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Understanding the algorithmic behaviors that are in principle realizable in a chemical system is necessary
for a rigorous understanding of the design principles of biological regulatory networks. Further, advances in
synthetic biology herald the time when we will be able to rationally engineer complex chemical systems and
when idealized formal models will become blueprints for engineering.

Coupled chemical interactions in a well-mixed solution are commonly formalized as chemical reaction
networks (CRNs). However, despite the widespread use of CRNs in the natural sciences, the range of compu-
tational behaviors exhibited by CRNs is not well understood. Here, we study the following problem: What
functions f : Rk → R can be computed by a CRN, in which the CRN eventually produces the correct
amount of the “output” molecule, no matter the rate at which reactions proceed? This captures a previously
unexplored but very natural class of computations: For example, the reaction X1 + X2 → Y can be thought
to compute the function y = min(x1,x2). Such a CRN is robust in the sense that it is correct whether its
evolution is governed by the standard model of mass-action kinetics, alternatives such as Hill-function or
Michaelis-Menten kinetics, or other arbitrary models of chemistry that respect the (fundamentally digital)
stoichiometric constraints (what are the reactants and products?).

We develop a reachability relation based on a broad notion of “what could happen” if reaction rates can
vary arbitrarily over time. Using reachability, we define stable computation analogously to probability 1 com-
putation in distributed computing and connect it with a seemingly stronger notion of rate-independent com-
putation based on convergence in the limit t → ∞ under a wide class of generalized rate laws. Besides the
direct mapping of a concentration to a nonnegative analog value, we also consider the “dual-rail representa-
tion” that can represent negative values as the difference of two concentrations and allows the composition of
CRN modules. We prove that a function is rate-independently computable if and only if it is piecewise linear
(with rational coefficients) and continuous (dual-rail representation), or non-negative with discontinuities oc-
curring only when some inputs switch from zero to positive (direct representation). The many contexts where
continuous piecewise linear functions are powerful targets for implementation, combined with the system-
atic construction we develop for computing these functions, demonstrate the potential of rate-independent
chemical computation.
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1 INTRODUCTION

Understanding the dynamic behaviors that are, in principle, achievable with chemical species in-
teracting over time is crucial for engineering of complex molecular systems capable of diverse and
robust behaviors. The exploration of this space also helps to elucidate the constraints imposed
upon biology by the laws of chemistry. The natural language for describing the interactions of
molecular species in a well-mixed solution is that of chemical reaction networks (CRNs), i.e.,
finite sets of chemical reactions such as A + B → A +C . The intuitive meaning of this expression
is that a unit of chemical species A reacts with a unit of chemical species B, producing a unit of a
new chemical species C and regenerating a unit of A back. Typically (in mass-action kinetics) the
rate with which this occurs is proportional to the product of the amounts of the reactants A and B.

Informally speaking, we can identify two sources of computational power in CRNs. First, the re-
action stoichiometry transforms some specific ratios of reactants to products. For example,X → 2Y
makes two units of Y for every unit of X . Second, in mass-action kinetics the reaction rate laws
effectively perform multiplication of the reactant concentrations. In this work, we seek to disen-
tangle the contributions of these two computational ingredients by focusing on the computational
power of stoichiometry alone. Besides fundamental scientific interest, such rate-independent com-
putation may be significantly easier to engineer than computation relying on rates (see Section 1.2).
Importantly, stoichiometry is robust—not requiring the tuning of reaction conditions, nor even the
assumption that the solution is well-mixed.

In the discrete model of chemical kinetics (see Section 1.2 for the distinction between the dis-
crete and continuous models), rate-independence is formally related to probability 1 computation
with passively mobile (i.e., interacting randomly) agents in distributed computing (the “popula-
tion protocols” model [6, 9]; see Section 1.3). However, the continuous model of chemistry is most
widely used and is more applicable for engineering chemical computation where working with
bulk concentrations remains the state-of-the-art (see Section 1.2). This article formally articulates
rate-independence in continuous CRNs and characterizes the computational power of stoichiom-
etry in this model.

In the continuous setting, the amount of a species is a nonnegative real number representing its
concentration (average count per unit volume).1 We characterize the class of real-valued functions
computable by CRNs when reaction rates are permitted to vary arbitrarily (possibly adversarially)
over time. Any computation in this setting must rely on stoichiometry alone. How can rate laws
“preserve stoichiometry” while varying “arbitrarily over time”? Formally, preserving stoichiometry
means that if we reach state d from state c, then d = c + Mu for some non-negative vector u of
reaction fluxes, where the CRN’s stoichiometry matrix M maps those fluxes to the changes in
species concentrations they cause. (For example, flux 0.5 of reactionC +X → C + 3Y changes the

1Although the finite density of matter physically restricts what the largest concentration of any species could realistically
be, standard models of chemical kinetics focus on systems that are far from this bound, mathematically allowing concen-
trations to be arbitrarily large.
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Fig. 1. Examples of rate-independent computation with chemical reaction networks. (a) Direct and (b) dual-

rail CRNs computing the function f (x1,x2) = max(x1,x2) plotted in (c). (d) Dual-rail CRN computing the

function f (x1,x2) = x1 + min(−x1,x2) − max(x1,x2) plotted in (e). (f) Direct CRN computing the (discon-

tinuous but still positive-continuous; see Definition 5.8) function f (x1,x2) = x1 if x2 = 0 and 2x1 if x2 > 0
plotted in (g).

concentrations ofC,X ,Y , respectively, by 0,−0.5,+1.5.) Subject to this constraint, the widest class
of trajectories that still satisfies the intuitive meaning of the reaction semantics can be described
informally as follows: (1) concentrations cannot become negative; (2) all reactants must be present
when a reaction occurs (e.g., if a reaction uses a catalyst,2 then the catalyst must be present); (3) the
causal relationships between the production of species is respected (e.g., if producing A requires
B and producing B requires A, then neither can ever be produced if both are absent).3 This notion
of “allowed trajectories” is formalized as Definition 2.22.

The example shown in Figure 1(a) illustrates the style of computation studied here. Let f :
R2
≥0 → R≥0 be the max function f (x1,x2) = max(x1,x2) restricted to non-negative x1 and x2. The

CRN of Figure 1(a) computes this function in the following sense: Inputs x1 and x2 are given as
initial concentrations of input species X1 and X2. Then the CRN converges to f ’s output value
max(x1,x2) of species Y , under a very wide interpretation of rate laws. Intuitively, the first two
reactions must eventually produce x1+x2 ofY , and x1, x2 ofZ1 andZ2, respectively. This is enforced
by the stoichiometric constraint that the amount ofZ1 andY produced is equal to the amount ofX1

consumed (and analogously for the second reaction). Stoichiometric constraints require the third
reaction to produce the amount of K that is the minimum of the amount of Z1 and Z2 eventually
produced in the first two reactions. Thus, min(x1,x2) of K is eventually produced. Therefore, the
fourth reaction eventually consumes min(x1,x2) molecules of Y leaving x1 + x2 − min(x1,x2) =

2A species acts catalytically in a reaction if it is both a reactant and product: e.g., C in reaction A +C → B +C . Note that
executing this reaction without C does not by itself violate condition (1).
3See Section 2.4 for examples showing that in the continuous setting conditions (2) and (3) are not mutually redundant.
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max(x1,x2) of Y behind. We can imagine an adversary pushing flux through these four reactions
in any devious stratagem (i.e., arbitrary rates), yet unable to prevent the CRN from converging to
the correct output, so long as applicable reactions must eventually occur.

We further consider the natural extension of such computation to handle negative real values.
The example shown in Figure 1(b) computes f (x1,x2) = max(x1,x2) (f : R2 → R), graphed in
(c). To handle negative input and output values, we represent the value of each input and output
by a pair of species using the so-called “dual-rail” representation. For example, in state c, x1 =

c(X+1 ) − c(X−1 )—i.e., the difference between the concentrations of species X+1 and X−1 . Note that
when X−1 and X−2 are initially absent, the CRN becomes equivalent to the first three reactions
of Figure 1(a) under relabeling of species. We do not need the last reaction of (a), because the
output is represented as the difference of Y+ and Y− by our convention. For the argument that the
computation is correct even if X−1 and X−2 are initially present, we refer the reader to the proof of
Corollary 5.14 in Section 5.3.

In addition to handling negative values, the dual-rail representation has the benefit of allowing
composition. Specifically, the dual-rail representation allows a CRN to never consume its output
species (e.g., rather than consuming Y+, it can produce Y−). This monotonicity in the production
of output allows directly composing CRN computations simply by concatenating CRNs and re-
labeling species (e.g., to make the output of one be input to the other). Since the upstream CRN
never consumes its output species, the downstream CRN is free to consume them without inter-
fering with the upstream computation. Since the class of functions computable by dual-rail CRNs
ends up being invariant to whether or not, they are allowed to consume their output, and our
results imply that dual-rail computation is composable without sacrificing computational power
(see Section 5.1).

1.1 Summary of Main Results

Our first contribution is to define a reachability relation that captures the broadest reasonable no-
tion of “what could happen” and is of independent interest. Although concentration trajectories of
mass-action kinetics (and other standard rate laws) follow smooth curves, we base the reachabil-
ity relation on taking simple-to-analyze straight-line paths. Theorem 2.27 shows that this notion
of reachability is exactly equivalent to satisfying the three intuitive properties described above,
(1) nonnegative concentrations, (2) reactions require their reactants present, and (3) respecting
causal relationships between the production of species. Thus, our reachability relation has all rea-
sonable rate laws as special cases; i.e., if any of them can reach a state, then so can our reachability
relation.

The reachability relation allows us to formally define stable computation in Definition 3.2, anal-
ogously to similar definitions of probability 1 computation in discrete systems [6, 18]. Stable com-
putation allows us to delineate when a function cannot be computed rate-independently. Roughly,
unless the system is stably computing, then an adversary can always push it “far” away from the
correct output (Theorem 3.3), precluding the system from being reasonably rate-independent.

For the positive direction, the CRN should converge to the correct output no matter the reac-
tion rates. While a CRN that does not stably compute is not rate-independent (which is sufficient
for negative results), the positive direction does not directly follow from stable computation for
continuous systems. Indeed, we show examples of CRNs that stably compute a function by our def-
inition, yet under standard mass-action kinetics fail to converge to the correct output; see Section 4.
Instead, we capture a very strong notion of “convergence despite perturbations” in fair computa-
tion (Definition 4.3), based on generalized rate laws (so-called fair rate schedules, Definition 4.1).
A CRN that fairly computes converges to the correct output as time t → ∞ under any trajectory
satisfying the three intuitive conditions above, plus an additional requirement that reactions do
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occur when applicable. (In particular, mass-action (Corollary 4.11) satisfies these conditions, but
the range of rate laws satisfying the conditions is much broader.) Luckily, stable computation and
fair computation can be tightly connected, and we show that for a special class of CRNs we call
feedforward (Definition 4.5) the two definitions coincide. In other words, a feedforward CRN stably
computes a function if and only if it fairly computes the function (Lemmas 4.9 and 4.4). We show
that all functions stably computable by CRNs are computable by feedforward CRNs (Lemmas 5.16
and 5.15), implying that the class of functions computable by CRNs under either definition—stable
computation or fair computation—is identical. In other words, we can freely work with the sim-
pler definition of stable computation, knowing that we are actually reasoning about a very general
notion of rate-independence.

The above line of reasoning leads us to conclude that exactly the functions that are
positive-continuous, piecewise linear (direct) or continuous, piecewise linear (dual-rail) can be
rate-independently computed (Theorems 5.9 and 5.10). Positive-continuous means that the only
discontinuities occur on a “face” of Rk

≥0—i.e., the function may discontinuously jump only at a
point where some input goes from 0 to positive. We already saw a simple example of a continuous,
piecewise linear function (max function, Figure 1(a,b,c)). Figure 1(d,e) shows a more complex
example and a CRN that computes it. Figure 1(f,g) shows a discontinuous but positive-continuous
function and a CRN that computes it. Although our work shows that the computational power of
rate-independent CRNs is limited, the power of the computable class of functions should not be
underestimated. For example, allowing a fixed non-zero initial concentration of non-input species
(see Section 6.2), such CRNs are equivalent to ReLU neural networks—arguably the most widely
used type of neural networks in machine learning [52].

1.2 Chemical Motivation

Traditionally, CRNs have been used as a descriptive language to analyze naturally occurring chemi-
cal reactions, as well as various other systems with a large number of interacting components such
as gene regulatory networks and animal populations. However, CRNs also constitute a natural
choice of programming language for engineering artificial systems. For example, nucleic-acid net-
works can be rationally designed to implement arbitrary chemical reaction networks [14, 20, 50, 51].
Thus, since in principle any CRN can be physically built, hypothetical CRNs with interesting be-
haviors are becoming of more than theoretical interest. One day artificial CRNs may underlie
embedded controllers for biochemical, nanotechnological, or medical applications, where environ-
ments are inherently incompatible with traditional electronic controllers. However, to effectively
program chemistry, we must understand the computational power at our disposal. In turn, the
computer science approach to CRNs is also beginning to generate novel insights regarding natural
cellular regulatory networks [15].

At the fine-grained level of detail, chemistry is discrete and stochastic. This level is typically
modeled by discrete CRNs, where the state is a vector of nonnegative integers representing the
counts of each species in the given reaction vessel, and reactions are modeled by a Markov jump
process [29]. The continuous model is governed by a system of mass-action ordinary differential
equations, which can be derived as a limiting case of the discrete model when volume and counts
are large [34].4 While of physical primacy, the discrete model can be less suitable for reasoning

4The exact statement of Kurtz’s convergence result [34] is beyond the scope of this article. It considers taking a discrete
CRN with initial integer molecular counts given by vector c ∈ Nk in volume V > 0, then “scaling up” by factor n ∈ N,
i.e., considering the discrete CRN with initial state n · c in volume n ·V . The result, stated very roughly, is that with high
probability the n-scaled CRN has a trajectory (dividing discrete counts by n · V to convert to units of concentration) that
stays close to the real-valued mass-action concentration trajectory, but only for time O (log n). An example CRN where this
time bound is tight is A + B → A + B + Y , A→ 2A, B → ∅, starting with 1A, 1B . In mass-action, the concentrations
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about feasible chemical algorithms. Many algorithms in the discrete model rely on a single
molecule (called a “leader”) to coordinate computation [8]. Whether the initial state is assumed to
have a leader or the CRN is designed to eliminate all but one copy of the leader species (“leader
election”), such algorithms relying on single-molecule behavior are currently infeasible, since any
single molecule can get damaged or become effectively lost.

An important reason for our focus on stoichiometric computation is that algorithms relying only
on stoichiometry make easier design targets. The rates of reactions are real-valued quantities that
can fluctuate with reaction conditions such as temperature, while the stoichiometric coefficients
are immutable whole numbers set by the nature of the reaction. Methods for physically imple-
menting CRNs naturally yield systems with digital stoichiometry that can be set exactly [14, 50],
whereas these methods often suffer from imprecise control over reaction rates [20, 51]. Further,
relying on specific rate laws can be problematic: Many systems do not apparently follow
mass-action rate laws, and chemists have developed an array of alternative rate laws such as
Michaelis-Menten (modeling enzymes) and Hill-function kinetics (widely used for gene regu-
lation).5 It is well-known that cells are not well-mixed, and many models have been developed
to take space into account (e.g., reaction-diffusion [32]). Moreover, robustness of rate laws is a
recurring motif in systems biology due to much evidence that biological regulatory networks tend
to be robust to the form of the rate laws and the rate parameters [10]. Thus, we are interested in
what computations can be understood or engineered without regard for the reaction rate laws.

1.3 Related Works

An earlier conference version of this article appeared as Reference [19]. Besides replacing a
number of informal arguments with rigorous proofs, this journal version also expands and
generalizes the results of the conference version. For example, we introduce new machinery for
representing and manipulating trajectories as linear objects (piecewise linear paths). We also
define a broad class of rate laws, formalized by Definition 2.22, which captures mass-action
kinetics and all other known rate laws such as Michaelis-Menten and Hill-function kinetics, and
we prove that our definition of reachability is as general as any in this class. For the constructive
part, this version also generalizes Lemma 3.4 of Reference [19] (in addition to correcting its
proof) by introducing feedforward CRNs and proving that correct computation in our setting
implies convergence under any “reasonable” rate law (one that produces a fair schedule of rates;
Definition 4.1) for any feedforward CRN (Lemma 4.8).

The relationship between the discrete and continuous CRN models is a complex and much stud-
ied one in the natural sciences [45]. The computational abilities of discrete CRNs have been investi-
gated more thoroughly than of continuous CRNs and have been shown to have a surprisingly rich
computational structure. Of most relevance here is the work in the discrete setting showing that
the class of functions that can be computed depends strongly on whether the computation must
be correct or just likely to be correct (under the usual stochastic kinetics)—which is the discrete
version of the distinction between rate-independent and rate-dependent computation. While Tur-
ing universal computation is possible with an arbitrarily small, non-zero probability of error over
all time [49], forbidding error altogether limits the computational power: Error-free computation
by stochastic CRNs is limited to semilinear predicates and functions [6, 18]. (Intuitively, semilinear

of A and B at time t are, respectively, e t and e−t , whose product is the constant 1, so the first reaction produces Y at a unit
rate forever. However, scaling up to nA, nB , the discrete CRN consumes all B in O (log n) time, at which point production
of Y halts. See References [24, 35] for other example CRNs for which the two models diverge after sufficient time.
5It is generally supposed that chemical reactions would follow mass-action if properly decomposed into truly elementary
reactions and the solution is well-mixed. For example, Michaelis-Menten and Hill-function kinetics can be derived as a
limiting case of mass-action when the reaction is initiated and completed at vastly different time scales.
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functions are expressible as a finite union of affine functions, with “simple, periodic” domains of
each affine function [18].) The study of error-free computation in discrete CRNs is heavily based on
the results first developed for a model of distributed computing called population protocols [6, 9].
We formally refer to our notion of rate-independent computation as stable computation in direct
reference to the analogous notion in population protocols.

While our notion of rate-independent computation is the natural extension of deterministic com-
putation in the discrete model, there are many differences between the two settings. As mentioned
above, many discrete algorithms such as those that rely on a single “leader” molecule fail to work
in the continuous setting, and some functions like distinguishing between even and odd molecular
counts do not make sense. Broadly speaking, the proof techniques appear to require very different
machinery, and the importance of stable computation itself needs substantial justification in the
continuous model (as the examples shown at the beginning of Section 4 demonstrate).

Continuous CRNs have been proven to be Turing universal under mass-action rate laws [27],
a consequence of the surprising computational power of polynomial ODEs [12]. In ODEs
without the CRN semantics, there is no natural notion of stoichiometry and thus no notion of
rate-independence analogous to ours. In chemistry, the same physical process (a reaction) is
responsible for multiple monomials across multiple ODEs, which justifies these monomials being
exactly the same or in fixed ratios (corresponding to obeying reaction stoichiometry). Such forced
relationships do not seem natural for more general polynomial ODEs that do not correspond to
chemical reactions.6

Our notion of reachability (Definition 2.3) is intended to capture a wide diversity of possible rate
laws. Generalized rate laws (extending mass-action, Michaelis-Menten, etc.) have been previously
studied, although not in a computational setting. For example, certain conditions were identified on
global convergence to equilibrium based on properties intuitively similar to ours [4]. A related idea
in the literature, generalizing mass-action, is differential inclusion [30]. In that model, the mass-
action rate constants are not fixed to be particular real numbers constant over time, but instead
can vary over time within some bounded interval [l ,u] fixed in advance, with 0 < l ≤ u < ∞.
Another related idea is the notion of a reaction system [26], which generalizes even beyond mass-
action, allowing reaction rates to be an (almost) arbitrary function of species concentrations.7

Other generalized rate laws have been defined as well [5, 23].
Since the original publication of the conference version of this article [19], a number of works

have used our framework. A key concept in capturing rate-independent computation is the reacha-
bility relation (segment-reachability, Definition 2.3). Reference [16] showed that, given two states,
deciding whether one is reachable from the other is solvable in polynomial time. This contrasts
sharply with the hardness of the reachability problem for discrete CRNs, which, although com-
putable [39], is not even primitive recursive [22, 37]. (These results were proven using the termi-
nology of the equivalent models of Petri nets/vector addition systems.)

The question of deciding whether a given CRN is rate-independent was studied in Reference
[23]. The work provides sufficient graphical conditions on the structure of the CRN that ensure
rate-independence for the whole CRN or only for certain output species. Interestingly, the authors

6For example, consider the reaction A → 2B , with ODEs ȧ = −a and ḃ = 2a. One can imagine a “chemical” adversary
adjusting the rate of the reaction to speed it up or slow it down, but what the adversary cannot control is that to consume x

amount of A requires producing exactly 2x amount of B and vice versa. This connection between the rates of consumption
of A and production of B does not have an obvious counterpart in more general polynomial ODEs and analog computational
models.
7Our notion of valid rate schedules in Definition 2.22 is even more general than a reaction system in that a valid rate
schedule does not require a reaction’s rate to be a function of species concentrations, for instance, allowing an adversary
to visit the same state twice but apply different reaction rates each time.
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of Reference [23] applied this method to the Biomodels repository of curated CRNs of biological
origin and found a number of CRNs that satisfy the rate-independence conditions.

An important motivation for the dual-rail representation in this work is to allow composition
of rate-independent CRN modules (Section 5.1). Such rate-independent modules can be composed
into overall rate-independent computation simply by concatenating their chemical reactions and
relabeling species (such that the output species of the first is the input species of the second, and
all other species are distinct). In contrast, rate-independent composition with the direct (non-dual
rail) representation, introduces an additional “superadditivity” constraint that for all input vectors
x and x′, f (x) + f (x′) ≤ f (x + x′) [17]. Thus, for example, the non-superadditive max function
(Figure 1) provably cannot be composably computed with a rate-independent CRN in the direct
representation. Composable computation has also been characterized in the discrete model [31, 48].

Other input encodings have been considered besides direct and dual-rail. For example, the so-
called “fractional encoding” encodes a real number between 0 and 1 as a ratio x1

x0+x1
where x0,x1 are

concentrations of two input species [44]. Other notions of chemical “rate-independence” include
CRNs that work independently of the rate law as long as there is a separation into fast and slow
reactions [47]. For a detailed survey on computation with CRNs (both continuous and discrete),
see Reference [13].

2 DEFINING REACHABILITY IN CHEMICAL REACTION NETWORKS

2.1 Chemical Reaction Networks

We first explain our notation for vectors of concentrations of chemical species and then formally
define chemical reaction networks.

Given a finite set F , let RF denote the set of functions c : F → R. We view c equivalently as a
vector of real numbers indexed by elements of F . Given x ∈ F , we write c(x ), or sometimes cx , to
denote the real number indexed by x . The notation RF

≥0 is defined similarly for nonnegative real
vectors. Throughout this article, let Λ be a finite set of chemical species. Given S ∈ Λ and c ∈ RΛ

≥0,
we refer to c(S ) as the concentration of S in c. For any c ∈ RΛ

≥0, let [c] = {S ∈ Λ | c(S ) > 0}, the
set of species present in c (a.k.a., the support of c). We write c ≤ c′ to denote that c(S ) ≤ c′(S ) for
all S ∈ Λ. Given c, c′ ∈ RΛ

≥0, we define the vector component-wise operations of addition c + c′,
subtraction c − c′, and scalar multiplication xc for x ∈ R. If Δ ⊂ Λ, we view a vector c ∈ RΔ

≥0

equivalently as a vector c ∈ RΛ
≥0 by assuming c(S ) = 0 for all S ∈ Λ \ Δ. For Δ ⊂ Λ, we write

c � Δ to denote c restricted to Δ; in particular, c � Δ = 0 ⇐⇒ (∀S ∈ Δ) c(S ) = 0. (We use the
convention that c � ∅ = 0 for all states c.)

A reaction over Λ is a pair α = 〈r, p〉 ∈ NΛ × NΛ, such that r � p, specifying the stoichiometry
of the reactants and products, respectively.8 For instance, given Λ = {A,B,C}, the reaction A +
2B → A+3C is the pair 〈(1, 2, 0), (1, 0, 3)〉 .We represent reversible reactions such as A�B as two
irreversible reactions A → B and B → A. In this article, we assume that r � 0, i.e., we have no
reactions of the form ∅ → . . ..9 A (finite) chemical reaction network (CRN) is a pair C = (Λ,R),
where Λ is a finite set of chemical species, and R is a finite set of reactions over Λ. A state of a
CRN C = (Λ,R) is a vector c ∈ RΛ

≥0. Given a state c and reaction α =
〈
r, p

〉
, we say that α is

applicable in c if [r] ⊆ [c] (i.e., c contains positive concentration of all of the reactants). If no

8It is customary to define, for each reaction, a rate constant k ∈ R>0 specifying a constant multiplier on the mass-action
rate (i.e., the product of the reactant concentrations), but as we are studying CRNs whose output is independent of the
reaction rates, we leave the rate constants out of the definition.
9We allow high-order reactions; i.e., those that have more than two reactants. Such higher order reactions could be elimi-
nated from our constructions using the transformation that replaces S1 + S2 + · · ·+ Sn → P1 + · · ·+ Pm with bimolecular
reactions S1 + S2� S12, S12 + S3� S123, S123 + S4� S1234, . . . , Sn + S12. . .n−1 → P1 + · · · + Pm .
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reaction is applicable in state c, then we say c is static. We say a species S is produced in reaction
〈r, p〉 if r(S ) < p(S ), and consumed if r(S ) > p(S ). (Note that a catalyst, such as C in the reaction
C + X → C + Y , is neither produced nor consumed.)

2.2 Segment Reachability

In the previous section, we defined the syntax of CRNs. Toward studying rate-independent com-
putation, we now want to define the semantics of what “could happen” if reaction rates can vary
arbitrarily over time. This is captured by a notion of reachability, which is the focus of this section.
Intuitively, d is reachable from c if applying some amount of reactions to c results in d, such that
no reaction is ever applied when any of its reactants are concentration 0. Formalizing this concept
is a bit tricky and constitutes one of the contributions of this article. Intuitively, we will think of
reachability via straight line segments. This may appear overly limiting; after all mass-action and
other rate laws trace out smooth curves. However, in this and subsequent sections, we show a
number of properties of our definition that support its reasonableness.

Throughout this section, fix a CRN C = (Λ,R). All states c, and so on, are assumed to be states
of C. We define the |Λ| × |R | reaction stoichiometry matrix M such that, for species S ∈ Λ and
reaction α = 〈r, p〉 ∈ R, M(S,α ) = p(S ) − r(S ) is the net amount of S produced by α (negative if
S is consumed).10 For example, if we have the reactions X → Y and X + A→ 2X + 3Y , and if the
three rows correspond to X , A, and Y , in that order, then

M =
��
�
−1 1
0 −1
1 3

��
� .

Definition 2.1. State d is straight-line reachable (a.k.a. 1-segment reachable) from state c, written
c →1 d, if (∃u ∈ RR

≥0) c +Mu = d and u(α ) > 0 only if reaction α is applicable at c. In this case,
write c→1

u d.

Intuitively, by a single segment, we mean running the reactions applicable at c at a constant
(possibly 0) rate to get from c to d. In the definition, u(α ) represents the flux of reaction α ∈ R.

The next definition is used in our main notion of reachability, which uses either a finite number
of straight lines or infinitely many so long as they converge to a single state.

Definition 2.2. Let k ∈ N ∪ {∞}. State d is k-segment reachable from state c, written c�k d, if
(∃b0, . . . , bk ) c = b0 →1 b1 →1 b2 →1 · · · →1 bk , with bk = d if k ∈ N, or limi→∞ bi = d if k = ∞.

Definition 2.3. State d is segment-reachable (or simply reachable) from state c, written c� d, if
(∃k ∈ N ∪ {∞}) c�k d.

For example, suppose the reactions are X → C and C + Y → C + Z , and we are in state
{0C, 1X , 1Y , 0Z }. With straight-line segments, any state with a positive amount of Z must be
reached in at least two segments: first to produce C , which allows the second reaction to occur,
and then any combination of the first and second reactions. For example, {0C , 1X , 1Y , 0Z } →1

{0.1C , 0.9X , 1Y , 0Z } →1 {1C , 0X , 0Y , 1Z }. This is a simple example showing that more states are
reachable with� than→1. Often, Definition 2.3 is used implicitly, when we make statements such
as, “Run reaction 1 until X is gone, then run reaction 2 until Y is gone,” which implicitly defines
two straight lines in concentration space.

Although more effort will be needed to justify its reasonableness (see Section 2.4), segment-
reachability will serve as the main notion of reachability in this article.

10Note that M does not fully specify C, since catalysts are not modeled: reactions Z + X → Z + Y and X → Y both
correspond to the column vector (−1, 1, 0)�.
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2.3 Bound on Number of Required Line Segments in Segment Reachability

It may seem that we can never achieve the “full diversity” of states reachable with an infinite num-
ber of line segments if we use only a bounded number of line segments. However, Theorem 2.15
shows that increasing the number of straight-line segments beyond a certain point does not make
any additional states reachable. Thus, using a few line segments captures all the states reachable
with arbitrarily many line segments, and in fact even in the limit of infinitely many line segments.

To prove Theorem 2.15, we first develop important machinery for representing and manipulat-
ing paths under�. Note that reachability is closed under addition and scaling in the sense that if
c� d and c′� d′, then αc+βc′� αd+βd′ for all α , β ∈ R≥0. The following definition captures
this property by defining a linear space of all paths. This machinery will also be key to proving
the piecewise linearity of the computed function in Section 5.5.

Definition 2.4. Let C = (Λ,R) be a CRN with species Λ and reactions R. For n ∈ N, we define a
linear map xn : (RΛ ××∞i=1R

R ) → RΛ, which takesγ = (x0, u1, u2, . . .) representing an initial state
x0 and reaction flux vectors u1, u2, . . ., and produces

xn (γ ) = x0 +

n∑
i=1

Mui ,

which intuitively is the state reached after traversing the first n line segments. Let Ψ be the set of
γ for which limn→∞ xn (γ ) converges. We call elements of Ψ prepaths.

Definition 2.4 allows a prepath to be essentially any sequence of vectors in the linear subspace
spanned by reaction vectors. The next definition restricts the vectors with three physical con-
straints: Species concentrations are nonnegative, reaction fluxes are nonnegative (i.e., reactions can
only go one way, turning reactants into products), and reactions cannot occur if any reactant is 0.

Definition 2.5. Let Γ∞ be the subset of Ψ consisting of vectors γ = (x0, u1, u2, . . .) satisfying the
following conditions for all n ∈ N:

(1) xn (γ ) ∈ RΛ
≥0.

(2) un ∈ RR
≥0.

(3) every reaction with positive flux in un+1 is applicable at xn .

We call an element of Γ∞ a piecewise linear path or sometimes just a path.

Definitions 2.4 and 2.5 allow an infinite sequence of reaction flux vectors (each corresponding
to a straight line in the definition of 1-segment reachability). A finite number of straight lines can
be specified by letting all but finitely many ui = 0. The next definition bounds how many can be
nonzero.

Definition 2.6. For k ∈ N, define Γk to be the subset of Γ∞ consisting of all paths γ =

(x0, u1, u2, . . .) such that ui = 0 for all i > k . Say that a path is finite if it is contained in Γk

for some k ∈ N.

Intuitively, Γ∞ is the space of all of the valid piecewise linear paths that the system can take
starting from any given initial state and Γk (k ∈ N) is the set of all such paths that have length at
most k ; thus, Γ0 ⊆ Γ1 ⊆ . . . ⊆ Γ∞.

Lemma 2.7. For k ∈ N ∪ {∞}, Γk is convex.

Proof. Let γ0,γ 1 ∈ Γ∞ be two paths and consider λ ∈ (0, 1). We need to show that γλ =

(1 − λ)γ 0 + λγ 1 is in Γ∞. Recall that xn (γ ) is the state reached after the first n segments of path γ .
Note that for any n ∈ N,

xn (γλ ) = (1 − λ)xn (γ0) + λxn (γ 1).
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Since RΛ
≥0 is convex and both xn (γ 1) and xn (γ2) are in RΛ

≥0, we conclude that xn (γλ ) is in RΛ
≥0, too.

Moreover, because both limn→∞ xn (γ0) and limn→∞ xn (γ1) converge, we see that

lim
n→∞

xn (γλ ) = (1 − λ) lim
n→∞

xn (γ0) + λ lim
n→∞

xn (γ 1)

also converges.
Below, for a pathγ = (x0, u1, u2, . . .), we use the notation un (γ ) to represent the nth flux vector

un in γ . Since
un (γλ ) = (1 − λ)un (γ 0) + λun (γ1),

any reaction α occurs with positive flux in un (γλ ) only if α occurs with positive flux in un (γ i ) for
i = 0 or 1. Without loss of generality, suppose that α occurs with positive flux in un (γ0). Then
reaction α is applicable at xn−1 (γ0), so the reactants are all present in positive concentrations in
xn−1 (γ 0). This implies that they are present with positive concentrations in xn−1 (γλ ) (note that
we have excluded the case λ = 1 from the outset). Therefore, reaction α is applicable at xn−1 (γλ ).
We conclude that every reaction occurring with positive flux in un (γλ ) is applicable at xn−1 (γλ ).
This shows that Γ∞ is convex.

To see that Γk for k ∈ N is also convex, note that if un (γ 0) = 0 and un (γ 1) = 0, then un (γλ ) will
also be zero. �

The next lemma shows that if it is possible to reach from a state c to several other states, each
containing some species possibly distinct from each other, then it is possible to reach from c to a
state with all of those species present at once.

Lemma 2.8. Let l ∈ N, k ∈ N ∪ {∞}, and let c, d1, . . . , dl be states such that c �k d1, c �k d2,
. . ., and c�k dl . Then there exists d such that c�k d and [d] =

⋃l
i=1[di ].

Proof. Writeγ i for the path from c to di ; the convexity of Γk shows that the convex combination

γ =
1

l

l∑
i=1

γ i

is a valid path in Γk . Letting

d =
1

l

l∑
i=1

di ,

γ exhibits a k-segment path from c to d. If S is a species that is present at di for any i, then S is
also present at d. However, if S is present in none of the di , then S is not present in d. As a result,
[d] =

⋃l
i=1[di ]. �

Definition 2.9. Given a state c, let P(c) be the set of all species that are producible from c—i.e.,
present in some state that is segment-reachable from c.

The next lemma shows that with at most a constant number of straight line segments, it is
possible to reach from any state c to a state containing all species possible to produce from c.

Lemma 2.10. Let m be the minimum of |R | and |Λ| and let c be any state. Then there is a state d

such that c�m d and [d] = P(c).

Proof. Given a state c, let P<∞ (c) be the set of all species that are present in some state that is
k-segment-reachable from c for some k < ∞.

We first argue that P(c) = P<∞ (c). Since clearly P<∞ (c) ⊆ P(c), it remains to show that P(c) ⊆
P<∞ (c). Let S be a species that is present in the state d such that c �∞ d. Then there exists a
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sequence (bi )i such that c→1 b1 →1 b2 →1 . . . with d = limi→∞ bi . Because S ∈ [d] there must be
some i0 ∈ N where S ∈ [bi0 ], and, since c�i0 bi0 , we see that S ∈ P<∞ (c). Thus, P(c) = P<∞ (c).

We show that the lemma holds for P<∞ (c); since P(c) = P<∞ (c), this establishes the full lemma.
For all i ∈ N, let Λi be the set of species S such that there exists a d with c �i d and S ∈ [d].

Similarly, let Ri be the set of reactions α such that there exists a d with c�i d and α is applicable
in d. Note that Λ0 = [c] and R0 is the set of reactions applicable in c. Also, since c �i d implies
c�i+1 d, we see that Λi ⊆ Λi+1 and Ri ⊆ Ri+1 for all i .

Now, we show that for all i there exists some xi such that [xi ] = Λi and c�i xi (and therefore
Ri consists of the reactions applicable at xi ). To see this, for each S ∈ Λi let dS be a state such that
c�i dS and S ∈ [dS ]. By applying Lemma 2.8 to the set of all dS , there is some d such that c�i d

and [d] = Λi ; this d is our desired xi .
Now, we will show that if Λi = Λi+1, then Ri = Ri+1 and, independently, if Ri = Ri+1, then

Λi+1 = Λi+2 for all i . First suppose that Λi = Λi+1 and let α be a reaction in Ri+1. Then there is
some state d such that c�i+1 d and α is applicable at d. Since all of the reactants of α are present
at d, they are a subset of Λi+1 = Λi . They are therefore present at xi , so α is applicable at xi . We
conclude that α ∈ Ri so Ri+1 = Ri .

Now suppose that Ri = Ri+1 and let S be a species in Λi+2. Then there is some d such that
c�i+2 d and S ∈ [d]. If S ∈ [c], then S ∈ Λi+1. Otherwise, S must be produced by some reaction
α in Ri+1 = Ri , and we can apply α to xi to obtain a state d′ such that c�i xi →1 d′ and S ∈ [d′].
Again, we conclude that S ∈ Λi+1 so Λi+2 = Λi+1.

Combining the two statements we just proved, we see that if Λi = Λi+1, then Λi = Λj for all
j ≥ i , so Λi = P<∞ (c). Similarly, if Ri = Ri+1, then Λi+1 = P<∞ (c).

If |Λ| ≤ |R |, then, since Λ0 ⊆ Λ1 ⊆ . . . is an increasing sequence of subsets of the finite set Λ,
it must be the case that Λj = Λj+1 for some j ≤ |Λ|, and in this case xj gives our desired d. If,
however, |R | ≤ |Λ|, the proof is similar: First note that if R0 = ∅, then we are done. Otherwise,
|R0 | ≥ 1 so, since Ri is an increasing sequence of subsets of R, there is some j ≤ |R | − 1 such that
R j = R j+1. Then Λj+1 = P<∞ (c) so xj+1 gives our desired d. �

Recall that a set is closed if it contains all of its limit points.

Lemma 2.11. Let c ∈ RΛ
≥0 be any state and let Sc ⊆ RΛ

≥0 be the set of states that are straight-line
reachable from c. Then Sc is closed.

Proof. LetRc be the set of reactions that are applicable at c. ThenC = {u ∈ RR
≥0 |u(α ) = 0 forα �

Rc} is a polyhedron. Then c + MC is also a polyhedron (see Reference [53]), and is in particular
closed. Sc is just RΛ

≥0 ∩ (c +MC ), and is therefore also closed. �

Note that Lemma 2.11 is false if we replace “straight-line reachable” with “segment-reachable.”
For example, consider X → C and X +C → Y +C , where we take the initial state c = {1X , 0C, 0Y }.
Note that for any ε > 0, we can reach the state dε = {0X , εC, (1 − ε )Y }. However, because
producing Y first requires consuming a positive amount of X to create the catalyst C , the state
d0 = {0X , 0C, 1Y } is not segment reachable from c, even though d0 = limε→0 dε .

If we have an infinite sequence of states such that c = b0 � b1 � b2 . . . and limi→∞ bi = d,
then this does not immediately imply that c �∞ d by Definition 2.2. This is because although
the endpoints of the paths bi � bi+1 converge to d, the intermediate states on the paths related
by→1 (i.e., bi →1 b′i →1 b′′i →1 · · · →1 bi+1) may not converge. To capture this weaker notion
of convergence, we introduce the following definition, which generalizes�∞ by requiring only
that there be a converging subsequence of states. (The weaker notion will be eventually needed to
prove Theorem 3.3.)
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Definition 2.12. State d is s.s. segment reachable from state c, written c�∞ss d, if (∃b′0, b
′
1, . . . ) c =

b′0 →1 b′1 →1 . . . , where for some subsequence b0, b1, . . . of b′0, b
′
1, . . . , limi→∞ bi = d.

The main results of this section have this weaker notion of convergence as a precondition, which
will imply that, despite appearances,�∞ and�∞ss are actually equivalent.

The next lemma shows that if no more species are producible from state c than are already
present in c, then any state d that is�∞ss reachable from c is reachable via a single straight line
segment.

Lemma 2.13. If [c] = P(c), then every state d such that c�∞ss d is straight-line reachable from c

(i.e., c�∞ss d implies c→1 d).

Proof. First consider the finite case where c�k d for k < ∞. Let u1, . . . , uk be the flux vectors
corresponding to the segments in the path from c to d. Then u = u1 + · · · + uk is a vector in RR

≥0.
Every reaction that occurs with positive flux in u has positive flux in one of the ui , and thus its
reactants are in P(c), so are present in c by the assumption [c] = P(c). Thus, every reaction that
occurs with positive flux in u is applicable at c. The straight-line from c corresponding to u takes
c to

c +Mu = c +

k∑
i=1

Mui = d,

so c→1
u d.

Now suppose that c�∞ss d. Then there is a sequence b′1, b
′
2, . . . of states such that c →1 b′1 →1

b′2 . . . and, for some subsequence b1, b2, . . . of b′1, b
′
2, . . . , d = limi→∞ bi . For each finite i ≥ 1, for

some finite j ≥ i , c �j bi . So, by the finite case shown above, c →1 bi . Thus, {b1, b2, . . .} ⊆ Sc,
where Sc is the set of states straight-line reachable from c. Since Sc is closed by Lemma 2.11, it
contains all its limit points, so d ∈ Sc as well, i.e., c→1 d. �

Finally, the previous lemmas can be combined to show that at most a constant number of straight
line segments (depending on the CRN) are required to reach from any state to any other reachable
state. In fact, this holds even for states that are only�∞ss reachable.

Theorem 2.14. If c �∞ss d, then c �m+1 d, where m = min{|Λ|, |R |}. Additionally, there is a
constant K , depending only on the CRN, so the path from c to d can be chosen so the total flux of all
reactions along the path is less than K ‖d − c‖.

Proof. First, without loss of generality, we can consider the reduced CRN where we remove all
of the reactions that are not used with positive flux in the given path from c to d. By Lemma 2.10,
we can find a state c′ such that c�m c′ and [c′] = P(c). We now show that we can “scale down”
the path c�m c′ such that no reaction occurs more than in the original path c� d, allowing us
to complete the path to d using Lemma 2.13.

First consider the finite case, where c �k d for k < ∞. We make the following general obser-
vation about finite paths: Let ρ ∈ Γl be any finite path with segments given by the flux vectors
u1 . . . ul , and let Fρ,α be the total flux through the reaction α along ρ, i.e.,

Fρ,α =

l∑
i=1

ui (α ).

Then, if ρ = λρ1 + (1 − λ)ρ0, then

Fρ,α = λFρ1,α
+ (1 − λ)Fρ0,α

.
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Let σ ∈ Γm be the path from c to c′, let σ 0 ∈ Γ0 ⊆ Γm be the trivial path staying at c, and let
γ ∈ Γk be the given path from c to d. We can find some small ε > 0 such that

εFσ ,α < Fγ,α

for all reactions α ∈ R. As a result, letting γ ′ = εσ + (1 − ε )σ 0, we see that

Fγ ′,α = εFσ ,α + (1 − ε )Fσ 0,α = εFσ ,α < Fγ,α .

Let a be the state reached via γ ′ (in particular c�m a). Since a = εc′ + (1 − ε )c and [c′] = P(c)
for the reduced CRN, we also have that [a] = P(c). Thus, all reactions α of the reduced CRN are
applicable at a, and by Lemma 2.13, the final straight line from a can be defined by the flux vector
uα = Fγ,α − Fγ ′,α , so a +Mu = d. This shows that a→1 d, so c�m+1 d, proving the theorem for
the case of finitely many segments.

Now suppose that c �∞ss d, and let γ ∈ Γ∞ be the path c →1
u1

c1 →1
u2

c2 . . . that starts at c

and has an infinite subsequence of states b1, b2, . . . converging to to d. Because we have assumed
without loss of generality that every reaction α occurs with positive flux along γ , we know that

∞∑
i=1

ui (α )

is positive (although it might be infinite). As a result, there is some finite Nα such that

Nα∑
i=1

ui (α ) > 0.

LetN = maxα ∈R Nα be the number of line segments required for each reaction to have had positive
flux. The truncation of γ to a path with N segments from c to cN is then a path γN where every
reaction α occurs with positive flux. By applying the first part of the argument, we can find a state
a with [a] = P(c) so c�m a and a →1 cN . But then because cN �∞ss d, we see that a�∞ss d, so
by Lemma 2.13, we see that a→1 d. As a result, we conclude that c�m+1 d.

To see that we can bound the total flux along the path from c to d, first note that by taking ε
small enough, we can guarantee both that the total flux along γ ′ is bounded by ‖d − c‖ and that

‖a − c‖ = ‖MFγ ′ ‖ < ‖d − c‖.
By the triangle inequality, this implies that ‖a − d‖ < 2‖d − c‖. Now by applying Lemma D.4, we
see that there’s some constant C depending only on the CRN so the flux vector u of the straight
line from a to d can chosen with ‖u‖ < 2C‖d − c‖. Taking K = 2C + 1, we see that the flux along
the whole path c�m a→1 d is bounded above by K ‖d − c‖. �

Note that Theorem 2.14 immediately implies that �∞ and �∞ss are the same relation, since
c�∞ss d implies c�m+1 d implies c�∞ d.

Although the full power of Theorem 2.14 is useful later in Theorem E.1, the most important
consequence of Theorem 2.14 is the following result, which we will use repeatedly:

Corollary 2.15. If c� d, then c�m+1 d, wherem = min{|Λ|, |R |}.

Proof. This follows from Theorem 2.14 and the fact that c� d implies c�∞ss d. �

Corollary 2.15 will allow us to assume without loss of generality that there are a constant num-
ber of line segments between any two states, simplifying many arguments. For example, it is not
obvious that the relation�∞ is transitive, since one cannot concatenate two infinite sequences.
However, since two finite sequences of segments can be concatenated, the following corollary is
immediate:
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Corollary 2.16. The relation� is transitive.

The goal of the reachability relation is to capture “what could happen” in chemical reaction net-
works independently of rates. Thus, it is natural to satisfy several properties: The relation should
be reflexive (true for�, since x�0 x) and transitive (Corollary 2.16). Further, the relation should
be additive in the intuitive sense that the presence of additional molecules cannot entirely prevent
reactions from happening (although in a kinetic model it could effectively slow down reactions
due to competition); formally, if x� y, then x + c� y + c for any state c. Additivity is a crucial
property of the more standard notion of discrete CRN reachability, used for example in many cases
to prove impossibility results for those systems [1, 2, 7, 11, 25]. We also employ additivity of�
for impossibility results, for example, in the proofs of Lemmas 5.30 and 5.31.11

While satisfying these properties is a good start for justifying the reasonableness of �, it is
natural to wonder whether there are some “reasonable” rate laws that segment-reachability fails
to capture, i.e., perhaps some CRN rate law would take x to y even though x �� y. In Section 2.4,
we define an apparently much more general notion of reachability (Definition 2.22) that captures
all commonly studied rate laws, while still respecting the fundamental semantics of reactions. We
prove that our reachability relation is in fact identical to it, i.e., x can reach to y under this notion
if and only if x� y (Theorem 2.27 and Lemma 2.26).

2.4 Generality of Segment Reachability

In this section, we justify that our notion of reachability via straight lines actually corresponds
to the most general notion of “being able to get from one state to another,” restricted only by the
non-negativity of concentrations, reaction stoichiometry and the need for catalysts—as long as
we maintain the causal relationships between the production of species. This notion of reachabil-
ity admits “time-varying” rate laws where reactions occur according to some arbitrary schedule,
which captures situations such as solutions that are not well-mixed, or where physical parameters,
such as temperature, change in some arbitrary way. The main result of this section, Theorem 2.27,
formalizes this idea and justifies calling segment-reachability simply “reachability” in the rest of
this article.

We begin with a review of mass-action kinetics, the most commonly used rate law in chemistry
and show the (physically and intuitively obvious but mathematically subtle) features that make it
consistent with segment reachability. We then generalize rate-law trajectories to arbitrary “valid
rate schedules” and prove that these are exactly captured by segment-reachability.

A CRN with positive rate constants assigned to each reaction defines a mass-action ODE (or-

dinary differential equation) system with a variable for each species, which represents the
time-varying concentration of that species. We follow the convention of upper-case species names
and lower-case concentration variables. Each reaction contributes one term to the ODEs for each
species produced or consumed in it. The term from reaction α appearing in the ODE for x is the
product of: the rate constant, the reactant concentrations, and the net stoichiometry of X in α (i.e.,
the net amount of X produced by α , negative if consumed). For example, the CRN

X + X
k1→C

C + X
k2→C + Y

11Another property of� that we use extensively is scale-invariance: If x � y, then λx � λy for any λ ≥ 0, which is
essentially responsible for the convexity of Lemma 2.7. This does not hold for discrete CRN reachability when λ < 1, even
when the scaled discrete states are well-defined, e.g., the reaction X + X → Y is applicable in state x = {2X } but not in
state 0.5x = {1X } in the discrete model.
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corresponds to ODEs:

dx/dt = −2k1x
2 − k2cx , (2.1)

dc/dt = k1x
2, (2.2)

dy/dt = k2cx , (2.3)

where k1,k2 are the rate constants of the two reactions.
Given a CRN C = (Λ,R), let A(d) : RΛ

≥0 → RR
≥0 be the rates of all the reactions in state d as

given by the mass-action ODEs. Given an assignment of (strictly) positive rate constants, and an
initial state c, the mass-action trajectory is a function ρ : [0, tmax) → RΛ

≥0, where tmax ∈ R≥0 ∪ {∞},
such that ρ is the solution to dρ/dt = M ·A(ρ (t )) with ρ (0) = c, where tmax is the maximum time,
typically∞, for which the solution is defined on all of [0, tmax). Although beyond the scope of this
article, mass-action ODEs are locally Lipschitz, so a CRN admits exactly one mass-action trajectory
for a fixed collection of rate constants and initial state c. Note that for some CRNs (e.g., 2X → 3X ),
the solution of the ODEs goes to infinite concentration in finite time,12 and for such CRNs, tmax is
finite.

Definition 2.17. Fix an assignment of positive mass-action rate constants. Let c, d be two states.
We say d is mass-action reachable (with respect to the rate constants) from c if the associated mass
action trajectory ρ obeys ρ (0) = c and either ρ (t ) = d for some finite t ≥ 0 or limt→∞ ρ (t ) = d.13

To prove Theorem 2.27, we need to introduce the notion of a siphon from the Petri net literature.
This notion will be used, as well, to prove negative results in Section 5.5.

Definition 2.18. Let C = (Λ,R) be a CRN. A siphon is a set of species Ω ⊆ Λ such that, for all
reactions 〈r, p〉 ∈ R, [p] ∩ Ω � ∅ =⇒ [r] ∩ Ω � ∅, i.e., every reaction that has a product in Ω also
has a reactant in Ω.

The following lemma, due to Angeli, De Leenheer, and Sontag [5], shows that this is equivalent
to the notion that “the absence of Ω is forward-invariant” under mass-action: If all species in Ω are
absent, then they can never again be produced (under mass-action).14 For the sake of completeness,
we give a self-contained proof in Appendix A.

Lemma 2.19 ([5], Proposition 5.5). Fix any assignment of positive mass-action rate constants. Let
Ω ⊆ Λ be a set of species. Then Ω is a siphon if and only if, for any state c such that Ω ∩ [c] = ∅ and
any state d that is mass-action reachable from c, Ω ∩ [d] = ∅.

12Indeed, the mass-action ODE corresponding to the CRN 2X → 3X is dx

dt
= x 2, which is solved by x (t ) = 1

C−t
, where

C = 1/x (0). This goes to infinity as t approaches C .
13Note that a more general definition would say d is mass-action reachable from c if there exist positive rate constants
such that the trajectory starting at c passes through or approaches d. Note, however, that this relation is not transitive: For
some CRNs, c reaches to d under one set of rate constants, and d reaches to x under another set of rate constants, yet no
single assignment of rate constants takes the CRN from c to x.
14It is obvious in the discrete CRN model, and in an intuitive physical sense, that if producing a species initially absent
causally requires another species also initially absent and vice versa, then neither species can ever be produced. However,
it requires care to prove this for mass-action ODEs. Consider the CRN 2X → 3X . The corresponding mass-action ODE
is dx/dt = x 2, and has the property that starting with x (0) = 0, it cannot become positive, i.e., the only solution with
x (0) = 0 is x (t ) = 0 for all t ≥ 0. However, the very similar non-mass-action ODE dx/dt = x 1/2 has a perfectly valid
solution x (t ) = t 2/4, which starts at 0 but becomes positive, despite the fact that at t = 0, dx/dt = 0. (Though x (t ) = 0 for
all t ≥ 0 is another valid solution.) The difference is that mass-action polynomial rates are locally Lipschitz (have bounded
rates of change, unlike x 1/2, whose derivative goes to∞ as x → 0) and so are guaranteed to have a unique solution by the
Picard-Lindelöf theorem.
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We show that the same holds true for segment-reachability. Due to the discrete nature of
segment-reachability, the proof is more straightforward than that of Lemma 2.19. It follows the
same essential structure one would use to prove this in the discrete CRN model: If the siphon Ω
is absent, then no reaction with a reactant in Ω can be the next reaction to fire, so by the siphon
property, no species in Ω is produced in the next step.

Lemma 2.20. Let Ω ⊆ Λ be a set of species. Then Ω is a siphon if and only if, for any state c such
that Ω ∩ [c] = ∅ and any state d such that c� d, Ω ∩ [d] = ∅.

Proof. To see the forward direction, suppose Ω is a siphon, let c be a state such that [c]∩Ω = ∅,
and let d be such that c� d. By Theorem 2.15, there is a finite pathγ such that thenth line segment
is between states xn−1 (γ ) and xn (γ ), with c = x0 (γ ) and d = xm+1 (γ ). Assume inductively that
[xn−1 (γ )] ∩ Ω = ∅; then no reaction applicable at xn−1 (γ ) has reactants in Ω. So, by definition of
siphon, no reaction applicable at xn−1 (γ ) has products in Ω, and [xn (γ )]∩Ω = ∅ as well. Therefore,
d ∩ Ω = ∅. This shows the forward direction.

To show the reverse direction, suppose that Ω is not a siphon. Then there is a reaction α = 〈r, p〉
such that [p]∩Ω � ∅, but [r]∩Ω = ∅. Then from any state c such that [c] = Λ \Ω (i.e., all species
not in Ω are present), all reactants of α are present, so α is applicable. Running α produces S , hence
results in a state d such that c� d with Ω ∩ [d] � ∅, since S ∈ Ω. �

Recall that P(c) represents the set of species producible from state c. The next lemma shows
that the set of species that cannot ever be produced from a given state is a siphon.

Lemma 2.21. If c is any state, then Ω = Λ \ P(c) is a siphon.

Proof. By Lemma 2.10 there is a state c′ that is segment reachable from c with all of the species
in P(c) present. If Ω were not a siphon, then there would be a reaction α that produced a species
S of Ω such that all of the reactants of α would be contained in Λ \ Ω = P(c). This implies that α
would be applicable at c′, so S would be in P(c), giving a contradiction. �

The main result of this section is Theorem 2.27, which justifies that our (seemingly limited)
notion of reachability via straight lines is actually quite general. To state the theorem, we define
a very general notion of “reasonable rate laws,” which are essentially schedules of rates to assign
to reactions over time. All known rate laws, such as mass-action, Michaelis-Menten, Hill function
kinetics, as well as our own nondeterministic notion of adversarial rates following straight lines
(segment reachability, Definition 2.3), obey this definition. (We justify this below explicitly for
mass-action and Definition 2.3, but it is straightforward to verify in the other cases.)

Recall that R is the set of all reactions in some CRN, and Λ is the set of its species.

Definition 2.22. A rate schedule is a function f : R≥0 → RR
≥0. We interpret fα (t ) to be the rate, or

instantaneous flux, at which reaction α occurs at time t . Given a state c ∈ RΛ
≥0, we say f is a valid

rate schedule starting at c if:

(1) (Total reaction fluxes are well-defined). For each α ∈ R, fα is (locally Lebesgue) inte-

grable: for each time t ≥ 0, Fα (t ) =
∫ t

0
fα (t )dt is well-defined and finite (although

∫ ∞
0

fα (t )dt

may be infinite). Let F(t ) be the vector in RR
≥0 whose α coordinate is Fα (t ), which represents

the total amount of each reaction flux that has happened by time t .15

15An alternative to Definition 2.22 would start with a differentiable trajectory ρ and total flux F (related via ρ (t ) = M ·
F(t ) + c) and define f = dF/dt . However, requiring differentiable ρ and F rules out many natural cases, such as the rate
schedules implicit in segment-reachability (Definition 2.2), whose trajectories are not differentiable at cusp points bi in
between straight lines and whose rate schedules are not even continuous.
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Define the trajectory ρ : R≥0 → RΛ
≥0 of f starting at c for all t ≥ 0 by ρ (t ) = M · F(t ) + c,

which represents the state of the CRN at time t .
(2) (Positive-rate reactions require their reactants present). For all times t ≥ 0 and reac-

tions α ∈ R, if fα (t ) > 0, then α is applicable in ρ (t ).
(3) (Absence of siphons is forward-invariant). For every siphon Ω ⊆ Λ, if Ω ∩ [ρ (t )] = ∅

for some time t , then Ω ∩ [ρ (t ′)] = ∅ for all times t ′ ≥ t .

Definition 2.23. We say that a state d is reachable from a state c by a valid rate schedule if there is
a valid rate schedule f starting at c, with trajectory ρ, such that either d = ρ (tf ) for some tf < ∞,
or d = limt→∞ ρ (t ). In the first case, we say that d is reached in finite time.

We note that because f is Lebesgue integrable, by Reference [43, Theorem 6.11], Fα (t ) is locally
absolutely continuous.

Although Definition 2.22 explicitly constrains the states ρ (t ) to be non-negative, the non-
negativity of ρ (t ) actually follows from condition (2).16

Conditions (2) and (3) may appear redundant, but in fact each can be obeyed while the other is
violated.

For example, consider the reaction α : X → 2X , starting in the state {0X }, with invalid rate
schedule fα (t ) = t , with trajectory ρX (t ) = t2/2. Since the rate fα (0) is 0, this vacuously satisfies (2)
at time 0, and, since ρX (t ) > 0 for t > 0 (X is present at all positive times), (2) is also satisfied
for positive times. However, (3) is violated, since {X } is a siphon absent at time 0 but present at
future times. This example also demonstrates why condition (3) is required to satisfy our intuitive
understanding of reasonable rate laws respecting “causality of production” among species: With
only the reaction X → 2X , the only way to produce more X is already to have some X .

To see the other case, take reactions α : X → C and β : C + X → C + Y , starting in state
{1X , 1Y , 0C}. Consider the invalid rate schedule fα (t ) = 0 for all t , fβ (t ) = 1 for 0 ≤ t ≤ 1/2, and
fβ (t ) = 0 for t > 1/2, i.e., run only β , until X is half gone. This violates (2), since β occurs without
its reactant C present. However, the only set of species absent along this trajectory is {C}, which
is not a siphon, since reaction α hasC as a product but not a reactant, so (3) is vacuously satisfied.

The next lemma shows that the most commonly used rate law, mass-action, gives a valid rate
schedule and trajectory according to Definition 2.22. Recall that A(ρ (t )) : RΛ

≥0 → RR
≥0 represents

the rates of all the reactions in state ρ (t ) as given by the mass-action ODEs. For instance, for our
mass-action example at the beginning of this section, the function f (t ) = A(ρ (t )) corresponds to
the ODEs of Equations ((2.1))–((2.3)) when written as dρ/dt = M · f (t ).

Lemma 2.24. Suppose we fix an assignment of positive mass-action rate constants for a given CRN
as well as an initial state c. Suppose that the associated mass action trajectory ρ is defined for all time.
Then f : R≥0 → RR

≥0 such that f (t ) = A(ρ (t )) is a valid rate schedule whose trajectory is ρ.

16Consider a rate schedule that takes concentrations negative: for instance, starting with 1X and applying reaction α :
X → Y with Fα (t ) = 2 for some t > 0. To see that this contradicts condition (2) when we naturally generalize notation
[c] to possibly negative c (for any c ∈ RΛ, [c] = {S ∈ Λ | c(S ) > 0}), suppose that ρ

X
(t ′) < 0 for some species X at

some time t ′. Let t0 be the supremum of all the times less than t ′ where ρ
X

(t ) ≥ 0. Recall Fα (t ) is a locally absolutely
continuous (and therefore continuous) function. Thus, ρ (t ) is also a continuous function so ρ

X
(t0) ≥ 0. Moreover, for all

t0 < t < t ′, we know that ρ
X

(t ) < 0 by our choice of t0. So, by condition (2) fα (t ) = 0 for all α where X is a reactant,
and therefore (recall M(X , α ) means the net consumption of X in reaction α )

ρ
X

(t ′) = ρ
X

(t0) +
∑
α ∈R

M(X , α )

∫
t
′

t0

fα (t )dt ≥ ρ
X

(t0) ≥ 0,

a contradiction, since ρ (t ′) was assumed to be negative. See also Reference [26, Proposition 2.8], where the term strict is
equivalent to condition (2).
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Proof. First, note that because ρ (t ) is a real analytic function, A(ρ (t )) is necessarily also real
analytic, and therefore locally integrable, so condition (1) of Definition 2.22 is satisfied. Let ρ̃ (t )
be the trajectory associated with the rate schedule f . Then, because ρ (t ) is a solution to the mass-
action ODEs with initial state c,

ρ̃ (t ) = c +M

∫ t

0
f (t )dt

= c +

∫ t

0
M · A(ρ (t ))dt

= c +

∫ t

0

d

dt
ρ (t )dt

= c + (ρ (t ) − c)

= ρ (t ).

Because A(ρ (t )) can only be positive when ρX (t ) > 0 for all reactantsX of α , we see that fα (t ) > 0
implies that [ρ̃ (t )] = [ρ (t )] contains all of the reactants of α . Therefore, condition (2) of Defini-
tion 2.22 is satisfied. Finally, condition (3) of Definition 2.22 is satisfied by Lemma 2.19. �

We say that a rate schedule f : R≥0 → RR
≥0 is finite if there is t0 ≥ 0 such that f (t ) = 0 for all

t ≥ t0, i.e., reactions eventually stop occurring. The following observation is straightforward to
verify, showing that the concatenation of two valid rate schedules, with the first finite, is also a
valid rate schedule.

Observation 2.25. If f , g are valid rate schedules, with f finite such that f (t ) = 0 for all t ≥ t0,
then h defined by h(t ) = f (t ) for 0 ≤ t ≤ t0 and h(t ) = g(t − t0) for t > t0, is a valid rate schedule.

The next lemma shows essentially that our definition of segment-reachability creates a valid
rate schedule.

Lemma 2.26. If c� d, then d is reachable from c by a valid rate schedule.

Proof. Since c� d, by Theorem 2.15, we know that c�m+1 d. Using induction and Observa-
tion 2.25, it suffices to verify that the rates defined by the straight-line reachability relation c→1

u d

describe a valid rate schedule, since the rate schedules given by�m+1 are simply concatenations
of these. Define f : R≥0 → RR

≥0 by f (t ) = u(α ) for 0 ≤ t < 1 and f (t ) = 0 for all t ≥ 1. (In other
words, for one unit of time, run the reactions at constant rates described by u.) Then f is piecewise
constant, and therefore integrable, so condition (1) of Definition 2.22 is satisfied. Next note that for
all t ≥ 1, since fα (t ) = 0 for all α , condition (2) of Definition 2.22 holds vacuously, and condition (3)
holds because ρ (t ) = ρ (t ′) for any t ′ > t . Now let t < 1. Observe that

ρ (t ) = c +M

∫ t

0
f (T )dT

= c +M

∫ t

0
u(T )dT

= c + tMu

= (1 − t )c + t (c +Mu)

= (1 − t )c + td.
Since d is a state (and thus non-negative on all species) and t < 1, every species present with
positive concentration in c is present with positive concentration in ρ (t ). Thus, all reactions appli-
cable at c are also applicable at ρ (t ), so condition (2) of Definition 2.22 is also satisfied. Finally by
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Lemma 2.20, we see that condition (3) of Definition 2.22 is satisfied and therefore f is a valid rate
schedule starting at c. Since ρ (1) = d, we see that d is reachable from c by a valid rate schedule. �

Finally, we have the main result of this section, which shows that segment reachability is as
general as any valid rate schedule.

Theorem 2.27. Given two states c and d, d is reachable from c by a valid rate schedule if and only
if c� d.

Proof. Lemma 2.26 establishes the reverse direction. To see the forward direction, let f be the
valid rate schedule from c to d, and define F and ρ for f as in Definition 2.22.

First, suppose d is reached in finite time tf ∈ R≥0, i.e., d = ρ (tf ).
We say that a reaction α occurs with positive flux if Fα (tf ) > 0. Let Rρ = {α ∈ R | Fα (tf ) > 0} be

the reactions that occur with positive flux along the trajectory ρ, and let Λρ = {S ∈ Λ | ρS (t ) >
0 for some 0 ≤ t ≤ tf } be the species that are present with positive concentration at some point
along the trajectory ρ.

Consider removing species not in Λρ and reactions not in Rρ . We claim that the pair (Λρ ,Rρ )
is a well-defined CRN, as defined in Section 2.1, because every reactant and product in Rρ is in
Λρ . To see why, let S ∈ Λ \ Λρ (i.e., ρS (t ) = 0 for all 0 ≤ t ≤ tf ), let RS be the reactions with
S as a reactant, and let PS be the reactions with S as a product; we must show RS ∩ Rρ = ∅ and
PS ∩ Rρ = ∅. By Definition 2.22 part (2), no reaction in RS has positive flux, so RS ∩ Rρ = ∅. Since
no reaction in RS has positive flux, no reaction in PS can have positive flux or else S would be
produced with no reaction to consume it, contradicting ρS (tf ) = 0, so PS ∩ Rρ = ∅.

Now, we claim that every species in this reduced CRN (Λρ ,Rρ ) is segment-producible from c,
i.e., P(c) = Λρ . If not, then Ω = Λρ \P(c) is non-empty. Letting S∗ be some element of Ω, we know
that S∗ has positive concentration along ρ by our construction of the reduced CRN. However, by
Lemma 2.21, Ω is a siphon. Since c is zero on Ω and S∗ ∈ Ω, this violates Definition 2.22 part (3).

Since every species in our reduced CRN is segment-producible from c, by Lemma 2.10, we can
construct a state c′ segment-reachable from c where all of the species in the reduced CRN are
present simultaneously. Since every reaction in Rρ is applicable at c′, the remainder of the proof
is similar to the proof for the finite case of Theorem 2.15: by “scaling down” the path from c to c′,
there is a state a such that c �m a (where m = min{|Λρ |, |Rρ |}), [a] = P(c) = Λρ , and a →1 d.
Thus, c�m+1 d. This handles the case that d is reached in finite time.

However, suppose that d is not reached from c in finite time, but instead d = limt→∞ ρ (t ). This
case is similar to the proof of the infinite case of Theorem 2.15. By definition ofRρ , for each reaction
α ∈ Rρ , Fα (t ) > 0 for some t > 0. As a result, there is some finite tα such that Fα (tα ) > 0. Let
tpos = max{tα | α ∈ Rρ }, noting that F(tpos) > 0 for all α ∈ Rρ , i.e., each reaction has occurred by
time tpos. Let b = ρ (tpos).

By applying the first part of the argument, we can find a state a with [a] = P(c) such that
c �m a and a →1 b. Now let dt = ρ (t ) for every time t > tpos. Because ρ restricted to [tpos, t]
gives a finite trajectory from b to dt , we know by the first part of the argument that b � dt , so
a � dt . By Lemma 2.13, we see that a →1 dt . Since d = limt→∞ dt , we see by Lemma 2.11 that
a→1 d. As a result, we conclude that c� d. �

Recall mass-action trajectories correspond to valid rate schedules by Lemma 2.24. Thus, Theo-
rem 2.27 implies the following corollary, which intuitively says that if a state is reachable via a
mass-action trajectory (even in the limit of infinite time), then it is segment-reachable.17

17Although Lemma 2.24 has the precondition that the mass-action trajectory be defined for all time, states reached in
finite time by diverging mass-action CRNs can also be segment-reached. For example, for the CRN 2X → 3X (with rate
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Corollary 2.28. Fix an assignment of positive mass-action rate constants for a given CRN. Let
c, d be two states such that d is mass-action reachable from c. Then c� d.

3 STABLE COMPUTATION

We now use segment-reachability (Definition 2.3) to formalize what it means for a CRN to stably
compute a function (Definition 3.2). The notion of stable computation is motivated by, and is es-
sentially identical to, the definition of stable computation for population protocols and discrete
CRNs [7, 18].

In this section, we justify stable computation by arguing for necessity: CRCs that we can rea-
sonably call “rate-independent” must obey stable computation. Thus, stable computation is imme-
diately useful for negative (impossibility) results: Showing a function cannot be stably computed
implies it is not rate-independent in the desired intuitive sense. In the next section (Section 4),
we address the other (sufficiency) direction and connect stable computation to another notion of
computation based on convergence in the limit as t → ∞ that provides very strong guarantees
for the desired rate-independent behavior of our constructions. Based on this connection, stable
computation is taken as the primary definition of rate-independent computation in this work.

First, to formally define what it means for such a CRN to compute a function in any sense,
we single out some aspects of the CRN as semantically meaningful. Formally, a chemical re-

action computer (CRC) is a tuple C = (Λ,R, Σ, Γ), where (Λ,R) is a CRN, Σ � Λ, written as
Σ = {X1, . . . ,Xk },18 is the set of input species, and Γ � Λ \ Σ is the set of output species. Input
and output values can also be encoded indirectly via combinations of species. An important en-
coding for the purposes of this article will be the dual-rail representation (discussed in Section 5),
which can handle both positive and negative quantities and allows for easier composition of CRN
“modules.” Since we focus on single-output functions, we will have either a single output species
Γ = {Y }, or in the case of dual-rail computation, two output species Γ = {Y+,Y−}.

We now define output-stable states and stable computation. Intuitively, output-stable states are
“ideal” output states for rate-independent computation: The output is correct and no rate law can
change it. Stable computation is then defined with respect to output-stable states by requiring
that the correct output-stable state remains reachable no matter what “devious rate laws” may
do. Although it is not obvious that the notion of output-stable states remains pertinent when
transferred from the discrete setting to the continuous one (see the discussion at the beginning of
Section 4), Theorem 3.3 below and the subsequent results of Section 4 show that output stability
remains crucial.

Definition 3.1. A state o ∈ RΛ
≥0 is output-stable if, for all o′ such that o� o′, o � Γ = o′ � Γ, i.e.,

once o is reached, no reactions can change the concentration of any output species.

Note that for a single output species Y , Definition 3.1 says that o(Y ) = o′(Y ) for all o′ such
that o� o′. For the sake of brevity and readability, subsequently, we will state many definitions
and formal theorem/lemma statements assuming there is only a single output species Y . In each
case, there is a straightforward modification of the definition or result, so it applies to CRCs with
multiple output species as well.

constant 1) starting in {1X }, which diverges as t → 1, all states on the trajectory prior to time t = 1 are segment reachable:
For each such state, we can construct a valid rate schedule that obeys mass-action until reaching that state and then is
constant for all later time.
18We assume a canonical ordering of Σ = {X1, . . . , Xk } so a vector x ∈ Rk

≥0 (i.e., an input to f ) can be viewed equivalently

as a state x ∈ RΣ
≥0 of C (i.e., an input to C). Note that we have defined valid initial states to contain only the input species

Σ; other species must have initial concentration 0. Our results would change slightly if we relaxed this assumption—see
Section 6.2.
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Definition 3.2. Let f : Rk
≥0 → R≥0 be a function and let C be a CRC. We say that C stably

computes f if, for all x ∈ Rk
≥0, for all c such that x� c, there exists an output-stable state o such

that c� o and o(Y ) = f (x).

To extend our results to functions with l outputs, we can compute l separate functions fj :
Rk
≥0 → R≥0 for 1 ≤ j ≤ l with l independent CRCs and then combine them into a single CRC with

l output species. In particular, we can use reactions like Xi → X 1
i + · · · + X l

i to copy input Xi to
each of the l CRCs.

We now capture in a theorem the intuition that for a CRC to compute a function rate-
independently in any reasonable sense, it must stably compute the function. The theorem says
that if a CRC does not stably compute, then, no matter what you do, an adversary can “fight back”
and make the output substantially (ϵ) wrong. The proof uses the definitions of partial states and
partial reachability, as well as Theorem E.1, which are in Appendix E.

Theorem 3.3. Suppose a CRC does not stably compute f : Rk
≥0 → R≥0. Then there is ϵ > 0, input

state x and state z reachable from x such that for all o reachable from z there is o′ reachable from o

such that ��o′(Y ) − f (x)�� > ϵ .

Proof. We prove the contrapositive. Suppose that for all ϵ > 0, for any given input state x and
state z such that x � z, there exists a state o such that z � o and for all o′ such that o � o′,��o′(Y ) − f (x)�� ≤ ϵ .

For any input state x and any z reachable from x, first, we argue that there is an infinite sequence
of states x1/2, x1/3, x1/4, . . . such that x� z� x1/2 � x1/3 � x1/4 � . . . , and for all n ≥ 2, for
all o′ such that x1/n � o′, ��o′(Y ) − f (x)�� ≤ 1/n. In other words, there is a sequence of states we
can visit, where the adversary has less and less freedom to push the output away from the target
value f (x). This is true by induction on n, choosing ϵ = 1/(n + 1), z = x1/n and o = x1/(n+1) in the
above assumption.

By the definition of x1/n , we see that |x1/n (Y ) − f (x) | ≤ 1/n, so x1/n (Y ) converges to f (x) as
n → ∞. Let Δ = {Y } and let p ∈ RΔ

≥0 be the partial state with p(Y ) = f (x). Then, we see that
z�∞ss p via (x1/i )∞i=2, so by Theorem E.1, we can find a partition of Λ into Λb and Λu with Y ∈ Λb,
a state y (d in Theorem E.1), and a subsequence (x′i )i of

(
x1/n

)
n so z � y and the subsequence

(x′i ) has the property that x′i (S ) → ∞ for all S ∈ Λu and x′i (S ) → y(S ) for all S ∈ Λb. Note that
because Y ∈ Λb, we have y(Y ) = limi→∞ x′i (Y ) = f (x).

We now claim that y is also output-stable, which is sufficient to prove the lemma as follows:
Since y is correct (y(Y ) = f (x)) and reachable from z, an arbitrary state reachable from input state
x, this establishes that the CRC in fact stably computes f .

Suppose for the sake of contradiction that y is not output-stable. Then there is some y′ with
y� y′ and |y′(Y ) − y(Y ) | > ϵ . Let zi = x′i − y/2 + y′/2. Because x′i (S ) → y(S ) for all S ∈ Λb and
x′i (S ) → ∞ for all S ∈ Λu, there is some N so for all i > N , we have x′i ≥ y/2. Then, by additivity
of�, for all i > N ,

x′i = (x′i − y/2) + y/2� (x′i − y/2) + y′/2 = zi ,

where |zi (Y ) − x′i (Y ) | = |y′(Y ) − y(Y ) |/2 > ϵ/2. Since (x′i ) is a subsequence of
(
x1/n

)
, if we take i

large enough so x′i is x1/ni
with 1/ni < ϵ/4, then we see that

|zi (Y ) − f (x) | ≥ |zi (Y ) − x′i (Y ) | − |x′i (Y ) − f (x) | ≥ ϵ/2 − 1/ni > 1/ni ,

but zi is reachable from x1/ni
, which by definition can only reach states z with |z(Y )− f (x) | ≤ 1/ni ,

giving a contradiction. �

In some places, we will talk about CRCs with multiple output species representing multi-valued
functions:
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Corollary 3.4. Suppose a CRC does not stably compute f : Rk
≥0 → Rl

≥0. Then there is an ϵ > 0,
an input state x and a state z reachable from x so for all o reachable from z there is o′ reachable from
o such that |o′(Yi ) − f (x)i | > ϵ for some 1 ≤ i ≤ l .

Proof. This is similar to the proof of Theorem 3.3, but make Δ = {Y1, . . . ,Yl } the set of all
output species. �

4 FAIR COMPUTATION

In the discrete model of CRN kinetics, if the set of states reachable from any input state is finite
(i.e., the molecular counts are bounded as a function of the input state), then stable computation
as in Definition 3.2 (the correct output-stable state is always reachable) is equivalent to the con-
dition that the CRC is correct under standard stochastic kinetics with probability 1 (the correct
output state state is actually reached) [7]. In the continuous CRN model, however, it might seem
that the idea of stable computation is not strong enough to achieve intuitively “rate-independent”
computation. There are at least two reasons for the concern.

First, it is possible that the output-stable state is always reachable but the mass-action trajectory
does not converge to it. For example, consider the following CRC stably computing the identity
function f (x ) = x :

X + X → Y + Y

Y + X → X + X ,

with X as the input species and Y as the output species. From any reachable state, we can reach
the output-stable state with all X converted to Y . However, the mass-action trajectory converges
to a dynamic equilibrium with k2/(2k1 + k2) fraction of X , where k1, k2 are rate constants of the
two reactions.19 This shows that in general, showing that a CRC stably computes is not sufficient
to claim that it computes rate-independently in any intuitive sense.

The second difficulty lies with the notion of output-stable states. While the notion of output-
stable states is natural for discrete CRNs where we want the system to actually reach that state to
end the computation, convergence to the output-stable state in continuous CRNs will typically be
only in the limit t → ∞. For example, consider the following CRC:

X → M + Z

M → Y

Z + Y → Z +M

Z → ∅.

The CRC stably computes f (x ) = x , since from any reachable state, we can reach the output-stable
state o with f (x ) amount of Y by converting any remaining X to M , converting any remaining
M to Y and completely draining Z . Note that o is output-stable, since without Z , Y cannot be
converted back to M . Further, under mass-action kinetics (for any choice of rate constants), the
CRC converges to o, since as Z drains, the rate of the third reaction converges to 0. However, at
every finite time 0 < t < ∞ in the mass-action trajectory, since Z is present, the state with zero

19The discrepancy between stable computation and correctness under mass-action kinetics shows a major difference be-
tween the discrete and continuous CRN models. In the example above, with n total molecules, the discrete CRN model
does a random walk on the number of X that is biased toward the dynamic equilibrium point nk2/(2k1 + k2). Despite the
bias upward when X is below this value, there is always a positive probability to decrease X , so with probability 1, X will
eventually reach 0.
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amount of Y is reachable, so an adversary could substantially perturb the output. Thus, one would
not call this CRC rate-independent to adversarial perturbations.

While in the previous section, we argued that stable computation is necessary for an intuitive
notion of rate-independent computation, the examples above seem to suggest that it is not sufficient
and that basing rate-independent computation entirely on stable computation could be ill-founded.

In this section, we develop an alternative approach to defining a very strong notion of “rate-
independent” computation not based on stable computation, an approach we term “fair computa-
tion.” The approach is based on delineating a very broad class of rate laws, possibly adversarial,
that still lead to convergence to the correct output. Based on the previous section (Theorem 3.3),
it is not surprising that CRCs that fail to stably compute also fail to fairly compute. What is more
surprising, however, is that there is a strong connection in the other direction for a class of CRCs
(feedforward)—for these CRCs stable computation implies fair computation. All our constructions
will be in this class; thus, we obtain very strong rate-independence guarantees in the positive
results part of this work. Combined with the results of the previous section, stable computation
can thus be used as an easy-to-analyze proxy for proving both positive and negative results on
rate-independent computation.

Intuitively, a CRC is said to fairly compute if it converges to the correct output for a broad class
of rate laws, with the class being broad enough to capture adversarial behavior. To define the broad
class of rate laws for fair computation, we start with the previously defined notion of valid rate
schedules, which captures a very general class of chemical kinetics. Nonetheless, we must add an
additional condition. In our original definition (Definition 2.22), the reaction rate fα can vary ar-
bitrarily over time as long as α is applicable whenever fα is positive. There is no requirement the
other way—that a reaction must occur with positive rate if it is applicable—allowing for a greater
variety of paths (e.g., segment paths with zero flux through some reactions). But, since there is
nothing to prevent an adversary from “starving” reactions when they are applicable, preventing
convergence, we now need to impose an additional requirement that we call fairness. We formal-
ize this as a strictly positive lower bound H on the reaction rate at states where the reaction is
applicable. In particular, while the reaction rate vector f (t ) is a function of the time t , H(c) is a
function of the state c. We allow this lower bound to be violated occasionally, so long as it holds
for an infinite measure of time. (For example, a fair rate schedule could starve applicable reactions
on the unit time intervals [0, 1], [2, 3], [4, 5], . . .)

Definition 4.1. Suppose f : R≥0 → RR
≥0 is a valid rate schedule starting at c. We say that f is

fair if there is a continuous function H : RΛ
≥0 → RR

≥0 such that, for all reactions α ∈ R, Hα (c) > 0
if and only if α is applicable at c, and for some subset of times Tα ⊆ R≥0 of infinite measure,
fα (t ) ≥ Hα (ρ (t )) for all t ∈ Tα .

Requiring that the lower bound H be continuous as a function of the state helps to ensure that
if H converges to zero then the point of convergence is a static state (no reaction is applicable): By
continuity, the point of convergence must have H = 0, which implies that no reaction is applicable
by Definition 4.1. Note also that Tα can depend on α ; for example, Definition 4.1 allows for Tα

andTβ to be disjoint for different reactions α , β (i.e., whenever we run one applicable reaction, we
starve another applicable reaction).

All typically considered rate laws such as mass-action, Michaelis-Menten, Hill function kinetics,
and so on, are fair. We explicitly note this for mass-action CRNs with non-divergent trajectories:

Lemma 4.2. The valid rate schedule for mass-action CRNs, as defined in Lemma 2.24, is fair if
well-defined for all times.
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Proof. In the notation of Lemma 2.24, take H = A. Because we always assume that the rate
constants of a mass action system are positive, Aα (c) is positive if and only if α is applicable at c.
Also, Lemma 2.24 shows that fα (t ) = Aα (ρ (t )) for all t ≥ 0, so certainly fα (t ) ≥ Aα (ρ (t )). �

CRCs satisfying the definition below converge to the correct output despite actions of a very
powerful adversary. Intuitively, the adversary is allowed to control the rates of all the reactions
throughout the computation as long as applicable reactions are not entirely prevented from
occurring.

Definition 4.3. We say a CRC fairly computes a function f : Rk
≥0 → R≥0 if, for every input state

x, every fair rate schedule starting at x with trajectory ρ obeys limt→∞ (ρ (t ) � {Y }) = f (x).

There is a natural generalization of the above definition when f : Rk
≥0 → Rl

≥0 has multiple
outputs: Require the trajectory ρ to obey limt→∞ (ρ (t ) � {Y1, . . . ,Yl }) = f (x), where {Y1, . . . ,Yl }
is the set of all output species.

We now want to establish the connection between fair computation and stable computation.
The following lemma shows that in one direction, the connection is immediate: Fair computation
is at least as strong as stable computation.

Lemma 4.4. Any CRC that fairly computes a function f also stably computes f .

Proof. We will prove the contrapositive: Suppose that a CRC C does not stably compute f . We
want to show that C does not fairly compute f , and to do this, we will find an initial state x and a
fair rate schedule f starting at x so the trajectory ρ does not obey limt→∞ (ρ (t ) � {Y }) = f (x).

Since we assumed that C does not stably compute f , by Theorem 3.3, we know that there is
some ϵ > 0 and some input state x and state z so x� z and every o reachable from z there is an o′

reachable from o with |o′(Y )− f (x) | > ϵ . In other words, it is possible to reach a state z, after which
the output can be always made incorrect by some amount ϵ . By Lemma 2.26, we know that there
is a valid rate schedule f ′ that reaches from x to z in finite time t0. Set f = f ′ on the interval [0, t0).

Now choose some positive rate constant kα > 0 for every reaction α , and on the interval
[t0, t0 + 1), set f equal to the mass-action rate schedule corresponding to the rate constants kα and
initial state z (this is a valid rate schedule by Lemma 2.24). By Theorem 2.27, we know that the
state o that is reached at time t0+1 is segment reachable from z, so by the definition of z there must
be some o′ with o� o′, where |o′(Y ) − f (x) | > ϵ . Applying Lemma 2.26 again, we see that there
is a valid rate schedule that reaches from o to o′ by time t1, so set f equal to this rate schedule on
[t0 + 1, t1).

Alternating a mass-action rate schedule with an adversarial rate schedule in this way, we
can find a sequence of times t0, t1, . . . ∈ R≥0 so limn→∞ tn = ∞ and a valid rate schedule f so
the associated trajectory ρ satisfies |ρ (tn ) (Y ) − f (x) | > ϵ for every n ≥ 1. This proves that
limt→∞ (ρ (t ) � {Y }) � f (x). Furthermore, by construction, we know that on every interval
[tn , tn + 1) the rate schedule f is equal to the mass-action rate schedule with fixed rate constants
kα . Since

⋃
n∈N[tn , tn + 1) has infinite measure, Lemma 4.2 then shows that f is fair. Since f is a

fair rate schedule failing to converge to the correct output, C does not fairly compute f . �

It is natural to wonder if the converse of Lemma 4.4 holds, i.e., whether every CRC that stably
computes f also fairly computes f . This is not true in general, but the following section shows
that it is true for the CRNs we will construct.

4.1 Feedforward CRNs

As we saw before, for general CRCs it is possible that the output-stable state is always reachable
but the mass-action trajectory does not converge to it, for instance, the reactions X + X → Y + Y
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andY+X → X+X discussed at the start of Section 4. Thus, stable computation does not necessarily
imply that the system will eventually produce the correct output. Since the mass-action trajectory
defines a fair rate schedule (Lemma 4.2), the above example shows that some CRCs stably compute
a function but do not fairly compute it; i.e., the converse of Lemma 4.4 does not hold for all CRCs.

In contrast to the above example, the feedforward property defined in this section allows us to
bridge the definition of stable computation, defined in terms of reachability (what could happen),
to convergence (what will happen), defined in terms of fair rate schedules.

Recall that a reaction α = 〈r, p〉 produces a species S if r(S ) < p(S ) and consumes S if r(S ) > p(S ).
We say a CRN is feedforward if the species can be ordered so every reaction that produces a species
also consumes another species earlier in the ordering. Formally:

Definition 4.5. A CRN C = (Λ,R) is feedforward if Λ = {S1, . . . , Sn } and its stoichiometry matrix
satisfies M(i, j ) > 0 =⇒ ∃(i ′ < i )M(i ′, j ) < 0.

Intuitively, we want to avoid situations, as in the example above, where the output-stable state
is always reachable but the trajectory does not converge to it. This can happen if the trajectory
does not converge or converges to a dynamic equilibrium where reactions balance each other. In
contrast, the total flux of reactions in a feedforward CRN must be bounded, because there cannot
be a complete “cycle” among the species that balance consumption with production.

We start with the following simple observation: General CRNs can have reactions such as A +
B → A + 2B +C that do not consume any reactant, and such CRNs clearly have infinite total flux.
Luckily, by our definition of a CRN, any reaction α must either produce or consume some species,
and if α produces a species, the feedforward condition guarantees that α consumes some other
species.

Observation 4.6. Every reaction in a feedforward CRN consumes some species.

The following lemma will used in formalizing the idea that a feedforward CRN cannot con-
verge to a dynamic equilibrium (like the example beginning this section). General CRNs can have
reactions that undo each other’s effect (for instance, A → B and B → A). For such CRNs, we
cannot bound total flux as a function of the change in species concentration—indeed, concentra-
tions might remain constant but the two reactions canceling each other can have arbitrarily large
flux—allowing for a dynamic equilibrium. In contrast, for feedforward CRNs, the following lemma
shows that total flux can be bounded by the change in state:

Lemma 4.7. For a feedforward CRN, for each reaction α , there is a constant Kα independent of u

such that ‖Mu‖ < ϵ implies that uα < Kαϵ .

Proof. We show by induction that we can find such a Kβ for every reaction β that consumes
a species. First suppose β is a reaction that consumes the first species S1 in the feedforward or-
dering. By the feedforward property, no reaction can produce S1, so for each reaction α , we have
M(S1,α ) ≤ 0. Thus,

|(Mu) (S1) | =
∑
α ∈R
|M(S1,α ) |uα .

Since the left-hand side of this equation is less than ϵ , and the right-hand side is a sum of non-
negative terms, each term on the right-hand side must be less than ϵ . Since β consumes S1,
|M(S1, β ) | ≥ 1, so uβ < ϵ and we can take Kβ = 1. This establishes the base case for S1.

Now assume inductively that we have found an appropriate constant Kα for every reaction
α that consumes a species Si for i < n, and suppose that β consumes Sn . Then, because
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|(Mu) (Sn ) | < ϵ , we know that

∑
α ∈R

M(Sn,α )<0

|M(Sn ,α ) |uα < ϵ +
∑
α ∈R

M(Sn,α )>0

|M(Sn ,α ) |uα < ϵ ·

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 +

∑
α ∈R

M(Sn,α )>0

|M(Sn ,α ) |Kα

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where for the second inequality we have used the feedforward condition to conclude that every
reaction producing Sn must consume Si for some i < n, and therefore have flux bounded by Kαϵ
by inductive assumption. Like before, the leftmost term in the inequality is a sum of non-negative
terms, so if we take

Kβ = 1 +
∑
α ∈R

M(α,Sn )>0

|M(Sn ,α ) |Kα ,

then uβ < Kβϵ . This shows that an appropriate Kβ exists for every reaction β that consumes a
species. But by Observation 4.6, every reaction consumes a species, so we are done. �

Finally, we are ready to prove the main lemma about feedforward CRNs, a consequence of
which (Lemma 4.9) establishes the connection between stable computation and convergence to
the output-stable state for feedforward CRNs.

Lemma 4.8. Consider a feedforward CRN, and suppose f is a valid rate schedule. Then the corre-
sponding trajectory ρ converges to a state y in the limit time t → ∞. Further, if f is fair, then y is
static, i.e., no reaction is applicable in y.

Proof. First, define

K = 1 +max
α ∈R

∑
Si ∈Λ

max(0,M(Si ,α )).

In particular, K is larger than the sums of the positive entries in the columns of M. Intuitively, we
will assign a “mass” to each species, and K will be the ratio of the masses assigned to consecutive
species in the feedforward ordering. By makingK sufficiently large, we can guarantee that running
any reaction has the effect of decreasing the total mass V (x) of any state x. Formally, define V :
RΛ
≥0 → R≥0 as

V (x) =
n∑

i=1

x(Si )

K i
.

Recall fα (t ) is the rate of reaction α at time t . Note that whenever ρ (t ) is differentiable20

d

dt
V (ρ (t )) =

n∑
i=1

d

dt

(ρ (t )) (Si )

K i

=

n∑
i=1

1

K i

∑
α ∈R

M(Si ,α )fα (t )

=
∑
α ∈R

n∑
i=1

1

K i
M(Si ,α )fα (t )

=
∑
α ∈R

Cα fα (t ),

20By Lebesgue’s fundamental theorem of calculus [43, Theorem 6.11, Theorem 6.14], applied to fα (t ), we know that ρ (t )
is locally absolutely continuous, and almost everywhere differentiable with derivative M · f (t ).
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where Cα =
∑n

i=1
1

K i M(Si ,α ). For any fixed α , let i0 be the smallest i such that M(Si ,α ) � 0, i.e.,
Si0 is the first species in the feedforward ordering that is produced or consumed by α . By the
feedforward condition, M(Si0 ,α ) ≤ −1, i.e., Si0 is consumed. As a result,

Cα =
1

K i0

��
�M(Si0 ,α ) +

1

K

n∑
i=i0+1

M(Si ,α )

K i−i0−1
��
�

<
1

K i0

(
M(Si0 ,α ) + 1

)
≤ 0.

Now, we show that the total flux through all of the reactions is finite. To fix notation, let us write
Fα for the total flux through reaction α as t → ∞, i.e.,

Fα =

∫ ∞

0
fα (t )dt .

Since every Cα is negative, for any fixed reaction α0,

d

dt
V (ρ (t )) =

∑
α ∈R

Cα fα (t ) ≤ Cα0 fα0 (t )

so by integrating21 both sides

lim
t→∞

V (ρ (t )) −V (c) ≤ Cα0

∫ ∞

0
fα0 (t )dt = Cα0 Fα0 .

If Fα0 were infinite, then because Cα0 < 0, we see that V (ρ (t )) would be unbounded below. Since
ρ (t ) always remains in RΛ

≥0 where V (ρ (t )) ≥ 0, we conclude that Fα0 must be finite.
If we write vα ∈ RΛ for the α-column of M (i.e., vα (S ) = M(S,α )), then∫ ∞

0

�����
dρ (t )

dt

�����dt =
∫ ∞

0

������
∑
α ∈R

vα fα (t )
������dt

≤
∫ ∞

0

∑
α ∈R

fα (t ) |vα |dt

=
∑
α ∈R
|vα |

∫ ∞

0
fα (t )dt =

∑
α ∈R
|vα |Fα

< ∞.

In other words, ρ has finite length.
Let us now show that ρ having finite length implies that it converges. For any states x, z define

d (x, z) = ‖x − z‖ as the Euclidean distance from x to z. It suffices to show

For all ϵ > 0 there is some M ∈ R≥0 such that for all t , s > M , d (ρ (t ), ρ (s )) < ϵ . (∗)

Indeed, taking this as given, let xk = ρ (k ). Then the sequence (xk )∞k=1 is a Cauchy sequence in
RΛ, so it must converge to some state y. Moreover, we actually know that ρ (t ) converges to some
state y as t → ∞: For any ϵ > 0 there is some N such that for all n > N , we know d (xn , y) < ϵ/2

21Note that
∫ ∞

0
d

dt
V (ρ (t ))dt = limt→∞V (ρ (t )) − V (c) by the fundamental theorem of calculus [43, Theorem 6.10]. To

use the fundamental theorem of calculus, we must ensure that V (ρ (t )) is locally absolutely continuous—this follows from
the fact that the trajectory ρ (t ) is defined in terms of a (Lebesgue) integral.
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and there is some M such that for all t , s > M , we know d (ρ (t ), ρ (s )) < ϵ/2. In particular, taking
m to be an integer larger than N and M , we see that

d (ρ (t ), y) ≤ d (ρ (t ), xm ) + d (xm , y) < ϵ

for any t > M . This shows that, taking (∗) for granted, ρ must converge to y.
Let us now prove (∗). Proceed by contradiction, so suppose that there is some ϵ > 0 such that

for all M ∈ R≥0, there exists some t > s > M such that d (ρ (t ), ρ (s )) ≥ ϵ . Then take M1 = 0, and
label the points we get by this assumption t1, s1. Then for any n > 1, take Mn = tn−1 and label the
next pair of points tn , sn . Then∫ ∞

0

�����
dρ (t )

dt

�����dt ≥
∞∑

i=1

∫ ti

si

�����
dρ (t )

dt

�����dt
≥
∞∑

i=1

d (ρ (ti ), ρ (si ))

≥
∞∑

i=1

ϵ = ∞,

where the second inequality uses the absolute continuity of ρ. This gives a contradiction, estab-
lishing (∗), which proves that ρ (t ) converges to some state y as t → ∞.

Now let us assume that f is fair and establish that y is a static state. If not, then there is some
reaction α applicable at y, so Hα (y) = C > 0. By the continuity of Hα , there is some δ so Hα (x) >
C/2 for all x ∈ RΛ

≥0 with ‖x− y‖ < δ . Since ρ converges to y, this implies that Hα (ρ (t )) > C/2 for
all t greater than some t0.

For any measurableU ⊆ R≥0, let μ (U ) ∈ R≥0 ∪ {∞} denote the measure ofU . LettingTα be the
subset of R≥0 as in Definition 4.1 where fα (t ) ≥ Hα (ρ (t )) for t ∈ Tα and μ (Tα ) = ∞, we see that
fα (t ) > C/2 for every t ∈ Tα ∩ [t0,∞). Also note that μ (Tα ∩ [t0,∞)) = ∞. By the contrapositive

direction of Lemma 4.7, we see that this implies that ‖ d ρ (t )
dt
‖ > C/2Kα for every t ∈ Tα ∩ [t0,∞).

As a result, ∫ ∞

0

�����
dρ (t )

dt

�����dt ≥
∫

Tα∩[t0,∞)

�����
dρ (t )

dt

�����dt ≥ μ (Tα ∩ [t0,∞))
C

2Kα
= ∞,

contradicting the finite length of ρ. �

By applying Lemma 4.8 to a feedforward CRN that also stably computes a function, we obtain
the following result, which states that such a CRN will reach the correct output under any fair rate
schedule, from any state reachable from x. This is almost a converse to Lemma 4.4; however, note
that unlike in Lemma 4.4, the CRC is required to be feedforward.

Lemma 4.9. Any feedforward CRC that stably computes a function f also fairly computes f .

Proof. By Lemma 4.8, under any fair rate schedule, the CRC converges from the initial state x

to a static state y. By Theorem 2.27, since y is reachable from x under a valid rate schedule, we
know x � y. Since y is static, it is output-stable. Then, because the CRC stably computes f and
x� y, we must have y(Y ) = f (x) or else it would have stabilized to an incorrect output. So, the
CRC fairly computes f . �

We point out that the feedforward property is not a necessary condition for stable computation
to coincide with fair computation. For example, consider the non-feedforward CRC with reactions
X + X →R + Y and R + R→X . This CRC stably computes f (x ) = (2/3)x [52], and it can also be
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shown that it fairly computes f . The key property it shares with feedforward CRCs is Lemma 4.7:
A large flux through its reactions implies a large change in state.

Lemma 4.10. If the CRC is feedforward, then the mass-action trajectory ρ : R≥0 → RΛ
≥0 as defined

in Lemma 2.24 is defined at all times.

Proof. By the Escape Lemma [36, Lemma 9.19] it suffices to show that ρ remains in a compact
subset of RΛ

≥0 for all times when it is defined. Let V (x) be as in the proof of Lemma 4.8. We know

by the argument of Lemma 4.8 that d
dt
V (ρ (t )) ≤ 0, so for all t , we know that ρ (t ) lies in the subset

of RΛ
≥0 where V (x) ≤ V (ρ (0)). Since V is a linear function with strictly positive coefficients, this

is a compact subset of RΛ
≥0. �

Since mass-action yields a valid rate schedule (Lemma 2.24) that is fair (Lemma 4.2) and defined
at all times for feedforward CRNs (Lemma 4.10), the following corollary is immediate. The corollary
states that for a CRC stably computing a function f , the CRC will also converge to the correct
output under mass-action kinetics, no matter the positive rate constants, and even if an adversary
can first “steer” the CRC to some reachable state before letting mass-action kinetics take over.

Corollary 4.11. Consider a feedforward CRC stably computing a function f . Then for any input
state x, for any state z reachable from x, for any choice of reaction rate constants, the mass-action
trajectory starting at z is defined for all times and converges to an output-stable state y in the limit
t → ∞ such that y(Y ) = f (x).

5 THE COMPUTATIONAL POWER OF STABLE COMPUTATION

This section presents the main results of our article, delineating the computational power of stable
computation. As justified in Sections 3 and 4, we use stable computation as our primary notion
of rate-independence. In Section 5.1, we discuss the input and output representation of negative
quantities and the composition of CRN modules via the “dual-rail representation.” In Section 5.2,
we summarize our results on the computational power of stable computation for direct and dual-
rail representations. These results are proven in subsequent sections, with positive (Section 5.3
for dual-rail, Section 5.4 for direct) and negative directions (Section 5.4 for direct, Section 5.6 for
dual-rail) separately.

5.1 Dual-rail Representations

The direct concentration-to-value mapping articulated in Definition 3.2 is a straightforward way
to represent non-negative input and output values. However, there are two reasons why an al-
ternative, albeit more complex, encoding may be preferred. First, since concentrations cannot be
negative, computable functions are restricted to non-negative domain and range. Second, as ex-
plained below, the direct output encoding frustrates the composition of smaller CRC modules into
larger CRCs. The dual-rail representation we introduce in this section is a natural way to solve
both problems.

A natural way to represent a (possibly negative) real value in chemistry is to encode it as the
difference of two concentrations. Formally, let f : Rk → R be a function. A function f̂ : R2k

≥0 →
R2
≥0 is a dual-rail representation of f if, for all x+, x− ∈ Rk

≥0, if (y+,y−) = f̂ (x+, x−), then f (x+ −
x−) = y+ − y−. In other words, f̂ represents f as the difference of its two outputs y+ and y−, and
it works for any input pair (x+, x−) whose difference is the input value to f . We can define a CRC
to stably compute such a function in the same manner as in Section 3, but having 2k input species
Σ = {X+1 ,X−1 ,X+2 ,X−2 , . . . ,X+k ,X

−
k
} and two output species Γ = {Y+,Y−}.
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Definition 5.1. We say that a CRC stably dual-computes f : Rk → R if it stably computes a
dual-rail representation f̂ : Rk

≥0 × Rk
≥0 → R≥0 × R≥0 of f .

This definition implies that, for all x = (x+, x−) ∈ R2k
≥0, for all c such that x� c, there exists an

output-stable state o such that c� o and o(Y+) −o(Y−) = f (x+ −x−). Note that a single function
has an infinite number of dual-rail representations; we require only that a CRC exists to compute
one of them to say that the function is stably dual-computable by a CRC.

Besides making negative values chemically representable, we will see that the dual-rail repre-
sentation plays a key role in allowing the composition of smaller CRC modules into a larger CRC.
A key concept to enable such composition is output-obliviousness:

Definition 5.2. A CRC C = (Λ,R, Σ, Γ) is output-oblivious if none of its output species Γ is a
reactant in any reaction. In other words, for every α = 〈r, p〉 ∈ R and Y ∈ Γ, r(Y ) = 0.

To recognize the problem with composition of the direct representation (Definition 3.2), define
the composition of two CRCs as the CRC that has the union of their reactions, relabeling the output
species of the upstream CRN to be the input species of the downstream one [17, Definition 16].
Then with the direct output representation, output-obliviousness is necessary for composability
but provably restricts computational power [17]: (1) Composing two stably computing CRCs sta-
bly computes the function composition if and only if the upstream CRC is output-oblivious (except
in trivial cases). Intuitively, the downstream CRC can interfere with the upstream computation by
prematurely consuming the output. (2) An output-oblivious CRC can only stably compute “super-
additive” functions. For example, any CRC stably computing the function f (x1,x2) = x1 −x2 must
necessarily be able to consume its output species, since a state with more than the desired amount
of output is reachable by additivity (e.g., state with x1 amount of Y ).

Our results imply that the dual-rail representation allows composition without sacrificing com-
putational power. In particular, our dual-rail constructions are all output-oblivious and thus com-
posable by concatenation, and our negative results apply to dual-rail CRCs whether or not they
are output-oblivious. To see roughly why the dual-rail representation helps with composition, con-
sider the f (x1,x2) = x1 − x2 function above. We can now compute this function with an output-
oblivious (and therefore composable) CRC by producing Y− to decrease the value of the output,
without consuming any output species.

Recall fair computation (Definition 4.3). We define dual-rail fair computation analogously.

Definition 5.3. We say a CRC fairly dual-computes a function f : Rk → R if it fairly computes a
dual-rail representation of f .

Since dual-rail computation is defined by a CRC that directly computes a dual-rail representation
function, Lemmas 4.4 and 4.9 imply the analogous results for dual-rail:

Lemma 5.4. If a CRC fairly dual-computes a function f : Rk → R, then it stably dual-computes f .

Proof. The proof is similar to the proof of Lemma 4.4, except one uses Corollary 3.4 in the place
of Theorem 3.3. �

Lemma 5.5. If a feedforward CRC stably dual-computes a function f : Rk → R, then it fairly
dual-computes f .

Proof. The proof is the same as Lemma 4.9, since a static state is output-stable regardless of
how many output species there are. �
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5.2 Statement of Main Results

Below, we summarize our results about the computational power of stable computation, which we
prove in subsequent subsections. First, we formally define the relevant classes of functions that
will correspond to direct and dual-rail stable computation:

Definition 5.6. A function f : Rk → R is rational linear if there exist a1, . . . ,ak ∈ Q such that
f (x) =

∑k
i=1 ai x(i ). A function f : Rk → R is rational affine if there exist a1, . . . ,ak , c ∈ Q such

that f (x) =
∑k

i=1 ai x(i ) + c , i.e., f is a rational constant c plus a rational linear function.

We note that rational linearity has the equivalent characterization that f is linear and maps
rational inputs x ∈ Qn to rational outputs.

Definition 5.7. A function f : Rk → R is piecewise rational linear (affine) if there is a finite set
of partial rational linear (affine) functions f1, . . . , fp : Rk � R, with

⋃p
j=1 dom fj = R

k , such that,
for all j ∈ {1, . . . ,p} and all x ∈ dom fj , f (x) = fj (x). In this case, we say that f1, . . . , fp are the
components of f .

Definition 5.8. A function f : Rk
≥0 → R≥0 is positive-continuous if, for all U ⊆ {1, . . . ,k }, f is

continuous on the domain

DU =
{

x ∈ Rk
≥0

��� (∀i ∈ {1, . . . ,k }) x(i ) > 0 ⇐⇒ i ∈ U
}
.

In other words, f is continuous on any subset D ⊂ Rk
≥0 that does not have any coordinate

i ∈ {1, . . . ,k } that takes both zero and positive values in D.
The following theorems are the main results of this article, exactly characterizing the functions

stably computable with direct and dual-rail representation of inputs and outputs, and showing
the equivalence between fair computation and stable computation. Furthermore, although non-
feedforward CRCs do exist to compute functions in this class, the theorem shows that feedforward
CRCs suffice to compute all such functions.

Theorem 5.9. For a function f : Rk
≥0 → R≥0, the following are equivalent:

(1) f is fairly computable by a CRC.
(2) f is stably computable by a CRC.
(3) f is positive-continuous piecewise rational linear.
(4) f is stably computable by a feedforward CRC.
(5) f is fairly computable by a feedforward CRC.

Proof. (1) implies (2) is Lemma 4.4. (2) implies (3) is Lemma 5.38. (3) implies (4) is Lemma 5.16.
(4) implies (5) is Lemma 4.9. (5) implies (1) is obvious. �

The following is the dual-rail analog of Theorem 5.9.

Theorem 5.10. For a function f : Rk → R, the following are equivalent:

(1) f is fairly dual-computable by a CRC.
(2) f is stably dual-computable by a CRC.
(3) f is continuous piecewise rational linear.
(4) f is stably dual-computable by a feedforward, output-oblivious CRC.
(5) f is fairly dual-computable by a feedforward, output-oblivious CRC.

Proof. (1) implies (2) is Lemma 5.4. (2) implies (3) is Lemma 5.40. (3) implies (4) is Lemma 5.15.
(4) implies (5) is Lemma 5.5. (5) implies (1) is obvious. �
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5.3 Positive Result: Continuous Piecewise Rational Linear Functions are Dual-rail

Computable

Definition 5.7 does not stipulate how complex the “boundaries” between the linear pieces of a
piecewise rational linear function can be. The boundaries can even be irrational in some sense,
e.g., the function f (x1,x2) = 0 if x1 >

√
2 · x2 and f (x1,x2) = x1 + x2 otherwise. However, if we

additionally require that f be continuous, then the following theorem of Ovchinnikov [42, Theorem
2.1] states that f has a particularly clean form, conducive to computation by CRCs.

Theorem 5.11 ([42], Theorem 2.1). Let D ⊆ Rk be convex. For every continuous piecewise affine
function f : D → R with components д1, . . . ,дp , there exists a family S1, . . . , Sq ⊆ {1, . . . ,p} such
that, for all x ∈ D, f (x) = maxi ∈{1, ...,q }minj ∈Si

дj (x).

Note that as a special case, the above result applies when f is continuous piecewise rational
linear. The above theorem as stated slightly generalizes the result due to Ovchinnikov [42] (by not
requiring D to be closed), although the proof technique is essentially the same. For completeness,
we provide the proof in Appendix B.

We use the theorem above to dual-compute continuous piecewise rational linear functions by
composing CRC modules for rational linear functions, min, and max. These modules are developed
in the following three lemmas:

Lemma 5.12. Rational linear functions are stably dual-computable by a feedforward, output-
oblivious CRC.

Proof. Let д : Rk → R be a rational linear function д(x) =
∑k

i=1 ai x(i ). By clearing denom-
inators, there exist n1, . . . ,nk ∈ Z and d ∈ Z+ such that д(x) = 1

d

∑k
i=1 ni x(i ). The following

reactions compute a dual-rail representation of д with input species X+1 , . . . ,X
+
k
,X−1 , . . . ,X

−
k

and
output species Y+,Y−. For each i such that ni > 0, add the reactions

X+i → niW
+

X−i → niW
−.

For each i such that ni < 0, add the reactions

X+i → |ni |W −

X−i → |ni |W +.

To divide the values ofW − andW + by d , add the reactions

dW + → Y+

dW − → Y−.

In particular, these reactions compute the dual-rail representation д̂ : R2k
≥0 → R2

≥0 where

д̂(x+1 , . . . ,x
+
k ,x

−
1 , . . . x

−
k ) = (y+,y−) = ��

�
1

d

⎡⎢⎢⎢⎢⎣
∑
ni >0

nix
+
i +

∑
ni <0

|ni |x−i
⎤⎥⎥⎥⎥⎦ ,

1

d

⎡⎢⎢⎢⎢⎣
∑
ni >0

nix
−
i +

∑
ni <0

|ni |x+i
⎤⎥⎥⎥⎥⎦
��
� .

It is straightforward to verify that д̂ really is a dual-rail representation of д. To see that the above
CRC stably computes д̂, define the functions p,q : RΛ

≥0 → R so

p (c) = c(Y+) +
1

d
c(W +) +

1

d

∑
ni >0

ni c(X+i ) +
1

d

∑
ni <0

|ni |c(X−i )

q(c) = c(Y−) +
1

d
c(W −) +

1

d

∑
ni >0

ni c(X−i ) +
1

d

∑
ni <0

|ni |c(X+i ).
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It is also straightforward to verify that both p and q are preserved by all of the reactions in the
above CRC. This shows that for all c and d with c � d, we have p (d) = p (c) and q(d) = q(c).
Now observe that from any state it is always possible to reach a state o that only has positive
concentrations of Y+ and Y− by executing the reactions above to completion in the order in which
they are listed. Such a state is evidently output-stable, so for any input state x and any c reachable
from x, there is an output-stable state o reachable from c. Furthermore, since o only has positive
concentrations of Y+ and Y−, we know that p (o) = o(Y+) and q(o) = o(Y−). Since o is reachable
from x, we see that

o(Y+) = p (o) = p (x) =
1

d

⎡⎢⎢⎢⎢⎣
∑
ni >0

nix
+
i +

∑
ni <0

|ni |x−i
⎤⎥⎥⎥⎥⎦

o(Y−) = q(o) = q(x) =
1

d

⎡⎢⎢⎢⎢⎣
∑
ni >0

nix
−
i +

∑
ni <0

|ni |x+i
⎤⎥⎥⎥⎥⎦ .

This shows that a dual-rail representation of any rational linear function can be stably dual-
computed by a CRC. Moreover, the CRC above is clearly output-oblivious, and it is feedforward
under the ordering X+1 < · · · < X+n < X−1 < · · ·X−n <W + <W − < Y+ < Y−. �

Lemma 5.13. Min is stably dual-computable by a feedforward, output-oblivious CRC.

Proof. The following reactions stably compute a dual-rail representation of min with input
species X+1 , X+2 , X−1 , X−2 and output species Y+, Y−.

X+1 + X
+
2 → Y+ (5.1)

X−1 → X+2 + Y
− (5.2)

X−2 → X+1 + Y
−. (5.3)

In particular this CRC computes the dual rail representation f̂ : R4
≥0 → R2

≥0 where

f̂ (x+1 ,x
+
2 ,x

−
1 ,x

−
2 ) = (y+,y−) = (min(x+1 + x

−
2 ,x

+
2 + x

−
1 ),x−1 + x

−
2 ).

It is straightforward to verify that f̂ is really a dual-rail representation of min. To see that the
above CRC stably computes f̂ ,22 define the functions p,q,δ : RΛ

≥0 → R so

p (c) = 2c(Y+) + c(X+1 ) + c(X+2 ) + c(X−1 ) + c(X−2 )

q(c) = c(Y−) + c(X−1 ) + c(X−2 )

δ (c) = c(X+1 ) − c(X−1 ) − c(X+2 ) + c(X−2 ).

It is also straightforward to verify that the above three functions are preserved by all of the
reactions in the given CRC. Note that by running 5.3, then 5.2, then 5.1 to completion it is always
possible to reach a state o with o(X−1 ) = o(X−2 ) = 0 and also o(X+1 ) = 0 or o(X+2 ) = 0. Such a
state is evidently output-stable, so for any input state x and any c reachable from x there is an
output-stable state o reachable from c. Since o is reachable from x, we know that

o(Y−) = q(o) = q(x) = x−1 + x
−
2 .

22This analysis of the CRC for the min function here is directly based on the definition of stable computation. Recently a
powerful framework has been developed [52], based on a wide class of so-called noncompetitive CRCs in which no species
consumed in a reaction is a reactant in another reaction (not even as a non-consumed catalyst). For such CRCs, the task
of proving correctness of stable computation is greatly simplified. Since the CRC computing min is noncompetitive, that
framework could be applied here to yield a simpler proof of correctness. We use our direct proof here for the sake of making
the current article self-contained.
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Now suppose without loss of generality that x+1 +x
−
2 ≤ x+2 +x

−
1 (the analysis of the other case is

similar). Then δ (x) ≤ 0, so o(X+1 )−o(X+2 ) = δ (o) ≤ 0. If o(X+1 ) were positive, then by the definition
of o, we would know that o(X+2 ) = 0, contradicting the fact that δ (o) ≤ 0. Thus, o(X+1 ) = 0 and

o(X+2 ) = −δ (o) = −δ (x) = x−1 + x
+
2 − x+1 − x−2 .

Finally, note that

p (x) = x+1 + x
+
2 + x

−
1 + x

−
2 = p (o) = 2o(Y+) + o(X+2 ) = 2o(Y+) + x−1 + x

+
2 − x+1 − x−2 .

Solving the above equation for o(Y+) shows that o(Y+) = x+1 + x−2 = min(x+1 + x−2 ,x
+
2 + x−1 ).

This shows that the above CRC stably computes f̂ . The CRN is clearly output-oblivious and it is
feedforward with the ordering X−1 < X−2 < X+1 < X+2 < Y− < Y+. �

Corollary 5.14. Max is stably dual-computable by a feedforward, output-oblivious CRC.

Proof. To stably compute a dual-rail representation of max, observe that it is equivalent to
computing the min function with the roles of the “plus” and “minus” species reversed (which
negates the value represented in dual-rail), because max(x1,x2) = −min(−x1,−x2). In other words,
use the reactions

X−1 + X
−
2 → Y−

X+1 → X−2 + Y
+

X+2 → X−1 + Y
+. �

Lemma 5.15. Let D ⊆ Rk be convex, and let f : D → R be a continuous piecewise rational linear
function. Then f is stably dual-computed by a feedforward, output-oblivious CRC.

Proof. By Theorem 5.11, we know that any such continuous piecewise rational linear function
can be represented as a composition of max, min, and rational linear functions. Moreover, the min
and max functions with two arguments can be composed in a tree of depth log l to compute the
minimum or maximum functions with input arity l . Since multiple rational linear functions may
use the same inputs, we also need a fan-out module (likewise feedforward, output-oblivious) that
copies a single input to multiple outputs:

X+1 → Y+1 + · · · + Y+p
X−1 → Y−1 + · · · + Y−p ,

where p is the number of linear components of the piecewise linear function f . Because
output-oblivious CRCs are composable, and because the composition of feedforward, output-
oblivious CRCs is again feedforward and output-oblivious, we can compose the CRCs from
Lemma 5.12, Lemma 5.13, and Corollary 5.14 to produce a feedforward, output-oblivious CRC that
computes f . �

Note that Lemma 5.15 applies for arbitrary convex domains D ⊆ Rk , which will be useful in
proving Lemma 5.16, where we take D to be a strict convex subset of Rk

≥0 in which no coordinate

takes both 0 and positive values in D. Since Rk is itself convex, it also establishes the “(3) implies
(4)” implication in the proof of Theorem 5.10.

5.4 Positive Result: Positive-continuous Piecewise Rational Linear Functions Are

Directly Computable

The following lemma is the direct stable computation analog of Lemma 5.15. Intuitively, it is proven
by using Lemma 5.15 to stably dual-compute 2k different continuous piecewise rational linear
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functions in parallel, one for each possible choice of which input species X1, . . . ,Xk are 0. A
separate computation determines which inputs are positive and selects the appropriate output.
Note that positive inputs may be discovered “piecemeal,” so the system must be robust to a con-
tinual updating of the decision. However, there is a monotonicity to this process that will make
consistent updating possible: Once an input species is discovered to be present, we know for sure
it is. (Whereas a species that appears to be absent simply may have not yet reacted.)

Lemma 5.16. Every positive-continuous piecewise rational linear function f : Rk
≥0 → R≥0 is stably

computable by a feedforward CRC.

Proof. The CRC will have input species X1, . . . ,Xk and output species Y+. (While it will be
helpful to think of a Y+ and Y− species, and during the computation the output will be encoded in
their difference, the output of the CRC is only the Y+ species as per direct computability.)

Let f : Rk
≥0 → R≥0 be a positive-continuous piecewise linear function. Since it is positive-

continuous, there exist 2k domains

DU =
{
x ∈ Rk

≥0 | (∀i ∈ {1, . . . ,k }) x(i ) > 0 ⇐⇒ i ∈ U
}
,

one for each subsetU ⊆ {1, . . . ,k }, such that f � DU is continuous. Define fU = f � DU . Since DU

is convex, by Lemma 5.15 there is a CRC CU computing a dual-rail representation f̂U : Rk
≥0×Rk

≥0 →
R×R of fU . By letting the initial concentration of the “minus” version of the ith input species X−i
be 0, we convert CU into a CRC that directly computes an output dual-rail representation of fU .

The intuition of the proof is as follows: The caseU = ∅ is trivial, as we will have no reactions of
the form ∅ → A for any species A, so if no species are initially present, then no species (including
Y+) will ever be produced; this is correct, since any linear function f obeys f (0) = 0. For each non-
emptyU , we compute fU independently in parallel by CRC CU , modifying each reaction producing
Y+ to produce an equivalent amount of speciesYU , which is specific toU . For each suchU there are
inactive and active “indicator” species JU and IU . In parallel, there are reactions that will activate
indicator species IU (i.e., convert JU to IU ) if and only if all species Xi are present initially for each
i ∈ U . These IU species will then counteract the effect of any CRC computing fU ′ for U ′ � U
by catalytically converting all Y+U ′ to Y− and all Y−U ′ to Y+. If U is the complete set of indices of
non-zero inputs, then only CRCs computing fU ′ for subsetsU ′ � U have produced any amount of
Y+, so eventually all of these will be counteracted by IU .

Formally, construct the CRC as follows. Let l = 2k−1−1. For each i ∈ {1, . . . ,k }, add the reaction
Xi → I {i } + JU1 +X

U1
i + JU2 +X

U2
i + · · ·+ JUl

+XUl

i ,whereU1,U2, . . . ,Ul are all subsets of {1, . . . ,k }
that are strict supersets of {i}. The extra versions XU1

i , . . . ,X
Ul

i of Xi are used as inputs to the
parallel computation of each fU . We generate the inactive indicator species from the input species
in this manner, because the CRC is not allowed to start with anything other than the input.

The indicator species are activated as follows: For each nonempty U ,U ′ ⊆ {1, . . . ,k } such that
U � U ′, add the reaction IU + IU ′ + JU∪U ′ → IU + IU ′ + IU∪U ′ .

For each nonempty U ⊆ {1, . . . ,k }, let CU be the CRC computing an output dual-rail represen-
tation of fU (i.e., dual rail on the output). Modify CU as follows: Rename the output species of
CU to Y+ and Y−, i.e., all parallel CRCs share the same output species. For each reaction produc-
ing the output species Y+, add the product Y+U (which is a species-specific to CU ) with the same
net stoichimetry. Similarly, for each reaction producing the output species Y−, add the product
Y−U with the same net stoichimetry. For instance, replace the reaction A + B → Y+ by the reaction
A+B → Y++Y+U , and replace the reactionA+Y+ → B+4Y+ by the reactionA+Y+ → B+4Y++3Y+U .
Therefore, the eventual amount of Y+U is equal to the total amount of Y+ produced by CU , and sim-
ilarly for Y−U and Y−. For eachU ′ ⊂ U , add the reactions IU +Y+U ′ → IU +Y

−, IU +Y−U ′ → IU +Y
+.
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Also, for each reaction in CU , add IU as a catalyst. This ensures that CU cannot execute any
reactions (and therefore cannot produce any amount of Y+ or Y−) unless all species Xi for i ∈ U
are present.

We observe that the dual-rail CRC described above (with output species Y+ and Y−) is output-
oblivious, as it involves the output species only as products of reactions. Further, the output value
is non-negative for any input. Thus, we can convert the dual-rail representation to the direct one
(Definition 3.2) with a single output species Y+ by adding the reaction Y+ + Y− → ∅.

To complete the proof, since the CRC of Lemma 5.15 is feedforward, we can confirm by inspec-
tion our modifications preserve the feedforward property as well. In particular, one should order
species within the CRN dual-computing fU before any species for supersets of U and after any
species for subsets of U . �

5.5 Negative Result: Directly Computable Functions Are Positive-continuous

Piecewise Rational Linear

5.5.1 Siphons and Output Stability. To characterize stable function computation for CRCs, we
will crucially rely on the notion of siphons, which we recall from Section 2.4, Definition 2.18.
Lemma 5.18 shows the underlying relationship between output stability and siphons.

Let C = (Λ,R, Σ, {Y }) be a CRC. We call a siphon Ω stabilizing if, for any state d, d � Ω = 0

implies that d is output-stable. In other words, “draining” Ω (removing all of its species) causes the
output to stabilize.

Lemma 5.17. If c is an output-stable state, then Ωc = Λ \ P(c) is a stabilizing siphon.

Proof. By Lemma 2.21, Ωc is a siphon for any state c. We show the contrapositive that if Ωc is
not stabilizing, then c is not output-stable. Suppose there is some particular state d with d � Ωc = 0

that is not output-stable, i.e., for some e such that d � e, we have d(Y ) � e(Y ). Because of
this, there must be some reaction α applicable at a state d′ reachable from d such that α changes
the amount of Y (in other words, MY ,α � 0). Since Ωc is a siphon absent in d, by Lemma 2.20,
d′ � Ωc = 0, so all reactants of α must be contained in P(c). By Lemma 2.10, we can find a state c′

such that c� c′ and [c′] = P(c). Since α is applicable at c′, we see that c is not output-stable. �

The next lemma shows the key property of siphons that we will use to reason about stably
computing CRC’s: that they characterize the output-stable states, i.e., the only way for the output
to stabilize is to drain some stabilizing siphon.

Lemma 5.18. There is a set of stabilizing siphons S such that a state c is output-stable if and only
if ∃Ω ∈ S such that c � Ω = 0.

Proof. Take S to be
{
Ωc ⊆ Λ | c is output-stable

}
, where Ωc = Λ \ P(c). By Lemma 5.17, each

Ω ∈ S is a stabilizing siphon, so if ∃Ω ∈ S with d � Ω = 0, then d is output-stable. However, if d is
some output-stable state, then by the definition of Ωd (the set of species that cannot be produced
from d), we have d � Ωd = 0. By our construction of S, we know that Ωd ∈ S. �

5.5.2 Linearity Restricted to Inputs Draining a Siphon. This section aims to prove that the func-
tion computed by C, when restricted to inputs that can drain a particular stabilizing siphon, is
linear. This is the first step establishing the “piecewise linear” portion of the “positive-continuous
piecewise rational linear” claims in Theorem 5.9.

Recall that Ψ, defined in Definition 2.4, is the space of all prepaths (i.e., the vector space in which
paths live), and Γ∞, defined in Definition 2.5, is the space of all paths (allowing infinitely many line
segments). We now define a map o that intuitively sends a path to the final state that it reaches.
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Lemma 5.19. The map o : Ψ → RΛ sending

γ �→ lim
n→∞

xn (γ )

is linear (recall xn (γ ), defined in Definition 2.4, is the state reached after traversing n segments along
γ ).

Proof. To check that o is a linear function, note that for any γ 0,γ 1 ∈ Ψ and λ ∈ R, we have

o(γ0 + λγ 1) = lim
n→∞

xn (γ 0 + λγ 1)

= lim
n→∞

xn (γ 0) + λxn (γ1)

= lim
n→∞

xn (γ 0) + λ lim
n→∞

xn (γ 1)

= o(γ0) + λo(γ1). �

Definition 5.20. Let Ω be a stabilizing siphon. Define Γ(Ω) to consist of paths γ ∈ Γ∞ such that
o(γ ) � Ω = 0.

These are the paths that converge to a state where a given stabilizing siphon is drained.

Lemma 5.21. Γ(Ω) is convex for each stabilizing siphon Ω.

Proof. Suppose that γ0 and γ 1 are in Γ(Ω) and let γλ = (1 − λ)γ 0 + λγ 1. By Lemma 2.7, we
know that γλ is in Γ∞. Moreover,

o(γλ ) = (1 − λ)o(γ0) + λo(γ1).

Since Ω is drained at both o(γ0) and o(γ1), we conclude that it must also be drained at o(γλ ), so
γλ ∈ Γ(Ω). �

Definition 5.22. Let

Σ(Ω) = {x ∈ RΛ
≥0

��� [x] ⊆ Σ, (∃o) x� o, and o � Ω = 0}

denote those input states from which the siphon Ω is drainable.

Lemma 5.23. Let f : Rk
≥0 → R≥0 be stably computed by a CRC C = (Λ,R, Σ, {Y }). Let Ω be a

stabilizing siphon. Then f restricted to Σ(Ω) is a linear function.

Proof. Recall Γ(Ω) from Definition 5.20, the map x0 from Definition 2.4, and the map o from
Lemma 5.19. First project Γ(Ω) to RΛ

≥0 × RΛ
≥0 by the map γ �→ (x0 (γ ), o(γ )). Let G ⊆ Rk+1 be the

further projection to the (k + 1)-dimensional subspace corresponding only to the input species
X1, . . . ,Xk and output species Y . G is the graph of the function y = f (x) restricted to inputs
x ∈ Σ(Ω). SinceG is the image of a convex set under a linear transformation, it is also convex. We
claim that G must be a subset of a k-dimensional hyperplane.

For the sake of contradiction, suppose not. Then there are k + 1 non-coplanar points inG. Since
G is convex, it contains the entire (k + 1)-dimensional convex hull H of these points. Since H is
a (k + 1)-dimensional convex polytope, it contains two different values of y corresponding to the
same value of x, contradicting the fact that only a single y value exists in all output-stable states
reachable from x. This establishes the claim thatG must be a subset of a k-dimensional hyperplane.

Since the graph of f is a subset of a k-dimensional hyperplane, f is an affine function. Since
there are no reactions of the form ∅ → . . ., Y cannot be produced from the initial state x = 0 (nor
can any other species), so f (0) = 0. Therefore, this hyperplane passes through the origin, so it
defines a linear function. �
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In Lemma 5.23, the reason that we restrict attention to a single output siphon Ω is that if different
output siphons are drained, then different linear functions may be computed by the CRC. For
example, X1 + X2 → Y computes f (x1,x2) = x1 if siphon {X2} is drained and f (x1,x2) = x2 if
siphon {X1} is drained. If a CRC stably computes, then an output-stable state is reachable from
any input state. Thus, by Lemma 5.18, from every input state some stabilizing siphon is drainable,
and the following corollary is immediate:

Corollary 5.24. Let f : Rk
≥0 → R≥0 be stably computed by a CRC. Then f is piecewise linear.

5.5.3 Positive-continuity. Ideally, to prove that the function stably computed by a CRC is
positive-continuous, we would like to prove the following: For any stabilizing siphon Ω, the set
Σ(Ω) of input states that can drain Ω is closed relative to the positive orthant. If that were true,
then we could use a fundamental topological result that if a function is piecewise continuous with
finitely many pieces (e.g., piecewise linear), and if the domain defining each piece is closed (with
agreement between pieces on intersecting domains), then the whole function is continuous. How-
ever, the above statement is not true in general. Consider the following counterexample:

X1 → C

X1 + X2 +C → C + Y .

If initially i(X1) > i(X2), then the stabilizing siphon {X2} is drainable, by producing (i(X1) −
i(X2))/2 of C via the first reaction (leaving an excess of X1 over X2 still), then running the second
reaction until X2 is gone to produce Y . Because X2 can only be consumed if C is produced, which
requires consuming a positive amount of X1, the set of inputs from which {X2} can be drained is
the non-closed set {i | i(X1) > i(X2)}. Note that the above CRC does not stably compute anything
because, starting from a state with i(X1) > i(X2), the first reaction could run until X2 exceeds X1

before starting the second reaction, which would imply that the amount of Y produced depends
on how much reaction 1 happens. It is still unclear whether such counterexamples exist for CRCs
stably computing some function that is not identically 0.

Instead of relying on Σ(Ω) being closed, we must make a more careful argument. In lieu of
working directly with the sets Σ(Ω), we consider “shifted” sets Σ̃(y,z) (Ω) (see Definition 5.28 below).
Each Σ̃(y,z) (Ω) is (possibly strictly) contained in the original Σ(Ω), but they still cover the set of
inputs. Crucially, we are able to show that the shifted sets Σ̃(y,z) (Ω) are closed, allowing us to apply
the argument at the start of this section to prove that every function stably computed by a CRC is
positive-continuous.

Definition 5.25. Let

X (Ω) =
{

x ∈ RΛ
≥0

��� (∃o) x→1 o and o � Ω = 0
}

denote those states from which siphon Ω is drainable via a single straight line segment.

Lemma 5.26. Let Ω be a siphon. Let a1, a2, . . . ∈ X (Ω) be a convergent sequence of states, where
a = limi→∞ ai . Suppose [a] = Λ. Then a ∈ X (Ω).

Proof. Consider the set P of γ = (x0, u) ∈ RΛ
≥0 × RR

≥0 such that o(γ ) ∈ RΛ
≥0 and o(γ ) � Ω = 0.

Note that reactions occurring with positive flux in u might not be applicable at x0. P is cut out by
a system of non-strict linear inequalities (in other words, it is a polyhedron). By Reference [53],
x0 (P ) is also a polyhedron, and is in particular closed.

Note that X (Ω) ⊆ x0 (P ) and x0 (P ) ∩ RΛ
>0 = X (Ω) ∩ RΛ

>0. The first relation follows, since if
x ∈ X (Ω), then the straight-line path draining Ω produces a γ ∈ P such that x0 (γ ) = x. The
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second relation holds, since if every species is present in x0 then every reaction is applicable at x0,
so any of the points γ ∈ P that project to x0 are valid paths that drain Ω.

Since a = limi→∞ ai , we have that for all but finitely many i , ai ∈ X (Ω) ∩RΛ
>0. As a result, these

ai are in x0 (P ), so a in in x0 (P ), too, since the set is closed. Since a ∈ x0 (P ) ∩ RΛ
>0, we conclude

that a ∈ X (Ω). �

Note that the hypothesis [a] = Λ is necessary. Otherwise, consider the reactionsA→ C ,A+B →
∅, and F + C → C , with ai (C ) = 0, ai (F ) = 1, ai (B) = 1, and ai (A) approaching 1 from above as
i → ∞ (whenceC � [a]). Then the siphon Ω = {A,B, F } is drainable from each ai by runningA→ C
until A and B have the same concentration, then running the other two reactions to completion.
However, a(A) = a(B), so running any amount of reaction A → C prevents reaction A + B → ∅
from draining B. Therefore, a � X (Ω) but ai ∈ X (Ω) for all i .

Definition 5.27. A pair (y, z) ∈ RΛ
≥0 × RΛ

≥0 of states is a full input pair if [y] = Σ, [z] = Λ, and
y� z.

Definition 5.28. If (y, z) is a full input pair and Ω is a stabilizing siphon, then define

Σ̃(y,z) (Ω) =
{
x ∈ RΛ

≥0 | [x] = Σ and ∀λ > 0 such that λy < x,

it is the case that x − λy + λz ∈ X (Ω)
}
.

Intuitively, in the CRC at the beginning of the section, the obstacle to the set Σ(Ω) being closed
for the siphon Ω = {X2} was that not all species were present initially: To drain Ω, you first need
to produce some (arbitrarily small) amount ofC , which leads to the requirement i(X1) > i(X2). To
fix this problem, Σ̃(y,z) (Ω) considers only the states that can drain Ω after having been “perturbed”
into a state where all species are present, where the full input pair (y, z) specifies how to perform
this perturbation.

To see how this works in the example CRC, let (y, z) be the full input pair where y = 1X1,
1X2, 0C, 0Y and z = {.25X1, .75X2, .5C, .25Y }. Then for an input state x = {aX1,bX2, 0C, 0Y }, λy < x

when λ < min(a,b). As a result, x ∈ Σ̃(y,z) (Ω) if x − λy + λz = (a − .75λ)X1, (b − .25λ)X2,
.5λC, .25λY can drain X2 for all 0 < λ < min(a,b). This happens when b − .25λ ≤ a − .75λ, so
b + .5λ ≤ a. Taking the limit as λ → 0, we see that b ≤ a, so min(a,b) = b, and taking the limit as
λ → min(a,b) = b, we see that 1.5b ≤ a. Since 1.5b ≤ a is also a sufficient condition for x to be in
Σ̃(y,z) (Ω), we see that Σ̃(y,z) (Ω) is closed and contained in Σ(Ω). The next two lemmas show that
these properties hold in general.

Lemma 5.29. For any full input pair (y, z) and any stabilizing siphon Ω, Σ̃(y,z) (Ω) is closed relative

to RΣ
>0.

Proof. Let x be a state such that [x] = Σ and let {xi } be a sequence such that x = limi→∞ xi

and xi ∈ Σ̃(y,z) (Ω). For any λ > 0 such that λy < x, by throwing out finitely many terms in the
sequence {xi }, we can guarantee that λy < xi for all i , too. Since xi ∈ Σ̃(y,z) (Ω), we know that
xi − λy + λz ∈ X (Ω) for all i . Since X (Ω) is closed, we see that

x − λy + λz =

(
lim
i→∞

xi

)
− λy + λz = lim

i→∞
(xi − λy + λz)

is also in X (Ω). Since this is true for every λ such that λy < x, we conclude that x ∈ Σ̃y,z (Ω). Since
this is true for any x in RΣ

>0, we conclude that Σ̃y,z (Ω) is closed relative to RΣ
>0. �

The following lemma is almost immediate from the definition. The only possible concern one
might have is that an input state x is contained in Σ̃(y,z) (Ω) “vacuously”—in other words, that there
simply does not exist a λ > 0 such that λy < x.
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Lemma 5.30. For any full input pair (y, z) and any stabilizing siphon Ω, Σ̃(y,z) (Ω) ⊆ Σ(Ω).

Proof. Let x be in Σ̃(y,z) . By definition, [y] = Σ, so the following is a well-defined real number:

λ0 = min
S ∈Σ

{
x(S )

y(S )

}
.

In other words, λ0 is the number so λy < x if and only if λ < λ0. Because [x] = Σ, we know
that λ0 > 0. Also (λ0/2)y � (λ0/2)z because (y, z) is a full input pair. Then, by additivity of�,
x� x− (λ0/2)y+ (λ0/2)z→1 o, where Ω is drained at o. Because� is transitive (Corollary 2.16),
we conclude that x� o, so x ∈ Σ(Ω). �

The above two lemmas show that Σ̃(y,z) (Ω) is topologically better behaved than Σ(Ω), although
possibly smaller. However, for these sets to be useful for analyzing the behavior of a CRC, we
need to show that they are not “too small”—in particular, the next lemma shows that under the
assumption that a CRC stably computes a function then for any fixed choice of a full input pair
(y, z), the sets Σ̃(y,z) (Ω) are still big enough to cover all of RΣ

>0.

Lemma 5.31. If C is a stably computing CRC, then for any fixed full input pair (y, z), as Ω varies
among all of the stabilizing siphons, the sets Σ̃(y,z) (Ω) cover RΣ

>0.

Proof. Let x be an input state such that [x] = Σ and let λ0 be as in the proof of Lemma 5.30. We
know that λ0y� λ0z because (y, z) is a full input pair. By additivity of�,

x = (x − λ0y) + λ0y� (x − λ0y) + λ0z

so, since C is a stably-computing CRC there must be some output-stable state o such that x−λ0y+

λ0z� o. By Lemma 5.18, there is an stabilizing siphon Ω so Ω is drained at o.
For any λ > 0 such that λy < x, we know that λ < λ0, so

x − λy + λz = (x − λ0y + λz) + (λ0 − λ)y

�(x − λ0y + λz) + (λ0 − λ)z = x − λ0y + λ0z.

Since x − λ0y + λ0z � o, we see that x − λy + λz � o, and, since [z] = Λ, by Lemma 2.13, we
conclude that x−λy+λz→1 o. Since this is true for any λ > 0 such that λy < x, we conclude that
x ∈ Σ̃(y,z) (Ω). This shows that every x with [x] = Σ is in Σ̃(y,z) (Ω) for some Ω, as desired. �

We now use the above technical machinery to prove the following result, which is almost the
full negative result for direct computation, but leaves out the constraint that f is rational lin-
ear. Rationality is shown in Section 5.5.4 below. Recall the positive-continuous functions from
Definition 5.8.

Lemma 5.32. Let f : Rk
≥0 → R≥0 be stably computed by a CRC. Then f is positive-continuous and

piecewise linear.

Proof. Piecewise linearity follows from Corollary 5.24. For positive continuity, we proceed as
follows: Let U ⊆ {1, . . . ,k }, let x ∈ DU (where DU is as defined in Definition 5.8), and let x1,
x2, . . . ∈ DU be an infinite sequence of points such that limi→∞ xi = x. It suffices to show that
limi→∞ f (xi ) = f (x)—i.e., that f is continuous on DU . We take xi and x equivalently to represent
an initial state of the CRC giving the concentrations of species in Σ = {X1, . . . ,Xk }.

In analyzing the behavior of the CRC on states in DU , it will help us to consider the functionally
equivalent CRC in which we remove species that are not producible from any state in DU . For the
purposes of this proof, we consider this reduced CRC, and let Λ be the corresponding reduced set
of species.
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Let (y, z) be some full input pair. Then, as Ω varies among the stabilizing siphons, Σ̃(y,z) (Ω) gives
a finite collection of closed sets covering RΣ

>0 by Lemmas 5.31 and 5.29. Since Σ̃(y,z) (Ω) ⊆ Σ(Ω)
by Lemma 5.30 and, since f is linear (and therefore continuous) on Σ(Ω) by Lemma 5.23, we see
that f is continuous on each of the closed sets in this covering. By Reference [40], if a topological
space is a union of finitely many closed sets and fi are continuous function on each closed set that
agree on overlaps, then they combine to give a continuous function. From this result, we conclude
that f is continuous on DU , as desired. �

5.5.4 Rationality. Recall Definition 5.6 defining rational linear functions and Definition 5.7
defining piecewise rational linear functions.

The main ideas of this section are as follows: To show that a function is piecewise rational linear,
we need to show that it is rational linear on some finite set of domains that cover the input space.

A linear function f : Rn → R that sends Qn to Q is necessarily rational linear. Since a linear
function on Rn is completely determined by its behavior on any open ball, we can check this
condition “locally” on any domain that contains an open ball. (Since f is continuous and all of the
points of domains that do not contain an open ball are limit points of the other domains, we can
ignore domains that do not contain open balls.) The fact that the function sends Qn to Q on such
a domain is ultimately a consequence of the fact that the stoichiometry matrix of a CRN has only
integer coefficients, so it preserves rationality.

Recall that Ψ, defined in Definition 2.4, is the space of all prepaths, and Γ∞, defined in Defini-
tion 2.5, is the space of all paths.

Definition 5.33. A path γ ∈ Γ∞ is a rational path if it has rational initial concentrations and all
of its segments have rational fluxes. In other words, x0 (γ ) ∈ QΛ and ui (γ ) ∈ QR for all i .

Note that, since the stoichiometry matrix is an integer-valued matrix, it is automatically the case
that o(γ ) and every xi (γ ) is in QΛ for any rational path γ .

Definition 5.34. We say that two prepaths γ ,γ ′ ∈ Ψ have the same sign if for all species S , reac-
tions α , and i ∈ N, it is the case that sgn xi (γ )S = sgn xi (γ ′)S and sgn ui (γ )α = sgn ui (γ ′)α .

Lemma 5.35. Let γ ∈ Γ∞ be a finite piecewise linear path. Then for any ε > 0, there is a rational
path γ ′ ∈ Γ∞ such that γ ′ has the same sign as γ and | |γ ′ −γ | | < ε . If γ already has rational initial
concentrations, then γ ′ can be chosen with the same initial concentrations.

Proof. First, let N be the largest natural number such that uN (γ ) � 0. (Such an N exists, since
γ is finite.) For any reaction α ∈ R and any n ∈ N>0 such that un (γ )α = 0, set un (γ )α = 0. Now
for each species S ∈ Λ such that xk (γ )S = 0 and k ≤ N , consider the following linear equation:

x0 (γ ′)S +
∑

1≤n≤k
α ∈R

un (γ )α�0

MSα un (γ ′)α = 0.

Aggregating these equations for all 0 ≤ k ≤ N and all S ∈ Λ such that xk (γ )S = 0 gives a system of
equations, linear in x0 (γ ′)S and un (γ ′)α , with rational coefficients. This equation has a real-valued
solution, namely, x0 (γ ′) = x0 (γ ) and un (γ ′) = u(γ ), so by Lemma C.1 (proven in Appendix C),
it must have a solution with rational coefficients that is δ -close for any δ > 0. By taking δ small
enough, we can of course make δ < ε , but we can also guarantee that x0 (γ ′)S is positive whenever
x0 (γ )S is positive and similarly for un (γ ′)α . We have therefore specified a γ ′ ∈ Ψ with the same
sign as γ . Since γ ′ has the same sign as γ , and, since γ is a valid path, we conclude that γ ′ is also
a valid path, so γ ′ ∈ Γ∞.
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If x0 (γ ) is already in QΛ, then the same argument applies, with the modification that you fix
x0 (γ ′) = x0 (γ ), and instead solve the inhomogeneous system of equations∑

1≤n≤k
α ∈R

un (γ )α�0

MSα un (γ ′)α = −x0 (γ )S

when xk (γ )S = 0. �

Lemma 5.36. Let Ω be a stabilizing siphon. If Σ(Ω) contains an open ball, then f is rational linear
when restricted to inputs in Σ(Ω).

Proof. Let B be the open ball contained in Σ(Ω) and let x be in QΛ ∩ B. We know that there is
a piecewise linear path γ starting at x such that f (x) = o(γ )Y . By Theorem 2.15, we may assume
without loss of generality thatγ is finite. By Lemma 5.35, there is a rational pathγ ′ with the same
sign as γ such that x0 (γ ′) = x0 (γ ) = x. Because o(γ ) is an output-stable state, some siphon Ω is
drained at o(γ ). Since γ ′ has the same sign as γ , we know that Ω is also drained at o(γ ′), so o(γ ′)
is also output-stable. We must then have that f (x) = o(γ ′)Y , but by the construction of γ ′, we
know that o(γ ′)Y ∈ Q. Since B ⊆ Σ(Ω), we know that f |B is linear by Lemma 5.23. Since B is an
open ball, we know that QΛ ∩ B contains a basis for QΛ, so f |B is a linear function that maps QΛ

to Q. Since every linear function RΛ → R that sends QΛ to Q is rational linear, we are done. �

Recall that a closed domain is the closure of an open set.

Lemma 5.37. Let f : X → Y be a continuous function defined piecewise on closed sets, so X is
covered by finitely many closed sets D1 . . .Dk and there are continuous functions дi : X → Y such
that f |Di

= дi |Di
. Then there are (possibly empty) closed domains E1 . . . Ek that cover X such that

f |Ei
= дi |Ei

.

Proof. We show how to convert each Di that is not a closed domain to a corresponding Ei that
is. Let Di be some set that is not a closed domain. Let

D+ =
⋃
j�i

D j .

Note that D1, . . .Di−1,X \D+,Di+1, . . .Dk cover X . Let Ei be the closure of X \D+. Clearly, Ei is a
closed domain. Since our original sets D1 . . .Dk cover X , we know that X \D+ ⊆ Di , and, since Di

is closed, this implies that Ei ⊆ Di . Because of this, we also have that f |Ei
= дi |Ei

. Finally, because
X \ D+ ⊆ Ei , we know that the sets D1, . . .Di−1,Ei ,Di+1, . . .Dk cover X . �

The following is the main result of Section 5.5, showing a limitation on the computational power
of CRCs stably computing functions in the direct sense.

Lemma 5.38. Let f : Rk
≥0 → R≥0 be stably computed by a CRC C = (Λ,R, Σ, {Y }). Then f is

positive-continuous and piecewise rational linear.

Proof. By Lemma 5.32, we know that f is positive-continuous and piecewise linear. By a gen-
eral topological argument one could show that any function with these properties has domains of
definition that are closed relative to RΣ

>0, but, since by Lemma 5.29 the domains we constructed
earlier already have this property, we will not give the general proof here. By Lemma 5.37, we
can replace the closed sets that give the domains of definition of f by closed domains. If some of
the domains produced by Lemma 5.37 are empty, then we can simply ignore them in what follows.
Since all of the nonempty domains are the closures of nonempty open sets, they must each contain
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some open ball. By Lemma 5.36, f is a rational linear function when restricted to each of these
closed domains, so f is piecewise rational linear on RΣ

>0.
For any proper subsetU of the input species, one can apply the above argument to the reduced

CRN that discards all species not producible from the given inputs to show that f is continuous
and piecewise rational linear on DU . This shows that f is a positive-continuous piecewise rational
linear function on all of RΣ

≥0. �

5.6 Negative Result: Dual-rail Computable Functions Are Continuous Piecewise

Rational Linear

The following result, a dual-rail analog of Lemma 5.36, is not necessary for the proof of the main
result of this section (Lemma 5.40), but it may be of independent interest.

Proposition 5.39. Let f : Rk → R be stably dual computed by a CRC. Let Ω be a stabilizing
siphon. Then f restricted to inputs that have a dual rail representation in Σ(Ω) is linear.

Proof. A dual-rail computing CRC can be thought to directly compute two separate functions
f̂ +, f̂ − : R2k

≥0 → R≥0 such that f̂ = f̂ + − f̂ − where f̂ is a dual rail representation of f . By

Lemma 5.23, we know that f̂ + and f̂ − are rational linear when restricted to Σ(Ω). The proposition
follows, because linearity is closed under subtraction. �

The following is our main negative result for dual-rail CRC’s, a dual-rail analog of Lemma 5.38:

Lemma 5.40. Let f : Rk → R be stably dual-computable by a CRC. Then f is continuous and
piecewise rational linear.

Proof. Let C be the CRC stably computing a dual-rail representation f̂ of f , with input species
X+1 , . . ., X+

k
, X−1 , . . ., X−

k
and output species Y+,Y−.

Similarly to the proof of Proposition 5.39, a dual-rail computing CRC can be thought to directly

compute two separate functions f̂ +, f̂ − : R2k
≥0 → R≥0 such that f̂ = f̂ + − f̂ − where f̂ is a dual

rail representation of f . Since f̂ + and f̂ − are stably computed by a CRC, Lemma 5.38 implies that
they are both piecewise rational linear, and, since piecewise rational linear functions are closed
under subtraction, this implies that f is also piecewise rational linear. It remains to show that f is
continuous.

For any input x′ ∈ Rk to f , there is an initial state x ∈ RΣ
>0 representing x′, with strictly positive

concentrations of all input species. (For example, if x′(1) = 5, then we can choose x(X+1 ) = 6 and
x(X−1 ) = 1.) Let x′1, x

′
2, . . . ∈ Rk be any sequence of inputs to f such that limi→∞ x′i = x′. Let us

represent each input x′i in the sequence by an initial state xi ∈ RΣ
>0 such that limi→∞ xi = x. Then

the sequence of initial states has the property that all of the xi ’s obey [xi ] = Σ. By Lemma 5.32,
f is continuous on the domain in which all input species are positive, which includes the input
represented by x and the inputs represented by all of the xi ’s. Therefore, f (x′) = limi→∞ f (x′i ), so
f is continuous. �

6 EXTENSIONS

6.1 A Game-theoretic Formulation of Rate-independent Computation

In this section, we use our notion of a valid rate schedule (Definition 2.22) to propose a framework
for studying rate-independent computation. Intuitively, we consider a model where the CRC expe-
riences intermittent “shocks” where the system behaves erratically and the user of the CRC loses
some amount of control of the rates of its reactions. We then say that the CRC rate-independently
computes a function if, despite these shocks, the CRC still converges to the correct output.
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In principle, one could consider different versions of the above model, depending on how much
control the user of the CRC is expected to have over the kinetics of the system and how severe the
shocks to the system are expected to be. Our goal in this section is to introduce a framework that
is general enough to accommodate these various situations.

We will formalize the situation presented above by describing it as an infinite game, played by
two players, which we will call the Demon and the Chemist. Here, the Chemist represents the user
of the CRC, who is trying to perform some rate-independent computation, and the Demon repre-
sents (per tradition) the forces of nature, human failing, and so on, which create the intermittent
shocks to the system. In this game, the Demon and the Chemist take turns building a valid rate
schedule. The Chemist wins the game if the amount of the output species converges to the correct
value as time goes to infinity. If the Chemist has a winning strategy for the game associated with
a given CRC, then we say that the CRC rate-independently computes the desired function.

To model the different levels of control that the Chemist has over the system, and the differ-
ent levels of severity of the shocks that the Demon can induce in the system, we can consider
games where the Demon and the Chemist are only allowed to play moves from some restricted
class of valid rate schedules. In this article, we have been interested in functions that are rate-
independently computable in a very strong sense, i.e., where the shocks are arbitrarily severe—so
the Demon is allowed to play any valid rate schedule (Strong Demon).

Once we have developed the game-theoretic model of rate-independent computation more ex-
plicitly, we will be able to use our main result Theorem 5.9 to deduce the following claim: The
class of functions that one can compute rate-independently with a Strong Demon is effectively
insensitive to the amount of control that the Chemist has over the system. In particular, the class
of functions that are rate-independently computable by Strong Demon, Strong Chemist games,
where both the Demon and the Chemist can play any valid rate law, is the same as any Strong
Demon complexity class, where the Chemist is restricted to playing only a subset of valid rate
laws.

To formalize the above discussion, we can use the notion of an infinite game [41].

Definition 6.1. An infinite game is a pair of a set X of possible moves and a set A ⊆ XN called
the payoff set.

Intuitively, one should imagine that two players, player I and player II, are taking turns playing
moves from the set X . Together they form a sequence (x1,x2, . . .) ∈ XN and player I wins if this
sequence is inA. In most games of interest, the set of moves that a player can make is restricted by
the state of the game. The definition above captures this by using a payoff set such that a player will
lose instantly if they play a move outside of some “legal” set of moves. For any previously played
sequence, we can thus let moveset M (x1, . . . ,xn ) be the legal set of moves for the two players
(depending on whether n is odd or even) and assume that the payoff set A is defined relative to
these sets of allowed moves accordingly (i.e., the first time that an illegal move is made, the other
party wins). An infinite sequence of moves is consistent with the moveset if every move by both
players is legal.

Definition 6.2. For an infinite game (X ,A) a winning strategy for player II is a collection of func-
tions f2k : X k → X so the sequence

(x1, f2 (x1),x3, f4 (x1,x3),x5, f6 (x1,x3,x5), . . .)

is never in A for every choice of x1,x3, . . .. A winning strategy for player I is defined similarly.

For our context, fix a CRC C and an initial state x ∈ RΣ
≥0. The set of possible moves X is the set

of all rate schedules that are zero at times t > 1. Such moves (i.e., rate schedules) can be naturally
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concatenated into a longer rate schedule: The concatenation f1 ◦ · · · ◦ fn is the rate schedule that
follows fi for time i−1 ≤ t < i and zero elsewhere. Our game captures the idea that the Demon wins
by making the constructed rate schedule not converge to the desired output, where the Demon is
player I and the Chemist is player II. We allow the Demon to play any valid rate schedule, but the
Chemist may have varying power as we discuss below.

The most unrestricted moveset contains all possible valid rate schedules. We call this case the
Strong Demon Strong Chemist game.

Definition 6.3. For a CRC C and function f : Rk
≥0 → R≥0, an initial state x ∈ RΣ

≥0, the Strong
Demon Strong Chemist game is the game where the moveset M (f1, . . . , fn ) includes all the moves
fn+1 such that f1◦· · ·◦fn+1 is a valid rate schedule starting at x, and a sequence of moves (f1, f2, . . .)
consistent with the moveset is in the payoff set iff limt→∞ ρ (t ) � {Y } � f (x) for trajectory ρ
corresponding to f1 ◦ f2 ◦ . . . starting at x.

Lemma 6.4. The following are equivalent for a CRC C and function f : Rk
≥0 → R≥0:

(1) The Chemist has a winning strategy for the Strong Demon Strong Chemist game associated with
C and f for every initial state x ∈ RΣ

≥0.
(2) C stably computes f .

Proof. First suppose that C stably computes. Then, by Theorem 2.27, we know that for any
first move f1 the Demon plays, the state ρ (1) will be reachable from the initial state x. By the
definition of stable computation there must be a state z reachable from x so z is output-stable with
the correct amount of output. By Lemma 2.26, there is a valid rate schedule f2 that goes from x to z,
and by “rescaling” the rate schedule by increasing the rate of every reaction, we can guarantee that
f2 is completed within a single unit of time. Since z is output-stable, every further move f4, f6, . . .
that the Chemist makes can just be taken to be the zero rate schedule (where no reaction occurs).
This specifies a winning strategy for the Chemist for the Strong Demon Strong Chemist game
associated with C, f , and x.

However, suppose that C does not stably compute. Then let ϵ , x, and z be the ones given by
Theorem 3.3. The Demon can play a rate schedule that goes from x to z. After this, every time it is
the Demon’s turn the CRC will be in a state o that is reachable from z, so the Demon will always be
able to play a valid rate schedule that takes the CRN to o′ as in Theorem 3.3 with |o′(Y )− f (x) | > ϵ .
This shows that the Demon has a winning strategy for the Strong Demon Strong Chemist game
associated with C, f and x, so certainly the Chemist does not have a winning strategy. �

We can also consider games where the players are restricted to only playing a subset of the valid
rate schedules. We are particularly interested in games where the Demon is allowed to play any
valid rate schedule as above, but the Chemist is restricted to only playing rate schedules from a
particular restricted moveset M . It turns out that as long as the chemist has some fair rate schedule
to play, the computational power is the same as with a Strong Chemist.

We first define the validity and fairness restrictions on movesets. Then given a restricted moveset
for the Chemist, we define the corresponding game similar to Definition 6.3.

Definition 6.5. A moveset M (f1, . . . , fn ) is valid if it includes only moves fn+1 such that f1 ◦ · · · ◦
fn+1 is a valid rate schedule starting at x. Further, we say that a valid moveset M (f1, . . . , fn ) is
Chemist-fair if there is some H : RΛ

≥0 → RR
≥0 (with the same properties as in Definition 4.1) such

that for any odd n, the moveset contains at least one fn+1 such that the trajectory ρ corresponding
to f = f1 ◦ · · · ◦ fn+1 starting at x satisfies fα (t ) ≥ Hα (ρ (t )) for every reaction α and for all
t ∈ [n,n + 1).

Journal of the ACM, Vol. 70, No. 3, Article 22. Publication date: May 2023.



Rate-independent Computation in Continuous Chemical Reaction Networks 22:47

Definition 6.6. Consider a CRC C, function f : Rk
≥0 → R≥0, and an initial state x ∈ RΣ

≥0. Let
M (f1, . . . , fn ) be any valid moveset. We say the Strong Demon M-Chemist is the game where a
sequence of moves (f1, f2, . . .) consistent with the moveset is in the payoff set iff limt→∞ ρ (t ) �
{Y } � f (x) for trajectory ρ corresponding to f1 ◦ f2 ◦ · · · starting at x.

It may seem that depending on what moves the Chemist is allowed to play, different classes
of functions are computable (i.e., the Chemist has a winning strategy). However, the following
theorem shows that the class of functions is invariant to the class of movesets that the Chemist
has available, as long as there is always at least one fair move:

Definition 6.7. A Strong Demon complexity class SD is a set of functions f : Rk
≥0 → R≥0 for

all k ∈ N, that is characterized in the following way: There is a (non-empty) set of Chemist-fair
movesetsM so f : Rk

≥0 → R≥0 is in SD if and only if there is a CRC C such that for each M ∈ M
and initial state x the Chemist has a winning strategy for the associated Strong Demon M-Chemist
game.

Theorem 6.8. Every Strong Demon complexity class is the same as the Strong Demon Strong
Chemist class.

Proof. If a Chemist has a winning strategy in a Strong Demon M-Chemist game, then clearly
the Chemist has a winning strategy in the Strong Demon Strong Chemist game. Thus, every Strong
Demon complexity class is a subset of the Strong Demon Strong Chemist class. For the other
direction, let SD be some Strong Demon complexity class, and let M be the nonempty set of
Chemist-fair movesets associated with SD. Suppose that f : Rk

≥0 → R≥0 is in the Strong Demon
Strong Chemist class. Then, by Lemma 6.4 and Theorem 5.9, we know that f is fairly computable
by a CRC C. For any moveset M ∈ M, let us show that the Chemist has a winning strategy for the
Strong Demon M-Chemist game associated with C, and f . Since M is Chemist-fair, we know that
there is some function H : RΛ

≥0 → RR
≥0 as in Definition 6.5. On their turn, the Chemist simply plays

any move in the moveset M that satisfies the condition on fn+1 in Definition 6.5. This strategy is
winning for the Chemist, because the total rate schedule f obtained by concatenating the fi ’s is fair,
since on the setT =

⋃∞
n=1[2n−1, 2n), we know that fα (t ) ≥ Hα (ρ (t )). Since C was chosen to fairly

compute f this proves that limt→∞ (ρ (t ) � {Y }) = f (x). This shows that f ∈ SD, so any Strong
Demon M-Chemist complexity class is the same as the Strong Demon Strong Chemist complexity
class. �

6.2 Non-zero Initial Context

Throughout this article, we have assumed that the only species allowed to be present at the start
of the computation are the input species. Instead, one could consider a model where certain non-
input species Z1 . . .Zn , called the initial context [18], have a fixed, nonzero rational concentration
at the start of the computation. In this setting, we can clearly compute more functions than in the
setting without initial context: For instance, we can easily compute f (x1, . . . ,xk ) = C for some
nonzero constant C , which is impossible without initial context because f is affine but not linear.

In fact, we can dual-rail compute any continuous piecewise rational affine function f : Rk → R,
i.e., any function that is a rational linear function plus a rational constant: f (x) = a · x + b. To
see this, first note that we can compute any rational affine function by using the initial context
to offset the value at f (0) = b. In fact, we can simply let output species Y+ and Y− be the initial
context, with x(Y+) = b initially if b > 0 and x(Y−) = −b otherwise. Similar machinery to the
proof of Lemma 5.15 can be used to extend this to continuous piecewise rational affine functions: By
Theorem 5.11, any continuous piecewise rational affine function can be represented in max-min
form, and then our construction from Section 5.3 shows that we can compute our given function
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f . In the direct computation setting, by a construction like the one in Section 5.4, we can compute
any positive-continuous piecewise rational affine function f : Rk

≥0 → R≥0.
It also turns out that, even with initial context, we cannot compute any more functions than

these. To see this, note that without loss of generality, we can assume that there is only one initial
context species Z with initial concentration 1, since we can modify any CRC with initial context
to include reactions that convert Z into Z1, . . . ,Zn with appropriate concentrations.23 Now let
д(x1, . . . ,xk , z) be the value that the CRC computes when the input species have initial values
x1, . . . ,xk and the initial context species has value z. A priori, д is only well-defined when z = 1,
but because paths remain valid after scaling, we know that

д(x1, . . . ,xk , z) = z · д(x1/z, . . . ,xk/z, 1) = z · f (x1/z, . . . ,xk/z)

for any value of z > 0. This shows that д is well-defined on DU (recall Definition 5.8) for every
U that contains Z , so we can apply the results of Sections 5.5 and 5.6 to characterize д on these
domains. Using the fact that f (x1, . . . ,xk ) = д(x1, . . . ,xk , 1) gives us the desired result.

Since every continuous function on a compact domain is uniformly continuous, it can be uni-
formly approximated by continuous piecewise rational affine functions. This shows that we can
use rate-independent CRNs to approximate continuous functions. Note that for the negative argu-
ment above to work, it was important that all of the initial concentrations of the initial context
species were rational. For practical purposes, this assumption is not at all restrictive, but it might be
of theoretical interest to know what other functions can be computed if the initial concentrations
are allowed to be arbitrary real numbers.

7 CONCLUSION AND OPEN QUESTIONS

We characterized the class of functions computable in a manner that is absolutely robust to reaction
rates in the continuous model of chemical kinetics. Such rate-independent computation must rely
solely on reaction stoichiometry—which reactants, and how many of each, become which products,
and how many of each? We considered two methods of encoding inputs and outputs: direct and
dual-rail. The dual-rail encoding permits easier composition of modules and can represent negative
values; we characterized its computational power as continuous, piecewise rational linear. The
direct encoding, however, allows computing functions that are discontinuous at the faces of the
nonnegative orthant. For both encodings, we showed matching negative results (showing that
nothing more can be computed) and positive results (describing CRNs computing any function in
the class).

Since rate-independent computation does not require difficult-to-achieve tuning of parameters
or reaction conditions, it may be significantly more “engineerable” than rate-dependent computa-
tion. More generally, our work also helps uncover the multifaceted sources of chemical computa-
tional power by disentangling the control of stoichiometry from reaction rates.

We now describe some natural open questions.

Reaction complexity of stably computable functions. An interesting question regards the de-
scription complexity of functions stably computable by CRNs. Some piecewise linear functions
have a number of pieces exponential in the number of inputs; for example, f (x1, . . . ,x2k ) =
min(x1,x2) +min(x3,x4) + · · ·+min(x2k−1,x2k ) has 2k linear pieces. If we express this function in
max minдi form of Theorem 5.11, then we need 2k different linear дi , and thus the construction in
the proof of Lemma 5.15 would require exponentially many species and reactions. However, this

23For example, to simulate initial context {3/2 Z1, 1/2 Z2 } from {1 Z }, add the reactions 2Z → Z ′ and Z ′ → 3Z1 + Z2.
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particular f has a more succinct CRN that stably computes it, namely, the reactions

X1 + X2 → Y

X3 + X4 → Y

...

X2k−1 + X2k → Y .

Given a positive-continuous, piecewise rational linear function f , how can we tell whether it has
a more compact CRN stably computing it than our construction? If it does, then how can we arrive
at it?

Requiring “always” fair rate schedules. Lemma 4.9 shows that for a feedforward CRC that stably
computes a function f , any fair rate schedule converges to the correct output of f , where fair
essentially means that applicable reactions must have positive rate for an infinite subset of times.
In other words, the adversary is allowed for some times outside this subset for the rate schedule
to be unfair: to “starve” some applicable reactions by keeping their rates at 0 despite all reactants
being present. Since such rate schedules seem physically implausible, it is natural to consider a
modified definition of computation, one that requires every rate schedule that is always-fair (i.e.,
for all time, applicable reactions must have positive rate) to converge to the correct output. The
following CRC shows that these two requirements can result in different behaviors for a given
CRC:

X → X +C

X → X ′

C + X ′ → C + Y .

With initial concentration x of X , every always-fair rate schedule converges to concentration x of
Y , so it computes the identity function f (x ) = x under this modified definition. (Note that always-
fairness requires the first two reactions to have positive rate at time 0, so C immediately becomes
present, at which point it is inevitable to convert allX toX ′ and allX ′ toY .) However, the CRC does
not stably compute f : An initially unfair adversary can execute the second reaction to completion,
starving the first reaction until it becomes inapplicable. This schedule never produces any C , so
Y stays at 0, yet the schedule is fair by the original definition, since, once all reactions become
inapplicable, subsequent rate 0 of all reactions for all time vacuously satisfies the definition of fair.
It is an interesting question is whether, under the modified definition of always-fair, some CRC
can compute a function that is not stably computable.

Arbitrary but fixed rate constants. A related notion of rate-independence is one where the form
of rate-law cannot vary, but the constant parameters can, e.g., mass-action rates, where an adver-
sary picks the rate constants (possibly depending on the initial input). For example, consider the
following CRN with input species A,B,C,X and output species Y .

A + X → A + Y

B + Y → B + X

A + B → C

C + Y → C + X

3C → ∅.
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Let a,b, c,x denote the initial concentrations of species A, B, C , X . This system does not stably
compute any function in the model defined in this article because on input a = b, it can stabilize
to any value of output y between 0 and x .

In contrast, consider the above system under mass-action kinetics, where an adversary picks
the rate constants, but they remain constant over time. Because A and B are required to produce
C , and at least one of them goes to 0 by the third reaction, the concentration of C approaches
0 as time goes to infinity by the final reaction, no matter the rate constants. If a > b, then also
the concentration of B approaches 0 but the concentration of A remains bounded away from 0.
Therefore, the output y converges to x , regardless of what the rate constants are. Similarly, if
b > a, then the output y approaches 0. When a = b, the concentrations of A,B,C approach 0 at
different rates. The concentrations of A,B are Θ( 1

t
) at time t (rate of bimolecular decay), and the

concentration ofC is Θ( 1√
t
) (rate of trimolecular decay). As a result, the effective rate of conversion

ofY toX via the channelC+Y → C+X is Θ( 1√
t
). Since this isω ( 1

t
) the outputy always converges

to 0 regardless of the rate constants (in our particular case, the concentration ofY is e−Θ(
√

t )). From
the above, this CRN computes f (a,b, c,x ) = x when a > b and f (a,b, c,x ) = 0 when a ≤ b,
no matter what the rate constants are. This function is discontinuous at points where a = b, so
it is not positive-continuous, thus not stably computable by any CRN under our model of rate-
independence. It remains open to classify what functions can be computed by mass-action CRNs
in which rate constants are chosen adversarially.

Axiomatic derivation of reachability. An important contribution of this article is to develop
segment-reachability as the “correct” notion of rate-independent reachability. While we justify
our definition of segment-reachability by its equivalence to valid rate schedules (Theorem 2.27),
one could imagine taking an axiomatic approach: Any notion of rate-independent reachability
ought to satisfy certain constraints. For instance, it should be transitive. Also, if d is straight-line
reachable from c, then it is evidently allowed by stoichiometry for the CRN to evolve from c to d, so
d should be reachable from c. Of course, there are many relations that satisfy these two constraints:
For instance, the relation where every state is reachable from every other state satisfies these two
constraints—but this is evidently too permissive. Indeed, our notion of segment-reachability is
the transitive closure of the relation of straight-line reachability (Corollary 2.16), so it is minimal
among all of the relations with these two properties. However, since our goal is to develop a notion
of reachability that is as unrestricted as possible, a more compelling axiomatic derivation would
follow from simple set of natural conditions for which segment-reachability is maximal.

Absolute inhibition. In biology it is not uncommon to have rate laws with explicit inhibitors;
the higher the concentration of the inhibitor, the slower the reaction. Formally, general rate
laws have been described in which reactants are partitioned into consumed species, species
that increase the reaction rate (catalysts), and species that decrease the rate (inhibitors) [26]. In
our model, while inhibitors can be modeled mechanistically as sequestering reacting species
in a non-reactive form (e.g., A + B → C is inhibited by I via the reaction A + I�AI ), such
inhibition just slows down the reaction rate but does not prevent the reaction entirely. In contrast,
one can imagine a definition of reachability in which a reaction is applicable only if all of its
reactants are present and all of its inhibitors are absent. It remains an open question whether
the computational power of rate-independent computation changes if such absolute inhibition is
allowed. We note that this change drastically changes the notion of reachability because it is no
longer additive: It might be that x� y, but x+c �� y+c if c contains some inhibitors of reactions
occurring in the first path. Further, for discrete CRNs, absolute inhibition dramatically expands
computational power of stable computation to Turing universality [21, 38] (i.e., the ability to

Journal of the ACM, Vol. 70, No. 3, Article 22. Publication date: May 2023.



Rate-independent Computation in Continuous Chemical Reaction Networks 22:51

compute any function computable by any algorithm). thus it seems reasonable to conjecture that
it also expands the computational power in the continuous setting.

Decision problems. In the discrete CRN model, particularly the subset of it known as popula-
tion protocols [6], a major focus of research is on decision problems with a yes/no output, a.k.a.
predicates. The typical output convention partitions the set Λ of species into two disjoint subsets
Λ = ΛY ∪ ΛN, the “yes voters” and “no voters.” The goal of stable computation in this setting is to
reach a configuration with a unanimous, correct vote (e.g., if the correct answer is yes, then only
species in ΛY are present), which is also stable in the sense that no incorrect voter is producible. In
this setting, it has been shown that exactly the semilinear predicates can be stably decided [6, 7]
by discrete CRNs.

The concept can be similarly defined with continuous CRNs using our notion of segment-
reachability. Say that a CRN with voting species defined as above stably computes a predicate
ϕ : Rk

≥0 → {Y,N} if, for any initial configuration x ∈ Rk
≥0, for any configuration c such that x� c,

there is a configuration y such that c � y, and y is stably correct, meaning that for all y′ such
that y � y′, we have ∅ � [y′] ⊆ Λϕ (x) . In other words, stable computation leads to a nonempty
configuration with only “correct” votes (according toϕ), and this is also true of every configuration
reachable from there. We also say in this case that the CRN stably decides the set ϕ−1 (Y) ⊆ Rk

≥0

of inputs that map to output Y. What is the class of sets S ⊆ Rk
≥0 that are stably decidable by this

definition?
For discrete CRNs, the question of “how long” a system takes to stably compute a function has

received much interest [1, 3, 25, 28]. In general, asking questions of time-complexity of continuous
computation seems more difficult than in the discrete setting. For general polynomial ODEs, the
breakthrough work of Bournez, Graça, and Pouly [12] established a surprisingly tight connection
between the length of the trajectory and the Turing machine computation time. Closer to our
domain of interest, prior work has studied asymptotic convergence speed for the composition of
simple CRN motifs as a function of the number of (feedforward) layers [46]. Although not explicitly
stated in terms of rate-independent computation, these modules compute in the rate-independent
manner as studied here. It is interesting to ask whether these techniques could be adopted to our
constructions to articulate and help resolve questions of computation time.

APPENDICES

A FORWARD-INVARIANCE OF ABSENT SIPHONS IN MASS-ACTION SYSTEMS

This section gives an alternate proof of the following result used in Section 2.4, originally due to
Angeli, De Leenheer, and Sontag [5].

Lemma 2.19 ([5], Proposition 5.5). Fix any assignment of positive mass-action rate constants. Let
Ω ⊆ Λ be a set of species. Then Ω is a siphon if and only if, for any state c such that Ω ∩ [c] = ∅ and
any state d that is mass-action reachable from c, Ω ∩ [d] = ∅.

Proof. Let C = (Λ,R) be the CRN, with positive mass-action rate constants assigned.
To see the forward direction, let Ω be a siphon, and let c be a state such that Ω ∩ [c] = ∅.

Consider the reduced CRN Cred = (Λred,Rred) where we remove all species in Ω (i.e., Λred = Λ \Ω)
and all reactions referencing them (i.e., Rred = {〈r, p〉 ∈ R | [r] ∩ Ω = ∅ and [p] ∩ Ω = ∅}). Let
cred = c � Λred. Let ρ ′ : R≥0 → RΛred

≥0 be the mass-action trajectory of Cred starting at cred. Define
the trajectory ρ : R≥0 → RΛ

≥0 of C by ρS (t ) = ρ ′S (t ) if S ∈ Λred and ρS (t ) = 0 otherwise, i.e., ρ
keeps all of Ω at 0 and otherwise follows ρ ′.

We claim that ρ is a solution to the mass-action ODEs of C. Since all polynomials, such as
those defining mass-action ODEs, are locally Lipschitz (have bounded derivatives in some open
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set around every point), the Picard-Lindelöf Theorem implies that the mass-action ODEs have a
unique solution. Hence, ρ is the only solution to the mass-action ODEs of C starting at c. Since
ρS (t ) = 0 for all S ∈ Ω and t ≥ 0, this implies that any d mass-action reachable from c obeys
Ω ∩ [d] = ∅.

To show that ρ is a valid solution to the mass-action ODEs of C, we need to check that

dρ

dt
= M · A(ρ (t )) (A.1)

for all times t ≥ 0, where A(ρ (t )) is the vector of reaction rates at time t ≥ 0 (Section 2.4) and M

is the stoichiometry matrix (Section 2.2) converting reaction rates to species derivatives. First, let
us show that Aα (ρ (t )) = 0 for all t ≥ 0 and α � Rred. If α � Rred, then there is some species in
Ω that is either a reactant or product of α , and by the fact that Ω is a siphon, we know that there
must necessarily be a reactant S of α that is in Ω. Because ρS (t ) = 0 for all t ≥ 0 by definition
and because for mass action ODEs Aα (ρ (t )) = 0 if ρS (t ) = 0 for any reactant S of α , this shows
that Aα (ρ (t )) = 0 for all t ≥ 0 and α � Rred. Thus, the right-hand side of Equation (A.1) consists
entirely of the contributions of reactions in Cred,

M · A(ρ (t )) =
∑

α ∈Rred

Mα Aα (ρ (t )).

From this and the fact that ρ ′ is a solution of the mass-action ODEs of Cred it follows that ρ is a
solution of the mass-action ODEs for C.

To see the reverse direction, let α = 〈r, p〉 be a reaction with a product S ∈ Ω; it suffices to show
that α has a reactant in Ω. If S itself is a reactant in α , then we are done, so assume otherwise; then
α produces S .

Let c be a state with [c] = Λred, i.e., exactly species not in Ω are present. In particular, c(S ) = 0.
We claim that Aα (c) = 0, i.e., α has rate 0 in c. To see why, for the sake of contradiction, suppose
Aα (c) > 0. To have d(S ) = 0 for all d mass-action reachable from c, S as a function of time is the
constant 0, so dS/dt = 0 in c. Then, to balance α ’s production of S in c to maintain dS/dt = 0,
there must be some other reaction β with M(S, β ) < 0 (so β consumes S) and Aβ (c) > 0. Since
β consumes S , we know that S is a reactant in β . But, since c(S ) = 0, the rate of any reaction
consuming S is 0 in c, a contradiction. Thus, Aα (c) = 0.

Since [c] = Λred (all species outside of Ω are present), to have mass-action rate 0 in c, α must
have at least one reactant in Ω (recall reaction rate constants in a mass-action system are strictly
positive). So, Ω is a siphon. �

The definition of a valid rate schedule (Definition 2.22, part (2)) requires that if some reactant is
0, then the reaction rate is 0. However, the converse implication (if a reaction rate is 0, then some
reactant must be 0) holds for mass-action but not more general rate schedules such as segment-
reachability, which are allowed to “starve” applicable reactions by holding their rates at 0. The
reverse direction of the proof of Lemma 2.19 uses this converse implication, but the forward direc-
tion uses only the more general implication of Definition 2.22, part (2). For the forward direction,
the key property used from mass-action is its determinism: It has unique solutions, so to show that
the siphon remains absent in all possible reachable states it suffices to show that there is just one
solution where the siphon remains absent.

B MAX-MIN REPRESENTATION OF CONTINUOUS PIECEWISE LINEAR FUNCTIONS

Here, we prove a slight generalization of Ovchinnikov’s theorem [42]. In Ovchinnikov’s origi-
nal paper, he only considers piecewise affine functions (in Ovchinnikov’s terminology, piecewise
“linear” functions) that are defined on closed domains (that is, closures of open subsets of Rn ).
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However, the key proof techniques of Reference [42] did not crucially use this fact. In fact, we
apply Theorem 5.11 on non-closed domains such as the sets DU in the proof of Lemma 5.16. For
completeness, we prove the variant of the theorem not requiring D to be closed.

Theorem 5.11 ([42], Theorem 2.1). Let D ⊆ Rk be convex. For every continuous piecewise affine
function f : D → R with components д1, . . . ,дp , there exists a family S1, . . . , Sq ⊆ {1, . . . ,p} such
that, for all x ∈ D, f (x) = maxi ∈{1, ...,q }minj ∈Si

дj (x).

To prove the theorem, we first prove three lemmas. The first technical lemma is implicit in Ref-
erence [42]. The second and third lemmas correspond to Lemmas 2.1 and 2.2 of Reference [42].
The proofs we give of the second and third lemmas are almost identical in content to the proofs of
the corresponding lemmas in Reference [42], except for the fact that we consider piecewise affine
functions defined over more general subsets of Rn . The same is true for our proof of Theorem 5.11,
which is again almost identical to the proof of Theorem 2.1 in Reference [42].

Lemma B.1. If f : [a,b] → R is a continuous piecewise affine function with components{
д1, . . . ,дn

}
, then there are finitely many numbers a = x0 < x1 < . . . < xm = b such that f is

affine on [xk ,xk+1] for all k .

Proof. Without loss of generality, we can assume that all of the component functions дi are
distinct affine functions. For each i between 1 and n, let Di be the set of x ∈ [a,b] such that
дi (x ) = f (x ). For each i , both дi and f are continuous, so Di is closed. Let S be the subset of [a,b]
consisting of points x ∈ [a,b] where x is a member of more than one Di . For each pair i � j, we
know that дi and дj are distinct affine functions, so there can be at most one x ∈ [a,b] such that
дi (x ) = дj (x ). This implies that Di and D j can intersect in at most one point, so S must be a finite
set. Let x0 · · · xm be the elements of S ∪ {a,b}.

Now for a given k write I for the interval (xk ,xk+1) and consider the restriction of f to I . Pick
a random point c ∈ I and suppose f (c ) = дl (c ). Then clearly Dl ∩ I is nonempty. Because Dl is
closed in [a,b], by definition Dl ∩ I is closed relative to I . Because S ∩ I = ∅, we also know that

Dl ∩ I = I \ ���
⋃
i�l

Di
��
� ,

so Dl ∩ I is open relative to I . But the only subset of an interval that is both open and closed is the
whole interval, so I ⊆ Dl . Therefore, f = дl when restricted to I , and by continuity, we see that f
is affine on the closure of I as well. �

Note that we define piecewise affine functions to have only finitely many components—without
this assumption, the above lemma is false.

Lemma B.2. Let f : [a,b]→ R be a continuous piecewise affine function. Let
{
д1, . . . ,дn

}
be its set

of components. Then there is some k such that

дk (a) ≤ f (a) and дk (b) ≥ f (b).

Proof. We will first prove the result for f (a) = f (b) = 0 and then show how this implies the
general case. Given this assumption, if one of the дi is the zero function, then we are done. If not,
since all of the component functions дi are affine, each дi can have at most one zero. Since f has
finitely many components, this implies that f has finitely many zeros. Let c be the smallest number
such that c > a and f (c ) = 0.

By Lemma B.1, we know that there are some x and y with a < x < y < c and component
functions дk and дl such that f = дk on [a,x] and f = дl on [y, c]. If the slope of either дk or дl is
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non-negative, then we are done:

дk (a) ≤ дk (c ) = 0 = f (a)

дk (b) ≥ дk (c ) = 0 = f (b)

and similarly for дl . But дk and дl cannot both have negative slope, for then f (x ) = дk (x ) < 0 and
f (y) = дl (y) > 0, so by the intermediate value theorem there would be some z between x and y
such that f (z) = 0. This contradicts our assumption that c was the smallest number with c > a
and f (c ) = 0. This concludes the proof assuming that f (a) = f (b) = 0.

To deduce the result for a general continuous piecewise affine function from this special case,
subtract the affine function

�(x ) = f (a) + f (b)
x − a
b − a

from f and all of its components. �

Lemma B.3. Let D be a convex subset of Rn and let f : D → R be a continuous piecewise affine
function. If the components of f are

{
д1 . . .дn

}
, then for every pair of vectors a and b in D, there is

some k such that

дk (a) ≤ f (a) and дk (b) ≥ f (b).

Proof. Because D is convex, the straight-line interval between a and b is contained in D. Apply
Lemma B.2 to the restriction of f to this interval. �

Finally, we are ready to prove Theorem 5.11.

Proof of Theorem 5.11. For each b ∈ D, define the set Sx ⊆
{
1 . . .p

}
as

Sb =
{
i | дi (b) ≥ f (b)

}
.

Let

Fb (x) = min
i ∈Sb

дi (x).

Because there is always some component function дj with дj (b) = f (b), we see that Fb (b) = f (b)
for every b ∈ D. Also, by Lemma B.3, we know that for every a ∈ D, there is some component
function дk ∈ Sb with дk (a) ≤ f (a), so Fb (a) ≤ f (a) for every pair b, a ∈ D. This implies that

f (x) = max
b∈D

Fb (x) = max
b∈D

min
i ∈Sb

дi (x). (B.2)

Since
{
1 . . .p

}
is a finite set, it has only finitely many subsets, so each Sb is equal to one of finitely

many sets S j . We can therefore replace the maximum over all b ∈ D in Equation (B.2) with a
maximum over finitely many functions. �

C FINDING RATIONAL SOLUTIONS TO SYSTEMS OF LINEAR EQUATIONS

It is well-known that a system of linear equations with rational coefficients has a rational solution
if and only if it has a real solution. The following result shows the slightly generalized claim that
rational solutions exist arbitrarily close to all real solutions (i.e., the rational solutions are dense
in the real solutions).

Lemma C.1. Let Ax = b be a system of linear equations, where A is a matrix with rational coeffi-
cients and b is a vector with rational coefficients. If the equation has a solution x with real coefficients,
then for any ε > 0, it has a solution with x′ rational coefficients such that | |x′ − x| | < ε .
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Proof. Let n be the number of rows ofA and the length of b. Letm be the number of columns of
A and the length of x. BecauseA has rational entries, using elementary row and column operations
it can be decomposed as PNQ where P is anm×m invertible rational matrix,Q is ann×n invertible
rational matrix, and

Ni j =
⎧⎪⎨⎪⎩

1 i = j and i ≤ r

0 otherwise,

where r is the rank of M . Let y = Qx and let c = P−1b, so Ny = c. If r = n, then all of the entries of
y must be rational, since yi = ci for all i and all of the entries of ci are rational. Then the entries
of x must also all be rational, since x = Q−1y and Q has all rational entries. As a result, if r = n,
then we can just take x′ = x.

However, if r < n, then let

δ =
ε

√
n − r | |Q−1 | |

,

where

| |Q−1 | | = sup
v�0

| |Q−1v| |
| |v| |

is the operator norm of | |Q−1 | |. Now let y′ be a vector such that y′i = yi for i ≤ r and y′i is a rational
number such that |y′i − yi | < δ for i > r . All of the components of y′ are rational: y′i is rational by
construction for i > r , and y′i = yi = ci is rational for i ≤ r . Moreover, the fact that y′i = ci for
i ≤ r shows that Ny′ = c.

If we take x′ = Q−1y′, then all of the components of x′ are rational, and Mx′ = b, since

Mx′ = PNQx′ = PNy′ = Pc = b.

Finally, we know that | |x′ − x| | < ε , since

| |x′ − x| | = | |Q−1 (y′ − y) | |
≤ | |Q−1 | | · | |y′ − y| |

= | |Q−1 | |

√√
n∑

i=1

(y′i − yi )2

< | |Q−1 | |
√

(n − r )δ 2

= ε .

This shows that x′ is our desired solution. �

D BOUNDING REACTION FLUXES IN STRAIGHT-LINE REACHABILITY

This section is devoted to proving Lemma D.4. Intuitively, it shows that if a CRN can reach from
state c to state d by a straight line (of length ‖d − c‖), then the reaction fluxes required can be
bounded by O (‖d − c‖). This is nontrivial, since one can have reactions that cancel, e.g., X → Y
and Y → X . The same straight line from c to d could result from arbitrarily large but equal fluxes
of each reaction (plus some other reactions). Lemma D.4 states that we never need arbitrarily large
fluxes to get from c to d.

Definition D.1. A convex polyhedral cone C is a subset of a vector space V such that there exist
vectors v1, . . . ,vk ∈ V so C is exactly the set of x ∈ V that can be written as x =

∑
i λivi with all

λi ≥ 0. Such a set S = {v1 . . .vk } is called a spanning set for C, and we say that C is spanned by S .
Given a set S = {v1 . . .vk } of vectors in V , we write CS for the convex polyhedral cone spanned
by S .

Journal of the ACM, Vol. 70, No. 3, Article 22. Publication date: May 2023.



22:56 H.-L. Chen et al.

Lemma D.2. LetC be a convex cone with spanning set S = {v1 . . .vk }. Let I be the collection of all
linearly independent subsets of S . Then

C =
⋃

S ′ ∈I
CS ′ .

Proof. Suppose to the contrary that there was some x ∈ C not contained inCS ′ for any S ′ ∈ I.
Let T be a minimal subset of S such that x ∈ CT . Then, since x ∈ CT , we can write x as

x =
∑

vi ∈T
λivi .

To produce a contradiction, let us show that we can express x as

x =
∑

vi ∈T
λ′ivi

with some λ′i = 0. This will imply that x ∈ CT \{vi } , contradicting the minimality of T . By assump-
tion, since x ∈ T , we know that T � I, so there is some nontrivial linear relationship∑

vi ∈T
μivi = 0

among the vi ∈ T . By negating all of the μi if needed, we can assume that at least one μi < 0. Let
C be the constant

C = min
μi <0

−λi

μi
.

Let us show that λj +Cμ j ≥ 0 for all j. Because λi > 0 for all i , we know thatC > 0. As a result, if
μ j ≥ 0, then necessarily λj +Cμ j ≥ 0. However, if μ j < 0, then C ≤ −λj/μ j , so

λj +Cμ j ≥ λj +

(
λj

μ j

)
μ j = 0.

Moreover, for some μi0 < 0, we know that λi0 +Cμi0 = 0. As a result,

x = ��
�
∑

vi ∈T
λivi

��
� +C

��
�
∑

vi ∈T
μivi

��
� =

∑
vi ∈T

(λi +Cμi )vi =
∑

vi ∈T
λ′ivi ,

where λ′i0
= 0. Thus, x ∈ CT \vi0

, contradicting the minimality of T and therefore the existence of
x . �

Lemma D.3. Let C be a convex cone with spanning set S = {v1 . . .vk }. Then there is a constant K
depending only on S so for any x ∈ C , there is some representation of x as

x =
∑

i

λivi

with 0 ≤ λi ≤ K | |x | |. Additionally, if there is some subset T ⊆ S such that x ∈ CT , then the above
representation can be chosen with λi = 0 for any vi � T .

Proof. Let I be the collection of linearly independent subsets of S . If S ′ ∈ I and x ∈ CS ′ then
because the vectors v1 . . .vk in S ′ are linearly independent, there is a unique way to write

x =
∑

vi ∈S ′
λivi
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and by Reference [33, Lemma 2.4-1], we know there is some constantKS ′ so 0 ≤ λi ≤ KS ′ ‖x ‖. Take
K = maxS ′ ∈I KS ′ . Applying Lemma D.2 to CT , we can find some linearly independent collection
of vectors T ′ such that T ′ ⊆ T and x ∈ CT ′ . Then

x =
∑

vi ∈T ′
λivi

with 0 ≤ λi ≤ KT ′ ‖x ‖. Because T ′ ⊆ T ⊆ S , we know that T ′ ∈ I, so KT ′ ≤ K , and, since T ′ ⊆ T ,
we know that above sum only ranges over vectors vi ∈ T . �

Finally, we have the main result of this section.

Lemma D.4. Fix a CRN C and suppose a flux vector u ∈ RR
≥0 is applicable at a state c ∈ RΛ

≥0. Let

� = | |Mu| | be the length of the straight-line segment in RΛ given by Mu. Then there exists a constant
K , depending only on C and independent of u and c, such that there exists a flux vector u′ where u′

is also applicable at c, the length of u′ is bounded as | |u′ | | ≤ K�, and Mu = Mu′.

Proof. Let {v1 . . .vm } be the standard basis vectors of RR . Because u =
∑

i λivi with all λi ≥ 0,
we know that Mu is contained in the convex polyhedral cone spanned by {Mv1 . . .Mvm }. By
Lemma D.3, we know that there are λ′i such that Mu =

∑
i λ
′
iMvi and 0 ≤ λ′i ≤ K | |Mu| |, and

moreover λ′i = 0 whenever λi = 0. Let u′ =
∑

i λ
′
ivi . Then u′ is still applicable at c because λ′i > 0

implies λi > 0 and we assumed that u was applicable at c. Also, note that

Mu′ =
∑

i

λ′iMvi = Mu.

Finally, we know that

| |u′ | | ≤
∑

i

λ′i ≤
∑

i

K | |Mu| | ≤ mK�,

so u′ is our desired vector in RR
≥0. �

E PARTIAL STATES AND REACHABILITY

In this section, we define a notion of “partial” states and reachability, which are used in the proof
of Theorem 3.3. If Δ � Λ, then we say p ∈ RΔ

≥0 is a partial state. Given a state c ∈ RΛ
≥0, recall that

c � Δ is c restricted to Δ, i.e., the partial state p = c � Δ ∈ RΔ
≥0 such that p(S ) = c(S ) for all S ∈ Δ.

Let k ∈ N ∪ {∞}. Given a state c ∈ RΛ
≥0 and a partial state p ∈ RΔ

≥0, we write c �k p if there
is a sequence of states b0, . . . , bk ∈ RΛ

≥0 such that c = b0 →1 b1 →1 b2 →1 · · · →1 bk , with

p = bk � Δ if k ∈ N, or p = limi→∞ (bi � Δ) if k = ∞. We write c � p via (bi )k
i=1 if c �k p

for some k ∈ N ∪ {∞} with intermediate states b0, b1, . . . as above, or simply c � p when the
intermediate states b0, b1, . . . are implicit. We write c �∞ss p via (bi )k

i=1 if c = b′0 →1 b′1 →1 . . . ,
where for some subsequence b1, b1, . . . of b′1, b

′
1, . . . , we have p = limi→∞ (bi � Δ), i.e., an infinite

subsequence of states converges on concentrations in Δ.
Note that if there is a state d such that c� d and d � Δ = p, then c� p, but it is not apparent

from the definition that this is the only way for a partial state to be reachable if the number of
line segments is infinite. In particular, it could be that the sequence b0, b1, . . . does not converge to
any state (even though the partial states b0 � Δ, b1 � Δ, . . . converge to p), if some concentration
values outside of Δ do not converge (for instance, they may oscillate or go to infinity).

Our goal now is to show that in fact, if a partial state p is reachable (or even merely�∞ss reach-
able), then there is a particular state reachable whose restriction to Δ is p.

Theorem E.1. Let Δ � Λ, let c ∈ RΛ
≥0 be a state, and p ∈ RΔ

≥0 be a partial state. If c�∞ss p, then
there is a state d such that c� d and p = d � Δ.
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Furthermore, if c �∞ss p via (bi )k
i=1 for k ∈ N ∪ {∞}, then there is a partition of Λ into Λb

and Λu, with Δ ⊆ Λb, and a subsequence (ri )i of (bi )i so limi→∞ ri (S ) = ∞ for all S ∈ Λu, and
limi→∞ ri (S ) = d(S ) for all S ∈ Λb.

Proof. The finite case is immediate from the definition of� for partial states (choose d = bk

and Λu = ∅), so assume c �∞ss p. Then there is an infinite sequence of states (the converging
subsequence in the definition of�∞ss ) b0, b1, · · · ∈ RΛ

≥0 such that c = b0, each bi �ki bi+1 for
some ki ∈ N, and p = limi→∞ bi � Δ.

Let Γ = Λ\Δ be the species outside of Δ, which may not be converging in the subsequence (bi )i .
Intuitively, our goal will be to make some species in Γ converge and all others simultaneously
diverge to infinity. Then, by driving the concentrations of the diverging species sufficiently large,
then removing them from the system, we obtain a reduced CRN where all species converge to a
single state. We apply Corollary 2.15 to this reduced CRN to find a finite path of m + 1 segments
reaching this state. Finally, we argue that this path is applicable even in the original CRN, because
the species that were removed first had their concentrations driven large enough that the finite
path does not have sufficient flux to send any of them to 0. Thus, at the end of this finite path, all
species converge to some concentration.

Formally, define the set Γu (the “unbounded” species in Γ) iteratively as follows: If there is
any S1 ∈ Γ such that lim supi→∞ bi (S1) = ∞, then put S1 in Γu, otherwise Γu is defined to be ∅.
Then pick a subsequence b′0, b

′
1, . . . of b0, b1, . . . such that, for all i ∈ N, b′i (S1) ≥ i; such a subse-

quence exists, since lim supi→∞ bi (S1) = ∞. Now, from that subsequence, if any species S2 obeys
lim supi→∞ b′i (S2) = ∞, then place S2 in Γu and choose a subsequence b′′0 , b

′′
1 , . . . of b′0, b

′
1, . . .where

b′′i (S2) ≥ i for each i ∈ N; note that because b′′i = b′i′ for i ′ ≥ i , we also have b′′i (S1) ≥ i .
Repeat this alternation of choosing a species S j to put in Γu and picking a subsequence, until in

the final subsequence b′′′0 , b
′′′
1 , . . . every remaining species S obeys lim supi→∞ b′′′i (S ) < ∞. Define

the set Γb = Γ \ Γu; by construction each species in Γb has bounded concentrations in b′′′0 , b
′′′
1 , . . .

(Though some may have had unbounded concentrations in the original sequence b0, b1, . . . )
Now, since concentrations of species in Γb are in a closed, bounded (i.e., compact) set, there is a

subsequence r0, r1, . . . of b′′′0 , b
′′′
1 , . . . that converges on concentrations for species in Γb. Further-

more, all subsequences of b0, b1, . . . we have taken so far can be assumed without loss of generality
to contain b0. Thus, the subsequence r0, r1, . . . obeys

(1) r0 = b0 (= c),
(2) for all S ∈ Γu and i ∈ N, ri (S ) ≥ i (concentrations in Γu increase to infinity simultaneously),

and
(3) for all S ∈ Γb ∪ Δ, limi→∞ ri (S ) exists and is finite (all other concentrations converge).

Consider the “quotient” CRN Cq = (Λq,Rq), where Λq = Λ \ Γu = Δ ∪ Γb, and Rq is defined by
taking each reaction from R and removing any species from it in Γu. For example, if A,B ∈ Γu and
C,D,E � Γu, then the reaction A+ B + 2C → 2A+D + E becomes 2C → D + E. Then for each state
r ∈ RΛ

≥0 of the original CRN C, its partial state r � Λq is a (normal) state of Cq.
For each i ∈ N, let qi = ri � Λq be the state of Cq corresponding to ri . Note that q0 = c � Λq. By

the definition of Λq = Δ∪ Γb and the convergence of concentrations in both Δ (by the definition of

c� p) and Γb (shown as part (3) above), the sequence q0, q1, . . . converges to some state q ∈ RΛq

≥0.
This implies that qi �∞ss q for each i ∈ N. Note that q � Δ = p.

Since the qi ’s converge to q, there is some i0 such that, for all i ≥ i0, ‖q − qi ‖ ≤ 1. Since each
qi �∞ss q, by Theorem 2.14, qi �m+1 q, where m = min{|Λq |, |Rq |}, and for some constant K
depending only on Cq, the total reaction fluxes do not exceed K along the entire path of m + 1
segments.
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Let C = max{r′(S ) | S ∈ Γu, 〈r′, p′〉 ∈ R} be the maximum reactant coefficient of any reactant in
Γu for any reaction in R. Choose i1 = max{C ·K , i0}. Then qi1 � q with total reaction flux at most
K , since i1 ≥ i0.

Consider running the same reaction fluxes on the original CRN, from the state bi′ , choosing
i ′ such that bi′ � Λq = qi1 . By property (2) above, there is sufficient concentration C · K of each
reactant in Γu in state bi′ for these reactions to remain applicable along the entire path. Let d ∈ RΛ

≥0
be the state reached at the end of this path, then bi′ � d. Note that d � Λq = q, and recall q � Δ = p,
so d � Δ = p. Since c� bi′ , by transitivity of�, we have c� d, proving the theorem. �

Note that by Corollary 2.15, if c � p for a partial state p, then c �m+1 p, where m =

min{|Λ|, |R |}.
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