
Generated using the official AMS LATEX template v6.1

A Machine Learning Tutorial for Operational Meteorology, Part II: Neural

Networks and Deep Learning

Randy J. Chasea,b,c , David R. Harrisonb,d,e , Gary M. Lackmannf and Amy McGoverna,b,c

a School of Computer Science, University of Oklahoma, Norman OK USA
b School of Meteorology, University of Oklahoma, Norman OK USA

c NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal

Oceanography, University of Oklahoma, Norman OK USA
d Cooperative Institute for Severe and High-Impact Weather Research and Operations, University

of Oklahoma, Norman OK USA
e NOAA/NWS/Storm Prediction Center, Norman, Oklahoma

f Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University,

Raleigh, North Carolina

Corresponding author: Randy J. Chase, randy.chase@colostate.edu

1

Early Online Release: This preliminary version has been accepted for publication in
Weather and Forecasting, may be fully cited, and has been assigned DOI 10.1175/
WAF-D-22-0187.1. The final typeset copyedited article will replace the EOR at the above DOI when it
is published.

© 2023 American Meteorological Society Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

ABSTRACT: Over the past decade the use of machine learning in meteorology has grown rapidly.

Specifically neural networks and deep learning have been used at an unprecedented rate. In order

to fill the dearth of resources covering neural networks with a meteorological lens, this paper

discusses machine learning methods in a plain language format that is targeted for the operational

meteorological community. This is the second paper in a pair that aim to serve as a machine

learning resource for meteorologists. While the first paper focused on traditional machine learning

methods (e.g., random forest), here a broad spectrum of neural networks and deep learning methods

are discussed. Specifically this paper covers perceptrons, artificial neural networks, convolutional

neural networks and U-networks. Like the part 1 paper, this manuscript discusses the terms

associated with neural networks and their training. Then the manuscript provides some intuition

behind every method and concludes by showing each method used in a meteorological example of

diagnosing thunderstorms from satellite images (e.g., lightning flashes). This paper is accompanied

with an open-source code repository to allow readers to explore neural networks using either the

dataset provided (which is used in the paper) or as a template for alternate datasets.

2

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

1. Introduction

In the previous part of this tutorial series Chase et al. (2022) (hereafter Part 1) provided a survey

of many of the most common traditional machine learning techniques that a meteorologist might

encounter. This included: linear regression, logistic regression, naive bayes, decision trees, random

forest, gradient boosted trees and support vector machines. Beyond discussing the formulation

of the methods, Part 1 also discussed the general terms associated with machine learning and

provided an end-to-end machine learning example to detect lightning flashes within satellite and

radar images. In this manuscript we continue our explanation and tutorial of supervised machine

learning techniques by discussing a rapidly expanding category of machine learning known as

neural networks and deep learning.

While neural networks can be viewed similarly to the other methods described in Part 1 (i.e., an

empirical tool for making predictions and classifications), there are numerous nuances and different

terms associated with neural networks that motivate their own detailed discussion. Furthermore,

given the accelerated growth of neural networks (c.f., Fig. 1e in Part 1) and recent impressive

demonstrations of neural networks achieving similar forecasting performance to numerical weather

prediction (e.g., Weyn et al. 2020; Rasp and Thuerey 2021; Ravuri et al. 2021; Espeholt et al.

2022; Keisler 2022; Lam et al. 2022; Bi et al. 2022; Nguyen et al. 2023; Chen et al. 2023), the

meteorological literature could benefit from a neural-network specific plain language discussion

and simple meteorological example.

This paper follows the same organization as Part 1. Section 2 provides an introduction to neural-

network based machine learning methods and defines common neural network terms. Section 3

discusses how the neural network methods discussed in Section 2 can be applied to a meteorological

example. Section 4 summarizes this paper. The specific neural network types covered in this

manuscript are perceptrons, artificial neural networks, convolutions neural networks and ”U”

shaped networks (U-Net).

2. Neural network methods and common terms

This section introduces many of the common terms that meteorologists would encounter while

reading about or using output from neural networks. The goal of this paper is to provide readers

with the intuition behind the different neural network methods as well as introduce common terms

3

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

used within neural networks so that readers can become familiar with them. This section will dive

deeper than Part 1’s corresponding section in order to remove some of the mystery of the more

complex mathematical nature of neural networks and hopefully achieve the same level of intuition

as the traditional methods.

Before describing the various types of neural networks, also known as different architectures,

we first define neural networks as: the group of machine learning methods that use a network of

trainable weights that are organized in a structure that loosely resemble a biological brain. The

name neural network comes from the analogy of how the information is passed in a biological

brain and more specifically across neurons. Simply, a biological brain observes some information

which is then processed by a neuron and passed along a series of connections to numerous other

neurons resulting in a thought or action.

Another common term that is used with neural networks is deep learning. While deep learning

is often perceived as a synonym of neural networks by new users, it is actually a specific subset

of neural networks. Since there are many different definitions of what exactly deep learning is,

deep learning is defined here as a neural network that contains a minimum of two or more hidden

layers1, though often involves many more than two layers (e.g., 10s to 100s). This deep learning

definition can be interpreted as a minimum complexity requirement for a neural network to be

considered deep learning.

a. Architectures of neural networks

1) The perceptron

The first architecture of neural networks came from McCulloch and Pitts (1943) in their formula-

tion of a logical neuron, called later a perceptron (and referred to later in this document as nodes).

A schematic of a perceptron is in Fig. 1a. The perceptron has some input data (i.e., features),

which are altered by weights and aggregated (i.e., summed). Then the aggregated value is passed

through an activation function which determines the output of the perceptron. This is similar to a

biological neuron (Fig. 1b; Henley (2021)), where information is passed to the neuron from the

dendrites, aggregated at the cell body, passed through the axon hillock function and then results in

some output of the neuron.

1Hidden layers are layers that don’t directly interact with the input or output of a neural network. These are discussed more later

4

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

!
!"#

$

𝑤!𝑥! + 𝑏

𝑥!

𝑥"

𝑥#

⋮

𝑥$

#𝑦

Perceptron

a) c)
Features

weighted sum

activation

Multi-Layer Perceptron

𝑥!

𝑥"

𝑥#

⋮

𝑥$

⋮ ⋮ #𝑦

Input layer
Hidden layers

output

weights
node

b) dendrites

cell body

Axon hillock

Fig. 1. Schematic of (a) a perceptron (b) a biological neuron adapted from Henley (2021) and (c) a multi-layer

perceptron.

Mathematically, the perceptron is

𝑓 (𝑥) = 𝜎(
𝑖=𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏), (1)

where 𝑤𝑖 are the weights, 𝑥𝑖 are the 𝑛 total input features, 𝑏 is the bias and 𝜎 is the activation

function. Equation 1 will look familiar to those who read Part 1 because in essence it is the same

as linear and logistic regression (Equation 1 in Part 1). In fact, Eq. 1 is exactly logistic regression

if the activation function is the sigmoid function. The only difference is how the weights, 𝑤,

are determined, which is discussed later (Section 2.b). Since it is effectively the same as logistic

regression, the perceptron is used in a similar manner. For example, we could use the same input

features as Part 1 (e.g., minimum brightness temperature) to determine if there were any lightning

flashes in a satellite image. Given the limited representational capacity of a perceptron, their

application in the meteorological literature has been limited. One meteorological example can be

found in Kim et al. (2013), where a perceptron is used to remove chaff2 and clutter from radar data.

2) Multi-layer perceptron (Artificial Neural Network; ANN)

Akin to how many neurons make up a brain, the second type of neural network is an extension

of the single perceptron, which includes multiple perceptrons and multiple layers of multiple

2Military aircraft countermeasure for heat-seeking missiles

5

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

0

1

2

⋮

𝑛

⋮ ⋮ &𝑦

Input layer
Hidden layers

Probability of a flash in
image or number of
flashes in the image

Using pixels as features in ANN

Brightness Temperature

Colder Warmer

Fig. 2. Schematic of using each image pixel as input features to a multi-layer perceptron (also known as an

Artificial Neural Network [ANN]). The leftmost image is the infrared brightness temperature. The second image

is the same brightness temperature image is the same image but coarsened for visualization purposes.

perceptrons (Rumelhart et al. 1986). This multi-layer perceptron network is also known as an

Artificial Neural Network (ANN; Fig. 1c). Similar to the single perceptron, the data flows from

the input layer (i.e., input data) to each of the perceptrons (hereafter nodes) through an activation

function. The resulting information is then passed to all of the nodes in the next layer and so on

until it reaches the output layer (i.e., where the final prediction is made). Any layer of nodes that are

between the input and output are known as hidden layers. Mathematically, the multi-layer network

is usually summarized by the following

𝑦̂ = 𝑓 (x;𝜃) (2)

where 𝑦̂ is the output of the neural network, 𝑓 is the neural network which is a function of the

input data x and has parameters (i.e., weights and biases) 𝜃. Like the perceptron, the same features

from the Part 1 data example can be plugged in as the input layer (Fig. 1c). Alternatively, ANNs

can efficiently handle images where each pixel can be used as a feature (Fig. 2). Both methods are

shown in the meteorology example in Section 3.

Use of ANNs has been much more popular in meteorology than a single perceptron. Initial

applications of ANNs in meteorology date back to the 1990s, which included short-term forecasts

6

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

of: rain (Kuligowski and Barros 1998); road temperatures (Shao 1998); significant thunderstorms

(McCann 1992); damaging winds (Marzban and Stumpf 1998) and even tornadoes (Marzban

and Stumpf 1996). More recent examples include: short-term forecasting of solar irradiance

(McCandless et al. 2016); building radar retrievals of snowfall (Chase et al. 2021); and forecasting

tropical cyclone intensity (Cloud et al. 2019; Xu et al. 2021).

Before continuing to the next type of neural networks, a popular neural network-based tool

should be mentioned: Self-Organizing Maps (SOM; Kohonen et al. 1997). Self-organizing maps

are neural networks but they are an unsupervised machine learning method. Recall the discussion of

supervised and unsupervised machine learning in Part 1, , where unsupervised learning is machine

learning on unlabeled data and thus SOMs focus on clustering data without human prescribed

classes. For example, SOM have been used to classify severe storm environments (Anderson-Frey

et al. 2017; Katona and Markowski 2021), organize synoptic weather patterns in context of warm

precipitation events (Wang et al. 2019), and auto classify near-proximity soundings to supercells

(Nowotarski and Jensen 2013). While unsupervised clustering applications are useful, they are

not the focus of these two manuscripts (Part 1 and Part 2 are focused on supervised learning) and

likely deserve to have their own dedicated manuscript discussing all unsupervised techniques (e.g.,

Principle Component Analysis, K-means clustering).

3) Convolutional neural network (CNN)

While applications of ANNs can be impressive, an additional advancement to neural networks

was introduced by LeCun et al. (1989) named Convolutional Neural Networks (CNN). As the name

implies, these neural networks use convolutions where a convolution is a function that processes an

image by systematically altering the image with a small window called a kernel or filter. Graphically

a convolution is shown in Fig. 3. An image is convolved/filtered by moving this kernel through

the image. The kernel is made up of weights (center of Fig. 3), much like the nodes in an ANN,

which are used to create a weighted sum that is a convolved image (also known as a feature map).

Note that the weighted sum is passed through an activation function, as was done in the ANN. The

mathematical expression of a convolution for some pixel 𝑝 with coordinates 𝑥, 𝑦 (𝑝𝑥,𝑦) is:

𝑝𝑥,𝑦 = 𝜎(
𝑗=𝑦+𝑘∑︁
𝑗=𝑦−𝑘

𝑖=𝑥+𝑘∑︁
𝑖=𝑥−𝑘

𝑤𝑖, 𝑗 𝑝𝑖, 𝑗 + 𝑏), (3)

7

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Full Res. Image
Convolution

Kernel

Example Convolution

Value determined by:

!
!"#$%

#&%

!
'"($%

(&%

𝜎(𝑤',! × pixel',! + 𝑏)

Small dBZ Large dBZ - +0𝑝.,0

Fig. 3. Convolution graphic. The original hook echo radar reflectivity is located in the top left corner. The

convolution at step 0 is shown in the top row while the convolution at step 6 is shown in the bottom row. Note

these images are coarsened for visualization purposes (i.e., can see the pixels). An animation of this convolution

can be found in the Notebook 6 in the code repository. The result of the full convolution is shown in the top

right, blues are negative, reds are positive and they are unitless.

where 𝑤𝑖, 𝑗 is a scalar value (i.e., weight) that is learning during training at the at the 𝑖𝑡ℎ and 𝑗 𝑡ℎ

coordinate, 𝑝𝑖, 𝑗 is the pixel value at the same 𝑖𝑡ℎ and 𝑗 𝑡ℎ coordinate, 𝑘 is the floor (i.e., rounded

down) of half the kernel size3, 𝑏 is a scalar constant (also known as a bias term) and 𝜎 is an

activation function (e.g., see Sigmoid in Part 1). This equation is then repeated for all pixels in the

image. For visual learners, we encourage readers to check out the animated images in Lagerquist

et al. (2020b)’s supplemental material4 as well as Notebook 6 in the accompanying code with this

manuscript5. You might notice that the convolution equation doesn’t work for the edge of an image

(i.e., negative indices don’t make sense in this context). The fix for the edges of the image is to pad

(i.e., add) a row of zeros on all edges of the image.

The idea of a convolution is probably very abstract, so let’s consider an in depth example of how

one could work. Figure 4a shows a classic radar ’hook’ echo (Fujita 1958). The data are from

Lagerquist et al. (2020b) where the goal is to determine if the storm in the radar image will produce

3For the example in Fig. 3 the kernel size is 3
4https://journals.ametsoc.org/view/journals/mwre/148/7/mwrD190372.xml?tab_body=supplementary-materials

5https://github.com/ai2es/WAF_ML_Tutorial_Part2/blob/main/jupyter_notebooks/Notebook6_Convolutions.ipynb

8

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

3rd kernel1st kernel

Small dBZ

Big dBZ

b)

a)

Max pool

Max pool

2nd kernel

⋮
⋮

⋮Negative

Positive

c)

d) e)

f) g)

Fig. 4. A schematic showing how the learned kernels/filters from a CNN extracts features. (a) The same hook

echo example from Fig. 3, but the 25 and 50 dBZ contours are drawn. Colors are the normalized reflectivity

values (b) the output of the first convolution, reds are positive, blues are negative (unitless). The same storm

contours are included from a. (c) the result of pooling the image in b. (d) same as b, but taking the convolution

of c. (e) result of pooling d. (f) the same as d, but taking the convolution of e (g) an ANN that takes the pixels

of f as input.

a tornado in the next hour. Before jumping into the CNN, first consider how a human would extract

information from a radar image that might be useful for determining if a tornado will occur. One

thought could be that we could have meteorologists go through thousands of images and encode

’hook’ (i.e., 0 for no hook, 1 for hook), but that would be labor intensive and subjective. Another

thought would be to take the max reflectivity of this image. That could work, since stronger storms

have stronger updrafts and stronger reflectivity, which could be more likely to create a tornado, but

maximum reflectivity is likely too simple. This thought activity should have illustrated that the

optimal choices of data to extract are not trivial and since a machine learning model can only be as

good as the predictors it is given, determining skillful inputs (i.e., features) is vital.

One of the main benefits of a CNN is that it will extract relevant features (i.e., patterns in input

data) automatically from the data it is provided in order to optimize performance. Thus, there is

no need for a human to manually identify important patterns in the images. Furthermore, since the

CNN is using these convolutional windows, spatial information is automatically encoded into the

9

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

features. The CNN does this feature extraction through the learning of the weights of the kernels.

Sometimes these kernels are referred to as filters which is likely a more apt description of them.

The kernels filter the features from the image. How the specific weights are learned is discussed

in the following section (Section 2.b), but know that the CNN tries multiple filters which result

in some amount of error (e.g., truth - ML prediction). This error is then used to inform the CNN

which filters work better than others and how to tweak the filters to get better performance (i.e.,

less error).

While the auto-extraction of relevant features is a benefit of CNNs, it can also lead to unexpected

results. A non-meteorology example is from Lapuschkin et al. (2019) where the machine learning

task is the classification of images with classes of dog, cat, horse, etc. Lapuschkin et al. (2019)

showed that the CNN was using the copyright of images as a dominant predictor of the horse images.

The Lapuschkin et al. (2019) example illustrates how vital the interrogation of the decisions of a

CNN, and more broadly all machine learning methods, is. The interrogation of machine learning

methods include eXplainable Artificial Intelligence (XAI) methods which are discussed in Section

3.f.

Back to the hook echo example (Fig. 4a). One of the learned filters is shown in Fig. 4b, which

appears to filtering out the storm location. But notice, that after a single convolution, we are still

stuck with the same scenario from before: how do we extract information from the new image?

(Fig. 4b). To answer this question, several more convolutions and many filters are typically used

with an additional layer, called a pooling layer, in between convolution layers. A pooling layer

is a way of reducing the dimensionality of the image, which ultimately allows the CNN to distill

high resolution information into useful features. One can view pooling as making an image a

lower resolution, like converting high resolution precipitation maps from one kilometer horizontal

grid spacing to a more regional scale such as 20 km. The intuition behind pooling layers can be

thought of as summarizing the key findings of a scientific paper. The pooling layers boil down

the most vital information in the paper (image), representing it in a smaller space (less pixels).

Pooling is done similarly to the convolution kernel (i.e., uses a window), but has static weights

which either take an average value (i.e., average pooling) or passes the maximum value through

(i.e., maximum pooling). The typical size of a pooling kernel is two by two, which effectively

halves the dimensions of the image. In the hook echo example the result of the pooling is apparent

10

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

as the grid becomes coarser and the CNN focuses (i.e., large values) in on the hook echo location

(Fig. 4f).

In the process of summarizing data (i.e., pooling), there is less space for information to be stored

(i.e., less pixels). Thus, in the CNN the number of filters (i.e., kernels/filters) typically increases

with depth in the CNN (Figure 5). Drawing on the same scientific paper analogy, imagine at the

beginning of the network the CNN has only one filter and it writes a full-page summary on one key

finding of the paper with plenty of detail. After another pooling layer, the full-page summary gets

summarized further into one paragraph. Another pooling layer results in a sentence, and finally

another layer leaves the filter with one word. The analogy here keeps the number of filters as the

same (i.e., one). If instead the CNN has access to more filters as it goes deeper (i.e., more pooling

layers), the CNN can then summarize different aspects of the key findings, enhancing the total

extracted information by the CNN.

From the discussion thus far, it is likely not clear how many layers of convolutions-pooling are

needed for a machine learning task. The exact number of convolutions and pooling is problem

dependent which is usually determined through hyperparameter tuning (i.e., trying a bunch of

different number of layers). Furthermore, for some problems a CNN without pooling layers might

work better. This can also be tested with hyperparameter tuning (i.e., train a model with pooling

and without pooling). One way to anticipate the number of convolutional and pooling layers is

needed could be to consider receptive fields, where the maximum pattern size that a CNN can

encode can be anticipated (see Ebert-Uphoff and Hilburn 2020, for discussion on receptive fields).

After the convolutional layers and their corresponding pooling layers an ANN is usually appended

on to the end (Fig. 4g). In other words, after the final convolutional layer, the images are reshaped

into a one dimensional vector (like Fig. 2) and passed into the ANN. An example of a CNN

architecture that is used in the data example (Section 3.d) is shown in Fig. 5.

Convolutional neural networks are an emerging technique in the meteorological literature that

can do complex tasks. Examples include: detecting fronts in reanalysis data (Lagerquist et al.

2019, 2020a); estimating tropical cyclone intensity for satellite data (Chen et al. 2019; Griffin et al.

2022); determining if a storm will produce severe hail (Gagne et al. 2019); automatically classifying

strongly rotating storms in numerical weather prediction data (Molina et al. 2021) and identifying

intense convection in satellite imagery (Cintineo et al. 2020; Lee et al. 2021). While all of the

11

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Example CNN Architecture

Convolutional Layer

⋮
⋮ ⋮

Max pooling Layer

Flatten Layer

[48, 48, 4]
[48, 48, 8] [24, 24, 8]

[24, 24, 16] [12, 12, 16]

[12, 12, 32] [6, 6, 32]

[1152]
[32] [32]

[1]

Fig. 5. Example convolutional neural network (CNN) architecture. The different arrow indicators symbolize

different layer types, see the legend in the lower left hand corner. The blue bracketed text is the size of the

images ([x-dimension, y-dimension, channel/feature dimension]) or vector (i.e., dense layers). This is the exact

architecture for the best performing CNN in Section 3.

discussion thus far has been focused on two dimensional convolutions and images, the idea can be

extended to work on one dimensional data (e.g., a temperature profile) and to full three dimensional

volumes (e.g., numerical weather prediction output) or as time as a third dimension. The only

change to go from a two dimensional convolution to a one or three dimensional convolution is

the shape of the kernel. Both one-dimensional (e.g., Stock 2021; Harrison et al. 2022) and three

dimensional convolutions have been used in meteorological applications (e.g., Lagerquist et al.

2020b; Zhou et al. 2020; Kamangir et al. 2021; Justin et al. 2022).

4) ”U” Network (U-Net)

Even though the ANNs and CNNs described above can do skillful meteorological tasks, their

architecture is best suited to do a single output (i.e., one dimensional output) like diagnosing how

many lightning flashes are in a satellite image or labeling a radar image as a squall line or supercell.

An advancement to neural network architectures came from Ronneberger et al. (2015), where an

architecture named ”U” Network (U-Net) was introduced. Originally designed to label and track

biological cells in microscope imagery, this method lends itself to doing a valuable task called

12

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Example UNET Architecture

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮
ℂ

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

Convolutional Layer

Max Pool Layer

Skip Connection

Concatenation

Up-sample and
convolution layer

Encoding De
co
di
ng

Lower
resolution
maps

Higher
resolution
maps

Key

input
output

[48, 48, 4]

[48, 48, 16]

[24, 24, 16] [24, 24, 32]

[12, 12, 32]

[12, 12, 64]

[24, 24, 32]

[24, 24, 32]

[48, 48, 16] [48, 48, 1]

ℂ

ℂ

[24, 24, 32]

[48, 48, 16][48, 48, 16]

Fig. 6. Example U-Net architecture. Like Fig. 5, the different arrow indicators symbolize different layer

types and the legend is in the lower right hand corner. The red-blue colored images in the middle are the

convolved images. Only 3 kernels are shown for space reasons. The blue bracketed text is the size of the images

([x-dimension, y-dimension, channel/feature dimension]). This is the exact architecture for the best performing

U-Net in Section 3.

image-to-image translation. Image-to-image translation is an example of taking some input image

like infrared brightness temperature and translating it into a map of lightning data. The primary

advantage of U-Nets is it will produce an image with a similar shape to its inputs.

An example U-Net is shown in Fig. 6. The name U-Net stems from the general ”U” shape the

network is built in. To be clear, a U-Net is a specific type of CNN, so it contains the same makeup

of convolutional layers and pooling layers of a CNN, but the U-Net differs in that it contains a

series of upsampling or unpooling layers (i.e., opposite of the pooling, increasing the resolution

through some interpolation technique [e.g., nearest neighbor]) instead of the ANN added to the

end of the CNN that was shown in Fig. 5.

Each step down the left-hand side in the ”U” (Fig. 6) symbolizes the pooling reduction of image

resolution. Then at the bottom of the ”U”, instead of doing additional pooling or flattening of

data to be fed into an ANN (like a CNN), the data are upsampled (i.e., re-sampled to include

more pixels using an interpolation method like nearest neighbor) and convolved. Then the new

higher resolution images are concatenated (i.e., combined) with the same shaped images from the

13

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

left-hand side of the architecture (see matrix sizes in Fig. 6) and passed through a convolution,

but this time the number of filters are halved, as opposed to the number of filters doubling on the

left side of the ”U”. The concatenations from one side of the architecture to the other are called

skip-connections. The process of upsampling and concatenating is repeated until you reach the

original input image shape. The left side of the ’U’ is often called the encoding branch while the

right side is often called the decoding branch.

The intuition behind U-Nets is similar to CNNs where convolutions are used to extract spatial

information. The added complexity of a U-Net beyond a CNN allows a machine learning method

to produce a whole map (i.e., matrix) of predictions, instead of a single pixel or value (i.e., scalar).

This is extremely useful for meteorological datasets since often in meteorology, users are interested

in spatial distributions of variables (e.g., dryline location). Given that forecasters have deemed

timeliness an important property of machine learning meteorological tools (Harrison et al. 2022),

the production of a map from U-Nets is helpful because a CNN trained to do the same task as the

U-Net will require N more iterations (e.g., more time) to produce the same map, where N is the

number of pixels in the map.

Examples of U-Nets in meteorology include automatic detection of cyclones in satellite imagery

(Kumler-Bonfanti et al. 2020), translating geostationary satellite data into radar data (Hilburn et al.

2021), short-term forecasts of lightning (Zhou et al. 2020; Cintineo et al. 2022) and convection

(Lagerquist et al. 2021), labeling bow echoes within model data (Mounier et al. 2022) and down-

scaling (i.e., statistically increasing the resolution) of coarse numerical weather prediction data

(Sha et al. 2020a,b).

5) Summary of all machine learning methods

By this point in the paper series (Part 1 and Part 2 combined) there have been discussions about

a total of 11 machine learning methods. Thus, in order to organize and summarize these various

techniques and their distinctions, Fig. 7 is provided. In the graphic there is a brief summary of

each method, some strengths and some weaknesses.

14

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Method Summary

Linear
Regression

Decision
Trees

Random
Forest

Support
Vector
Machines

Logistic
Regression

Gradient
Boosted
Trees

Perceptron

Artificial
Neural
Network
(ANN)

Conv.
Neural
Network
(CNN)

U-Network
(U-NET)

A simple and fast-training
linear fit to a dataset which is
used for regression tasks

A simple and fast-training
linear fit to a dataset which is
used for classification tasks

Strengths Weaknesses

Fast, simple and easy
to understand

Linear, sensitive to
outliers

A simple and fast-training
algorithm that emulates a flow
chart

A collection (i.e., forest;
ensemble) of decision trees
trained on random subsets of
features and data

Fast and simple

Hard cutoffs, limited
skill, easily overfit

Ensemble method that
can account for non-
linear relationships

Fast, simple and easy
to understand

A collection of decision trees
that are successively trained to
reduce the loss of the data

Harder to explain
compared to
Decision trees

Can account for non-
linear relationships

Like linear and logistic
regression but maximizes a
margin and can handle non-
linear data

Like logistic regression but can
use any activation function

A network of perceptrons
which can be one or more
layers

Small filters (i.e., convolutions)
are used to extract features
from data. Then the extracted
data is often passed through
an artificial neural network

A specific CNN structure used
for image-to-image translation
tasks

Will maximize
distance between
classes and can
generalize beyond
linear

Can be slow to
converge, harder to
explain than linear and
logistic regression

Very flexible and can
capture non-linear
behavior

Hparam search
required, harder to
explain compared to
traditional methods,
data intensive

Fast and simple

Harder to explain
compared to Decision
trees and Random
Forest

Doesn’t generalize
well to complex
problems

Hparam search
required, harder to
explain compared to
traditional methods
and ANN, data
intensive

Can automatically
extract spatial-
temporal features,
very flexible

Can automatically
extract spatial-
temporal features,
very flexible, outputs
an image

Hparam search
required, harder to
explain compared to
traditional methods,
ANN, and CNN, data
intensive

Simple

⋮
⋮ ⋮

Naïve
Bayes

A simple and fast-training
classification algorithm that
follows (Bayesian) statistics

Fast, simple and easy
to understand

Must choose the
distribution and
assume feature
independence

Fig. 7. Summary graphic describing all methods discussed in both parts of this tutorial paper. The complexity

of the methods increase further down the table. Hparam is an abbreviation for hyperparameter tuning

15

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

b. How to train neural networks

1) Learning the weights

In order to determine the weights of a neural network (i.e., 𝜃) the method is similar to the

traditional machine learning methods mentioned in Part 1. More specifically, the training data are

used to learn the weights of the machine learning model such that the loss (i.e., error or cost) is

minimized through the use of derivatives (i.e., gradients). While this simplified intuition works

well for the traditional machine learning models described in Part 1, neural networks require a

bit more description so that readers can navigate common vocabulary and methods that would be

found in a paper describing a meteorological neural network.

Before Rumelhart et al. (1986), a roadblock with neural networks was the efficient and timely

training of a neural network with more than a few neurons (i.e., computation took too long). As a

solution, Rumelhart et al. (1986) introduced an algorithm named backpropagation to solve for the

weights of an ANN. Backpropagation works by sequentially feeding each training data example

through the network, calculating the error and then calculating the change in error with respect to

each of the weights, also known as the gradient (i.e., derivative of 𝑙𝑜𝑠𝑠 with respect to 𝜃). Readers

can think about this gradient as the quantitative amount to change the weights in the network such

that error on that example is reduced. After the gradient is calculated the algorithm adjusts the

weights of the network by following a gradient descent step:

𝜃𝑖+1 = 𝜃𝑖 +𝜂
𝑑 (𝑙𝑜𝑠𝑠)

𝑑𝜃
, (4)

where 𝜃𝑖+1 are the updated weights, 𝜃𝑖 is the previous weights, 𝜂 is the learning rate and 𝑑 (𝑙𝑜𝑠𝑠)
𝑑𝜃

is

the gradient of the error. The learning rate is a scalar value (e.g., 10−3) which tells the algorithm

how large of a step to take.

To help illustrate this algorithm, consider the top row example visualized in Fig. 8. Envision

the loss function on some dataset is a parabola and the neural network at the start (before any

training) has a loss marked by the circle marker in the subplot labeled Step 0. After seeing a data

example and calculating the gradient, the algorithm takes a step (the size of the step is determined

by the learning rate) which results in the updated and lower loss in the Step 1 subplot. This is

repeated, resulting in the subplot labeled Step 2. Eventually with enough steps the loss should be

16

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Fig. 8. Schematic depicting gradient descent. Top row (blue colored lines) is using a smaller learning rate (𝜂)

than the bottom row (red colored lines). Arrows depict where loss will be after a gradient step. 𝜃 is the symbol

representing the neural network current parameters (i.e., weights and biases).

at a minimum (bottom of the parabola). The top row of Fig. 8 depicts an appropriate learning

rate for this example. In scenarios where the learning rate is too large, like the bottom row in Fig.

8, this algorithm could end up overshooting the minimum and never converging to the smallest

loss. Conversely if the learning rate is too small (not shown), the algorithm will take too long to

converge on the minimum loss. For these reasons, the learning rate is a hyperparameter that is

varied (i.e., multiple values like 0.01, 0.001 and 0.0001 are tried) when training neural networks.

Recall from Part 1 that hyperparameters are human designated choices in a machine learning

models configuration (e.g., the number of nodes) or training procedure (e.g., the learning rate) that

are varied.

Unfortunately in practice, calculating the gradient on every single training example can be too

costly since the typical number of training examples is on the order of thousands to millions and

the number of weights in a neural network can be similarly large. Thus, a trick around this is to use

17

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

something called stochastic gradient descent. The idea is instead of calculating the gradient and

updating the weights after seeing each example, a random batch (i.e., small collection, sub-set) of

examples is used to estimate the gradient which is then used to inform the algorithm how to change

the weights. The size of the batch, like the learning rate, is another hyperparameter of neural

networks. The new procedure is then, select one random batch, send the batch of data through the

network, calculate the loss, calculate the mean gradient of the batch and update weights (i.e., take

step according to Eq. 4). This sequence is repeated until all training data have been sent through

the neural network. After the entire training dataset has been passed through the network, the

network has been trained for one epoch. Neural networks are often trained for many epochs (e.g.,

50, 100, 1000, etc.) usually until the loss doesn’t change much (i.e., changes less than 10−6)6 or

when over-fitting is detected.

In practice, stochastic gradient descent is just one method of optimizing a neural network. Other

optimizers can be used to train neural networks, but for the sake of this tutorial, they all generally

follow the same steps as stochastic gradient descent. The names of other popular optimizers a

meteorologist might encounter are: the adaptive moment estimation (Adam; Kingma and Ba 2015)

and root mean square propagation (RMSprop; Tieleman and Hinton 2012).

2) Loss functions

Just like the traditional machine learning methods, neural networks can be used for both cat-

egories of supervised machine learning: classification and regression. The primary differences

between a neural network for classification and a neural network for regression is which loss func-

tion is optimized and what output activation is chosen (i.e., activation of the last node or layer). For

classification, typical loss functions include binary cross-entropy and categorical cross-entropy

accompanied with a sigmoid (see Fig. 3 and Eq. 6 in Part 1) or softmax (a variant of sigmoid)

output activation function for binary and multi-class classification tasks respectively. Meanwhile

for regression, common loss functions include mean absolute error and mean squared error ac-

companied with a linear output activation. More sophisticated loss functions can be used, like the

fractions skill score (Roberts and Lean 2008), and are an active area of research within machine

learning for meteorology (Ebert-Uphoff et al. 2021; Lagerquist and Ebert-Uphoff 2022).

6This can be user defined, but 10−6 is a common choice

18

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

3) Regularization and Over-fitting

Neural networks can often contain hundreds, thousands or even millions of trainable parameters.

While this enables neural networks to be very flexible, it can also enable the network to over-fit

to the training data very easily. Thus, there are some specialized methods that can help prevent

overfitting (i.e., regularize) the neural network. A popular method of regularization is called

dropout (Srivastava et al. 2014). Dropout is where neurons within a layer of the network are

randomly turned off (set to 0) in the training process. The neurons that are turned off are changed

after each batch, but the percentage of neurons turned off in the layer is constant over the training

time and is a hyperparameter choice (e.g., 10% of neurons). Then when the model is used in

inference mode (i.e., prediction time) the dropout layers are not used, meaning all the neurons

are used. The intuition behind dropout is that if random neurons are turned off during training,

the network is forced to learn redundant pathways and cannot simply memorize a single pathway

through the network for each example it sees.

A second regularization method commonly used is called data augmentation. Data augmentation

are synthetic alterations made to the training data. These alterations include things like, random

rotations, random flips (up-down or left-right or both) and adding random noise. The reason

this is done is because adding these slight alterations provides the neural network with slightly

different examples to learn from, which in turn makes your neural network model more resistant to

overfitting and more robust to things like measurement errors. Data augmentation is also a way to

increase your training sample size without having to actually add more data (see Lagerquist et al.

2020b, for a meteorological example using data augmentation).

A third method of regularization is called batch normalization (Ioffe and Szegedy 2015). Batch

normalization, as the name suggests, normalizes the values of a batch of data within the neural

network. The reason for this stems from the use of batches themselves, which are needed for

timely training of neural networks. Because the training process randomly selects a batch of data

to estimate the gradient from, that batch of data is not guaranteed to have properties that are well

suited for stable training, like being normally distributed. Thus, to assure that training goes as

smoothly as possible, batch normalization layers can be inserted after any layer in a neural network.

19

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

4) Hardware

A meteorologist will likely encounter discussions of what hardware (i.e., computer details) are

being used to do the neural network training. This discussion comes from the issue that training

a neural network can be computationally very slow on a normal computer (i.e., central processing

units [CPU]). As a way to speed things up, the open-source neural network software packages,

named Tensorflow (Abadi et al. 2015) and PyTorch (Paszke et al. 2019), have built their software

to allow users to utilize a computer chip called a Graphical Processing Unit (GPU). The GPU

enables the calculation of the convolution of an image and the gradients to be much faster, which

ultimately accelerate training. While there are many different types of GPUs and CPUs and many

different neural network tasks, in general a GPU can often reduce training time by a factor of two

to ten. The Google Colab notebooks (see data availability section) that accompany this manuscript

leverage the freely available GPUs provided by Google in the cloud.

3. Neural network application and discussion

a. Problem Statements

Here we restate the machine learning problem statements explored in this paper. We again apply

the Storm EVent ImagRy (SEVIR; Veillette et al. 2020) dataset to two main tasks: (1) Does this

image contain a thunderstorm? and (2) How many lightning flashes are in this image? For more

information about the SEVIR data see Part 1. We assume the GOES Lightning Mapper (GLM)

observations are unavailable and we need to use the other measurements (e.g., infrared brightness

temperature) as features to estimate if there are lightning flashes (i.e., classification), and how many

of them are there (i.e., regression). Both tasks (1) and (2) are centered on using machine learning

models having a singular (i.e., one dimensional) output. As we mentioned in Section 2.a.4, U-Nets

offer more than a single output (i.e., two dimensional), as they re-create an entire image as an

output. Thus, the problem statements for the U-Net application are then: (1b) Label the pixels

in this image where there are lightning flashes; and (2b) For each pixel, diagnose the number of

flashes in that pixel.

20

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

768

768

48

48

Fig. 9. Example of the full resolution visible image (top-left) and its reduced resolution in sub-SEVIR (bottom

right). The numbers correspond to the number of pixels along each dimension.

b. Data

Before jumping into the results of the trained neural networks, we want to emphasize an inter-

section between neural networks and the traditional methods discussed in Part 1. The discussion

from Part 1 Section 3b regarding data curation applies to neural networks as well. Specifically, a

dataset used to develop a neural network must also be split into independent subsets for training,

validation, and testing the model. Thus, to follow Part 1 we use the same datasets with a slight

alteration. While the original SEVIR dataset is primed for successful machine learning, the size

of the raw dataset (approximately one terabyte in storage size) is cumbersome for the intents of a

tutorial and could not be used on most personal computers. Thus, as an effort to make this dataset

more accessible as a tutorial, we have reduced its size. To do this, we first reduced all images

to have the same resolution of the gridded lightning data (48 pixels by 48 pixels; approximately

8 km by 8km pixels). Figure 9 shows an example of the full resolution visible image and its

corresponding low resolution version. After the images were re-sampled, one random continuous

hour (12 images) of the four total hours (48 images) for each storm event is kept. Since we are

keeping the same number of storm events, we keep the training, validation and testing data splits

the same as Part 1, which were 01 Jan 2017 - 01 Jun 2019 for training and split every other week in

the rest of 2019 into the validation and test sets. Doing both of these re-samplings of SEVIR results

in a more manageable dataset (approximately two gigabytes in storage size), while also preserving

60,000 training samples and about 12,000 validation and test samples. We name this subset of

SEVIR: sub-SEVIR, and the location of the dataset can be found in the data availability section.

21

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Owing to reduced resolution, the sub-SEVIR dataset contains different information. Given our

goal of comparing the neural network models of this paper to the machine learning methods of Part

1, we must re-extract the same features from sub-SEVIR. Specifically, we extract the following

percentiles: 0,1,10,25,50,75,90,99,100. These percentiles are then used as input features for re-

training the traditional machine learning methods and to serve as a baseline comparison with

trained neural networks.

c. Training the networks

After reading the section on how to train neural networks (Section 2b), the reader might notice that

there are numerous hyperparameters for neural networks. In Part 1, the traditional machine learning

models shown were trained with the default hyperparameter choices as defined by the scikit-learn

Python package (scikit-learn; Pedregosa et al. 2011). The idea of default hyperparameter choices

does not necessarily exist with neural networks. Thus, it is good practice for those training neural

networks to run some sort of hyperparameter search (i.e., vary a bunch of the parameters) because

users are not guaranteed to get good performance with some starting parameter choices. For

example, recall the discussion about choosing a learning rate in section 2.b.1.

All the trained neural network models shown here are the result of a hyperparameter search.

We conducted 100 random hyperparameter configurations for each neural network trained and

systematically varied things like the number of layers, the number of neurons, the loss etc. In the

end we chose one of the 100 models to show in the following section. These were chosen based on

their performance in the validation set. For readers interested in the exact hyperparameter choices

we varied to find the best performing models, see Fig. A1-A3 in the appendix.

d. Classification

The first machine learning task we consider is (1) to classify a SEVIR image if it has at least one

lightning flash within it. To serve as a comparison, all of the traditional machine learning methods

from Part 1 were re-trained on the sub-SEVIR dataset. Their performance on the validation dataset

is shown as the thin blue lines and blue markers in Fig. 10.

For (1), we also trained three neural networks. The first is an ANN trained with the same input

features (i.e., the table of percentiles extracted from each image) as the traditional machine learning

22

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

a) b)

Fig. 10. Classification Metrics (a) ROC curve diagram. All thin blue lines are the traditional machine learning

methods from Part 1 (LgR: logistic regression; NB: naı̈ve Bayes; DT: decision tree; RF: random forest; GBT:

gradient boosted decision tree;). The thick lines are the neural networks trained (ANNeng; ANN trained with

engineered features; ANNpix ANN trained using pixels as features). Values in legend are the AUC values. (b)

The performance diagram for each machine learning model (Roebber 2009).

models (red solid line and red circle Fig. 10). This ANN trained on the engineered features (i.e.,

the percentiles of the image) effectively reproduces the performance of the best traditional machine

learning methods (e.g., gradient boosted trees). Since there is a relatively similar performance of

random forest, gradient boosted trees and ANN, it would be better to use the tree-based methods

over the ANN operationally for this task. This is suggested because tree-based methods are less

complex and thus more interpretable (c.f., Figure 1 in Flora et al. 2022). Using a less complex and

more interpretable model also provides a better opportunity to meet the consistency point made by

Murphy (1993).

The second neural network trained is another ANN but this time it was trained using each pixel

as a feature (e.g., Fig. 2). The reason a second ANN is trained, is to see if the ANN could learn

important features on its own, without a domain scientist (i.e., meteorologist) extracting pertinent

information (i.e., the percentiles from the satellite images). While the pixel trained ANN has

generally good skill (AUC > 0.9, CSI > 0.7 red; dash-dot line Fig. 10a; red square Fig. 10), the

result is worse than all other methods discussed so far (Fig. 10b).

23

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

The last neural network trained for task (1) is a CNN. To be explicit, recall that the CNN uses the

raw images as inputs and convolves them to extract features. The result of training a CNN on the

sub-SEVIR data provides one of the best performing machine learning methods (black line Fig.

10a; red star Fig. 10), matching the skill of the gradient boosting trees and the ANN trained on

the engineered features. Note that the CNN only marginally outperforms the other methods on the

performance diagram and is likely not a significant difference.

It might be surprising to see that the ANNs do not substantially outperform the tree based methods

on this task despite the added complexity of neural networks and their training. This is a common

pitfall for machine learning users. In fact, there is growing evidence that the tree based methods

can often outperform neural networks and deep learning on tabular data (i.e., data contained in a

spreadsheet; Shwartz-Ziv and Armon 2022). A distinction is made between tabular and non-tabular

datasets here because spatial details can contain substantial information for the machine learning

task and isn’t always easily quantified into a tabular dataset. For example, consider assessing a

storm’s tornadic potential. While using composite radar reflectivity as a feature could be useful

(e.g., strong reflectivity value means a strong storm), there is likely more information contained

in the shape of the radar echo (e.g., is there a hook echo?). Thus, given the amount of additional

effort required to explore the hyperparameters in neural networks, our suggestion is that if you have

a tabular dataset, start with random forest and gradient boosted trees for your machine learning

model. Often times this will result in a useful machine learning model without the headache of

doing a large hyperparameter search or needing specialized computers (i.e., GPUs). Otherwise, if

you have a spatial dataset (e.g., radar images) and you are unsure of what features to extract, then

the extra effort of CNNs could be beneficial.

Moving beyond the single output models, a U-Net for classification is also trained and evaluated.

Recall that a U-Net (e.g., Fig. 6) outputs a map with the same shape as the input images. In other

words, a U-Net tasked with problem statement 1b (in Section 3.a) produces an output map where

each pixel is assigned a probability of it containing lightning. An example output is shown in Fig.

11a. A U-Net can be evaluated similarly to the previous models and a performance diagram for

the trained U-Net is shown in Fig. 11b. Note on Fig. 11b that instead of a single marker the figure

shows a line with many markers. This is because the threshold for deciding if a pixel is labeled

as no lightning or lightning is varied from zero to one at 0.05 increments. This is done because a

24

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

a)

b)

UNET Prob. Observed Flashes

Input

WV IR VIL VIS

Fig. 11. Trained U-Net results for classification. (a) Example input and output of the U-Net. (b) Performance

diagram for the U-Net evaluated on every pixel. The numbers next to the markers show the probability threshold

to classify a pixel as containing lightning or not.

model could potentially get better results if a probability threshold other than 0.5 is used (which

was shown in Fig. 10), which is the case for this U-Net. Note that this could also be done with the

all of the other machine learning methods (except support vector machines) shown in Fig. 10b, but

the threshold of 0.5 generally works well for those models.

Comparing Fig. 10b and Fig. 11b, initially it seems like the U-Net is performing worse than

the ANNs and CNN because the line on Fig. 11b is well below the location of all other models in

Fig. 10b. That being said, it is unfair to compare the two sets of performance statistics because

the U-Net is being evaluated on every single pixel rather than on the image as a whole. Given the

added complexity in Problem Statement 1b, the U-Net performance is encouraging with CSI values

of 0.36 when using a probability threshold of 0.25. This offset from the probability threshold of

0.5 happens frequently in meteorology and can be mostly attributed to rare phenomena and the

training dataset being imbalanced.

It might not seem like the lightning flashes are rare but if you consider the total number of pixels

that contain lightning they make up less than one percent of the total amount of pixels. Thus,

given the number of no lightning pixels far out weigh the lightning pixels, the U-Net will learn this

natural distribution and skew its output to account for the more likely outcome. The result is that on

25

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

the performance diagram, a lower probability threshold can perform better than using the default

0.5. While altering the probability threshold for pretrained models can improve performance, other

mitigation techniques can be taken and are focused on adjusting the ratio of non-zero pixels to zero

pixels in the training dataset.

One way to adjust the ratio of pixels is by subsampling the 48 by 48 pixel images into smaller

patches (e.g., 24 by 24) and only train on patches that have a larger proportion of non-zero pixels.

This tends to work well, but is more resource intensive because patching the data requires the

user to then stitch the patches back together while using the model output. Another way would

be to adjust or change the loss function to weight the classes differently. By default most loss

functions weight all classes equally. There are ways to adjust the loss function and tell your

machine learning model that the rare classes are more important that the training data suggests.

For examples of custom loss functions see Ebert-Uphoff et al. (2021). Alternatively, one could do

both subsampling and a differently weighted loss function. These alterations can be considered

part of the hyperparameter tuning of the U-Net training. A meteorological example of exploring

various U-Net training procedures can be found in Mounier et al. (2022), where a U-net is used

to identify bow echoes. Note that weighted loss functions and resampling the training data is not

exclusive to U-Nets. These methods can be explored for all neural networks.

e. Regression

Considering task (2), the goal of the machine learning is to now determine the number of flashes

that are occurring in a SEVIR image. Like the previous section, the goal is to compare the neural

network methods presented in this paper to the traditional machine learning methods of Part 1. To

make the comparison more concise, we only show the best performing regression model trained

on the sub-SEVIR dataset, which was the gradient boosted trees. Recall that for this regression

task, only data examples that had more than one flash in them were used as the training data. The

performance of the gradient boosted tree on the validation dataset is shown in Fig. 12a and the red

bar in Fig. 13.

For (2), a similar suite of neural networks as the classification task are trained and their perfor-

mance is characterized in the same way as regression in Part 1. The first neural network trained is

the ANN using the engineered features as inputs. Akin to the results of the classification task, this

26

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Fig. 12. One to one diagrams with all regression methods trained on sub-SEVIR. The x-axis is the machine

learning model prediction (𝑦̂) and the y-axis is the truth (𝑦): (a) Gradient boosted trees (b) Artificial neural

network using the tabular data (c) artificial neural network using the pixel data (d) Convolutional neural network

(e) U-Net evaluated on every single pixel in the images (f) The U-Net evaluation but on the sum of all lightning

flashes in an image.

ANN achieves similar performance to the gradient boosted trees. The ANN has a high density of

points that follow the diagonal in Fig. 12b and has a mean absolute error, root mean square error

and 𝑅2 values very close to the gradient boosted tree (blue bar Fig. 13). That being said, the bias

of the ANN is larger than the bias of the gradient boosted tree (Fig. 13).

A second neural network trained is an ANN using the pixels as features. It is clear that this model

has issues. The points on the one-to-one plot are more spread out and not highly concentrated

along the diagonal (oranges Fig. 12c). All metrics are worse compared to the ANN and gradient

boosted tree trained on the engineered features. This result is very similar to the classification

model, where the model has some skill but performance is considerably worse when the ANN has

to learn what features are important based on the pixels as input.

A third network trained is a CNN. The CNN achieves similar performance to the ANN trained on

the engineered features and the gradient boosted tree. The points are more densely aligned along

the diagonal in Fig. 12d (purples) and the quantitative metrics (purple bar Fig. 13) are effectively

27

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Fig. 13. Metric bar charts with all regression methods trained on sub-SEVIR

the same as the ANN, but it does have worse bias (Fig. 13a). Thus, like the classification task the

CNN was able to extract relevant features to make a skillful designation of the number of lightning

flashes in the image.

A regression U-Net is also trained and evaluated. Instead of determining the probability of

lightning in each pixel, the designation of the regression U-Net is the number of flashes in each

pixel. A similar problem occurs with the regression U-Net as with the classification U-Net when

trying to compare the U-Nets to the other neural networks. Consider the pixel-wise evaluation

of the regression U-Net (Fig. 12e and Fig. 13). The U-Net has a clear underestimation of the

number of flashes compared to the observed flashes and yet the mean absolute value, bias and root

mean square error are close to zero. This evaluation might initially seem contradictory, but the

pixel-wise distribution of flashes is two orders of magnitude smaller than the image wise number

of flashes (e.g., mean pixel number of flashes is 3 while mean image number of flashes is 150).

Since the magnitude is smaller, the metrics are correspondingly smaller. Thus, the comparison of

this U-Net to the other neural networks is not necessarily fair.

As an alternative evaluation, the sum of U-Net predicted flashes across all pixels in an image can

be calculated. The sum of all flashes in the images results in approximately an order of magnitude

offset in the designation (Fig. 12f). Like the underestimation of the U-Net in the classification

example, the regression underestimation probably occurs because skew of the distribution of pixels

with lightning and pixels without lightning. The regression example is further compounded by

the strong left skew (i.e., toward zero flashes) in the distribution of pixels with lightning flashes.

28

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

The previously discussed mitigation techniques for the classification U-Net can also be applied to

regression (e.g., changing the loss, patching etc.).

f. Explainable Artificial Intelligence (XAI)

As mentioned in the motivation of Part 1, machine learning methods are often seen as black boxes

where the user cannot see what the machine learning is using to make its decisions and predictions.

To combat the opaqueness of machine learning methods we present two methods, permutation

importance and accumulated local effects, which can be applied to the traditional machine learning

methods that made the black box more transparent. Here we show something similar but applied

to neural networks. In machine learning, the methods used to explain a machine learning output

are commonly referred to as eXplainable Artificial Intelligence (XAI). The XAI field is a place of

active research development and readers can see Flora et al. (2022a,b) for additional discussion of

XAI techniques for the traditional machine learning methods and Mamalakis et al. (2022a,b) for

XAI techniques for neural networks. Know that the following discussion and examples only show

the XAI techniques applied to CNNs but these techniques can be applied to all the neural networks

discussed in Section 3.

1) Permutation Importance

The first XAI method shown here is the same as Part 1, Permutation Importance (Breiman 2001;

Lakshmanan et al. 2015). We show this method because it is a powerful method than can help

users understand which inputs to the machine learning model are most important. Also, we choose

to show this technique because of how flexible the method is to be used on any machine learning

method.

The general procedure is the same as discussed in Part 1 (Section 3.c.1). Input features are

shuffled one by one, such that the change in the desired metric quantifies the feature’s importance

to the machine learning model (i.e., single pass). Since we are doing this technique on images, the

difference from Part 1 is that first the pixels within an image are shuffled, then the order of images

are shuffled to properly make the input features random. From there the procedure is exactly the

same as in Part 1.

29

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Fig. 14. Permutation Importance results of the convolutional neural networks for both classification and

regression. Yellow bar is the vertically integrated liquid, red bar is the infrared, blue is the water vapor and black

is the visible. Top row (a,b) are single pass backward results and the bottom row (c,d) are multi-pass backward

results. The left column is for classification (a,c) and the right column is for regression (b,d). All results are

computed on 30 random samples of 250 images from the training dataset. The dashed line is the original score

before shuffling any features, while the dotted line is the final score for shuffling all variables (only multi-pass)

Figure 14 is an example of permutation importance applied to both the CNN for classification and

the CNN for regression. The interpretation of this figure is the same as Part 1, but now features are

grouped according to the variable from which they originated. For example, the single pass result

shows that the vertically integrated liquid is the most important feature for diagnosing if an image

has at least one flash in it, while the infrared channel is the most important feature for determining

the number of flashes in an image. Remember that the most important variable is identified by

how much skill is reduced when shuffling that specific variable while keeping the other variables

unchanged. Figure 14a shows the vertically integrated liquid reduces AUC by about 0.4 (i.e., from

an AUC near 1 to and AUC near 0.6) and Fig. 14b shows the MAE increases from about 50 to more

than 200 flashes when the infrared is shuffled. The multi-pass method (Fig. 14c-d) also shows that

the vertically integrated liquid and infrared are the most important feature for the classification and

regression task respectively. Recall from Part 1 that to interpret the multi-pass result the successive

reduction in skill is how to see the most important features. Thus, notice that the reduction in skill

30

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Fig. 15. SHAP values for an example in the SEVIR dataset (2019-08-19).(a) water vapor (b) infrared (c)

vertically integrated liquid (d) visible. Note that values for panels a-d are scaled and are thus unitless.(e) GOES

lightning mapper number of flashes in each pixel. (f-i) SHAP values for each respective channel of the input.

The sum of all SHAP values in the image is annotated in the top right corner. (j) Sum of all SHAP values across

the channels with the total sum, expected value and the ML output written in the top right corner.

from the dashed black line in Fig. 14c-d is largest compared to the change from the top bar to the

second bar, and the second bar to the third bar etc. For this example, the multi-pass method show

the same result as the single pass method, but this is not always the case.

These designated important features make sense meteorologically. Vertically integrated liquid

can be interpreted similarly to radar reflectivity. If one where to look at an image where there

is no radar reflectivity measured, it would be simple to say there is no lightning in the image.

Meanwhile, since the regression task is evaluated on only examples that have at least one flash, the

model is leaning more heavily on infrared. This could be because the amount of cold cloud tops in

an image is plausibly related to how much lightning is in the image (e.g., more updrafts can lead

to more clouds which could lead to more lightning), but further testing would need to be done to

confirm or deny this explanation of the machine learning reasoning.

2) Deep SHAP

The second XAI method we discuss is called Deep SHAP (Lundberg and Lee, 2017), which

estimates Shapley values (i.e., SHAP values; Shapley 1953) that quantify the effect each input

feature contributes to the total machine learning model output. SHAP values are calculated

using a branch of mathematics called game theory, which enables the SHAP values to consider

31

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

interactions between features (e.g., water vapor is correlated to infrared brightness temperature)

while also allowing timely computation. While understanding how SHAP values are exactly

calculated can be complicated, their interpretation is relatively straightforward and have some

attractive properties.

Consider an example of SHAP values for the classification CNN model on one of the examples

(Fig. 15). We can see in this example that there is deep convection in the bottom half of the image,

characteristic of cold cloud tops (Fig. 15a-b), large vertically integrated liquid values (Fig. 15c)

and lots of observed lightning (more than 1000 flashes in this 5 min observation; Fig. 15e). Using

Deep Shap, the estimated SHAP values for each feature is shown in the corresponding image below

the input data (Fig. 15f-j). The way to interpret SHAP values are that negative values (blue colors

in Fig. 15f-j) have negative attribution, or contribute negatively to the output (i.e., evidence against

lightning in the image), while positive values (red colors in Fig. 15f-j) have positive attribution

(i.e., evidence for lightning in the image).

A general interpretation of the SHAP values in Fig. 15 is that the ML model is using pixels

where there are clouds for its output (i.e., SHAP colors show up where cloud is). While this might

seem like an unimportant result, it is never guaranteed that the ML model will use logical decision

techniques. There have been notable examples in the computer science literature where the ML

identifies unexpected parts of an image to do its output, like a copyright symbol or a company

logo (Lapuschkin et al. 2019). It is then encouraging that the ML is considering the clouded part

of the image to diagnose if there is lightning within it. Another interpretation from the SHAP

values is that the clouded region contributes both positively and negatively to determining if there

is lightning in this image. This decision making process is not expected but could be a result of the

ML task of determining if there is at least one flash in the image and not determining where in the

image the lightning are. Since the ML task is for the entire image, then the SHAP values should

also be interpreted more holistically where the sum of the SHAP values across the clouded area

can be compared against the sum outside the clouded area, where the sum is larger in the clouded

region (i.e., more red than blue).

The summation of SHAP is enabled by its additive formulation. By design the SHAP values,

when added to the expected value (i.e., mean output from all images) results in the output of

ML model. This additive property enables more than the discussion above of the clouded and

32

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Fig. 16. Global SHAP ratio on the validation dataset. The channel-wise ratio (i.e., sum across each input

variables) of all SHAP values to the total SHAP sum. These SHAP values were evaluated on the entire validation

dataset.

non-clouded region, but also the relative importance of every input channel to the output of the

ML. For example consider the channel wise SHAP sums in the top right corner of Fig. 15f-i. The

SHAP values for vertically integrated liquid is the largest sum with a value of 0.35, followed by

infrared brightness temperature with a value of 0.1 and then water vapor and visible with values

of 0.02 and 0.01 respectively. This is a similar result to the permutation importance result which

provided evidence that the vertically integrated liquid is the most important input variable. Lastly

if you consider some of the SHAP values in a pixel-wise sense (Fig. 15j), the SHAP values mainly

outline the edges of the vertically integrated liquid input channel.

The additive property of SHAP values can be extended beyond this local (i.e., one sample or case)

explanation. The SHAP values can be summed across all dataset examples to get a similar global

explanation to what permutation importance gave us. The channel-wise sum across all examples

in the validation dataset are shown in Fig. 16. The result is the same as permutation importance,

showing that the vertically integrated liquid is most important, followed by the infrared brightness

temperature, water vapor brightness temperature and then visible reflectance. It is encouraging to

get the same result from two different XAI methods, which builds confidence in the end result.

While the SHAP discussion has been centered on the classification task, the same analysis can be

done on the regression task but is not done here for brevity. Similarly, the discussion in this paper

has been focused on neural networks, but SHAP can also be applied to the traditional methods of

Part 1. For more examples of SHAP being used in the meteorological research readers can look

33

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

over these references: Gensini et al. (2021), Flora et al. (2022a), Flora et al. (2022b), Griffin et al.

(2022), Mamalakis et al. (2022a), Mamalakis et al. (2022b) and van Straaten et al. (2022).

4. Summary

This manuscript is the second of a pair of machine learning tutorial papers designed for the

operational meteorological community. The main focus of this paper was the plain language

discussion of neural networks. More specifically the neural networks discussed included artificial

neural networks (i.e., multi-layer perceptrons; ANN), convolutional neural networks (CNN) and

”U” shaped networks (U-Net). Similar to Part 1 of this tutorial series (i.e., Chase et al. 2022), the

goal of this paper was to provide an overview of the many terms involved in neural networks while

also providing entry level intuition of each method and their training procedures. Furthermore, the

same simple meteorological example using the Storm EVent ImageRy dataset (SEVIR; Veillette

et al. 2020) to identify lightning presence and amount was reconducted with the neural network

methods to allow for direct comparison of all machine learning methods discussed in both parts of

the series. Explicitly summarizing the results of this paper we:

1. Discussed the various nuances and terms associated with neural networks (Section 2)

2. Discussed three different neural network architectures in detail (Section 2.a)

3. Demonstrated a classification and regression task to diagnose the presence and number of

lightning flashes in a satellite image (Section 3.de)

4. Showed two eXplainable Artificial Intelligence techniques applied to a CNN (Section 3.de)

5. Released python code to conduct all steps and examples in this manuscript (see Data Avail-

ability Statement)

As technology continually advances, unprecedented meteorological measurements and simula-

tions will continue to occur. For example, the GOES-R series of geostationary satellites provides

0.5 km grid spacing of visible imagery that was only previously obtainable from polar orbiting

satellites (e.g., MODIS). Another example includes the growing efforts to begin global simulations

of weather using convective-allowing horizontal grid spacing (e.g., less than 4 km; Stevens et al.

2019). With these improved measurements and simulations come daunting increases of dataset

34

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

sizes and then potentially information overload (i.e., too much data to use). Thus, it is impera-

tive that meteorologists are familiar with tools that can reduce their individual burden. Machine

learning is poised to handle the future terabytes/petabytes of meteorological data and potentially

can provide valuable tools for meteorologists to make trustworthy and well-informed data-driven

decisions.

35

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Acknowledgments. This material is based upon work supported by the National Science Founda-

tion under Grant No. ICER-2019758, supporting authors RJC, and AM. Author DRH was provided

support by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Okla-

homa Cooperative Agreement number NA21OAR4320204, U.S. Department of Commerce. The

scientific results and conclusions, as well as any views or opinions expressed herein, are those of

the authors and do not necessarily reflect the views of NOAA or the Department of Commerce.

We want to acknowledge the work put forth by the authors of the SEVIR dataset (Mark S.

Veillette, Siddharth Samsi and Christopher J. Mattioli) for making a high-quality free dataset. We

would also like to acknowledge the open-source python community for providing their tools for

free. Specifically, we acknowledge Google Colab (Bisong 2019), Anaconda (Anaconda 2020),

scikit-learn (Pedregosa et al. 2011), Pandas (Wes McKinney 2010), Numpy (Harris et al. 2020)

and Jupyter (Kluyver et al. 2016).

Data availability statement. As an effort to accelerate the use and trust of machine learning

within meteorology we have supplied a github repository with a code tutorial of a lot of the

same things discussed in this paper. The latest version of github repository can be located here:

https://github.com/ai2es/WAF_ML_Tutorial_Part2. If you are interested in the version

of the repository that was available at time of publication please see the zendo archive of version 1

here: https://zenodo.org/record/7011372. The original github repo for SEVIR is located

here: https://github.com/MIT-AI-Accelerator/neurips-2020-sevir.

APPENDIX

Hyperparameter Tuning Specifics

All the models shown in the paper are the result of a fairly extensive hyperparameter search.

Each of the following figures contains the different hyperparameters that were varied. Note that

only 100 models were trained for each model type (e.g., ANN regression was one model), so it is

very possible that not all possible hyperparameter solution sets were run. The following figures

are for the ANN, CNN and U-Net respectively and red indicates the best configuration choice for

regression, blue indicates the best configuration choice for classification and purple means the best

configuration choice for both model types. The best configurations were determined by the best

performance on the validation dataset.

36

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Fig. A1. Figure showing the hyperparameters for the artificial neural networks

Fig. A2. Figure showing the hyperparameters for the convolutional neural networks

Fig. A3. Figure showing the hyperparameters for the U-Network

37

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

References

Abadi, M., and Coauthors, 2015: TensorFlow: Large-scale machine learning on heterogeneous

systems. URL https://www.tensorflow.org/, software available from tensorflow.org.

Anaconda, 2020: Anaconda software distribution. Anaconda Inc., URL https://docs.anaconda.

com/.

Anderson-Frey, A. K., Y. P. Richardson, A. R. Dean, R. L. Thompson, and B. T. Smith, 2017:

Self-organizing maps for the investigation of tornadic near-storm environments. Weather and

Forecasting, 32 (4), 1467 – 1475, https://doi.org/10.1175/WAF-D-17-0034.1, URL https://

journals.ametsoc.org/view/journals/wefo/32/4/waf-d-17-0034 1.xml.

Bi, K., L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, 2022: Pangu-weather: A 3d high-

resolution model for fast and accurate global weather forecast. arXiv, URL https://arxiv.org/abs/

2211.02556, https://doi.org/10.48550/ARXIV.2211.02556.

Bisong, E., 2019: Google Colaboratory, 59–64. Apress, Berkeley, CA, https://doi.org/10.1007/

978-1-4842-4470-8 7, URL https://doi.org/10.1007/978-1-4842-4470-8 7.

Breiman, L., 2001: Random forests. Machine Learning, 45, 5–32, URL https://doi.org/10.1023/A:

1010933404324.

Chase, R. J., D. R. Harrison, A. Burke, G. M. Lackmann, and A. McGovern, 2022: A machine

learning tutorial for operational meteorology. part i: Traditional machine learning. Weather and

Forecasting, 37 (8), 1509 – 1529, https://doi.org/https://doi.org/10.1175/WAF-D-22-0070.1,

URL https://journals.ametsoc.org/view/journals/wefo/37/8/WAF-D-22-0070.1.xml.

Chase, R. J., S. W. Nesbitt, and G. M. McFarquhar, 2021: A dual-frequency radar retrieval of two

parameters of the snowfall particle size distribution using a neural network. Journal of Applied

Meteorology and Climatology, 60 (3), 341 – 359, https://doi.org/10.1175/JAMC-D-20-0177.1,

URL https://journals.ametsoc.org/view/journals/apme/60/3/JAMC-D-20-0177.1.xml.

Chen, B.-F., B. Chen, H.-T. Lin, and R. L. Elsberry, 2019: Estimating tropical cyclone intensity

by satellite imagery utilizing convolutional neural networks. Weather and Forecasting, 34 (2),

447 – 465, https://doi.org/10.1175/WAF-D-18-0136.1, URL https://journals.ametsoc.org/view/

journals/wefo/34/2/waf-d-18-0136 1.xml.

38

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Chen, K., and Coauthors, 2023: Fengwu: Pushing the skillful global medium-range weather

forecast beyond 10 days lead. 2304.02948.

Cintineo, J. L., M. J. Pavolonis, and J. M. Sieglaff, 2022: Probsevere lightningcast: A

deep-learning model for satellite-based lightning nowcasting. Weather and Forecasting,

https://doi.org/10.1175/WAF-D-22-0019.1, URL https://journals.ametsoc.org/view/journals/

wefo/aop/WAF-D-22-0019.1/WAF-D-22-0019.1.xml.

Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, A. Wimmers, J. Brunner, and W. Bel-

lon, 2020: A deep-learning model for automated detection of intense midlatitude convec-

tion using geostationary satellite images. Weather and Forecasting, 35 (6), 2567 – 2588,

https://doi.org/10.1175/WAF-D-20-0028.1, URL https://journals.ametsoc.org/view/journals/

wefo/35/6/waf-d-20-0028.1.xml.

Cloud, K. A., B. J. Reich, C. M. Rozoff, S. Alessandrini, W. E. Lewis, and L. D.

Monache, 2019: A feed forward neural network based on model output statistics for

short-term hurricane intensity prediction. Weather and Forecasting, 34 (4), 985 – 997,

https://doi.org/10.1175/WAF-D-18-0173.1, URL https://journals.ametsoc.org/view/journals/

wefo/34/4/waf-d-18-0173 1.xml.

Ebert-Uphoff, I., and K. Hilburn, 2020: Evaluation, tuning, and interpretation of neural networks

for working with images in meteorological applications. Bulletin of the American Meteorological

Society, 101 (12), E2149 – E2170, https://doi.org/https://doi.org/10.1175/BAMS-D-20-0097.1,

URL https://journals.ametsoc.org/view/journals/bams/101/12/BAMS-D-20-0097.1.xml.

Ebert-Uphoff, I., R. Lagerquist, K. Hilburn, Y. Lee, K. Haynes, J. Stock, C. Kumler, and J. Q.

Stewart, 2021: URL https://arxiv.org/abs/2106.09757, https://doi.org/10.48550/ARXIV.2106.

09757.

Espeholt, L., and Coauthors, 2022: Deep learning for twelve hour precipitation forecasts. Nature

Communications, 13 (1), 5145, https://doi.org/10.1038/s41467-022-32483-x, URL https://doi.

org/10.1038/s41467-022-32483-x.

39

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Flora, M., C. Potvin, S. Handler, and A. McGovern, 2022a: A Comparative Study of Explanation

Methods for Traditional Machine Learning Models Part 1: Quantifying Disagreement. Artificial

Intelligence for Earth Sciences, in review.

Flora, M., C. Potvin, S. Handler, and A. McGovern, 2022b: A Comparative Study of Explanation

Methods for Traditional Machine Learning Models Part 2: Measuring and Improving Machine

Learning Model Explainability. Artificial Intelligence for Earth Sciences, in review.

Fujita, T., 1958: Mesoanalysis of the illinois tornadoes of 9 april 1953. Journal of Atmospheric

Sciences, 15 (3), 288 – 296, https://doi.org/10.1175/1520-0469(1958)015⟨0288:MOTITO⟩2.

0.CO;2, URL https://journals.ametsoc.org/view/journals/atsc/15/3/1520-0469 1958 015 0288

motito 2 0 co 2.xml.

Gagne, D. J., S. E. Haupt, D. W. Nychka, and G. Thompson, 2019: Interpretable deep learning

for spatial analysis of severe hailstorms. Monthly Weather Review, 147 (8), 2827 – 2845,

https://doi.org/10.1175/MWR-D-18-0316.1, URL https://journals.ametsoc.org/view/journals/

mwre/147/8/mwr-d-18-0316.1.xml.

Gensini, V. A., C. Converse, W. S. Ashley, and M. Taszarek, 2021: Machine learning classification

of significant tornadoes and hail in the united states using era5 proximity soundings. Weather

and Forecasting, 36 (6), 2143 – 2160, https://doi.org/10.1175/WAF-D-21-0056.1, URL https:

//journals.ametsoc.org/view/journals/wefo/36/6/WAF-D-21-0056.1.xml.

Griffin, S. M., A. Wimmers, and C. S. Velden, 2022: Predicting rapid intensification in north

atlantic and eastern north pacific tropical cyclones using a convolutional neural network. Weather

and Forecasting, 37 (8), 1333 – 1355, https://doi.org/10.1175/WAF-D-21-0194.1, URL https:

//journals.ametsoc.org/view/journals/wefo/37/8/WAF-D-21-0194.1.xml.

Harris, C. R., and Coauthors, 2020: Array programming with NumPy. Nature,

585 (7825), 357–362, https://doi.org/10.1038/s41586-020-2649-2, URL https://doi.org/10.

1038/s41586-020-2649-2.

Harrison, D., , A. McGovern, C. Karstens, I. L. Jirak, and P. T. Marsh, 2022: Winter precipitation-

type classification with a 1d convolutional neural network. 31st Conference on Weather Analysis

40

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

and Forecasting (WAF)/27th Conference on Numerical Weather Prediction (NWP), Houston,TX,

virtual, American Meteorological Society Annual Meeting.

Henley, C., 2021: Foundations of Neuroscience. Michigan State University Libraries, URL https:

//openbooks.lib.msu.edu/neuroscience/.

Hilburn, K. A., I. Ebert-Uphoff, and S. D. Miller, 2021: Development and interpreta-

tion of a neural-network-based synthetic radar reflectivity estimator using goes-r satel-

lite observations. Journal of Applied Meteorology and Climatology, 60 (1), 3 – 21,

https://doi.org/10.1175/JAMC-D-20-0084.1, URL https://journals.ametsoc.org/view/journals/

apme/60/1/jamc-d-20-0084.1.xml.

Ioffe, S., and C. Szegedy, 2015: Batch normalization: Accelerating deep network training by

reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine

Learning, F. Bach, and D. Blei, Eds., PMLR, Lille, France, Proceedings of Machine Learning

Research, Vol. 37, 448–456, URL https://proceedings.mlr.press/v37/ioffe15.html.

Justin, A. D., C. Willingham, A. McGovern, and J. T. Allen, 2022: Toward operational real-time

identification of frontal boundaries using machine learning. Artificial Intelligence for the Earth

Systems, ? (?), ?

Kamangir, H., W. Collins, P. Tissot, S. A. King, H. T. H. Dinh, N. Durham, and J. Rizzo,

2021: Fognet: A multiscale 3d cnn with double-branch dense block and attention mecha-

nism for fog prediction. Machine Learning with Applications, 5, 100 038, https://doi.org/https://

doi.org/10.1016/j.mlwa.2021.100038, URL https://www.sciencedirect.com/science/article/pii/

S2666827021000190.

Katona, B., and P. Markowski, 2021: Assessing the influence of complex terrain on severe

convective environments in northeastern alabama. Weather and Forecasting, 36 (3), 1003

– 1029, https://doi.org/10.1175/WAF-D-20-0136.1, URL https://journals.ametsoc.org/view/

journals/wefo/36/3/WAF-D-20-0136.1.xml.

Keisler, R., 2022: Forecasting global weather with graph neural networks. arXiv, URL https:

//arxiv.org/abs/2202.07575, https://doi.org/10.48550/ARXIV.2202.07575.

41

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Kim, Y. H., S. Kim, H.-Y. Han, B.-H. Heo, and C.-H. You, 2013: Real-time detection and

filtering of chaff clutter from single-polarization doppler radar data. Journal of Atmospheric and

Oceanic Technology, 30 (5), 873 – 895, https://doi.org/10.1175/JTECH-D-12-00158.1, URL

https://journals.ametsoc.org/view/journals/atot/30/5/jtech-d-12-00158 1.xml.

Kingma, D. P., and J. Ba, 2015: Adam: A method for stochastic optimization. ICLR (Poster), URL

http://arxiv.org/abs/1412.6980.

Kluyver, T., and Coauthors, 2016: Jupyter notebooks – a publishing format for reproducible

computational workflows. Positioning and Power in Academic Publishing: Players, Agents and

Agendas, F. Loizides, and B. Schmidt, Eds., IOS Press, 87 - 90.

Kohonen, T., S. Kaski, and H. Lappalainen, 1997: Self-organized formation of various invariant-

feature filters in the adaptive-subspace som. Neural Computation, 9, 1321–1344, https://doi.org/

10.1162/neco.1997.9.6.1321.

Kuligowski, R. J., and A. P. Barros, 1998: Experiments in short-term precipitation forecasting

using artificial neural networks. Monthly Weather Review, 126 (2), 470 – 482, https://doi.org/10.

1175/1520-0493(1998)126⟨0470:EISTPF⟩2.0.CO;2, URL https://journals.ametsoc.org/view/

journals/mwre/126/2/1520-0493 1998 126 0470 eistpf 2.0.co 2.xml.

Kumler-Bonfanti, C., J. Stewart, D. Hall, and M. Govett, 2020: Tropical and extratropical cyclone

detection using deep learning. Journal of Applied Meteorology and Climatology, 59 (12), 1971

– 1985, https://doi.org/10.1175/JAMC-D-20-0117.1, URL https://journals.ametsoc.org/view/

journals/apme/59/12/jamc-d-20-0117.1.xml.

Lagerquist, R., J. T. Allen, and A. McGovern, 2020a: Climatology and variability of warm

and cold fronts over north america from 1979 to 2018. Journal of Climate, 33 (15), 6531

– 6554, https://doi.org/10.1175/JCLI-D-19-0680.1, URL https://journals.ametsoc.org/view/

journals/clim/33/15/jcliD190680.xml.

Lagerquist, R., and I. Ebert-Uphoff, 2022: URL https://arxiv.org/abs/2203.11141, https://doi.org/

10.48550/ARXIV.2203.11141.

Lagerquist, R., A. McGovern, and D. Gagne, 2019: Deep learning for spatially explicit prediction

of synoptic-scale fronts. Weather and Forecasting, 34 (4), 1137–1160.

42

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Lagerquist, R., A. McGovern, C. R. Homeyer, D. J. G. II, and T. Smith, 2020b: Deep

learning on three-dimensional multiscale data for next-hour tornado prediction. Monthly

Weather Review, 148 (7), 2837 – 2861, https://doi.org/10.1175/MWR-D-19-0372.1, URL

https://journals.ametsoc.org/view/journals/mwre/148/7/mwrD190372.xml.

Lagerquist, R., J. Q. Stewart, I. Ebert-Uphoff, and C. Kumler, 2021: Using deep learn-

ing to nowcast the spatial coverage of convection from himawari-8 satellite data. Monthly

Weather Review, 149 (12), 3897 – 3921, https://doi.org/10.1175/MWR-D-21-0096.1, URL

https://journals.ametsoc.org/view/journals/mwre/149/12/MWR-D-21-0096.1.xml.

Lakshmanan, V., C. Karstens, J. Krause, K. Elmore, A. Ryzhkov, and S. Berkseth, 2015: Which

polarimetric variables are important for weather/no-weather discrimination? Journal of Atmo-

spheric and Oceanic Technology, 32 (6), 1209–1223.

Lam, R., and Coauthors, 2022: Graphcast: Learning skillful medium-range global weather fore-

casting. arXiv, URL https://arxiv.org/abs/2212.12794, https://doi.org/10.48550/ARXIV.2212.

12794.

Lapuschkin, S., S. Wäldchen, A. Binder, G. Montavon, W. Samek, and K.-R. Müller, 2019:

Unmasking clever hans predictors and assessing what machines really learn. Nature Commu-

nications, 10 (1), 1096, https://doi.org/10.1038/s41467-019-08987-4, URL https://doi.org/10.

1038/s41467-019-08987-4.

LeCun, Y., B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel, 1989:

Handwritten digit recognition with a back-propagation network. Advances in Neural Information

Processing Systems, D. Touretzky, Ed., Morgan-Kaufmann, Vol. 2, URL https://proceedings.

neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf.

Lee, Y., C. D. Kummerow, and I. Ebert-Uphoff, 2021: Applying machine learning methods to detect

convection using geostationary operational environmental satellite-16 (goes-16) advanced base-

line imager (abi) data. Atmospheric Measurement Techniques, 14 (4), 2699–2716, https://doi.org/

10.5194/amt-14-2699-2021, URL https://amt.copernicus.org/articles/14/2699/2021/.

Mamalakis, A., E. A. Barnes, and I. Ebert-Uphoff, 2022a: URL https://arxiv.org/abs/2202.03407,

https://doi.org/10.48550/ARXIV.2202.03407.

43

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Mamalakis, A., I. Ebert-Uphoff, and E. Barnes, 2022b: Explainable Artificial Intelligence

in Meteorology and Climate Science: Model Fine-Tuning, Calibrating Trust and Learn-

ing New Science, 315–339. Springer International Publishing, Cham, https://doi.org/10.1007/

978-3-031-04083-2 16, URL https://doi.org/10.1007/978-3-031-04083-2 16.

Marzban, C., and G. J. Stumpf, 1996: A neural network for tornado prediction based on doppler

radar-derived attributes. Journal of Applied Meteorology and Climatology, 35 (5), 617 – 626,

https://doi.org/10.1175/1520-0450(1996)035⟨0617:ANNFTP⟩2.0.CO;2, URL https://journals.

ametsoc.org/view/journals/apme/35/5/1520-0450 1996 035 0617 annftp 2 0 co 2.xml.

Marzban, C., and G. J. Stumpf, 1998: A neural network for damaging wind prediction.

Weather and Forecasting, 13 (1), 151 – 163, https://doi.org/10.1175/1520-0434(1998)013⟨0151:

ANNFDW⟩2.0.CO;2, URL https://journals.ametsoc.org/view/journals/wefo/13/1/1520-0434

1998 013 0151 annfdw 2 0 co 2.xml.

McCandless, T. C., G. S. Young, S. E. Haupt, and L. M. Hinkelman, 2016: Regime-dependent

short-range solar irradiance forecasting. Journal of Applied Meteorology and Climatology, 55 (7),

1599 – 1613, https://doi.org/10.1175/JAMC-D-15-0354.1, URL https://journals.ametsoc.org/

view/journals/apme/55/7/jamc-d-15-0354.1.xml.

McCann, D. W., 1992: A neural network short-term forecast of significant thunderstorms.

Weather and Forecasting, 7 (3), 525 – 534, https://doi.org/10.1175/1520-0434(1992)007⟨0525:

ANNSTF⟩2.0.CO;2, URL https://journals.ametsoc.org/view/journals/wefo/7/3/1520-0434

1992 007 0525 annstf 2 0 co 2.xml.

McCulloch, W. S., and W. Pitts, 1943: A logical calculus of the ideas immanent in nervous activity.

The bulletin of mathematical biophysics, 5 (4), 115–133, https://doi.org/10.1007/BF02478259,

URL https://doi.org/10.1007/BF02478259.

Molina, M. J., D. J. Gagne, and A. F. Prein, 2021: A benchmark to test generalization

capabilities of deep learning methods to classify severe convective storms in a chang-

ing climate. Earth and Space Science, 8 (9), e2020EA001 490, https://doi.org/https://doi.

org/10.1029/2020EA001490, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/

2020EA001490, e2020EA001490 2020EA001490, https://agupubs.onlinelibrary.wiley.com/

doi/pdf/10.1029/2020EA001490.

44

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Mounier, A., L. Raynaud, L. Rottner, M. Plu, P. Arbogast, M. Kreitz, L. Mignan,

and B. Touzé, 2022: Detection of bow echoes in kilometer-scale forecasts using a

convolutional neural network. Artificial Intelligence for the Earth Systems, 1 – 66,

https://doi.org/10.1175/AIES-D-21-0010.1, URL https://journals.ametsoc.org/view/journals/

aies/aop/AIES-D-21-0010.1/AIES-D-21-0010.1.xml.

Murphy, A. H., 1993: What is a good forecast? an essay on the nature of goodness

in weather forecasting. Weather and Forecasting, 8 (2), 281 – 293, https://doi.org/10.

1175/1520-0434(1993)008⟨0281:WIAGFA⟩2.0.CO;2, URL https://journals.ametsoc.org/view/

journals/wefo/8/2/1520-0434 1993 008 0281 wiagfa 2 0 co 2.xml.

Nguyen, T., J. Brandstetter, A. Kapoor, J. K. Gupta, and A. Grover, 2023: Climax: A foundation

model for weather and climate. arXiv, URL https://arxiv.org/abs/2301.10343, https://doi.org/

10.48550/ARXIV.2301.10343.

Nowotarski, C. J., and A. A. Jensen, 2013: Classifying proximity soundings with self-organizing

maps toward improving supercell and tornado forecasting. Wea. Forecasting, 28, 783–801, URL

https://doi.org/10.1175/WAF-D-12-00125.1.

Paszke, A., and Coauthors, 2019: Pytorch: An imperative style, high-performance

deep learning library. Advances in Neural Information Processing Systems 32, H. Wal-

lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-

nett, Eds., Curran Associates, Inc., 8024–8035, URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12, 2825–2830.

Rasp, S., and N. Thuerey, 2021: Data-driven medium-range weather prediction with a

resnet pretrained on climate simulations: A new model for weatherbench. Journal of

Advances in Modeling Earth Systems, 13 (2), e2020MS002 405, https://doi.org/https://doi.

org/10.1029/2020MS002405, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/

2020MS002405, e2020MS002405 2020MS002405, https://agupubs.onlinelibrary.wiley.com/

doi/pdf/10.1029/2020MS002405.

45

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Ravuri, S., and Coauthors, 2021: Skilful precipitation nowcasting using deep generative models of

radar. Nature, 597 (7878), 672–677, https://doi.org/10.1038/s41586-021-03854-z, URL https:

//doi.org/10.1038/s41586-021-03854-z.

Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations

from high-resolution forecasts of convective events. Monthly Weather Review, 136 (1), 78 –

97, https://doi.org/10.1175/2007MWR2123.1, URL https://journals.ametsoc.org/view/journals/

mwre/136/1/2007mwr2123.1.xml.

Roebber, P., 2009: Visualizing multiple measures of forecast quality. Weather and Forecasting,

24 (2), 601–608.

Ronneberger, O., P. Fischer, and T. Brox, 2015: U-net: Convolutional networks for biomedical im-

age segmentation. CoRR, abs/1505.04597, URL http://arxiv.org/abs/1505.04597, 1505.04597.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams, 1986: Learning representations by back-

propagating errors. Nature, 323 (6088), 533–536, https://doi.org/10.1038/323533a0, URL https:

//doi.org/10.1038/323533a0.

Sha, Y., D. J. G. II, G. West, and R. Stull, 2020a: Deep-learning-based gridded downscaling

of surface meteorological variables in complex terrain. part i: Daily maximum and minimum

2-m temperature. Journal of Applied Meteorology and Climatology, 59 (12), 2057 – 2073,

https://doi.org/10.1175/JAMC-D-20-0057.1, URL https://journals.ametsoc.org/view/journals/

apme/59/12/jamc-d-20-0057.1.xml.

Sha, Y., D. J. G. II, G. West, and R. Stull, 2020b: Deep-learning-based gridded downscaling of sur-

face meteorological variables in complex terrain. part ii: Daily precipitation. Journal of Applied

Meteorology and Climatology, 59 (12), 2075 – 2092, https://doi.org/10.1175/JAMC-D-20-0058.

1, URL https://journals.ametsoc.org/view/journals/apme/59/12/jamc-d-20-0058.1.xml.

Shao, J., 1998: Improving nowcasts of road surface temperature by a backpropaga-

tion neural network. Weather and Forecasting, 13 (1), 164 – 171, https://doi.org/10.

1175/1520-0434(1998)013⟨0164:INORST⟩2.0.CO;2, URL https://journals.ametsoc.org/view/

journals/wefo/13/1/1520-0434 1998 013 0164 inorst 2 0 co 2.xml.

46

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

Shapley, L. S., 1953: A value for n-person games. Contributions to the Theory of Games II, H. W.

Kuhn, and A. W. Tucker, Eds., Princeton University Press, Princeton, 307–317.

Shwartz-Ziv, R., and A. Armon, 2022: Tabular data: Deep learning is not all you need. In-

formation Fusion, 81, 84–90, https://doi.org/https://doi.org/10.1016/j.inffus.2021.11.011, URL

https://www.sciencedirect.com/science/article/pii/S1566253521002360.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 2014: Dropout: A

simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,

15 (56), 1929–1958, URL http://jmlr.org/papers/v15/srivastava14a.html.

Stevens, B., and Coauthors, 2019: Dyamond: the dynamics of the atmospheric general circulation

modeled on non-hydrostatic domains. Progress in Earth and Planetary Science, 6 (1), 61,

https://doi.org/10.1186/s40645-019-0304-z, URL https://doi.org/10.1186/s40645-019-0304-z.

Stock, J., 2021: Using machine learning to improve vertical profiles of temperature and moisture

for severe weather nowcasting. M.S. thesis, Colorado State University.

Tieleman, T., and G. Hinton, 2012: Lecture 6.5-rmsprop, coursera: Neural networks for machine

learning. University of Toronto, Technical Report.

van Straaten, C., K. Whan, D. Coumou, B. van den Hurk, and M. Schmeits, 2022: Using

explainable machine learning forecasts to discover subseasonal drivers of high summer tem-

peratures in western and central europe. Monthly Weather Review, 150 (5), 1115 – 1134,

https://doi.org/10.1175/MWR-D-21-0201.1, URL https://journals.ametsoc.org/view/journals/

mwre/150/5/MWR-D-21-0201.1.xml.

Veillette, M., S. Samsi, and C. Mattioli, 2020: Sevir : A storm event imagery dataset for deep

learning applications in radar and satellite meteorology. Advances in Neural Information Pro-

cessing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., Curran

Associates, Inc., Vol. 33, 22 009–22 019, URL https://proceedings.neurips.cc/paper/2020/file/

fa78a16157fed00d7a80515818432169-Paper.pdf.

Wang, J., X. Dong, A. Kennedy, B. Hagenhoff, and B. Xi, 2019: A regime-based evalua-

tion of southern and northern great plains warm-season precipitation events in wrf. Weather

47

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

and Forecasting, 34 (4), 805 – 831, https://doi.org/10.1175/WAF-D-19-0025.1, URL https:

//journals.ametsoc.org/view/journals/wefo/34/4/waf-d-19-0025 1.xml.

Wes McKinney, 2010: Data Structures for Statistical Computing in Python. Proceedings of the

9th Python in Science Conference, Stéfan van der Walt, and Jarrod Millman, Eds., 56 – 61,

https://doi.org/10.25080/Majora-92bf1922-00a.

Weyn, J. A., D. R. Durran, and R. Caruana, 2020: Improving data-driven global weather

prediction using deep convolutional neural networks on a cubed sphere. Journal of Ad-

vances in Modeling Earth Systems, 12 (9), e2020MS002 109, https://doi.org/https://doi.

org/10.1029/2020MS002109, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/

2020MS002109, e2020MS002109 10.1029/2020MS002109, https://agupubs.onlinelibrary.

wiley.com/doi/pdf/10.1029/2020MS002109.

Xu, W., K. Balaguru, A. August, N. Lalo, N. Hodas, M. DeMaria, and D. Judi, 2021: Deep

learning experiments for tropical cyclone intensity forecasts. Weather and Forecasting, 36 (4),

1453 – 1470, https://doi.org/10.1175/WAF-D-20-0104.1, URL https://journals.ametsoc.org/

view/journals/wefo/36/4/WAF-D-20-0104.1.xml.

Zhou, K., Y. Zheng, W. Dong, and T. Wang, 2020: A deep learning network for cloud-to-ground

lightning nowcasting with multisource data. Journal of Atmospheric and Oceanic Technology,

37 (5), 927 – 942, https://doi.org/10.1175/JTECH-D-19-0146.1, URL https://journals.ametsoc.

org/view/journals/atot/37/5/jtech-d-19-0146.1.xml.

48

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-22-0187.1.
Unauthenticated | Downloaded 06/15/23 07:48 PM UTC

