
AMachine Learning Tutorial for Operational Meteorology. Part I: Traditional

Machine Learning

RANDY J. CHASE,a,b,c DAVID R. HARRISON,b,d,e AMANDA BURKE,b,c GARY M. LACKMANN,f

AND AMY MCGOVERNa,b,c

a School of Computer Science, University of Oklahoma, Norman, Oklahoma
b School of Meteorology, University of Oklahoma, Norman, Oklahoma

c NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography, University of Oklahoma,
Norman, Oklahoma

d Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
e NOAA/NWS/Storm Prediction Center, Norman, Oklahoma

f Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

(Manuscript received 14 April 2022, in final form 26 May 2022)

ABSTRACT: Recently, the use of machine learning in meteorology has increased greatly. While many machine learning
methods are not new, university classes on machine learning are largely unavailable to meteorology students and are not
required to become a meteorologist. The lack of formal instruction has contributed to perception that machine learning
methods are “black boxes” and thus end-users are hesitant to apply the machine learning methods in their everyday work-
flow. To reduce the opaqueness of machine learning methods and lower hesitancy toward machine learning in meteorol-
ogy, this paper provides a survey of some of the most common machine learning methods. A familiar meteorological
example is used to contextualize the machine learning methods while also discussing machine learning topics using plain
language. The following machine learning methods are demonstrated: linear regression, logistic regression, decision trees,
random forest, gradient boosted decision trees, naïve Bayes, and support vector machines. Beyond discussing the different
methods, the paper also contains discussions on the general machine learning process as well as best practices to enable
readers to apply machine learning to their own datasets. Furthermore, all code (in the form of Jupyter notebooks and
Google Colaboratory notebooks) used to make the examples in the paper is provided in an effort to catalyze the use of
machine learning in meteorology.

KEYWORDS: Radars/Radar observations; Satellite observations; Forecasting techniques; Nowcasting;
Operational forecasting; Artificial intelligence; Classification; Data science; Decision trees; Machine learning;
Model interpretation and visualization; Regression; Support vector machines; Other artificial intelligence/machine learning

1. Introduction

The mention and use of machine learning (ML) within me-
teorological journal articles is accelerating (Fig. 1; e.g., Burke
et al. 2020; Hill et al. 2020; Lagerquist et al. 2020; Li et al. 2020;
Loken et al. 2020; Mao and Sorteberg 2020; Muñoz-Esparza
et al. 2020; Wang et al. 2020; Bonavita et al. 2021; Cui et al.
2021; Flora et al. 2021; Hill and Schumacher 2021; Schumacher
et al. 2021; Yang et al. 2021; Zhang et al. 2021). With a growing
number of published meteorological studies using ML methods,
it is increasingly important for meteorologists to be well versed
in ML. However, the availability of meteorology specific resour-
ces about ML terms and methods is scarce. Thus, this series of
papers (total of two) aim to reduce the scarcity of meteorology
specific ML resources.

While many ML methods are generally not new (i.e., pub-
lished before 2002), there is a concern from ML developers
that end users (i.e., non-ML specialists) may be hesitant or
are concerned about trusting ML. However, early work in this

space suggests that nontechnical explanations may be an im-
portant part of how end users perceive the trustworthiness of
ML guidance (e.g., Cains et al. 2022). Thus, an additional goal
of these papers is to enhance trustworthiness of ML methods
through plain language discussions and meteorological examples.

In practice, ML models are often viewed as a black box,
which could also be contributing to user hesitancy. These
mystified feelings toward ML methods can lead to an inherent
distrust with ML methods, despite their potential. Further-
more, the seemingly opaque nature of ML methods prevents
ML forecasts from meeting one of the three requirements of a
good forecast outlined by Murphy (1993): consistency. In
short, Murphy (1993) explains that in order for a forecast to
be good, the forecast must 1) be consistent with the user’s
prior knowledge, 2) have good quality (i.e., accuracy) and 3) be
valuable (i.e., provide benefit). Plenty of technical papers dem-
onstrate how ML forecasts can meet requirements 2 and 3, but
as noted above if the ML methods are confusing and enigmatic,
then it is difficult for ML forecasts to be consistent with a mete-
orologist’s prior knowledge. This series of papers will serve as a
reference for meteorologists in order to make the black box of
ML more transparent and enhance user trust in ML.

This paper is organized as follows. Section 2 provides an in-
troduction to all ML methods discussed in this paper and will

Denotes content that is immediately available upon publica-
tion as open access.

Corresponding author: Randy J. Chase, randychase@ou.edu

DOI: 10.1175/WAF-D-22-0070.1

Ó 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

C HA S E E T A L . 1509AUGUST 2022

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

mailto:randychase@ou.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses

define common ML terms. Section 3 discusses the general ML
methods in context of a simple meteorological example, while
also describing the end-to-end ML pipeline. Then, section 4
summarizes this paper and also discusses the topics of the
next paper in the series.

2. Machine learning methods and common terms

This section will describe a handful of the most common
ML methods. Before that, it is helpful to define some termi-
nology used within ML. First, we define ML as any empirical1

method where parameters are fit (i.e., learned) on a training
dataset in order to optimize (e.g., minimize or maximize) a
predefined loss (i.e., cost) function. Within this general frame-
work, ML has two categories: supervised and unsupervised
learning. Supervised learning are ML methods that are
trained with prescribed input features and output labels. For
example, predicting tomorrow’s high temperature at a specific
location where we have measurements (i.e., labels). Mean-
while, unsupervised methods do not have a predefined output
label (e.g., self-organizing maps; Nowotarski and Jensen
2013). An example of an unsupervised ML task would be
clustering all 500 mb geopotential height maps to look for
unspecified patterns in the weather. This paper focuses on
supervised learning.

The input features for supervised learning, also referred
to as input data, predictors, or variables, can be written
mathematically as the vector (matrix) X. The desired output
of the ML model is usually called the target, predictand or
label, and is mathematically written as the scalar (vector) y.
Drawing on the meteorological example of predicting

tomorrow’s high temperature, the input feature would be
tomorrow’s forecasted temperature from a numerical
weather model (e.g., GFS) and the label would be tomor-
row’s observed temperature.

Supervised ML methods can be further broken into two sub-
categories: regression and classification. Regression tasks are
ML methods that output a continuous range of values, like the
forecast of tomorrow’s high temperature (e.g., 75.08F). Mean-
while classification tasks are characteristic of ML methods that
classify data (e.g., will it rain or snow tomorrow). Reposing to-
morrow’s high temperature forecast as a classification task
would be: “Will tomorrow be warmer than today?” This paper
will cover both regression and classification methods. In fact,
many MLmethods can be used for both tasks.

All ML methods described here will have one thing in com-
mon: the ML method quantitatively uses the training data to
optimize a set of weights (i.e., thresholds) that enable the pre-
diction. These weights are determined either by minimizing the
error of the ML prediction or maximizing a probability of a
class label. The two different methods coincide with the regres-
sion and classification, respectively. Alternative names for error
that readers might encounter in the literature are loss or cost.

Now that some of the common ML terms has been discussed,
the following subsections will describe the ML methods. It will
start with the simplest methods (e.g., linear regression) and
move to more complex methods (e.g., support vector machines)
as the sections proceed. Please note that the following subsec-
tions aim to provide an introduction and the intuition behind
each method. An example of the methods being applied and
helpful application discussion can be found in section 3.

a. Linear regression

An important concept in ML is when choosing to use ML
for a task, one should start with the simpler ML models first.

FIG. 1. Search results for the Meteorology and Atmospheric Science category when searching abstracts for machine learning methods
and severe weather. Machine learning keywords searched were the following: linear regression, logistic regression, decision trees, random
forest, gradient-boosted trees, support vector machines, k-means, k-nearest, empirical orthogonal functions, principal component analysis,
self-organizing maps, neural networks, convolutional neural networks, and unets. Severe weather keywords searched were the following:
tornadoes, hail, hurricanes, and tropical cyclones. (a) Counts of publications per year for all papers in the Meteorology and Atmospheric
Science category (black line; reduced by one order of magnitude), machine learning topics (blue line), and severe weather topics (red
line). (b) As in (a), but with the two subtopics normalized by the total number of Meteorology and Atmospheric Science papers. (c) Num-
ber of neural network papers (including convolutional and unets) published in Meteorology and Atmospheric sciences. All data are de-
rived from Clarivate Web of Science.

1 By “empirical” wemean any method that uses data as opposed
to physics.

WEATHER AND FORECAS T ING VOLUME 371510

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

Occam’s razor2 tells us to prefer the simplest solution that can
solve the task or represent the data. While this does not al-
ways mean the simplest ML model available, it does mean
that simpler models should be tried before more complicated
ones (Holte 1993). Thus, the first ML method discussed is lin-
ear regression, which has a long history in meteorology (e.g.,
Malone 1955) and forms the heart of the model output statis-
tics product (i.e., MOS; Glahn and Lowry 1972) that many
meteorologists are familiar with. Linear regression is popular
because it is a simple method that is also computationally effi-
cient. At its simplest form, linear regression approximates the
value you would like to predict (ŷ) by fitting weight terms
(wi) in the following equation:

ŷ � ∑i�D
i�0

wixi: (1)

The first predictor (x0) is always 1 so that w0 is a bias term, al-
lowing the function to move from the origin as needed. The
termD is the number of features for the task.

As noted before, with ML, the objective is to find wi such
that a user-specified loss function (i.e., error function) is mini-
mized. The most common loss function for traditional linear
regression is the residual summed squared error (RSS):

RSS � ∑N
j�1

(yj 2 ŷj)2, (2)

where yj is a true data point, ŷj is the predicted data point, and
N is the total number of data points in the training dataset. A
graphical example of a linear regression and its residuals is
shown in Fig. 2. Linear regression using residual summed
squared error can work very well and is a fast learning algo-
rithm, so we suggest it as a baseline method before choosing
more complicated methods. The exact minimization method is
beyond the scope of this paper, but know that the minimization
uses the slope (i.e., derivative) of the loss function to determine
how to adjust the trainable weights. If this sounds familiar, that
is because it is the same minimization technique learned in most
first year college calculus classes and is a similar technique to
what is used in data assimilation for numerical weather predic-
tion (cf. Chapter 5 and section 10.5 in Kalnay 2002; Lackmann
2011). The concept of using the derivative to find the minimum
is repeated throughout most ML methods given there is often a
minimization (or maximization) objective.

Occasionally datasets can contain irrelevant or noisy predic-
tors which can cause instabilities in the learning. One approach
to address this is to use a modified version of linear regression
known as ridge regression (Hoerl and Kennard 1970), which
minimizes both the summed squared error (like before) and
the sum of the squared weights called an L2 penalty. Mathe-
matically, the new loss function can be described as

RSSridge �
∑N
j�1

(yj 2 ŷj)2 1 k
∑D
i�0

w2
i : (3)

Here, k (which is $0) is a user-defined parameter that con-
trols the weight of the penalty. Likewise, another modified
version of linear regression is lasso regression (Tibshirani
1996) which minimizes the sum of the absolute value of the
weights. This penalty to learning is also termed an L1 penalty.
The lasso loss function mathematically is

RSSlasso � ∑N
j�1

(yj 2 ŷj)2 1 k
∑D
i�0

|wi|: (4)

Both lasso and ridge encourage the learned weights to be
small but in different ways. The two penalties are often com-
bined to create the elastic-net penalty (Zou and Hastie 2005):

RSSelastic �
∑N
j�1

(yj 2 ŷj)2 1 k
∑D
i�0

[aw2
i 1 (1 2 a)|wi|]: (5)

In general, the addition of components to the loss function,
like described in Eqs. (3)–(5), is known as regularization and
is found in other ML methods. Some recent examples of pa-
pers using linear regression include subseasonal prediction of
tropical cyclone parameters (Lee et al. 2020), relating mesocy-
clone characteristics to tornado intensity (Sessa and Trapp
2020) and short term forecasting of tropical cyclone intensity
(Hu et al. 2020).

b. Logistic regression

As a complement to linear regression, the first classification
method discussed here is logistic regression. Logistic regres-
sion is an extension from linear regression in that it uses the
same functional form of Eq. (1). The differences lie in how

FIG. 2. A visual example of linear regression with a single input
predictor. The x axis is a synthetic input feature, and the y axis is a
synthetic output label. The solid black line is the regression fit, and
the red dashed lines are the residuals.

2 https://en.wikipedia.org/wiki/Occam\%27s_razor.

C HA S E E T A L . 1511AUGUST 2022

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

https://en.wikipedia.org/wiki/Occam%27s_razor

the weights for Eq. (1) are determined and a minor adjust-
ment to the output of Eq. (1). More specifically, logistic re-
gression applies the sigmoid function (Fig. 3) to the output of
Eq. (1) defined as follows:

S(ŷ) � 1
1 1 e2ŷ : (6)

Large positive values into the sigmoid results in a value of 1
while large negative values result in a value of 0. Effectively,
the sigmoid scales the output of Eq. (1) to a range from 0 to 1,
which then can be interpreted like a probability. For the sim-
plest case of classification involving just two classes (e.g., rain
or snow), the output of the sigmoid can be interpreted as a
probability of either class (e.g., rain or snow). The output
probability then allows for the classification to be formulated
as the wi that maximizes the probability of a desired class.
Mathematically, the classification loss function for logistic re-
gression can be described as

loss � ∑i�D
i�0

2yilog S(ŷ)[]
1 (1 2 yi)log 1 2 S(ŷ)[]

: (7)

Like before for linear regression, the expression in Eq. (7)
is minimized using derivatives. If the reader is interested in
more information on the mathematical techniques of minimi-
zation they can find more information in chapter 5 of Kalnay
(2002).

Logistic regression has been used for a long time within me-
teorology. One of the earliest papers using logistic regression
showed skill in predicting the probability of hail greater than
1.9 cm (Billet et al. 1997), while more recent papers have used
logistic regression to identify storm mode (Jergensen et al.

2020), subseasonal prediction of surface temperature (Vigaud
et al. 2019) and predict the transition of tropical cyclones to
extratropical cyclones (Bieli et al. 2020).

c. Naïve Bayes

An additional method to do classification is known as naïve
Bayes (Kuncheva 2006), which is named for its use of Bayes’s
theorem and can be written as the following:

P(y|x) � P(y)P(x|y)
P(x) : (8)

In words, Eq. (8) is looking for the probability of some la-
bel y (e.g., snow), given a set of input features x [P(y|x); e.g.,
temperature]. This probability can be calculated from know-
ing the probability of the label y occurring in the dataset
[P(y); e.g., how frequent it snows] times the probability of the
input features given it belongs to the class y [P(x|y); e.g., how
frequently is it 328F when it is snowing], divided by the proba-
bility of the input features [P(x)]. The naïve part of the naïve
Bayes algorithm comes from assuming that all input features
x, are independent of one another and the term P(x|y) can be
modeled by an assumed distribution (e.g., normal distribu-
tion) with parameters determined from the training data.
While these assumptions are often not true, the naïve Bayes
classifier can be skillful in practice. A few simplification steps
results in the following:

ŷ � argmax log P(y)[]
1

∑N
i�0

log[P(xi|y)]
{ }

: (9)

Again in words, the predicted class (ŷ) from naïve Bayes is
the classification label (y) such that the sum of the log of the
probability of that classification [P(y)] and the sum of log of
all the probabilities of the specific inputs given the classifica-
tion [P(xi|y)] is maximized. To help visualize the quantity
P(xi|y), a graphical example is shown in Fig. 4. This example
uses surface weather measurements from a station near
Marquette, Michigan, where data were compiled when it was
raining and snowing. Figure 4 shows distribution of air tempera-
ture (i.e., an input feature) given the two classes (i.e., rain versus
snow). To get P(xi|y), we need to assume an underlying distribu-
tion function. The common assumed distribution with naïve
Bayes is the normal distribution:

f (x;m,s) � 1

s
����
2p

√ exp 2
1
2

x 2 m

s

()[]
, (10)

where m is the mean and s is the standard deviation of the
training data. While the normal distribution assumption for
the temperature distribution in Fig. 4 is questionable due to
thermodynamic constraints that lock the temperature at 328F
(i.e., latent cool/heating), naïve Bayes can still have skill. Ini-
tially, it might not seem like any sort of weights/biases are be-
ing fit like the previously mentioned methods (e.g., logistic
regression), but m and s are being learned from the training
data. If performance from the normal distribution is poor,

FIG. 3. A graphical depiction of the sigmoid function [Eq. (6)].
The x axis is the predicted label value, while the y axis is the now
scaled value.

WEATHER AND FORECAS T ING VOLUME 371512

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

other distributions can be assumed, like a multinomial or a
Bernoulli distribution.

A popular use of naïve Bayes classification in the meteoro-
logical literature has been the implementation of ProbSevere
(e.g., Cintineo et al. 2014, 2018, 2020) which uses various se-
vere storm parameters and observations to classify the likeli-
hood of any storm becoming severe in the next 60 min.
Additional examples of naïve Bayes classifiers in meteorology
have been used for identifying tropical cyclone secondary
eyewall formation from microwave imagery (Kossin and
Sitkowski 2009), identifying anomalous propagation in radar
data (Peter et al. 2013) and precipitation type (e.g., convective/
stratiform) retrievals from geostationary satellites (Grams et al.
2016).

d. Trees and forests

Decision trees are based on a decision making method that
humans have been using for years: flow charts, where the
quantitative decision points within the flowchart are learned
automatically from the data. Early use of decision trees in me-
teorology (e.g., Chisholm et al. 1968) actually predated the
formal description of the decision tree algorithm (Breiman
1984; Quinlan 1993; Breiman 2001). Since then, tree-based
methods have grown in popularity and have been demon-
strated to predict a variety of complex meteorological phe-
nomena. Topics include the following: aviation applications
(e.g., Williams et al. 2008a,b; Williams 2014; Muñoz-Esparza
et al. 2020), severe weather (e.g., Gagne et al. 2009, 2013;

McGovern et al. 2014; Mecikalski et al. 2015; Lagerquist et al.
2017; Gagne et al. 2017; Czernecki et al. 2019; Burke et al.
2020; Hill et al. 2020; Loken et al. 2020; Gensini et al. 2021;
Flora et al. 2021; Loken et al. 2022), solar power (e.g.,
McGovern et al. 2015), precipitation (e.g., Elmore and Grams
2016; Herman and Schumacher 2018b,a; Taillardat et al. 2019;
Loken et al. 2020; Wang et al. 2020; Mao and Sorteberg 2020;
Li et al. 2020; Hill and Schumacher 2021; Schumacher et al.
2021), satellite and radar retrievals (e.g., Kühnlein et al. 2014;
Conrick et al. 2020; Yang et al. 2021; Zhang et al. 2021), and
climate-related topics (e.g., Cui et al. 2021).

To start, we will describe decision trees in context of a clas-
sification problem. The decision tree creates splits in the data
(i.e., decisions) that are chosen such that either the Gini impu-
rity value or the entropy value decreases after the split. Gini
impurity is defined as

Gini � ∑i�k
i�0

pi(1 2 pi), (11)

where pi is the probability of class i (i.e., the number of data
points labeled class i divided by the total number of data
points). While entropy is defined as

entropy � ∑i�k
i�0

pilog2(pi): (12)

Both functions effectively measure how similar the data
point labels are in each one of the groupings of the tree after
some split in the data. Envision the flowchart as a tree. The
decision is where the tree branches into two directions, result-
ing in two separate leaves. The goal of a decision tree is to
choose the branch that results in a leaf having a minimum of
Gini or entropy. In other words, the data split would ideally
result in two subgroups of data where all the labels are the
same within each subgroup. Figure 5 shows both the Gini im-
purity and entropy for a two class problem. Consider the ex-
ample of classifying winter precipitation as rain or snow.
From some example surface temperature dataset, the likely
decision threshold would be near 328F, which would result in
the subsequent two groupings of data point labels (i.e., snow/
rain) having a dominant class label (i.e., fraction of class k is
near 0 or 1) and thus having a minimum of entropy or Gini
(i.e., near 0). The actual output of this tree could be either the
majority class label, or the ratio of the major class (i.e.,
a probabilistic output).

While it is helpful to consider a decision tree with a single
decision, also known as a tree with a depth of 1, the prediction
power of a single decision is limited. A step toward more com-
plexity is to include increasing depth (i.e., more decisions/
branches). To continue with the rain/snow example from the
previous paragraph, we could include a second decision based
on measured wet bulb temperature. A tree with depth two
will likely have better performance, but the prediction power
is still somewhat limited.

An additional step to increase the complexity of decision
trees, beyond including more predictors, is a commonly used
method in meteorology: ensembles. While it might not be

FIG. 4. Visualizing the probability of an input feature given the
class label. This example is created from 5-min weather station ob-
servations from near Marquette, MI (years included: 2005–20). The
precipitation phase was determined by the present weather sensor.
The histogram is the normalized number of observations in that
temperature bin, while the smooth curves are the normal distribu-
tion fit to the data. Red is for raining instances and blue is for
snowing instances.

C HA S E E T A L . 1513AUGUST 2022

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

clear here, decision trees become over-fit (i.e., work really
well for training data, but perform poorly on new data) as the
depth of the tree increases. An alternative approach is to use
an ensemble of trees (i.e., a forest). Using an ensemble of
trees forms the basis of two additional tree based methods:
random forests (Breiman 2001) and gradient boosted decision
trees (Friedman 2001).

Random forests are a collection of decision trees that are
trained on random subsets of data and random subsets of in-
put variables from the initial training dataset. In other words,
the mathematics are exactly the same for each tree, the deci-
sions still aim to minimize the loss (e.g., entropy), but each
tree is given a different random subset of data sampled from
the original dataset with replacement. Gradient boosted deci-
sion trees are an ensemble of trees that instead of training
multiple trees on random subsets (i.e., random forest), each
tree in the ensemble is successively trained on the remaining
error from the previous trees. To put it another way, rather
than minimizing the total error on random trees, the reduced
error from the first decision tree is now minimized on the sec-
ond tree, and the reduced error from trees one and two is
then minimized on the third tree and so on. To come up with
a single prediction out of the ensemble of trees, the predic-
tions can be combined through a voting procedure (i.e., count
up the predicted classes of each tree) or by taking the average
probabilistic output from each tree. Random forests can use
either method, while gradient boosted trees are limited to the
voting procedure.

While the discussion here has been centered on classification
for the tree-based methods, they can be used for regression as
well. The main alteration to the decision tree method to con-
vert to a regression-based problem is the substitution of the
loss function [i.e., Eq. (11) and (12)]. For example, a common

loss function for random forest for regression and gradient
boosted regression is the same loss function as linear regression
described in the previous section [e.g., Eq. (2)], the residual
summed squared error.

e. Support vector machines

A support vector machine (commonly referred to as SVM;
Vapnik 1963) is an ML method similar to linear and logistic
regression. The idea is that a support vector machine uses a
linear boundary to do its predictions, which has a similar
mathematical form but written differently to account to vec-
tor notation. The equation is

ŷ � wTx 1 b, (13)

where w is a vector of weights, x is a vector of input features,
b is a bias term, and ŷ is the regression prediction. In the case of
classification, only sign of the right side of Eq. (13) is used. This
linear boundary can be generalized beyond two-dimensional
problems (i.e., two input features) to three-dimensions where
the decision boundary is called a plane, or any higher-order
space where the boundary is called a hyperplane. The main dif-
ference between linear methods discussed in sections 2a and 2b
and support vector machines is that support vector machines in-
clude margins to the linear boundary. Formally, the margin is
the area between the linear boundary and the closest training
data point for each class label (e.g., closest rain data point and
closest snow data point). This is shown schematically with a
synthetic dataset in Fig. 6a. While this is an ideal case, usually
classes overlap (Fig. 6b), but support vector machines can still
handle splitting the classes. The optimization task for support
vector machines is stated as the following: Find wT such that the
margin is maximized. In other words, support vector machines
aim to maximize the distance between the two closest obser-
vations on either side of the hyperplane. Mathematically, the
margin distance is described as

margin � 1
wTw

: (14)

Like before, the maximization is handled by numerical
techniques to optimize the problem, but the resulting solution
will be the hyperplane with the largest separation between the
classes. A powerful attribute of the support vector machine
method is that it can be extended to additional mathematical for-
mulations for the boundary, for example a quadratic function.
Thus, the person using support vector machines can decide which
function would work best for their data. Recent applications of
support vector machines in meteorology include the classification
of storm mode (Jergensen et al. 2020), hindcasts of tropical cyclo-
nes (Neetu et al. 2020), and evaluating errors with quantitative
precipitation retrievals in the United States (Kurdzo et al. 2020).

3. Machine learning application and discussion

This section will discuss the use of all ML methods with a
familiar use-case: thunderstorms. Specifically, this section will
show two ML applications derived from popular meteorologi-
cal datasets: radar and satellite. The particular data used are

FIG. 5. A visual representation of the two functions that can be
used in decision trees for classification, entropy (blue) and Gini im-
purity (red).

WEATHER AND FORECAS T ING VOLUME 371514

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

from the Storm Event Imagery dataset (SEVIR; Veillette
et al. 2020), which contains over 10 000 storm events from be-
tween 2017 and 2019. Each event spans four hours and in-
cludes measurements from both GOES-16 and NEXRAD. An
example storm event and the five measured variables}red
channel visible reflectance (0.64 mm; channel 2), midtropo-
spheric water vapor brightness temperature (6.9 mm; channel 9),
clean infrared window brightness temperature (10.7 mm; chan-
nel 13), vertically integrated liquid (VIL; from NEXRAD), and
Geostationary Lightning Mapper (GLM) measured lightning
flashes}are found in Fig. 7. In addition to discussing ML in con-
text of the SEVIR dataset, this section will follow the general
steps to using ML and contain helpful discussions of the best
practices as well as the most common pitfalls.

a. Problem statements

The SEVIR data will be applied to two tasks: 1) Does this
image contain a thunderstorm? and 2) How many lightning
flashes are in this image? To be explicit, we assume the GLM
observations are unavailable, and we need to use the other
measurements (e.g., infrared brightness temperature) as fea-
tures to estimate if there are lightning flashes (i.e., classifica-
tion), and how many of them are there (i.e., regression).
While both of these tasks might be considered redundant
since we have GLM, the goal of this paper is to provide dis-
cussion on how to use ML as well as discussion on the ML
methods themselves. That being said, a potential useful appli-
cation of the trained models herein would be to use them on
satellite sensors that do not have lightning measurements. For
example, all generations of GOES prior to GOES-16 did
not have a lightning sensor collocated with the main sensor.
Thus, we could potentially use the ML models trained here

to estimate GLM measurements prior to GOES-16 (i.e.,
November 2016).

b. Data

The first step of any ML project is to obtain data. Here, the
data are from a public archive hosted on the Amazon web ser-
vice. For information of how to obtain the SEVIR data as
well as the code associated with this manuscript see the data
availability statement. One major question at this juncture is
as follows: “Howmuch data are needed to do machine learning?”
While there does not exist a generic number that can apply to all
datasets, the idea is to obtain enough data such that one’s training
data are diverse. A diverse dataset is desired because any bias
found within the training data would be encoded in the ML
method (McGovern et al. 2021). For example, if a MLmodel was
trained on only images where thunderstorms were present, then
the ML model would likely not know what a non-lightning pro-
ducing storm would look like and be biased. Diversity in the
SEVIR dataset is created by including random images (i.e., no
storms) from all around the United States (cf. Fig. 2 in Veillette
et al. 2020).

After obtaining the data, it is vital to remove as much spuri-
ous data as possible before training because the ML model
will not know how to differentiate between spurious data and
high quality data. A common anecdote when using ML mod-
els is garbage in, garbage out. The SEVIR dataset has already
gone through rigorous quality control, but this is often not the
case with raw meteorological datasets. Two examples of qual-
ity issues that would likely be found in satellite and radar
datasets are satellite artifacts (e.g., GOES-17 heat pipe;
McCorkel et al. 2019) and radar ground clutter (e.g., Hubbert
et al. 2009). Cleaning and manipulating the dataset to get it
ready for ML often takes a researcher 50%–80% of their

FIG. 6. Support vector machine classification examples. (a) Ideal (synthetic) data where the x and y axis are both in-
put features, while the color designates what class each point belongs to. The decision boundary learned by the sup-
port vector machine is the solid black line, while the margin is shown by the dashed lines. (b) A real world example
using NAM 1800 UTC forecasts of U and V wind and tipping-bucket measurements of precipitation. Blue plus
markers are raining instances, and the red minus signs are non-raining instances. Black lines are the decision boundary
and margins.

C HA S E E T A L . 1515AUGUST 2022

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

time.3 Thus, do not be discouraged if cleaning one’s datasets
is taking a large amount of time because a high-quality dataset
will be best for having a successful ML model.

Subsequent to cleaning the data, the next step is to engineer
the inputs (i.e., features) and outputs (i.e., labels). One ave-
nue to create features is to use every single pixel in the image
as a predictor. While this could work, given the number of
pixels in the SEVIR images (589 824 total pixels for one visi-
ble image) it is computationally impractical to train a ML
model with all pixels. Thus, we are looking for a set of statis-
tics than can be extracted from each image. For the genera-
tion of features, domain knowledge is critical because
choosing meteorologically relevant quantities will ultimately
determine the ML models skill. For the ML tasks presented
in section 3a, information about the storm characteristics
(e.g., strength) in the image would be beneficial features. For
example, a more intense storm is often associated with more
lightning. Proxies for estimating storm strength would be the
magnitude of reflectance in the visible channel; how cold
brightness temperatures in the water vapor and clean infrared
channel are; and how much vertically integrated water there
is. Thus, to characterize these statistics, we extract the follow-
ing percentiles from each image and variable: 0, 1, 10, 25, 50,
75, 90, 99, and 100.

To create the labels the number of lightning flashes in the
image are summed. For Problem Statement 1, an image is

classified as containing a thunderstorm if the image has at least
one flash in the last five minutes. For Problem Statement 2, the
sum of all lightning flashes in the past five minutes within the
image are used for the regression target.

Now that the data have been quality controlled and our fea-
tures and labels have been extracted, the next step is to split
that dataset into three independent subcategories named the
training, validation, and testing sets. The reason for these three
subcategories is because of the relative ease at which ML
methods can “memorize” the training data. This occurs be-
cause ML models can contain numerous (e.g., hundreds, thou-
sands, or even millions) learnable parameters, thus the ML
model can learn to perform well on the training data but not
generalize to other non-training data, which is called over-fitting.
To assess how over-fit a MLmodel is, it is important to evaluate
a trained ML model on data outside of its training data (i.e.,
validation and testing sets).

The training dataset is the largest subset of the total amount
of data. The reason the training set is the largest is because
the aforementioned desired outcome of most ML models
is to generalize on wide variety of examples. Typically, the
amount of training data is between 70% and 85% of the total
amount of data available. The validation dataset, regularly
5%–15% of the total dataset, is a subset of data used to assess
if a ML model is over-fit and is also used for evaluating best
model configurations (e.g., the depth of a decision tree). These
model configurations are also known as hyper-parameters.
Machine learning models have numerous configurations and per-
mutations that can be varied and could impact the skill of any

FIG. 7. An example storm image from
the SEVIR dataset. This event is from
6 Aug 2018. (a) The visible reflectance,
(b) the midtropospheric water vapor bright-
ness temperature, (c) the clean infrared
brightness temperatures, (d) the vertically
integrated liquid retrieved from NEXRAD,
and (e) gridded GLM number of flashes.
Annotated locations of representative per-
centiles that were engineered features used
for theMLmodels are shown in (a).

3 https://www.nytimes.com/2014/08/18/technology/for-big-data-
scientists-hurdle-to-insights-is-janitor-work.html.

WEATHER AND FORECAS T ING VOLUME 371516

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html

one trained ML model. Thus, common practice is to system-
atically vary the available hyper-parameter choices, also
called a grid search, and then evaluate the different trained
models based on the validation dataset. Hyper-parameters
will be discussed in more detail later. The test dataset is the
last grouping that is set aside to the very end of the ML pro-
cess. The test dataset is often of similar size to the validation
dataset, but the key difference is that the test dataset is used
after all hyper-parameter variations have been concluded.
The reason for this last dataset is because when doing the sys-
tematic varying of the hyper-parameters the ML practitioner
is inadvertently tuning a ML model to the validation dataset.
One will often choose specific hyper-parameters in such a
way to achieve the best performance on the validation data-
set. Thus, to provide a truly unbiased assessment of the
trained ML model skill for unseen data, the test dataset is set
aside and not used until after training all ML models.

It is common practice outside of meteorology (i.e., data sci-
ence) to randomly split the total dataset into the three sub-
sets. However, it is important to strive for independence of
the various subsets. A data point in the training set should not
be highly correlated to a data point in the test set. In meteo-
rology this level of independence is often challenging given
the frequent spatial and temporal autocorrelations in meteo-
rologic data. Consider the SEVIR dataset. Each storm event
has 4 h of data broken into 5-min time steps. For one storm
event, there is a large correlation between adjacent 5-min
samples. Thus, randomly splitting the data would likely pro-
vide a biased assessment of the true skill of the ML model. To
reduce the number of correlated data points across subsets,
time is often used to split the dataset. For our example, we
choose to split the SEVIR data up by training on 1 January
2017–1 June 2019 and split every other week in the rest of
2019 into the validating and testing sets. This equates to a
72%, 13%, and 15% split for the training, validation, and test
sets, respectively. In the event that the total dataset is small
and splitting the data into smaller subsets creates less robust
statistics, a resampling method known as k-fold cross valida-
tion (e.g., Bischl et al. 2012; Goodfellow et al. 2016) can be
used. The SEVIR dataset was sufficiently large that we chose
not to do k-fold cross validation, but a meteorological exam-
ple using it can be found in Shield and Houston (2022).

c. Training and evaluation

1) CLASSIFICATION

As stated in section 3a, task 1 is to classify if an image con-
tains a thunderstorm. Thus, the classification methods available
to do this task are logistic regression, naïve Bayes, decision
trees, random forest, gradient boosted trees, and support vector
machines. To find an optimal ML model, it is often best to try
all methods available. While this might seem like a considerable
amount of additional effort, the ML package used in this tuto-
rial (i.e., scikit learn4) uses the same syntax for all methods
[e.g., method.fit(X, y), method.predict(Xval)]. Thus, fitting all

available methods does not require substantially more effort
from the ML practitioner and will likely result in finding a best
performing model.

To start off, all methods are initially trained using their
default hyper-parameters in scikit-learn and just one input
feature, the minimum infrared brightness temperature (Tb).
We choose to use Tb because meteorologically it is a proxy
for the depth of the storms in the domain, which is correlated
to lightning formation (Yoshida et al. 2009). To assess the pre-
dictive power of this variable, the distributions of Tb for thun-
derstorms and no thunderstorms are shown in Fig. 8. As
expected, Tb for thunderstorms shows more frequent lower
temperatures than non-thunderstorm images. Training all
methods using Tb achieves an accuracy of 80% on the valida-
tion dataset. While accuracy is a common and easy to under-
stand metric, it is best to always use more than one metric
when evaluating ML methods.

Another common performance metric for classification
tasks is the area under the curve (AUC). More specifically
the common area metric is associated with the receiver op-
erating characteristics curve (ROC). The ROC curve is cal-
culated from the relationship between the probability of
false detection (POFD) and the probability of detection
(POD). Both POFD and POD parameters are calculated
from determining parameters within a contingency table
which are the true positives (both the ML prediction and la-
bel say thunderstorm), false positives (ML prediction
predicts thunderstorm, label has no thunderstorm), false
negatives (ML prediction is no thunderstorm, label shows
there is a thunderstorm) and true negatives (ML says no
thunderstorm, label says no thunderstorm). The POFD and
POD are defined by

FIG. 8. The normalized distributions of minimum brightness tem-
perature (Tb) from the clean infrared channel for thunderstorm
images (blue; T-storm) and non-thunderstorm images (red; No
T-storm).

4 https://scikit-learn.org/stable/.

C HA S E E T A L . 1517AUGUST 2022

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

https://scikit-learn.org/stable/

POFD � FalsePositive
TruePositive 1 FalsePositive

, (15)

POD � TruePositive
TruePositive 1 FalseNegative

: (16)

All of the ML models, except support vector machines (as
coded in sklearn), can provide a probabilistic estimation of the
classification (e.g., this image is 95% likely to have lightning in
it). When calculating the accuracy before, we assumed a thresh-
old of 50% to designate what the ML prediction was. To get
the ROC curve, the threshold probability is instead varied from
0% to 100%. The resulting ROC curves for all of the ML meth-
ods except support vector machines are shown in Fig. 9a. We
see that for this simple one feature model, all methods are still
very similar and have AUCs near 0.9 (Fig. 9a), which is gener-
ally considered good performance.5

An additional method for evaluating the performance of classi-
fication method is called a performance diagram (Fig. 9b;
Roebber 2009). The performance diagram is also calculated from
the contingency table, using the POD again for the y axis, but
this time the x axis is the success ratio (SR) which is defined as

SR � TruePositive
TruePositive 1 FalsePositive

: (17)

From this diagram, several things can be gleaned about
the models’ performance. In general, the top right corner is
where “best” performing models are found. This area is

characterized by models that capture nearly all events (i.e.,
thunderstorms), while not predicting a lot of false alarms (i.e.,
false positives). This corner is also associated with high values
of critical success index (CSI; filled contours Fig. 9b), defined
as

CSI � TruePositive
TruePositive 1 FalsePositive 1 FalseNegative

,

(18)

which is a metric that shows a model’s performance without
considering the true negatives. Not considering the true nega-
tives is important because true negatives can dominate ML
tasks in meteorology given the often rare nature of events
with large impacts (e.g., floods, hail, tornadoes). The last set
of lines on this diagram are the frequency bias contours
(dashed gray lines Fig. 9b). These contours indicate if a model
is overforecasting or underforecasting.

For the simple ML models trained, even though most of
them have a similar accuracy and AUC, the performance dia-
gram suggests their performance is indeed different. Consider
the tree based methods (green box; Fig. 9b). They are all ef-
fectively at the same location with a POD of about 0.9 and a
SR of about 0.75, which is a region that has a frequency bias
of almost 1.5. Meanwhile the logistic regression, support vec-
tor machines and naïve Bayes methods are much closer to the
frequency bias line of 1, while having a similar CSI as the tree
based methods. Thus, after considering overall accuracy,
AUC and the performance diagram, the best performing
model would be the logistic regression, support vector ma-
chines, or naïve Bayes. At this junction, the practitioner has
the option to consider if they want a slightly overforecasting

FIG. 9. Performance metrics from the simple classification (only using Tb). (a) Receiver operating characteristic
(ROC) curves for each ML model (except support vector machines), logistic regression (LgR; blue), naïve Bayes
(NB; red), decision tree (DT; geen), random forest (RF; yellow), and gradient boosted trees (GBT; light green). The
area under the ROC curve is reported in the legend. (b) Performance diagram for all ML models [same colors as (a)].
Color fill is the corresponding CSI value for each success ratio–probability of detection (SR–POD) pair. Dashed con-
tours are the frequency bias.

5 No formal peer reviewed journal states this; it is more of a rule
of thumb in machine learning practice.

WEATHER AND FORECAS T ING VOLUME 371518

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

system or a slightly underforecasting system. For the thunder-
storm, no-thunderstorm task, there are not many implications
for overforecasting or underforecasting. However, developers
of a tornado prediction model may prefer a system that pro-
duces more false positives (overforecasting; storm warned, no
tornado) than false negatives (underforecasting; storm not
warned, tornado) as missed events could have significant im-
pact to life and property. It should be clear that without going
beyond a single metric, this differentiation between the ML
methods would not be possible.

While the previous example was simple by design, we as hu-
mans could have used a simple threshold at the intersection of
the two histograms in Fig. 8 to achieve similar accuracy (e.g.,
81%; not shown). The next logical step with the classification
task would be to use all available features. One important
thing to mention at this step is that it is good practice to nor-
malize input features. Some of the ML methods (e.g., random
forest) can handle inputs of different magnitudes (e.g., CAPE
is on the order of hundreds to thousands, but lifted index is
on the order of one to tens), but others (e.g., logistic regres-
sion) will be unintentionally biased toward larger magnitude
features if you do not scale your input features. Common scal-
ing methods include min–max scaling and scaling your input
features to have mean 0 and standard deviation of 1 (i.e., stan-
dard anomaly) which are defined mathematically as follows:

minmax � x 2 xmin

xmax 2 xmin
, and (19)

standard anomaly � x 2 m

s
, (20)

respectively. In Eq. (19), xmin is the minimum value within the
training dataset for some input feature x while xmax is the
maximum value in the training dataset. In Eq. (20), m is
the mean of feature x in the training dataset and s is the stan-
dard deviation. For this paper, the standard anomaly is used.

Using all available input features yields an accuracy of
90%, 84%, 86%, 91%, 90%, and 89% for logistic regression,
naïve Bayes, decision tree, random forest, gradient boosted
trees, and support vector machines, respectively. Beyond
the relatively good accuracy, the ROC curves are shown in
Fig. 10a. This time there are generally two sets of curves, one
better performing group (logistic regression, random forest,
gradient boosted trees, and support vector machines) with
AUCs of 0.97 and a worse performing group (naïve Bayes
and decision tree) AUCs around 0.87. This separation coin-
cides with the flexibility of the classification methods. The bet-
ter performing groups are better set to deal with many
features and nonlinear interactions of the features, while the
worse performing group is a bit more restricted in how it com-
bines many features. Considering the performance diagram
(Fig. 10b), the same grouping of high AUC performing mod-
els have higher CSI scores (.0.8) and have little to no fre-
quency bias. Meanwhile the lower AUC performing models
have lower CSI (0.75) and NB has a slight overforecasting
bias. Overall, the ML performance on classifying if an image
has a thunderstorm is doing well with all predictors. While a
good performing model is a desired outcome of ML, at this
point we do not know how the ML is making its predictions.
This is part of the “black-box” issue of ML and does not lend
itself to being consistent with the ML user’s prior knowledge
(see note in introduction on consistency; Murphy 1993).

To alleviate some of opaqueness of the ML black box, one
can interrogate the trained ML models by asking: “What in-
put features are most important to the decision?” and “Are
the patterns the ML models learned physical (e.g., follow me-
teorological expectation)?” The techniques named permuta-
tion importance (Breiman 2001; Lakshmanan et al. 2015) and
accumulated local effects (ALE; Apley and Zhu 2020) are
used to answer these two questions, respectively. Permutation
importance is a method in which the relative importance of
an input feature is quantified by considering the change in

FIG. 10. As in Fig. 9, but now trained with all available predictors. The annotations from Fig. 9 have been removed.

C HA S E E T A L . 1519AUGUST 2022

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

evaluation metric (e.g., AUC) when that input variable is
shuffled (i.e., randomized). The intuition is that the most im-
portant variables when shuffled will cause the largest change
to the evaluation metric. There are two main flavors of per-
mutation importance, named single-pass and multi-pass.
Single-pass permutation importance goes through each input
variable and shuffles them one by one, calculating the change
in the evaluation metrics. Multi-pass permutation importance
uses the result of the single-pass, but progressively permutes
features. In other words, features are successively permuted
in the order that they were determined as important (most
important then second most important etc.) from the single
pass but are now left shuffled. The specific name for the
method we have been describing is the backward multi-pass
permutation importance. The backward name comes from the
direction of shuffling, starting will all variables unshuffled and
shuffling more and more of them. There is the opposite direc-
tion, named forward multi-pass permutation importance, where
the starting point is that all features are shuffled to start. Then
each feature is unshuffled in order of their importance from

the single-pass permutation importance. For visual learners,
see the animations (for the backward direction; Figs. ES4 and
ES5) in the supplement of McGovern et al. (2019). The reason
for doing multi-pass permutation importance is because corre-
lated features could result in falsely identifying unimportant
variables using the single pass permutation importance. The
best analysis of the permutation test is to use both the single
pass and multi-pass tests in conjunction.

The top five most important features for the better per-
forming models (i.e., logistic regression, random forest, and
gradient boosted trees) as determined by permutation impor-
tance are shown in Fig. 11. For all ML methods both the sin-
gle and multi-pass test show that the maximum vertically
integrated liquid is the most important feature, while the min-
imum brightness temperature from the clean infrared and
midtropospheric water vapor channels are found within the
top five predictors (except multi-pass test for logistic regres-
sion). In general, the way to interpret these is to take the con-
sensus over all models which features are important. At this
point it time to consider if the most important predictors

FIG. 11. Backward permutation importance test for the best performing classification ML models. Single pass results are in the top row,
while multi-pass forward results are for the bottom row. Each column corresponds to a different ML method: (a),(d) logistic regression;
(b),(e) random forest; and (c),(f) gradient boosted trees. Bars are colored by their source, yellow for the vertically integrated liquid (VIL),
red for the infrared (IR), blue for water vapor (WV), and black for visible (VIS). Number subscripts correspond to the percentile of that
variable. The dashed black line is the original AUC value when all features are not shuffled.

WEATHER AND FORECAS T ING VOLUME 371520

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

make meteorological sense. Vertically integrated liquid has
been shown to have a relationship to lightning (e.g., Watson
et al. 1995) and is thus plausible to be the most important pre-
dictor. Similarly, the minimum brightness temperature at the
water vapor and clean infrared channels also makes physical
sense because lower temperatures are generally associated
with taller storms. We could also reconcile the maximum in-
frared brightness temperature (Fig. 11a) as a proxy for the
surface temperature which correlates to buoyancy, but note
that the relative change in AUC with this feature is quite
small. Conversely, any important predictors that do not align
with traditional meteorological knowledge may require fur-
ther exploration to determine why the model is placing such
weight on those variables. Does the predictor have some
statistical correlation with the meteorological event that is
unexplained by past literature, or are there nonphysical
characteristics of the data that may be influencing the model
during training? In the latter case, it is possible that your
model might be getting the right answer for the wrong
reasons.

Meanwhile minimum brightness temperature at both the
water vapor and clean infrared channels also makes physical
sense since lower temperatures are related with taller storms.
We could also reconcile the max infrared brightness tempera-
ture as a proxy for the surface temperature, which correlates
to buoyancy, but not that the relative change in AUC with
this feature is quite small. If any the top predictors do not
make sense meteorologically, then your model might be get-
ting the right answer for the wrong reasons.

Accumulated local effects are where small changes to input
features and their associated change on the output of the
model are quantified. The goal behind ALE is to investigate
the relationship between an input feature and the output.
ALE is performed by binning the data based on the feature of
interest. Then for each example in each bin, the feature value
is replaced by the edges of the bin. The mean difference in
the model output from the replaced feature value is then used

as the ALE for that bin. This process is repeated for all bins
which result in a curve. For example, the ALE for some of
the top predictors of the permutation test is shown in in
Fig. 12. At this step, the ALEs can be mainly used to see if
the ML models have learned physically plausible trends with
input features. For the vertically integrated liquid, all models
show that as the max vertically integrated liquid increases
from about 2 to 30 kg m22 the average output probability of
the model will increase, but values larger than 30 kg m22 gen-
erally all have the same local effect on the prediction
(Fig. 12a). As for the minimum clean infrared brightness tem-
perature, the magnitude of the average change is considerably
different across the different models, but generally all have
the same pattern. As the minimum temperature increases
from 2888 to 2558C, the mean output probability decreases:
temperatures larger than 2178C have no change (Fig. 12b).
Last, all models but the logistic regression show a similar pat-
tern with the minimum water vapor brightness temperature,
but notice the magnitude of the y axis (Fig. 12c). Much less
change occurs with this feature. For interested readers, addi-
tional interpretation techniques and examples can be found in
Molnar (2022).

2) REGRESSION

As stated in section 3a, task 2 is to predict the number of
lightning flashes inside an image. Thus, the regression meth-
ods available to do this task are linear regression, decision
tree, random forest, gradient boosted trees, and support vec-
tor machines. Similar to task 1 a simple scenario is considered
first, using Tb as the lone predictor. Figure 13 shows the gen-
eral relationship between Tb and the number of flashes in the
image. For Tb . 2258C, most images do not have any light-
ning, while Tb , 2258C shows a general increase of lightning
flashes. Given there are a lot of images with zero flashes (ap-
proximately 50% of the total dataset; black points in Fig. 13),
the linear methods will likely struggle to capture a skillful pre-
diction. One way to improve performance would be to only

FIG. 12. Accumulated local effects (ALE) for (a) the maximum vertically integrated liquid (VILmax), (b) the minimum brightness tem-
perature from infrared (IRmin), and (c) the minimum brightness temperature from the water vapor channel (WVmin). Lines correspond to
all the ML methods trained (except support vector machines) and colors match Fig. 9. Gray histograms in the background are the counts
of points in each bin.

C HA S E E T A L . 1521AUGUST 2022

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

predict the number of flashes on images where there are
nonzero flashes. While this might not seem like a viable way
forward since non-lightning cases would be useful to pre-
dict, in practice we could leverage the very good perfor-
mance of the classification model from section 3c(1), and
then use the trained regression on images that are confident
to have at least one flash in them. An example of this done
in the literature is Gagne et al. (2017), where hail size pre-
dictions were only made if the classification model said
there was hail.

As before, all methods are fit on the training data initially
using the default hyper-parameters. A common way to com-
pare regression model performance is to create a one-to-one
plot, which has the predicted number of flashes on the x axis
and the true measured number of flashes on the y axis. A
perfect model will show all points tightly centered along the
diagonal of the plot. This is often the quickest qualitative as-
sessment of how a regression model is performing. While Tb

was well suited for the classification of thunderstorm/no-
thunderstorm, it is clear that fitting a linear model to the
data in Fig. 13 did not do well (Figs. 14a,e), leading to a
strong overprediction of the number of lightning flashes in
an images with less than 100 flashes, while under-predicting
the number of flashes for images with more than 100 flashes.
The tree based methods tend to do better, but there is still a
large amount of scatter and an over estimation of storms
with less than 100 flashes.

To tie quantitative metrics to the performance of each
model the following are common metrics calculated: mean
bias, mean absolute error (MAE), root mean squared error
(RMSE) and coefficient of determination (R2). Their mathe-
matical representations are the following:

bias � 1
N

∑N
j�1

(yj 2 ŷj), (21)

MAE � 1
N

∑N
j�1

|yj 2 ŷj|, (22)

RMSE �
�������������������
1
N

∑N
j�1

(yj 2 ŷj)2
√√

, (23)

R2 � 1 2

∑N
j�1

(yj 2 ŷj)2

∑N
j�1

(yj 2 y)2
: (24)

All of these metrics are shown in Fig. 15. In general, the met-
rics give a more quantitative perspective to the one-to-one plots.
The poor performance of the linear methods shows, with the
two worst performances being the support vector machines and
linear regression with biases of 71 and 6 flashes, respectively.
While no method provides remarkable performance, the ran-
dom forest and gradient boosted trees perform better with this
single feature model (show better metrics holistically).

As before, the next logical step is to use all available fea-
tures to predict the number of flashes: those results are found
in Figs. 16 and 17. As expected, the model performance in-
creases. Now all models show a general correspondence be-
tween the predicted number of flashes and the true number of
flashes in the one-to-one plot (Fig. 16). Meanwhile the scatter
for random forest and gradient boosted trees has reduced
considerably when comparing to the single input models
(Figs. 16c,d). While comparing the bias of the models trained
with all predictors is relatively similar, the other metrics are
much improved, showing large reductions in MAE and
RMSE and increases in R2 (Fig. 17) for all methods except de-
cision trees. This reinforces that fact that similar to the classifi-
cation example, it is always good to compare more than one
metric.

Since the initial fitting of the ML models used the default
parameters, there might be room for tuning the models to
have better performance. Here we will show an example of
some hyper-parameter tuning of a random forest. The com-
mon parameters that can be altered in a random forest include
the following: the maximum depth of the trees (i.e., number of
decisions in a tree) and the number of trees in the forest. The
formal hyper-parameter search will use the full training data-
set, and systematically vary the depth of the trees from 1 to 10
(in increments of 1) as well as the number of trees from 1 to
100 (1, 5, 10, 25, 50, 100). This results in 60 total models that
are trained.

To evaluate which is the best configuration, the same metrics
as before are shown in Fig. 18 as a function of the depth of the
trees. The random forest quickly gains skill with added depth
beyond one, with all metrics improving for both the training
(dashed lines) and validation datasets (solid lines). Beyond a
depth of four, the bias, MAE, and RMSE all stagnate, but the

FIG. 13. The training data relationship between the minimum
brightness temperature from infrared (Tb) and the number of
flashes detected by GLM. All non-thunderstorm images (number
of flashes equal to 0) are in black.

WEATHER AND FORECAS T ING VOLUME 371522

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

R2 value increases until a depth of eight where the training
data continue to increase. There does not seem to be that
large of an effect of increasing the number of trees beyond
10 (color change of lines). The characteristic of increasing

training metric skills but no increase (or a decrease) to vali-
dation data skill is the overfitting signal we discussed in
section 3b. Thus, the best random forest model choice for
predicting lightning flashes is a random forest with a max
depth of eight and a total of 10 trees. The reason we choose
10 trees, is because in general choosing a simpler model is
less computationally expensive to use as well as a more in-
terpretable than a model with 1000 trees.

d. Testing

As mentioned before, the test dataset is the dataset you
hold out until the end when all hyper-parameter tuning has
finished so that there is no unintentional tuning of the final
model configuration to a dataset. Thus, now that we have eval-
uated the performance of all our models on the validation da-
taset it is time to run the same evaluations as in sections 3c(1)
and 3c(2). These test results are the end performance metrics
that should be interpreted as the expected ML performance
on new data (e.g., the ML applied in practice). For the ML
models here, the metrics are very similar as the validation set.
(For brevity the extra figures are included in the appendix
Figs. A1–A3.)

4. Summary and future work

This manuscript was the first of two machine learning (ML)
tutorial papers designed for the operational meteorology
community. This paper supplied a survey of some of the most

FIG. 14. The one-to-one relationship between the predicted number of lightning flashes from the ML learning models
trained on only Tb (x axis; ŷ) and the number of measure flashes from GLM (y axis; y). Each marker is one observation.
Meanwhile areas with more than 100 points in close proximity are shown in the colored boxes. The lighter the shade of
the color, the higher the density of points. (a) Linear regression (LnR; reds), (b) decision tree (DT; blues), (c) random
forest (RF; oranges), (d) gradient boosted trees (GBT; purples), and (e) linear support vector machines (SVM; grays).

FIG. 15. Validation dataset metrics for all ML models. Colors are as
in Fig. 14. Exact numerical value is reported on top of each bar.

C HA S E E T A L . 1523AUGUST 2022

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

common ML methods. All ML methods described here are
considered supervised methods, meaning the data the models
are trained from include pre-labeled truth data. The specific
methods covered included linear regression, logistic regres-
sion, decision trees, random forests, gradient boosted decision
trees, naïve Bayes, and support vector machines. The over-
arching goal of the paper was to introduce the ML methods in

such a way that ML methods are more familiar to readers as
they encounter them in the operational community and within
the general meteorological literature. Moreover, this manu-
script provided ample references of published meteorological
examples as well as open-source code to act as catalysts for
readers to adapt and try ML on their own datasets and in their
workflows.

FIG. 16. As in Fig. 14, but now the x axis is provided from the MLmodels trained with all available input features.

FIG. 17. As in Fig. 15, but for ML models trained with all available
input features.

FIG. 18. Hyper-parameter tuning of a random forest for predict-
ing the number of lightning flashes. All input features are used.
Solid lines are the validation dataset while the dashed lines are the
training data. The vertical dotted line is the depth of trees where
overfitting begins.

WEATHER AND FORECAS T ING VOLUME 371524

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

Additionally, this manuscript provided a tutorial example of
how to applyML to a couple meteorological tasks using the Storm
Event Imagery dataset (SEVIR; Veillette et al. 2020) dataset. We

1) Discussed the various steps of preparing data for ML (i.e.,
removing artifacts; engineering features, training/valida-
tion/testing splits; section 3b).

2) Conducted a classification task to predict if satellite im-
ages had lightning within them. This section included dis-
cussions of training, evaluation and interrogation of the
trained ML models [section 3c(1)].

3) Exhibited a regression task to predict the number of light-
ning flashes in a satellite image. This section also con-
tained discussions of training/evaluation as well as an ex-
ample of hyper-parameter tuning [section 3c(2)].

4) Released python code to conduct all steps and examples
in this manuscript (see data availability statement).

The follow on paper in this series will discuss a more com-
plex, yet potentially more powerful, grouping of ML methods:
neural networks and deep learning. Like a lot of the ML meth-
ods described in this paper, neural networks are not necessarily

FIG. A1. As in Fig. 9, but now for the test dataset.

FIG. A2. As in Fig. 14, but for the test dataset.

C HA S E E T A L . 1525AUGUST 2022

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

new (Rumelhart et al. 1986) and were first applied to meteorol-
ogy topics decades ago (e.g., Key et al. 1989; Lee et al. 1990).
Although, given the exponential growth of computing resources
and dataset sizes, research using neural networks and deep
learning in meteorology has been accelerating (e.g., Fig. 1c;
Gagne et al. 2019; Lagerquist et al. 2020; Cintineo et al. 2020;
Chase et al. 2021; Hilburn et al. 2021; Lagerquist et al. 2021;
Molina et al. 2021; Ravuri et al. 2021). Thus, it is important that
operational meteorologists also understand the basics of neural
networks and deep learning.

Acknowledgments. We would like to acknowledge and thank
the three anonymous reviewers who provided valuable feedback
to this manuscript. This material is based uponwork supported by
the National Science Foundation under Grant ICER-2019758,
supporting authors RJC, AM, and AB. Author DRH was pro-
vided support byNOAA/Office of Oceanic andAtmospheric Re-
search under NOAA–University of Oklahoma Cooperative
Agreements NA16OAR4320115 and NA21OAR4320204, U.S.
Department of Commerce. The scientific results and conclusions,
as well as any views or opinions expressed herein, are those of the
authors and do not necessarily reflect the views of NOAA or the
Department of Commerce. We want to acknowledge the work
put forth by the authors of the SEVIR dataset (Mark S. Veillette,
Siddharth Samsi, and Christopher J. Mattioli) for making a high-
quality free dataset. We would also like to acknowledge the
open-source python community for providing their tools for
free. Specifically, we acknowledge Google Colab (Bisong 2019),
Anaconda (Anaconda 2020), scikit-learn (Pedregosa et al. 2011),
Pandas (Wes McKinney 2010), Numpy (Harris et al. 2020), and
Jupyter (Kluyver et al. 2016).

Data availability statement. As an effort to catalyze the use
and trust of machine learning within meteorology we have
supplied a github repository with a code tutorial of a lot of the

same things discussed in this paper. The latest version of gi-
thub repository can be located here: https://github.com/ai2es/
WAF_ML_Tutorial_Part1. If you are interested in the version
of the repository that was available at time of publication
please see the zendo archive of version 1 here: https://zenodo.
org/record/6941510. The original github repo for SEVIR is
located here: https://github.com/MIT-AI-Accelerator/neurips-
2020-sevir.

APPENDIX

Testing Dataset Figures

This appendix contains the test dataset evaluations for
both the classification task (Fig. A1) and the regression
task (Figs. A2 and A3). Results are largely the same as the
validation set, so to save space they were included here.

REFERENCES

Anaconda, 2020: Anaconda software distribution. Anaconda Inc.,
accessed 1 July 2022, https://docs.anaconda.com/.

Apley, D. W., and J. Zhu, 2020: Visualizing the effects of predic-
tor variables in black box supervised learning models. J. Roy.
Stat. Soc., 82B, 1059–1086, https://doi.org/10.1111/rssb.12377.

Bieli, M., A. H. Sobel, S. J. Camargo, and M. K. Tippett, 2020: A
statistical model to predict the extratropical transition of
tropical cyclones. Wea. Forecasting, 35, 451–466, https://doi.
org/10.1175/WAF-D-19-0045.1.

Billet, J., M. DeLisi, B. Smith, and C. Gates, 1997: Use of regres-
sion techniques to predict hail size and the probability of
large hail. Wea. Forecasting, 12, 154–164, https://doi.org/10.
1175/1520-0434(1997)012,0154:UORTTP.2.0.CO;2.

Bischl, B., O. Mersmann, H. Trautmann, and C. Weihs, 2012: Re-
sampling methods for meta-model validation with recommen-
dations for evolutionary computation. Evol. Comput., 20,
249–275, https://doi.org/10.1162/EVCO_a_00069.

Bisong, E., Ed., 2019: Google colaboratory. Building Machine
Learning and Deep Learning Models on Google Cloud Plat-
form: A Comprehensive Guide for Beginners, Apress, 59–64,
https://doi.org/10.1007/978-1-4842-4470-8_7.

Bonavita, M., and Coauthors, 2021: Machine learning for earth
system observation and prediction. Bull. Amer. Meteor. Soc.,
102, E710–E716, https://doi.org/10.1175/BAMS-D-20-0307.1.

Breiman, L., 1984: Classification and Regression Trees. Routledge,
368 pp.

}}, 2001: Random forests. Mach. Learn., 45, 5–32, https://doi.
org/10.1023/A:1010933404324.

Burke, A., N. Snook, D. J. Gagne II, S. McCorkle, and A.
McGovern, 2020: Calibration of machine learning–based
probabilistic hail predictions for operational forecasting.
Wea. Forecasting, 35, 149–168, https://doi.org/10.1175/WAF-
D-19-0105.1.

Cains, M. G., and Coauthors, 2022: NWS forecasters’ perceptions
and potential uses of trustworthy AI/ML for hazardous weather
risks. 21st Conf. on Artificial Intelligence for Environmental Sci-
ence, Houston, TX, Amer. Meteor. Soc., 1.3, https://ams.confex.
com/ams/102ANNUAL/meetingapp.cgi/Paper/393121.

Chase, R. J., S. W. Nesbitt, and G. M. McFarquhar, 2021: A dual-
frequency radar retrieval of two parameters of the snowfall
particle size distribution using a neural network. J. Appl.

FIG. A3. As in Fig. 15, but for the test dataset.

WEATHER AND FORECAS T ING VOLUME 371526

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

https://github.com/ai2es/WAF_ML_Tutorial_Part1
https://github.com/ai2es/WAF_ML_Tutorial_Part1
https://zenodo.org/record/6941510
https://zenodo.org/record/6941510
https://github.com/MIT-AI-Accelerator/neurips-2020-sevir
https://github.com/MIT-AI-Accelerator/neurips-2020-sevir
https://docs.anaconda.com/
https://doi.org/10.1111/rssb.12377
https://doi.org/10.1175/WAF-D-19-0045.1
https://doi.org/10.1175/WAF-D-19-0045.1
https://doi.org/10.1175/1520-0434(1997)012<0154:UORTTP>2.0.CO;2
https://doi.org/10.1175/1520-0434(1997)012<0154:UORTTP>2.0.CO;2
https://doi.org/10.1162/EVCO_a_00069
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1175/BAMS-D-20-0307.1
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1175/WAF-D-19-0105.1
https://doi.org/10.1175/WAF-D-19-0105.1
https://ams.confex.com/ams/102ANNUAL/meetingapp.cgi/Paper/393121
https://ams.confex.com/ams/102ANNUAL/meetingapp.cgi/Paper/393121

Meteor. Climatol., 60, 341–359, https://doi.org/10.1175/JAMC-
D-20-0177.1.

Chisholm, D., J. Ball, K. Veigas, and P. Luty, 1968: The diagnosis
of upper-level humidity. J. Appl. Meteor., 7, 613–619, https://doi.
org/10.1175/1520-0450(1968)007,0613:TDOULH.2.0.CO;2.

Cintineo, J. L., M. Pavolonis, J. Sieglaff, and D. Lindsey, 2014: An
empirical model for assessing the severe weather potential of
developing convection. Wea. Forecasting, 29, 639–653, https://
doi.org/10.1175/WAF-D-13-00113.1.

}}, and Coauthors, 2018: The NOAA/CIMSS ProbSevere
model: Incorporation of total lightning and validation. Wea.
Forecasting, 33, 331–345, https://doi.org/10.1175/WAF-D-17-
0099.1.

}}, M. J. Pavolonis, J. M. Sieglaff, L. Cronce, and J. Brunner,
2020: NOAA Probsevere v2.0}Probhail, Probwind, and
Probtor. Wea. Forecasting, 35, 1523–1543, https://doi.org/10.
1175/WAF-D-19-0242.1.

Conrick, R., J. P. Zagrodnik, and C. F. Mass, 2020: Dual-polarization
radar retrievals of coastal Pacific Northwest raindrop size distri-
bution parameters using random forest regression. J. Atmos.
Oceanic Technol., 37, 229–242, https://doi.org/10.1175/JTECH-
D-19-0107.1.

Cui, W., X. Dong, B. Xi, and Z. Feng, 2021: Climatology of linear
mesoscale convective system morphology in the United
States based on the random-forests method. J. Climate, 34,
7257–7276, https://doi.org/10.1175/JCLI-D-20-0862.1.

Czernecki, B., M. Taszarek, M. Marosz, M. Półrolniczak, L.
Kolendowicz, A. Wyszogrodzki, and J. Szturc, 2019: Applica-
tion of machine learning to large hail prediction}The impor-
tance of radar reflectivity, lightning occurrence and convec-
tive parameters derived from ERA5. Atmos. Res., 227, 249–
262, https://doi.org/10.1016/j.atmosres.2019.05.010.

Elmore, K. L., and H. Grams, 2016: Using mPING data to gener-
ate random forests for precipitation type forecasts. 14th Conf.
on Artificial and Computational Intelligence and its Applica-
tions to the Environmental Sciences, New Orleans, LA,
Amer. Meteor. Soc., 4.2, https://ams.confex.com/ams/96Annual/
webprogram/Paper289684.html.

Flora, M. L., C. K. Potvin, P. S. Skinner, S. Handler, and A.
McGovern, 2021: Using machine learning to generate storm-
scale probabilistic guidance of severe weather hazards in the
Warn-on-Forecast system. Mon. Wea. Rev., 149, 1535–1557,
https://doi.org/10.1175/MWR-D-20-0194.1.

Friedman, J., 2001: Greedy function approximation: A gradient
boosting machine. Ann. Stat., 29, 1189–1232, https://doi.org/
10.1214/aos/1013203451.

Gagne, D., A. McGovern, and J. Brotzge, 2009: Classification of
convective areas using decision trees. J. Atmos. Oceanic Tech-
nol., 26, 1341–1353, https://doi.org/10.1175/2008JTECHA1205.1.

}}, }}, }}, and M. Xue, 2013: Severe hail prediction within
a spatiotemporal relational data mining framework. 13th Int.
Conf. on Data Mining, Dallas, TX, Institute of Electrical and
Electronics Engineers, 994–1001, https://doi.org/10.1109/ICDMW.
2013.121.

}}, }}, S. Haupt, R. Sobash, J. Williams, and M. Xue, 2017:
Storm-based probabilistic hail forecasting with machine learn-
ing applied to convection-allowing ensembles. Wea. Forecast-
ing, 32, 1819–1840, https://doi.org/10.1175/WAF-D-17-0010.1.

}}, H. Christensen, A. Subramanian, and A. Monahan, 2019:
Machine learning for stochastic parameterization: Genera-
tive adversarial networks in the Lorenz ’96 model. J. Adv.
Model. Earth Syst., 12, e2019MS001896, https://doi.org/10.
1029/2019MS001896.

Gensini, V. A., C. Converse, W. S. Ashley, and M. Taszarek,
2021: Machine learning classification of significant tornadoes
and hail in the United States using ERA5 proximity sound-
ings. Wea. Forecasting, 36, 2143–2160, https://doi.org/10.1175/
WAF-D-21-0056.1.

Glahn, H. R., and D. A. Lowry, 1972: The use of Model Output
Statistics (MOS) in objective weather forecasting. J. Appl. Me-
teor., 11, 1203–1211, https://doi.org/10.1175/1520-0450(1972)011,
1203:TUOMOS.2.0.CO;2.

Goodfellow, I., Y. Bengio, and A. Courville, 2016: Deep Learning.
MIT Press, 800 pp., http://www.deeplearningbook.org.

Grams, H. M., P.-E. Kirstetter, and J. J. Gourley, 2016: Naïve
Bayesian precipitation type retrieval from satellite using a
cloud-top and ground-radar matched climatology. J. Hydrome-
teor., 17, 2649–2665, https://doi.org/10.1175/JHM-D-16-0058.1.

Harris, C. R., and Coauthors, 2020: Array programming with
NumPy. Nature, 585, 357–362, https://doi.org/10.1038/s41586-
020-2649-2.

Herman, G., and R. Schumacher, 2018a: Dendrology in numerical
weather prediction: What random forests and logistic regres-
sion tell us about forecasting. Mon. Wea. Rev., 146, 1785–
1812, https://doi.org/10.1175/MWR-D-17-0307.1.

}}, and }}, 2018b: Money doesn’t grow on trees, but forecasts
do: Forecasting extreme precipitation with random forests.
Mon. Wea. Rev., 146, 1571–1600, https://doi.org/10.1175/
MWR-D-17-0250.1.

Hilburn, K. A., I. Ebert-Uphoff, and S. D. Miller, 2021: Develop-
ment and interpretation of a neural-network-based synthetic
radar reflectivity estimator using GOES-R satellite observa-
tions. J. Appl. Meteor. Climatol., 60, 3–21, https://doi.org/10.
1175/JAMC-D-20-0084.1.

Hill, A. J., and R. S. Schumacher, 2021: Forecasting excessive
rainfall with random forests and a deterministic convection-
allowing model. Wea. Forecasting, 36, 1693–1711, https://doi.
org/10.1175/WAF-D-21-0026.1.

}}, G. R. Herman, and R. S. Schumacher, 2020: Forecasting se-
vere weather with random forests. Mon. Wea. Rev., 148,
2135–2161, https://doi.org/10.1175/MWR-D-19-0344.1.

Hoerl, A. E., and R. W. Kennard, 1970: Ridge regression: Biased
estimation for nonorthogonal problems. Technometrics, 12,
55–67, https://doi.org/10.1080/00401706.1970.10488634.

Holte, R. C., 1993: Very simple classification rules perform well
on most commonly used datasets. Mach. Learn., 11, 63–90,
https://doi.org/10.1023/A:1022631118932.

Hu, L., E. A. Ritchie, and J. S. Tyo, 2020: Short-term tropical cy-
clone intensity forecasting from satellite imagery based on
the deviation angle variance technique. Wea. Forecasting, 35,
285–298, https://doi.org/10.1175/WAF-D-19-0102.1.

Hubbert, J. C., M. Dixon, S. M. Ellis, and G. Meymaris, 2009:
Weather radar ground clutter. Part I: Identification, model-
ing, and simulation. J. Atmos. Oceanic Technol., 26, 1165–
1180, https://doi.org/10.1175/2009JTECHA1159.1.

Jergensen, G. E., A. McGovern, R. Lagerquist, and T. Smith,
2020: Classifying convective storms using machine learning.
Wea. Forecasting, 35, 537–559, https://doi.org/10.1175/WAF-
D-19-0170.1.

Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and
Predictability. Cambridge University Press, 341 pp., https://
doi.org/10.1017/CBO9780511802270.

Key, J., J. Maslanik, and A. Schweiger, 1989: Classification of
merged AVHRR and SMMR Arctic data with neural net-
works. Photogramm. Eng. Remote Sens., 55, 1331–1338.

C HA S E E T A L . 1527AUGUST 2022

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

https://doi.org/10.1175/JAMC-D-20-0177.1
https://doi.org/10.1175/JAMC-D-20-0177.1
https://doi.org/10.1175/1520-0450(1968)007<0613:TDOULH>2.0.CO;2
https://doi.org/10.1175/1520-0450(1968)007<0613:TDOULH>2.0.CO;2
https://doi.org/10.1175/WAF-D-13-00113.1
https://doi.org/10.1175/WAF-D-13-00113.1
https://doi.org/10.1175/WAF-D-17-0099.1
https://doi.org/10.1175/WAF-D-17-0099.1
https://doi.org/10.1175/WAF-D-19-0242.1
https://doi.org/10.1175/WAF-D-19-0242.1
https://doi.org/10.1175/JTECH-D-19-0107.1
https://doi.org/10.1175/JTECH-D-19-0107.1
https://doi.org/10.1175/JCLI-D-20-0862.1
https://doi.org/10.1016/j.atmosres.2019.05.010
https://ams.confex.com/ams/96Annual/webprogram/Paper289684.html
https://ams.confex.com/ams/96Annual/webprogram/Paper289684.html
https://doi.org/10.1175/MWR-D-20-0194.1
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1175/2008JTECHA1205.1
https://doi.org/10.1109/ICDMW.2013.121
https://doi.org/10.1109/ICDMW.2013.121
https://doi.org/10.1175/WAF-D-17-0010.1
https://doi.org/10.1029/2019MS001896
https://doi.org/10.1029/2019MS001896
https://doi.org/10.1175/WAF-D-21-0056.1
https://doi.org/10.1175/WAF-D-21-0056.1
https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2
https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2
http://www.deeplearningbook.org
https://doi.org/10.1175/JHM-D-16-0058.1
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1175/MWR-D-17-0307.1
https://doi.org/10.1175/MWR-D-17-0250.1
https://doi.org/10.1175/MWR-D-17-0250.1
https://doi.org/10.1175/JAMC-D-20-0084.1
https://doi.org/10.1175/JAMC-D-20-0084.1
https://doi.org/10.1175/WAF-D-21-0026.1
https://doi.org/10.1175/WAF-D-21-0026.1
https://doi.org/10.1175/MWR-D-19-0344.1
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1023/A:1022631118932
https://doi.org/10.1175/WAF-D-19-0102.1
https://doi.org/10.1175/2009JTECHA1159.1
https://doi.org/10.1175/WAF-D-19-0170.1
https://doi.org/10.1175/WAF-D-19-0170.1
https://doi.org/10.1017/CBO9780511802270
https://doi.org/10.1017/CBO9780511802270

Kluyver, T., and Coauthors, 2016: Jupyter Notebooks}A publish-
ing format for reproducible computational workflows. Posi-
tioning and Power in Academic Publishing: Players, Agents
and Agendas, F. Loizides and B. Schmidt, Eds., IOS Press,
87–90.

Kossin, J. P., and M. Sitkowski, 2009: An objective model for iden-
tifying secondary eyewall formation in hurricanes. Mon. Wea.
Rev., 137, 876–892, https://doi.org/10.1175/2008MWR2701.1.

Kühnlein, M., T. Appelhans, B. Thies, and T. Nauß, 2014: Precipi-
tation estimates from MSG SEVIRI daytime, nighttime, and
twilight data with random forests. J. Appl. Meteor. Climatol.,
53, 2457–2480, https://doi.org/10.1175/JAMC-D-14-0082.1.

Kuncheva, L. I., 2006: On the optimality of naïve Bayes with de-
pendent binary features. Pattern Recognit. Lett., 27, 830–837,
https://doi.org/10.1016/j.patrec.2005.12.001.

Kurdzo, J. M., E. F. Joback, P.-E. Kirstetter, and J. Y. N. Cho,
2020: Geospatial QPE accuracy dependence on weather ra-
dar network configurations. J. Appl. Meteor. Climatol., 59,
1773–1792, https://doi.org/10.1175/JAMC-D-19-0164.1.

Lackmann, G., Ed., 2011: Numerical weather prediction/data as-
similation. Midlatitude Synoptice Meteorology: Dynamics,
Analysis, and Forecasting, Amer. Meteor. Soc., 274–287.

Lagerquist, R., A. McGovern, and T. Smith, 2017: Machine learn-
ing for real-time prediction of damaging straight-line convec-
tive wind. Wea. Forecasting, 32, 2175–2193, https://doi.org/10.
1175/WAF-D-17-0038.1.

}}, }}, C. R. Homeyer, D. J. Gagne II, and T. Smith, 2020:
Deep learning on three-dimensional multiscale data for next-
hour tornado prediction. Mon. Wea. Rev., 148, 2837–2861,
https://doi.org/10.1175/MWR-D-19-0372.1.

}}, J. Q. Stewart, I. Ebert-Uphoff, and C. Kumler, 2021: Using
deep learning to nowcast the spatial coverage of convection
from Himawari-8 satellite data. Mon. Wea. Rev., 149, 3897–
3921, https://doi.org/10.1175/MWR-D-21-0096.1.

Lakshmanan, V., C. Karstens, J. Krause, K. Elmore, A. Ryzhkov,
and S. Berkseth, 2015: Which polarimetric variables are im-
portant for weather/no-weather discrimination? J. Atmos.
Oceanic Technol., 32, 1209–1223, https://doi.org/10.1175/
JTECH-D-13-00205.1.

Lee, C.-Y., S. J. Camargo, F. Vitart, A. H. Sobel, J. Camp, S.
Wang, M. K. Tippett, and Q. Yang, 2020: Subseasonal predic-
tions of tropical cyclone occurrence and ACE in the S2S da-
taset. Wea. Forecasting, 35, 921–938, https://doi.org/10.1175/
WAF-D-19-0217.1.

Lee, J., R. Weger, S. Sengupta, and R. Welch, 1990: A neural net-
work approach to cloud classification. IEEE Trans. Geosci.
Remote Sens., 28, 846–855, https://doi.org/10.1109/36.58972.

Li, L., and Coauthors, 2020: A causal inference model based on
random forests to identify the effect of soil moisture on pre-
cipitation. J. Hydrometeor., 21, 1115–1131, https://doi.org/10.
1175/JHM-D-19-0209.1.

Loken, E. D., A. J. Clark, and C. D. Karstens, 2020: Generating
probabilistic next-day severe weather forecasts from convec-
tion-allowing ensembles using random forests. Wea. Forecast-
ing, 35, 1605–1631, https://doi.org/10.1175/WAF-D-19-0258.1.

}}, }}, and A. McGovern, 2022: Comparing and interpreting
differently designed random forests for next-day severe
weather hazard prediction. Wea. Forecasting, 37, 871–899,
https://doi.org/10.1175/WAF-D-21-0138.1.

Malone, T., 1955: Application of statistical methods in weather
prediction. Proc. Natl. Acad. Sci. USA, 41, 806–815, https://
doi.org/10.1073/pnas.41.11.806.

Mao, Y., and A. Sorteberg, 2020: Improving radar-based precipi-
tation nowcasts with machine learning using an approach
based on random forest. Wea. Forecasting, 35, 2461–2478,
https://doi.org/10.1175/WAF-D-20-0080.1.

McCorkel, J., J. Van Naarden, D. Lindsey, B. Efremova, M.
Coakley, M. Black, and A. Krimchansky, 2019: GOES-17 ad-
vanced baseline imager performance recovery summary.
(IGARSS 2019) 2019 IEEE Int. Geoscience and Remote Sens-
ing Symp., Yokohama, Japan, Institute of Electrical and Elec-
tronics Engineers, 1–4, https://doi.org/10.1109/IGARSS40859.
2019.9044466.

McGovern, A., D. Gagne, J. Williams, R. Brown, and J. Basara,
2014: Enhancing understanding and improving prediction of
severe weather through spatiotemporal relational learning.
Mach. Learn., 95, 27–50, https://doi.org/10.1007/s10994-013-
5343-x.

}}, }}, J. Basara, T. Hamill, and D. Margolin, 2015: Solar en-
ergy prediction: An international contest to initiate interdisci-
plinary research on compelling meteorological problems.
Bull. Amer. Meteor. Soc., 96, 1388–1395, https://doi.org/10.
1175/BAMS-D-14-00006.1.

}}, R. Lagerquist, D. Gagne, G. Jergensen, K. Elmore, C.
Homeyer, and T. Smith, 2019: Making the black box more
transparent: Understanding the physical implications of ma-
chine learning. Bull. Amer. Meteor. Soc., 100, 2175–2199,
https://doi.org/10.1175/BAMS-D-18-0195.1.

}}, I. Ebert-Uphoff, D. J. Gagne II, and A. Bostrom, 2021: The
need for ethical, responsible, and trustworthy artificial intelli-
gence for environmental sciences. arXiv, 2112.08453, https://
arxiv.org/abs/2112.08453.

McKinney, W., 2010: Data structures for statistical computing in
Python. Proceedings of the Ninth Python in Science Confer-
ence, S. van der Walt and J. Millman, Eds., 56–61, https://doi.
org/10.25080/Majora-92bf1922-00a.

Mecikalski, J., J. Williams, C. Jewett, D. Ahijevych, A. LeRoy,
and J. Walker, 2015: Probabilistic 0–1-h convective initiation
nowcasts that combine geostationary satellite observations
and numerical weather prediction model data. J. Appl. Me-
teor. Climatol., 54, 1039–1059, https://doi.org/10.1175/JAMC-
D-14-0129.1.

Molina, M. J., D. J. Gagne, and A. F. Prein, 2021: A benchmark
to test generalization capabilities of deep learning methods
to classify severe convective storms in a changing climate.
Earth Space Sci., 8, e2020EA001490, https://doi.org/10.1029/
2020EA001490.

Molnar, C., 2022: Interpretable Machine Learning: A Guide for
Making Black Box Models Explainable. 2nd ed. 329 pp.,
https://christophm.github.io/interpretable-ml-book.

Muñoz-Esparza, D., R. D. Sharman, and W. Deierling, 2020: Avi-
ation turbulence forecasting at upper levels with machine
learning techniques based on regression trees. J. Appl. Me-
teor. Climatol., 59, 1883–1899, https://doi.org/10.1175/JAMC-
D-20-0116.1.

Murphy, A. H., 1993: What is a good forecast? An essay on the
nature of goodness in weather forecasting. Wea. Forecasting,
8, 281–293, https://doi.org/10.1175/1520-0434(1993)008,0281:
WIAGFA.2.0.CO;2.

Neetu, S., M. Lengaigne, J. Vialard, M. Mangeas, C. Menkes, I.
Suresh, J. Leloup, and J. Knaff, 2020: Quantifying the bene-
fits of nonlinear methods for global statistical hindcasts of
tropical cyclones intensity. Wea. Forecasting, 35, 807–820,
https://doi.org/10.1175/WAF-D-19-0163.1.

WEATHER AND FORECAS T ING VOLUME 371528

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

https://doi.org/10.1175/2008MWR2701.1
https://doi.org/10.1175/JAMC-D-14-0082.1
https://doi.org/10.1016/j.patrec.2005.12.001
https://doi.org/10.1175/JAMC-D-19-0164.1
https://doi.org/10.1175/WAF-D-17-0038.1
https://doi.org/10.1175/WAF-D-17-0038.1
https://doi.org/10.1175/MWR-D-19-0372.1
https://doi.org/10.1175/MWR-D-21-0096.1
https://doi.org/10.1175/JTECH-D-13-00205.1
https://doi.org/10.1175/JTECH-D-13-00205.1
https://doi.org/10.1175/WAF-D-19-0217.1
https://doi.org/10.1175/WAF-D-19-0217.1
https://doi.org/10.1109/36.58972
https://doi.org/10.1175/JHM-D-19-0209.1
https://doi.org/10.1175/JHM-D-19-0209.1
https://doi.org/10.1175/WAF-D-19-0258.1
https://doi.org/10.1175/WAF-D-21-0138.1
https://doi.org/10.1073/pnas.41.11.806
https://doi.org/10.1073/pnas.41.11.806
https://doi.org/10.1175/WAF-D-20-0080.1
https://doi.org/10.1109/IGARSS40859.2019.9044466
https://doi.org/10.1109/IGARSS40859.2019.9044466
https://doi.org/10.1007/s10994-013-5343-x
https://doi.org/10.1007/s10994-013-5343-x
https://doi.org/10.1175/BAMS-D-14-00006.1
https://doi.org/10.1175/BAMS-D-14-00006.1
https://doi.org/10.1175/BAMS-D-18-0195.1
https://arxiv.org/abs/2112.08453
https://arxiv.org/abs/2112.08453
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1175/JAMC-D-14-0129.1
https://doi.org/10.1175/JAMC-D-14-0129.1
https://doi.org/10.1029/2020EA001490
https://doi.org/10.1029/2020EA001490
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.1175/JAMC-D-20-0116.1
https://doi.org/10.1175/JAMC-D-20-0116.1
https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2
https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2
https://doi.org/10.1175/WAF-D-19-0163.1

Nowotarski, C. J., and A. A. Jensen, 2013: Classifying proximity
soundings with self-organizing maps toward improving super-
cell and tornado forecasting. Wea. Forecasting, 28, 783–801,
https://doi.org/10.1175/WAF-D-12-00125.1.

Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning
in Python. J. Mach. Learn. Res., 12, 2825–2830.

Peter, J. R., A. Seed, and P. J. Steinle, 2013:Application of a
Bayesian classifier of anomalous propagation to single-
polarization radar reflectivity data. J. Atmos. Oceanic Technol.,
30, 1985–2005, https://doi.org/10.1175/JTECH-D-12-00082.1.

Quinlan, J., 1993: C4.5: Programs for Machine Learning. Morgan
Kaufmann, 302 pp.

Ravuri, S., and Coauthors, 2021: Skilful precipitation nowcasting
using deep generative models of radar. Nature, 597, 672–677,
https://doi.org/10.1038/s41586-021-03854-z.

Roebber, P., 2009: Visualizing multiple measures of forecast qual-
ity. Wea. Forecasting, 24, 601–608, https://doi.org/10.1175/
2008WAF2222159.1.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams, 1986: Learn-
ing representations by back-propagating errors. Nature, 323,
533–536, https://doi.org/10.1038/323533a0.

Schumacher, R. S., A. J. Hill, M. Klein, J. A. Nelson, M. J.
Erickson, S. M. Trojniak, and G. R. Herman, 2021: From
random forests to flood forecasts: A research to operations
success story. Bull. Amer. Meteor. Soc., 102, E1742–E1755,
https://doi.org/10.1175/BAMS-D-20-0186.1.

Sessa, M. F., and R. J. Trapp, 2020: Observed relationship be-
tween tornado intensity and pretornadic mesocyclone charac-
teristics. Wea. Forecasting, 35, 1243–1261, https://doi.org/10.
1175/WAF-D-19-0099.1.

Shield, S. A., and A. L. Houston, 2022: Diagnosing supercell envi-
ronments: A machine learning approach. Wea. Forecasting,
37, 771–785, https://doi.org/10.1175/WAF-D-21-0098.1.

Taillardat, M., A.-L. Fougères, P. Naveau, and O. Mestre, 2019:
Forest-based and semiparametric methods for the postpro-
cessing of rainfall ensemble forecasting. Wea. Forecasting, 34,
617–634, https://doi.org/10.1175/WAF-D-18-0149.1.

Tibshirani, R., 1996: Regression shrinkage and selection via the
lasso. J. Roy. Stat. Soc., 58B, 267–288, https://doi.org/10.1111/
j.2517-6161.1996.tb02080.x.

Vapnik, V., 1963: Pattern recognition using generalized portrait
method. Autom. Remote Control, 24, 774–780.

Veillette, M., S. Samsi, and C. Mattioli, 2020: SEVIR: A storm
event imagery dataset for deep learning applications in radar

and satellite meteorology. Advances in Neural Information
Processing Systems, H. Larochelle et al., Eds., Vol. 33, Curran
Associates, Inc., 22 009–22019, https://proceedings.neurips.cc/
paper/2020/file/fa78a16157fed00d7a80515818432169-Paper.pdf.

Vigaud, N., M. K. Tippett, J. Yuan, A. W. Robertson, and N.
Acharya, 2019: Probabilistic skill of subseasonal surface tem-
perature forecasts over North America. Wea. Forecasting, 34,
1789–1806, https://doi.org/10.1175/WAF-D-19-0117.1.

Wang, C., P. Wang, D. Wang, J. Hou, and B. Xue, 2020: Nowcast-
ing multicell short-term intense precipitation using graph
models and random forests. Mon. Wea. Rev., 148, 4453–4466,
https://doi.org/10.1175/MWR-D-20-0050.1.

Watson, A. I., R. L. Holle, and R. E. López, 1995: Lightning from
two national detection networks related to vertically inte-
grated liquid and echo-top information from WSR-88D ra-
dar. Wea. Forecasting, 10, 592–605, https://doi.org/10.1175/
1520-0434(1995)010,0592:LFTNDN.2.0.CO;2.

Williams, J., 2014: Using random forests to diagnose aviation tur-
bulence. Mach. Learn., 95, 51–70, https://doi.org/10.1007/
s10994-013-5346-7.

}}, D. Ahijevych, S. Dettling, and M. Steiner, 2008a: Combining
observations and model data for short-term storm forecasting.
Proc. SPIE, 7088, 708805, https://doi.org/10.1117/12.795737.

}}, R. Sharman, J. Craig, and G. Blackburn, 2008b: Remote
detection and diagnosis of thunderstorm turbulence. Proc.
SPIE, 7088, 708804, https://doi.org/10.1117/12.795570.

Yang, L., H. Xu, and S. Yu, 2021: Estimating PM2.5 concentra-
tions in contiguous eastern coastal zone of China using
MODIS AOD and a two-stage random forest model. J. At-
mos. Oceanic Technol., 38, 2071–2080, https://doi.org/10.1175/
JTECH-D-20-0214.1.

Yoshida, S., T. Morimoto, T. Ushio, and Z. Kawasaki, 2009: A
fifth-power relationship for lightning activity from Tropical
Rainfall Measuring Mission satellite observations. J. Geophys.
Res., 114, D09104, https://doi.org/10.1029/2008JD010370.

Zhang, Z., D. Wang, J. Qiu, J. Zhu, and T. Wang, 2021: Machine
learning approaches for improving near-real-time IMERG
rainfall estimates by integrating cloud properties from
NOAA CDR PATMOS-x. J. Hydrometeor., 22, 2767–2781,
https://doi.org/10.1175/JHM-D-21-0019.1.

Zou, H., and T. Hastie, 2005: Regularization and variable selec-
tion via the elastic net. J. Roy. Stat. Soc., 67B, 301–320,
https://doi.org/10.1111/j.1467-9868.2005.00503.x.

C HA S E E T A L . 1529AUGUST 2022

Unauthenticated | Downloaded 06/15/23 07:44 PM UTC

https://doi.org/10.1175/WAF-D-12-00125.1
https://doi.org/10.1175/JTECH-D-12-00082.1
https://doi.org/10.1038/s41586-021-03854-z
https://doi.org/10.1175/2008WAF2222159.1
https://doi.org/10.1175/2008WAF2222159.1
https://doi.org/10.1038/323533a0
https://doi.org/10.1175/BAMS-D-20-0186.1
https://doi.org/10.1175/WAF-D-19-0099.1
https://doi.org/10.1175/WAF-D-19-0099.1
https://doi.org/10.1175/WAF-D-21-0098.1
https://doi.org/10.1175/WAF-D-18-0149.1
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://proceedings.neurips.cc/paper/2020/file/fa78a16157fed00d7a80515818432169-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fa78a16157fed00d7a80515818432169-Paper.pdf
https://doi.org/10.1175/WAF-D-19-0117.1
https://doi.org/10.1175/MWR-D-20-0050.1
https://doi.org/10.1175/1520-0434(1995)010<0592:LFTNDN>2.0.CO;2
https://doi.org/10.1175/1520-0434(1995)010<0592:LFTNDN>2.0.CO;2
https://doi.org/10.1007/s10994-013-5346-7
https://doi.org/10.1007/s10994-013-5346-7
https://doi.org/10.1117/12.795737
https://doi.org/10.1117/12.795570
https://doi.org/10.1175/JTECH-D-20-0214.1
https://doi.org/10.1175/JTECH-D-20-0214.1
https://doi.org/10.1029/2008JD010370
https://doi.org/10.1175/JHM-D-21-0019.1
https://doi.org/10.1111/j.1467-9868.2005.00503.x

