduced a model to understand whether tra-
veling waves generated by horizontal connections in the visual cortex
may play a computational role in processing natural visual inputs. By
adapting a recurrent neural network model using a specific dynamical
update rule and learning rule, this model learns to forecast video
inputs ranging from simple visual stimuli to complex natural scenes.
We report here a network model that can be trained to produce
quantitatively verified closed-loop forecasts of richly textured natur-
alistic movies many frames into the future. The cv-NN introduced in
this work incorporates the spatial topography and time delays
important for shaping activity dynamics in single regions of the visual
system29 and provides a potential computational role for waves of
neural activity traveling over maps of visual space. Whether similar
principles of spatial topography could benefit RNNs, in general,
remains open but represents an interesting potential direction for
future work. Further, because the recurrent dynamics in the cv-NN are
tractable to detailed mathematical analysis36, this recurrent network
model opens new possibilities for understanding the mechanisms
underlying successful predictions studied here and for designing new
applications in future work.

Closed-loop forecasting in the cv-NN demonstrates a form of
short-term prediction by nTWs that may be relevant to the online
processing of continuous sensory input by the visual system.Consider,
for example, a batter in the game of baseball facing a pitcher who has
just pitched a curveball, now hurtling toward the batter at over 100
miles per hour. In major league baseball, a pitch takes around 400

Fig. 3 | Moving bump forecast performance depends on specific properties of
the recurrent connections. a Structural similarity (SSIM) between a forecast frame
and the ground truth as a function of the closed-loop forecast video frame. Each
curve corresponds to a different network parameter implementation. Curves have
been smoothed by a moving-average filter (filter width of 30 time steps). Shaded
error is the absolute difference between filtered and unfiltered. b Total structural
similarity, in which a single SSIM is calculated for the whole movie as a function of
the recurrence-to-input ratio. In the parameter space, each point differs only in
recurrent strength. Smoothing and error shading is the same as in (a). c Total

structural similarity as a function of recurrent length, which is the fraction of the
network’s side length spanned by one standard deviation of the Gaussian con-
nectivity kernel. In the three-dimensional parameter space comprising the recur-
rent strength (rs), recurrent length (rl), and input strength (is), averages (n = 89)
across rs-is planes at fixed rl were computed (gray curve). Solid gray line: average.
The peak coincides with the standard-deviation width of the Gaussian bump sti-
mulus (dashed vertical line). Shaded area: variance. Solid black curve: maximum
structural similarity at each recurrent length. Source data are provided as a Source
Data file.
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milliseconds to travel 60 feet from the pitcher’s hand to the batter at
home plate. Time is required for the neural computations that enable
the batter to perceive the ball and estimate its trajectory. This includes
both the time required for sensory information to travel from the
retinae to relevant brain areas and the time required for computation
of the ball’s trajectory in space based on these signals. Assuming the
entire computation can be accomplished in 150milliseconds64, during
this time, the ball will have traveledmore than 22 feet. To estimate the
likely current location of the ball based on information that was
available to the visual system 150milliseconds ago, the brainmay form
an internal model of the ball’s trajectory in space, informed by pre-
vious experience. Consistent with this idea, batters often report that,
as the spinning ball travels from the pitcher’s mound to home plate,
the curveball suddenly changes direction, an illusory percept referred

to as the curveball’s “break”65. Short-term predictions by nTWs may
represent one mechanism for rapid estimation of trajectories, as
continuous spatiotemporal structures propagating over the retino-
topicmap. In this way, closed-loop forecasts in the cv-NN could enable
the visual system to estimate the likely trajectory of the ball based on
training from the previous visual experience. The curveball’s “break”
further recalls the process of switching predictions when the input
becomes sufficiently discrepant with incoming sensory data (Fig. 7b).
When themovie switches fromone input to another (top row, “ground
truth”), the network generates a transiently indeterminate activity
pattern before jumping to the correct forecast (bottom row, “closed-
loop forecast”). In this way, the cv-NN may provide a mechanistic fra-
mework for specific hypotheses in futurework about the interactionof
short-term predictions generated by recurrent horizontal fibers and

Fig. 4 | The recurrent network performs next-frame forecasting of a natural
video input. a Training follows as in the moving bump example (Fig. 2a). b Next-
frame closed-loop forecasting follows as in the moving bump example (Fig. 2b).
c Video frames of the data: a person walking. d Corresponding closed-loop

forecasts generated by the network model in the case of optimal recurrence.
e Corresponding network states for the optimal-recurrence case (d). Cosine of
phase is shown. f Same as (d), but in the absence of recurrence.
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continuously incoming sensory input. The cv-NN could also be useful
as a model to explain how the brain encodes, stores, and recovers
episodic memories of richly textured visual scenes, which studies of
visual search66 and vivid recollection67,68 have shown are associated
with activity in visual regions.

Further, while the cv-NN is not intended to be a veridical simula-
tion of the millions of neurons contributing to nTW dynamics in the
visual cortex, this network model is broadly consistent with spatio-
temporal dynamics recently observed in the visual system of the alert
primate. In the case of a single point stimulus (Fig. 1c), the network
produces a traveling wave radiating out from the point of input. This is
similar to nTWs detected in single trials during voltage-sensitive dye
optical imaging in the primary visual cortex (V1) of awake macaques28.
nTWs evoked by small visual stimuli (Gaussian spot, with a standard
deviationof0.5° of visual angle) presented duringfixation consistently
evoked nTWs that propagate over 7.5mm of V1, representing a sig-
nificant portion of this cortical area69. The spatial extent of the nTWs
observed in the experiment provides a point of comparison with the
model, as spatial extent determines the scale at which local popula-
tions in V1 may influence others across the retinotopic map. In the cv-
NN, waves generated by small point stimuli propagate over slightly
more than one-third of the network (decaying to half-amplitude after
traveling over 37.5%of the network; Fig. 1c). These results demonstrate
that nTWsmay propagate over broadly similar spatial extents in visual
cortex and in the cv-NN.

Another point of comparison with measured neural dynamics
centers on the patterns evoked by moving stimuli. In the case of a
moving bump stimulus (Fig. 2), the network produces a bump of
activity, reflecting FF input driven by the movie but also reflecting
recurrently generated activity that extends beyond the feedforward
imprint of the stimulus (Fig. 2e). The radius of this recurrently gener-
ated activity is approximately twice thatof the feedforwardbump. This
result recalls analyses of Utah array recordings in V1 of awake
macaques70. Using a moving bar stimulus (0.5 × 4° of visual angle,
moving horizontally at 6.6° per second), the authors found responses
in V1 before stimuli entered neurons’ classical receptive field (cf.
Fig. 2C in ref. 70). The onset times of these anticipatory responses
became earlier and earlier along the moving bar’s trajectory. These
changes in time were confirmed with computational analyses and
modeling to be consistent with propagation along horizontal fibers in
V1, and the spatial extent of the recurrent interactions is, again,
approximately consistent with dynamics during closed-loop forecast-
ing in the cv-NN.

The dynamics of the cv-NN are thus broadly consistent with
observations of neuronal dynamics during normal processing in
awake, behaving primates. Recent work has demonstrated the
importance of the topographic connection patterns and axonal time
delays matching those found in the visual cortex to generate nTWs in
large-scale spiking network models29. Recent theoretical studies have
developed complex-valued network models that can provide analy-
tical insight into the time-varying dynamics of spiking neural
networks31,71, and future work could directly relate dynamics in the cv-
NN during movie prediction to the fine-scale spiking dynamics of the
networks in the visual cortex. Finally, in the case of naturalistic movie
inputs (Fig. 4), the cv-NN produces complex spatiotemporal patterns
that can be mathematically described in this model as the summation
of multiple traveling waves36,37. Future work analyzing large-scale
recordings will provide opportunities for comparison between activity
patterns in the visual cortex and in the cv-NN during the processing of
naturalistic movie inputs.

Another potential extension of the cv-NN is to consider multiple
recurrently connected layers with specializations similar to those in
different regions of the visual cortex. In this work, we focused on a cv-
NN with a single recurrently connected layer to understand the
potential computational role of nTWs that have recently been
observed in single cortical regions during visual perception in awake
animals. nTWshave been observed inmany visual areas, including V128,
V228, V472, and MT24,27,73. Adding multiple recurrent layers in the cv-NN
may provide opportunities in future work for understanding nTW
dynamics across visual areas, where spatiotemporal activity patterns
have recently been shown to propagate in feedforward and feedback
directions in different frequency ranges74. Finally, closed-loop fore-
casts in this cv-NN are not intended to be robust to arbitrary transla-
tions or rotations of the visual scene, and addingmultiple layers in the
cv-NN may provide a degree of translation invariance, which is
achieved in CNNs through cascading activity through multiple pro-
cessing layers75, and scale invariance, whichmay also bemade possible
through processing in multiple recurrent layers76. In this way,
extending the cv-NN with multiple recurrent layers represents an
important opportunity for understanding the organization and com-
putational role of nTWs occurring in many cortical areas in
future work.

These results provide fundamental insight into the function of
horizontal recurrent connections, whose effect on the moment-by-
moment computations in the visual systemhas remained unexplained.
While there has been much interest in the function of recurrent

Fig. 5 | Natural movie forecast performance depends on specific properties of
the recurrent connections. a Several examples of closed-loop forecast perfor-
mance. Structural similarity (SSIM) between a forecast frame and the ground truth
as a function of video frame during closed-loop forecasting. Each curve corre-
sponds to a different ratio of recurrent strength to input strength. Curves have
been smoothed by a moving-average filter (filter width of 30 time steps). Shaded

error is the absolute difference between filtered and unfiltered. b Total structural
similarity, in which a single SSIM is computed for the whole movie as a function of
the recurrence-to-input ratio. In the parameter space, each point differs only in
recurrent strength. Smoothing and error shading is the same as in (a). Source data
are provided as a Source Data file.
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horizontal fibers in the visual cortex, for example, in explaining
direction and orientation selectivity in V110,11 or in center-surround
models of the receptive field14,16,77, general computational roles for
traveling waves generated by the massive recurrent circuitry in single
cortical areas on the single-trial level remain unknown. Successful
models of the visual system, including feature-basedmodels and deep
convolutional neural networks, have provided insight into how neural

systems could process single image inputs but explain only a fraction
of the variance in neural responses to natural sensory stimuli18,78,79.
Importantly, it is not necessarily the case that all RNNs that can per-
form CLF will also exhibit nTWs; however, when networks possess the
main architectural features found in the visual cortex (local connec-
tions, retinotopically ordered inputs, and communication time
delays), we havedemonstrated that nTWs are tightly linked toCLF. The

Fig. 6 | Randomly shuffling recurrent connections eliminates nTWs and the
ability to forecast. a Left: the topographic network model used throughout this
study, featuring feedforward projections of the image input (red lines) and local
distance-dependent horizontal connectivity (blue lines). There are also synaptic
time delays proportional to a node pair’s separation distance within the horizontal

recurrent circuitry. Right: by randomizing the horizontal connection weights and
time delays, the topography in the network is removed. b Closed-loop forecasts
generated by the topographic network. c The network activity of the topographic
network in response to frames of a natural movie input. d Network activity of the
shuffled network. e Closed-loop forecasts generated by the shuffled network.
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cv-NNmay thus provide new opportunities for understanding how the
visual system processes continuously updated, movie-like visual
inputs, where information is extracted from the visual environment
moment-by-moment as it comes from the eye. The sophisticated
closed-loop movie forecasts produced by this network, and the fact
that this closed-loop forecast process can generalize tomultiplemovie
inputs, represent an important step in explaining the computational
role of recurrent connections and traveling waves in the visual cortex.

Methods
Custom MATLAB (version R2021a) code was used for all data simula-
tion and analysis in this study.

Network connectivity
The recurrent network is arranged on a square grid of N nodes. The
network grid is treated as a discretized Euclidean plane such that the
side lengths span distances of unity. Boundaries are not periodic. The
recurrent weight wij from node j to node i is inversely proportional to
their Euclidean distance dij so as to give local connectivity like that of
the neocortical sheet. Specifically, wij is Gaussian as a function of dij :

wij =α exp !d2
ij=ð2β

2Þ
h i

: ð1Þ

The coefficientα is called the recurrent strength, and the standard
deviation β is called the recurrent length. Both are free parameters.
The maximum possible value of dij is

ffiffiffi
2

p
(corner to corner), and, for

example, β = 1 means that the recurrent length equals the network side
length. Further, allN2 suchweights are strictly positive, and theN-by-N
matrix of such weights is symmetric (wij =wji). Diagonal weights (wii)
are not set to zero.

Network dynamics
Network dynamics are given by a complex-valued equation. A complex
number z is of the form z = x + iy, where x is the real part, y is the
imaginary part, and i is the imaginary constant defined as i2 = !1.
Equivalently, z ¼ m exp½iϕ&, where m is the modulus and ϕ is the
argument. A complex number is intuitively visualized as a two-
dimensional vector, where x,yð Þ is its Cartesian representation and
m,ϕð Þ is its polar representation.What distinguishes a complex number
from a standard two-dimensional vector is the multiplication rule:
multiplication of two complex numbers corresponds to both a scaling
and a rotation in the so-called complex plane. This property makes
complex-valued representations of observable quantitiesmore concise
than real-valued representations, and thus, complex numbers are a
central tool in physics and engineering. From the perspective of bio-
logical vision, a complex-valued representation is useful. Since phase
information is important for representing visual inputs, complex-
valued models, which efficiently represent phase in the argument ϕ,
are ideal. Indeed, complex-valued models of vision are widely
explored80. Given the practical utility of artificial neural networks and
deep learning (including for modeling biological neural networks),
complex-valued neural networks, in which the neural activations are

Fig. 7 | The network is capable of forecasting multiple movies without being
retrained. a The recurrent network model was adapted to contain a higher-level
competitive-learning process. Left: Readout matrices were learned separately for
separate examples. Right: Storing the learned readout matrices in an aggregate
matrixV, the present network state drove the aggregatematrix toward either of the

learned matrices via an unsupervised competitive learning rule. b Beginning with
feeding frames from movie 1, the network takes some time to recall the learned
matrix that results in an accurate closed-loop forecast. Quickly switching to a dif-
ferent movie, the network once again takes some time to adjust its output weights
before converging to the correct ones for an accurate closed-loop forecast.
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complex-valued, are of great interest. However, they are notoriously
difficult to train, especially in a recurrent architecture32. We make an
advance here on this front by choosing a unique dynamical equation
and by exploiting the advantages of reservoir computing.

The discrete-time dynamical equation for each node i is

ai½t + 1&=ai½t&+ xi½t& ! i
XN

j = 1

wij exp iðaj ½t ! τij & ! ai½t&Þ
n o

, ð2Þ

ai½t + 1& :¼ ai½t + 1&=∣ai½t + 1&∣: ð3Þ

Here,ai½t& is the complex-valued activation at discrete time t, xi½t& is the
feedforward input of the image stimulus to node i at discrete time t,
andwij is the recurrent weight fromnode j to node i (“Methods”—“Net-
work connectivity”). Further, τij is the discrete time delay between
nodes i and j, given by τij = round½dij=v& in which the Euclidean
distance dij between nodes i and j (“Methods”—“Network connectiv-
ity”) is scaled by the parameter v, which represents the speed of
activation transmission across the network, and round½dij=v& rounds
dij=v to the nearest integer in accord with the discrete-time dynamics.
A v-valueof, for example, v=0:1means the activation travels a distance
of one-tenth the network side length per time step. Lastly, themodulus
of ai½t& (i.e., ∣ai½t&∣) is normalized (Eq. (3)), which confines ai½t& on the
complex unit circle, and thus, the phase of ai½t& contains the dynamics.
We note that modulus normalization is a common operation used in
complex-valued neural networks32.

The specific formof Eq. (2) is unique compared to other complex-
valued neural-network equations because it involves a pairwise node
attraction aj½t ! τij & ! ai½t&. Another system with pairwise attraction is
the Kuramotomodel, a popular model for studying synchronization in
nonlinear systems81–83. Our presented system has a correspondence
with the Kuramotomodel84 and allows the description of the dynamics
for individual realization in terms of the eigenvalues and eigenvectors
of the network36. With the described local network connectivity and
distance-dependent delays, the presented system gives rise to mean-
ingful spatiotemporal self-organization dynamics.

The initial network state is ai½0&=0+0i for all nodes, and the first
several time steps contain transient activity associated with the input
disrupting the initial steady state of the system. For the stimulus pre-
diction task, this transient activity is important to the model and was
used, while for the next-frame forecasting task, it is distracting to the
model and was discarded.

Image read-in
At each discrete time step, a digital grayscale image is read into the
network. Prior to read-in, the image ismean-subtracted and divided by
its standard deviation across all its pixels (i.e., z-scored). Image read-in
is accomplished with a local feedforward projection, which mimics
retinotopy and preserves the spatial correlations in the image. Tech-
nically, this is a two-dimensional interpolation using the bilinear kernel
common in image processing, which takes a weighted average in the
nearest 2-by-2 pixel neighborhood. The projected image has

ffiffiffiffi
N

p
rows

and
ffiffiffiffi
N

p
columns like the network grid, and each pixel intensity of the

projected image is given by xi½t& (Eq. 2). Lastly, xi½t& is scaled according
to xi½t& : = γxi½t&, where γ is called the input strength. In ourmodel, γ is
the fourth and final free parameter after the recurrent strength,
recurrent length, and conduction speed.

Stimulus prediction task
The classification was performed using the basic perceptron. For an

input vectorv = 1 v1 ' ' ' vN
" #T , where v1, . . . , vN are features, and a label

l 2 f0,1g, the goal is to find a hyperplane uTv= b+u1v1 + ' ' ' +uNvN =0,

where u = b u1 ' ' ' uN
" #T is a vector containing the bias b and weights

u1, . . . ,uN , that separates the data in the N-dimensional feature space
according to their binary class (0 or 1). During training, with a sub-
optimal u-vector and one example v-vector, the output classification
l =H(uTv) is computed, where H(') is the Heaviside step function
defined as unity for positive argument and zero otherwise. For the
desired classification d (either 0 or 1), the signed distance Δ=d ! l is
computed, where Δ 2 !1,0,1f g. With each new example v, the u-vector
is updated using the delta ruleu :=u + λvΔ, where λ is the learning rate.
To use the perceptron in multiclass classification, the one-versus-rest
scheme is used. That is, for the set of classes C = c1, . . . , cM

$ %
, binary

classification is performed separately M times. Each time i, the two
classes are defined such that ci = 1 and Cnci =0, where “n” denotes the
set difference. Then, there areM weight vectors u1,…, uM, andM inner
products f 1 =u1

Tv, …, f M =uM
Tv for a given data vector v. The multi-

class classification is argmax
ci

f 1, . . . , f M
" #

.

In the stimulus classification task (Fig. 1c), input frameswere 50by
50 pixels, and the network was 50 by 50 nodes. There were six frames.
One of the first five frames was randomly chosen to contain the point
stimulus, and the remaining frames were entirely zero intensity. The
point stimulus was an isotropic two-dimensional Gaussian of standard
deviation of 0.05, and the input frames are defined on the Cartesian
grid !2,2½ &× !2,2½ &. The stimulus was centered in one of four equally
sized quadrants in the frame. The sequence of frames was sequentially
input to the network. There are exactly twenty classes: each of the first
five frames times each of the four quadrants in which the point sti-
mulus could occur. The column vector of activations corresponding to
the final (sixth) frame was used as predictor for all trials. The task was
repeated 100,000 times, with the time of stimulus (1 or 2 or 3 or 4 or 5)
and the location of the stimulus (quadrant 1 or 2 or 3 or 4) randomly
rechosen each time.

Closed-loop forecasting
The network outputs an image ofMr rows andMc columns of pixels—
the same size as the input image—at each time step. In both examples
(moving bump and natural movie), the network was 50 by 50 nodes
(N =2500). Recalling thatai½t& is the complex-valued activationof node
i at discrete time t (Eqs. (2) and (3)), theoutput transformation is linear:

yi½t&=
XN

j = 1
vijaj½t&

0: ð4Þ

Here, yi½t& is the ith pixel intensity of the output image, and vij is the
ði,jÞth readout weight of the M-by-N matrix V, where M =MrMc. The
prime notation (′) indicates that the activation vector
a[t] = a1½t& ' ' 'aN ½t&

" #T was mean-subtracted, which was done to avoid
an intercept term during training.

The readout weights vij
n o

ofV are the only weights trained in our
model, making our network a reservoir computer. Reservoir compu-
ters are recurrent neural networks that avoid the issues associatedwith
training recurrent weights and have been shown to perform well in
time series forecasting42. Suppose training begins at time step 1, after
discarding the initial transient, and ends at time step T. Defining a[t]′
= a1½t&

0 ' ' 'aN ½t&
0" #T , the matrix of regressors is then

A=
"
a½1&0 . . . a½T&0

#
ð5Þ

and the matrix of regressands (desired outputs) is

D=
"
f ½2& . . . f ½T+ 1&

#
: ð6Þ

Hence, the desired outputs are simply the set of one-step-ahead
frames. Here, f[t] is the column vectorization of the tth input image
frame (before read-in) and is also mean-subtracted. Training entails
ordinary least-squares linear regression betweenA andD. BecauseD is
highly underdetermined (containing far fewer frames than pixels per
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frame), the matrix 2-norm of V was simultaneously minimized during
regression to reduce model bias.

Following training is closed-loop forecasting. At this point, the
network activation has been primed by being driven with the training
frames, and the readoutmatrixVhas been trained. In thefirst time step
of closed-loop forecasting, we input the corresponding video frame.
Subsequently, for steps ftg, the predicted output at time step t serves
as the input for time step t + 1.

In the moving bump example (Fig. 2), the frames are 30 by 30
pixels and defined on a !2,2½ &× !2,2½ & Cartesian grid. A two-
dimensional isotropic Gaussian of standard deviation 0.2 traced a
Lissajous curve given by the parametric equations xcðtÞ= sinðt=3Þ and
ycðtÞ= cosðt=3Þ, where ðxc,ycÞ is the center of the Gaussian in space and
t is a continuously valued time variable85. The Lissajous trajectory was
discretized to have 100 frames per cycle. The first cycle was discarded
to omit the initial transient network activity, the network was trained
on the subsequent 3 cycles, and closed-loop forecasting was per-
formed on the 2 cycles subsequent to that.

In the natural video example (Fig. 4), a walking video from the
Weizmann Human Action Dataset86 was used, in which a person
walks across the scene. We present several key examples here but
note that the model successfully performs closed-loop forecasting
for all movies in this dataset, where we define a successful closed-
loop forecast as one in which the total structural similarity is at least
0.9 (Supplementary Fig. 2, Supplementary Table 4). Segmentation
masks of the people in the videos are included with this dataset
(https://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.
html). Using these masks, we cropped the frames so that the person
was centered throughout the entire walk, giving frames of
approximately 80 by 50 pixels. Without performing this step, our
network model would fail: the training data would be independent
of the closed-loop forecast data since they would occupy exclusive
regions of the pixel space, and the model would not generalize to
the prediction data. Such nonstationary data have been successfully
taught to networks with approximate translation invariance, and
translation invariance is likely used in the brain to learn such
processes87. However, translation invariance is beyond the scope of
our study. The frames were then resized to be exactly 80 by 50
pixels. Finally, each video was around 70 frames long. To get more
frames without interpolation, we “bookended” each video by con-
catenating it with its temporal reverse sequence, where one cycle
consists of the original frames followed by the bookended frames.
The result is a longer video with the same spatiotemporal statistics.
The first cycle was discarded to omit the initial transient network
activity, the network was trained on the subsequent three cycles,
and the closed-loop prediction was performed on the two cycles
subsequent to that.

Tomeasure the balance between feedforward input and recurrent
interaction, we devised the recurrence-to-input ratio. Per Eq. (2), the
input and recurrence terms are the column vectors x[t]
= x1½t& ' ' ' xN ½t&
" #T and r[t] = r1½t& ' ' ' rN ½t&

" #T , respectively, where

ri½t&= ! i
XN

j = 1

wij exp iðaj ½t ! τij & ! ai½t&Þ
n o

: ð7Þ

Further, let the matrices

R =
"
r½1& . . . r½T&

#
ð8Þ

and

X=
"
x½1& . . .x½T&

#
ð9Þ

be the horizontal concatenations of r[t] and x[t], respectively,
over closed-loop forecast times t,t + 1, . . . ,t’f g. The ratio is defined as

∣R∣F=∣X∣F, ð10Þ

where ||G||F denotes the Frobenius matrix norm of a matrix G, which is
equivalent to the Euclidean vector norm of the vectorization of G.

Movie switching
The network was trained on twomovie inputs: one of a walking person
(movie 1) and one of a jumping person (movie 1), both from the
Weizmann dataset. The same recurrent matrix was used in each
case–only the learnedmatrices (V1 andV2, respectively) differed. Let V
= cV1 + (1−c)V2, where c 2 ½0,1&. v stores both learnedmatrices, and the
present inputmodulates the relative contribution ofV1 andV2 using an
update rule for c. The structural similarity between the input and
output were computed at each time step t (S½t&), and the change
thereof was computed at each time step as ΔS = S[t] − S[t−1]. The
update rule is c :¼ c+Δc, where ∆c = −ηsgn[ΔS] and η is the learning
rate, set to 0.1. Depending onwhichmovie (movie 1 ormovie 2) drives
the network, c tends toward 1 or 0, respectively. Once this happens,
this driving input is removed and closed-loop forecasting commences
as described. Switching entails instantaneously transitioning from
closed-loop forecasting of one movie to driving the network with the
frames of another movie. c then updates as described and is followed
by closed-loop forecasting again.

Parameter optimization
The random-search algorithm was used to optimize parameters for
closed-loop forecasting. Within specified bounds, each parameter was
randomly sampled, giving a point in the parameter space. The para-
meter space was randomly sampled in this way many times, and each
time, the structural similarity index was computed as the performance
index. The bounds within which the parameters were sampled are
given in Table 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The point stimulus and moving bump stimulus data generated in this
study can be generated from the code available at this study’s GitHub
repository (https://github.com/mullerlab/benignoEAwavecomp). The
raw data of the natural movies used in this study are provided by Lena
Gorelick, Moshe Blank, and Eli Shectman of the Weizmann Institute of
Science, available at https://www.wisdom.weizmann.ac.il/~vision/
SpaceTimeActions.html and this study’s GitHub repository. Source
data are provided with this paper.

Code availability
All codes associatedwith this study are available athttps://github.com/
mullerlab/benignoEAwavecomp88.

Table 1 | Intervals over which model parameters were ran-
domly searched during optimization

Parameter Sampled interval

Recurrent strength (0, 0.2)

Recurrent length (0, 0.2)

Input strength (0, 0.2)

v (0, 0.1)
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