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ABSTRACT: We introduce the National Science Foundation (NSF) Al Institute for Research on
Trustworthy Al in Weather, Climate, and Coastal Oceanography (AI2ES). This Al institute was
funded in 2020 as part of a new initiative from the NSF to advance foundational Al research across
a wide variety of domains. To date AI2ES is the only NSF Al institute focusing on environmental
science applications. Our institute focuses on developing trustworthy Al methods for weather,
climate, and coastal hazards. The Al methods will revolutionize our understanding and prediction
of high-impact atmospheric and ocean science phenomena and will be utilized by diverse,
professional user groups to reduce risks to society. In addition, we are creating novel educational
paths, including a new degree program at a community college serving underrepresented minorities,
to improve workforce diversity for both Al and environmental science.
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understanding of many environmental science phenomena (e.g., Ahijevych et al.

2016; Williams et al. 2016; McGovern et al. 2017; Gagne et al. 2017, 2019;
Lagerquist et al. 2019a; Barnes et al. 2019; Reichstein et al. 2019; Boukabara et al. 2021),
there is often a lack of trust by environmental science decision-makers when it comes to relying
on “black box” algorithms, especially in life-or-death situations (Karstens et al. 2018; Demuth
etal. 2020). Developing Al that is trustworthy and useful for environmental risk management
requires fundamental natural, mathematical, and social sciences research on the Al needs
and perceptions of key users. These users’ judgments and decisions may depend on their
expertise and context (Larkin et al. 1980; Chi et al. 1981; Payne et al. 1992). Such research
should include a users’ understanding and perceptions of the Al method, its performance,
and other factors emerging in empirical and theoretical research on Al (Mueller et al. 2019;
Wang et al. 2019; Glikson and Woolley 2020).

We introduce the NSF Al Institute for Research on Trustworthy Al in Weather, Climate,
and Coastal Oceanography (AI2ES), a national Al institute that conducts convergent research
focused on creating trustworthy Al for the weather, climate, and ocean communities. AI2ES
seeks to uniquely benefit humanity by developing novel physically based Al techniques that
are demonstrated to be trustworthy, and to directly improve prediction, understanding, and
communication of high-impact environmental hazards.

Developing trustworthy Al, particularly for the weather, water, and climate communities,
is an urgent and timely priority (IPCC 2018; Reidmiller et al. 2018; ERISS Corporation and
The Maritime Alliance 2019) at the highest levels of government and industry. NOAA has
identified Al as a high priority in their strategic Al plan (NOAA 2019). Similarly, the White
House continues to prioritize the development of innovative AI (National Science and
Technology Council 2019b; Office of Science and Technology Policy 2019; National Science and
Technology Council 2019a); the National Academies of Science, Engineering and Medicine
cites improved forecasting of extreme events as a critical task (National Academies of
Sciences, Engineering, and Medicine 2016); and NOAA and the National Weather Service (NWS)
have increasingly focused on providing impact-based decision support services (IDSS) to
reduce weather risks (Uccellini and Hoeve 2019), which requires developing new and
improved forecast information to meet IDSS needs (Demuth et al. 2020). The European Centre
for Medium-Range Weather Forecasts places high importance on improving predictions and
understanding (European Centre for Medium-Range Weather Forecasts 2016). The recently
released ECMWF 10-yr plan for Al states that “We anticipate that it will be increasingly
difficult to distinguish between scientists working on machine learning and domain
scientists in the future” (Diiben et al. 2021).

While artificial intelligence (AI) has demonstrably improved prediction and
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Al algorithms for the weather, water, and climate communities must not only be skillful,
but also trustworthy. The European Commission’s report on Ethics Guidelines for Trustworthy
Al notes that “Al systems need to be human-centric, resting on a commitment to their use in
the service of humanity and the common good, with the goal of improving human welfare
and freedom” (High-Level Expert Group on Al 2019). AI2ES directly incorporates risk
communication to connect the development of trustworthy Al to the human decision makers
AI2ES aims to serve.

Before we proceed, a comment is in order regarding the terms machine learning (ML) versus
Al. Machine learning is focused on the development of algorithms that allow computers to learn
from data how to perform certain tasks without explicit programming. In contrast, artificial
intelligence is a much broader concept that seeks to create algorithms providing human-like
reasoning abilities. For the applications considered here we are only concerned with the ma-
chine learning type of algorithms. From here on we use both terms, ML and Al, interchangeably,
always with the understanding that AI only refers to the machine learning style of Al

Building trustworthy Al—Key components of AI2ES
Figure 1 provides an overview of the key components of AI2ES and the sidebar provides key
terms and definitions. Our research cycle integrates development of foundational new AI/ML
methods, working with atmospheric scientists and risk communication researchers in a
virtuous cycle where each thread informs the others. Specifically we seek to develop
trustworthy Al approaches for environmental science by

1) integrating risk communication research to determine which Al and explainable AI (XAI)
features promote trustworthiness and use by different user groups, such as forecasters,
for managing risk;

Trustworthy Al :
Physics-based Broadening

Explainable Participation
Robust URM partnerships
Uncertainty Industry Partnerships

Mentoring

Risk Environmental
Communication Science
Transparency Convective Hazards Workforce
Attitudes & Perceptions . WlnlteEr Weather Development
Decision Making oﬁztaica?v"ggl?;int Leadership training
P SZQS/ Community college
Continuing education

Ethical, Responsible, and Use-Inspired Al

ai2es.org

Fig. 1. The foundational research in trustworthy Al, environmental science, and risk communication forms a synergistic cycle
where all parts interact with each other to inform the others. The blue circle around the diagram indicates our foundational
focus on ensuring the Al is ethically and responsibly developed and applied as well as our key focus on use-inspired research. The
broadening participation and workforce development components also synergize and together these comprise AI2ES. AI2ES
welcomes new partners interested in working with us on any scale of the research, from foundational research to operations,
or in broadening participation and workforce development. Interested researchers are welcome to join us for our AI2ES-wide
presentations and to learn more about the different foci. In addition, we welcome additional private partnerships. To learn
more, visit our website https://www.ai2es.org/.
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2) leveraging and expanding approaches from physics-based Al and XAlI;

3) raising awareness about negative side effects that Al has caused in other domains and
helping the community to proactively avoid those;

4) using a variety of specific use cases (applications) to guide, test, and disseminate the Al
approaches;

5) taking a multisector approach, involving academia, government agencies, and the private
sector from the very beginning to facilitate maximal transition of the developed approaches
from research to operations; and

6) creating new education pathways for Al, environmental science, and risk communication
at all levels to improve workforce development and participation.

In the remainder of this article we give a quick overview of each of these components.

Convergent, virtuous cycle involving risk communication research with users

AI2ES is focused on developing trustworthy Al for professional users, such as weather forecasters,
emergency managers, transportation officials, ecological and water resource managers. These
professionals are close, direct users of Al forecast information, and their job responsibilities
involve assessing risk and making decisions that have critical consequences for people’s
well-being. It is therefore important to study their Al interpretations, perceptions, uses, and
needs, as situated in their varied decision-making contexts, in order to guide development
and refinement of Al forecast information that is trustworthy.

The risk communication research in AI2ES brings to bear risk analysis, perception, and
communication research theories and methods, with the goals of understanding how different
features of Al and XAl influence trustworthiness of, trust in, and willingness to use Al guid-
ance (e.g., Jacovi et al. 2021; Mueller et al. 2019; Glikson and Woolley 2020). This research
is being conducted through structured interviews, experiments, and surveys in naturalistic
settings for (i) different professional user groups, (ii) across different weather (severe convec-
tion, winter weather, tropical cyclones), coastal, and ocean hazards, and (iii) with different
Al and XAl techniques. For example, in our initial, structured interviews, we are evaluating
how weather forecasters’ trust in Al guidance is influenced by the training approaches and
datasets used for developing Al guidance, different bulk and case-study verification statis-
tics, who developed the guidance, and interactivity with the output (including the ability to
interrogate a source about how an answer was derived). Additional work will be conducted
with XAl techniques to evaluate users’ perceptions of, for example, algorithmic transparency,
variable importance, and visualization techniques.

Conducting such user-oriented research is essential for multiple reasons. It will guide
development of Al features and provision of Al guidance that aligns with users’ key decision-
making needs and contexts. Further, it will help improve users’ evaluation and use of Al
models and output, which intrinsically have limitations as all models do, to increase trust
and use when warranted.

Leveraging physics-based Al and explainable Al
In addition to ensuring that the Al is skillful, AI2ES is developing new explainable and inter-
pretable Al techniques (McGovern et al. 2019) focused on the needs of environmental science
end users, developing new approaches to integrating the laws of physics into AI methods,
developing novel ways to quantify and communicate model uncertainty, and ensuring that
the Al is robust to natural and adversarial variations of Al model inputs.

As part of improving trust, many end users want to understand what the model has learned
and if it is physically plausible (Jacovi et al. 2021). XAl provides an approach to looking inside
the “black box” of ML models (Molnar 2018; McGovern et al. 2019), but many existing XAl
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approaches do not adequately address environmental science phenomena such as spatiotemporal
events. As noted above, our risk communication research agenda includes exploring profes-
sional users’ perceptions and interpretations of XAl techniques applied to these and other
similar contexts. Additional research on what constitutes good XAI from users’ and human—
Al teaming perspectives is needed (for examples and discussion of this see, e.g., Lu et al. 2020;
Klein et al. 2021; Mueller et al. 2021; National Academies of Sciences, Engineering, and
Medicine 2021; Schwalbe and Finzel 2021). We are developing new XAI approaches as well
as investigating interpretable Al methods (Rudin 2019), which are designed from the start to
be more human-understandable models. We are also ensuring that the Al and XAl approaches
follow the laws of physics (e.g., Karniadakis et al. 2021; Jia et al. 2018, 2021), helping to
further improve trust by ensuring the models cannot predict scenarios which are impossible
and cannot learn nonphysical relationships for prediction (e.g., Yuval and O’Gorman 2020;
Gettelman et al. 2021; Beucler et al. 2021a; Yuval et al. 2021). Murphy (1993) identifies three
components of a good forecast: quality, or how well the forecast corresponds with observa-
tions; consistency, or how well the forecast corresponds with the forecaster’s prior judgment;
and value, or how much the forecast benefits users. Standard ML models focus on optimizing
quality by fitting closely to observations often at the expense of consistency in space and
time. Prior physical constraints on different parts of the ML pipeline have shown promise
at improving consistency while maintaining or even further improving quality (e.g., Beucler
etal. 2021b; Willard et al. 2020). While one could focus entirely on model skill, previous work
has shown that forecasters and other scientific end users prefer a model based on physics.

Ethical and responsible Al and trust
“If not us, then who? If not now, then when? If not here, then where?” These inspiring words
by Yeb Sano were spoken at the 2012 UN climate summit regarding the need to come together
and combat climate change. We embrace these words to ensure that Al will be used in a respon-
sible way in the environmental sciences. Namely, as the NSF center for creating trustworthy
Al for environmental science, we are taking a lead on creating awareness and guidelines for
the ethical and responsible use of Al for the weather, climate, and ocean (McGovern et al.
2022). Not only is it integral to the creation of trustworthy Al, but it is critical that we ensure
that we are cognizant of and avoid unintentional negative consequences resulting from the
introduction of Al This in turn will avoid inadvertently creating—or increasing—environmental
injustice through the use of Al

Although it might seem as if the environmental sciences, due to their use of scientific meth-
ods and observations, are immune to the danger of increasing bias through Al, that is not the
case. For example, while it might seem that the weather affects everyone equally, the effects
of extreme weather are felt disproportionately by vulnerable communities and individuals
(Environmental Protection Agency 2021). Likewise, if a tool uses data that are not available
in areas where the predictions would be most needed, additional care needs to be taken to
develop approaches that would work for all areas. It is well known that Al algorithms tend
to reinforce and solidify unintentional biases in data (O’Neil 2016; Benjamin 2019). Given
that we know there are existing unintentional biases in weather data, such as the population
biases shown in hail and tornado reports (Allen and Tippett 2015; Potvin et al. 2019), one of
the goals of AI2ES is to ensure that Al developers for weather, climate, and ocean applica-
tions have the knowledge and tools to create Al that can counteract these effects, to make the
Al both ethical and responsible and to minimize bias. For example, we aim to develop a tool
that would identify potential biases in data automatically to facilitate the developer counter-
acting these biases when training the AI model. This tool could identify that a dataset had
a population bias or a bias toward specific sensors or specific times of data collection (all
real examples of biases we have identified in weather and climate data) and encourage the
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developer to counteract these biases through over/undersampling and data augmentation.
Tools and principles such as these will help to ensure our Al is more trustworthy and will
also help to address environmental justice needs (McGovern et al. 2022).

In the absence of empirical evidence of model interpretability by users, deontological
ethics suggests that modelers have a duty to develop XAl that informs the user what the model
is doing sufficiently to respect their decision-making autonomy. Al that convinces the user
without actually informing them is manipulative rather than appropriately persuasive. This
potential lack of honesty can create distrust (Lamb 2017). For example, generative adversarial
networks (GANs; Goodfellow et al. 2014) and other generative AI models can create small-
scale features in simulated imagery that look extremely realistic without necessarily being
accurate to the same degree. This could potentially mislead forecasters, at least with regard
to the appropriate level of confidence in the output images, and thus also in their interpre-
tation of the model outputs. In contrast, XAI that informs user decisions thereby respects
decision making autonomy, contributes to ethical Al, and should contribute to trustworthy
Al Five principles for science communication emerge from deontological ethics (Keohane
et al. 2014), of which honesty is primary and imperative, the others being precision, audi-
ence relevance, process transparency, and specification of uncertainty about conclusions.
All of these are relevant for XAI as seen as a form of science communication, and conform
with findings to date regarding what might contribute to human trust in Al (e.g., Glikson
and Woolley 2020).

Grounding Al development through use cases

AI2ES is principally focused on five environmental science applications: convective weather,
winter weather, subseasonal to seasonal prediction, tropical cyclones, and coastal oceanog-
raphy. We briefly outline our work in each of these areas. Note that the applications described
here are not meant to cover all important areas in weather, climate, and coastal environments.
Rather they should be seen as case studies that—while being important applications in their
own right—serve the main purpose to ground the development of trustworthy Al methods in
real-world environmental applications. Thus these topics were selected to cover many differ-
ent types of problems (e.g., covering a large variety of meteorological phenomena, including
a large range of temporal and spatial scales), requiring many different types of Al approaches
[e.g., from generating simulated satellite imagery to using Al to learn new physics in subsea-
sonal to seasonal prediction (S2S) applications], and to be supported by the expertise of the
founding members (PIs and co-PIs). The variety of case studies and approaches offers further
opportunity to ground the research and development with the aforementioned different pro-
fessional users, yielding fundamental and applied research that is actionable.

Convective weather. In the area of convective weather, AI2ES is performing research on
improving the skill and trustworthiness of Al predictions of weather hazards including tor-
nadoes, hail, and severe wind. On the topic of tornado prediction (Lagerquist et al. 2019b),
AI2ES is focusing on utilizing short-range (0—3 h) NWP forecasts and dual-polarization radar
observations to both produce skillful tornado forecasts using deep learning and investigating
how to best communicate these predictions to human forecasters. In the area of hail predic-
tion (Gagne et al. 2017; Burke et al. 2020), AI2ES is investigating both short-range (0—6 h)
and multiple-day (24-48 h) hail prediction. Hail prediction is also being used as a testbed
for transition of AI2ES research results to industry applications.

The work in convective weather provides our initial test case for the synergistic research
cycle involving Al, atmospheric scientists, and risk communication researchers. We are in-
terviewing forecasters and emergency managers about their trust in several Al convective
weather products and identifying how that trust varies as a function of XAlI, visualization
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and interactivity with the model, and model performance (Cains et al. 2022). The results of
this will inform our AI model development for all of AI2ES.

Winter weather. Winter weather is a major hazard in the United States. Heavy snowfall,
freezing rain, and extreme cold can all have severe impacts in many areas including travel
(e.g., road, air, rail), utilities, commerce, and public health. AI2ES will be using Al to gener-
ate solutions to improve response and resilience to winter weather, with an early emphasis
on road weather and related decision-making for public safety (e.g., through prediction
of precipitation type and snow amounts) and environmental conservation (e.g., through
improved efficiency of salt usage). We will also be addressing the needs of the National Weather
Service and potentially other winter weather sensitive sectors including energy (e.g., utilities).
Al-empowered winter weather analyses and predictions will be developed to provide
trustworthy, customized weather information to support decision-making ahead of, during
and after storm (recovery). The work will develop trustworthy products that exploit New York
State Mesonet (NYSM; Brotzge et al. 2020), and the Oklahoma State Mesonet (McPherson et al.
2007), together with outputs from traditional observations and numerical weather prediction
models as well as nontraditional user-provided data sources (e.g., road temperatures, snow-
plow speeds, salt activation, car sensors such as windshield wipers). Al is currently being
used to extract weather information, such as visibility and precipitation, from the frequent
camera images provided by the NYSM in a longer-term effort to extract such information from
roadside cameras monitoring traffic and road conditions. The next phase of this work will
exploit more data sources, to include more emphasis on precipitation type as they affect road
conditions and decision-making needs. Automakers and insurers additionally are interested
in this work as it improves safety and automation.

TCs. Proper representation of the convective structure of tropical cyclones (TCs) is important
for the analysis and prediction of TC intensity and TC intensity change. However, existing
satellites cannot observe TC convective structure at high temporal resolution. Namely, in-
frared imagery from geostationary satellites provides high spatial and temporal resolution,
but upper-level cirrus obscures the underlying convective structure. In contrast, microwave
imagery obtained from polar orbiting satellites reveals the TC convective structure, but has
very low temporal resolution. Our AI2ES team seeks to use Al algorithms to combine the best
of both worlds by learning to generate simulated microwave imagery from the geostationary
imagery, thus yielding imagery of TC convective structure at high temporal resolution. In the
next phase of the project we will seek to study this imagery to develop a better scientific
understanding of the evolution of TC structure and to develop better prediction tools for TC
intensity and intensity change (Slocum and Knaff 2020; Haynes et al. 2021). We also revisit
the task of predicting TC intensification directly (without microwave imagery) using physics-
based Al to address the challenge that TCs are behaving differently from year to year due to
rising ocean temperatures, as documented by Schaffer et al. (2020).

$2S. Making predictions in the range of two weeks to two months is known to be particularly
challenging (National Academies of Sciences, Engineering, and Medicine 2016). Furthermore,
it has become clear that sometimes it is possible to have good forecast skill, but not at other
times (Albers and Newman 2019; Mayer and Barnes 2021). Times at which good skill is pos-
sible provide forecasts of opportunity (Mariotti et al. 2020) and one of the goals of the AI2ES
team is to use machine learning to identify those conditions under which good forecast skill
exists, and then use XAI techniques to understand the physical processes at play. Research by
members of the AI2ES team is exploring the concept of abstention networks to identify such
conditions where skillful forecasts may be possible (Barnes and Barnes 2021a,b). Abstention
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networks (Thulasidasan 2020) are neural networks that are trained to make predictions, but
that additionally have the option to abstain, i.e., say “I do not know” in cases where their
confidence for a skilled prediction is low. In doing so, the network is able to learn the more
predictable behavior better than it would without abstention. Barnes and Barnes (2021a,b)
explore how to apply abstention networks to Earth science applications, including S2S.

Coastal ocean environment. The coastal environment intersects oceans, land, and atmo-
sphere and is home to critical ecosystems, large industrial facilities, and ports. Environmental
datasets coming from in situ observing networks and satellite remote sensing platforms are
still underutilized and represent a compelling opportunity to apply new Al methods to sup-
port better marine environment forecasting, science discovery, and stakeholder engagement.
AI2ES is carrying out active research to combine physically based Al and machine learning
with conventional numerical modeling to improve prediction skill and trustworthiness for
a suite of coastal applications. These include problems ranging from marine ecology
(e.g., predicting cold stuns to save sea turtles and fisheries), to marine transportation and
offshore safety (e.g., marine fog forecast, ocean current and eddies prediction), to water quality
(e.g., harmful algal blooms), to coastal hazards (e.g., compound flooding). And when coastal
Al predictions significantly outperform existing models, such as for the prediction of coastal
fog (Kamangir et al. 2021), XAl has the potential to bring new insights to the dynamics of the
processes including air—sea interactions.

Taking a multisector approach
AI2ES takes a multisector approach (McGovern et al. 2020), one where researchers from aca-
demia, private industry, federally funded research centers, and government all work together
to solve challenging problems. This approach represents the future for large-scale research
initiatives as it brings together practitioners across the spectrum, from basic research all
the way to operations. By working together, we can inspire new foundational research and
transition research all the way to operations (R20) as well as to other end users (R2X). For
example, Google’s flood forecasting work involves the cooperation of the Indian government
as well as private industry and researchers (Matias 2021) and Schumacher et al. (2021) has
demonstrated the critical need to work with directly with the targeted forecasters to develop
an operational product.

As our climate changes, there are a number of wicked problems! that must be addressed
using a convergent multisector paradigm (Bendito and Barrios 2016). For example, the
changes to high-impact weather including severe storms, heat ...
waves, drought, and torrential rain all require a collaborative ! https://en.wikipedia.orgiwiki/Wicked_problem
approach to identifying the best long-term solutions that will
facilitate climate resiliency and promote environmental justice. If only one agency or one
sector studies the problems, they will not develop general solutions, and they may miss the
inspiration of specific use cases to drive foundational research as well as opportunities to
bring the research to end users through operational use.

Workforce development and broadening participation
Broadening participation for both the Al and ES workforces is a major goal of AI2ES. We
ensured that this goal was shared by all of our initial team members, including academic
partners as well as private industry. We welcome additional partners and have already grown
tremendously since our creation, including starting partnerships with NOAA Cooperative
Science Centers and AMS’s outreach and education programs.

AI2ES is developing and pilot testing an occupational skills award (OSA) for community
colleges, a set of five classes open to a broad range of students, including nontraditional
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ones, taking the students from basics to implementing Al projects within a geographic infor-
mation system software application. This OSA award is being developed by Del Mar College
with collaboration from Texas A&M University—Corpus Christi. Both are Hispanic serving
and minority serving institutions and the goal of the OSA is to specifically create a pipeline
of underrepresented minority students trained in Al and environmental science. The OSA
debuted in fall 2021. Once the curriculum is tested, AI2ES will share it nationwide with other
community colleges.

AI2ES is also developing multiple online workforce development modules. These include
virtual summer schools, full university-level classes, and short courses. Our 2021 and 2022
summer schools focused on trustworthy Al for the environmental sciences. Our short courses
are focused tutorial sessions, facilitating a deep dive into a specific topic. Each short course also
includes example Jupyter notebooks so that participants can try out the ideas on their own
environmental science phenomena. We recently completed a short course on XAI and have
additional topics planned. Finally, university-level courses are being developed and shared
online so that anyone around the world can use the material for learning and retraining. All
of our material is available publicly on our website, ai2es.org.

Key terms
Below are our current working definitions of key terms. Note that as definitions in the literature vary and we gain additional experience,
AI2ES is actively working to develop clear, shared definitions of these terms for use among our community.

e Explainable Al—An explainable Al method is one that can be explained post hoc, after training, in a way that makes it understandable
(Schwalbe and Finzel 2021; Mueller et al. 2021). This includes methods to promote transparency into the black boxes, such as the
ability to measure the importance of a variable or to see the effect of the values of that variable on the model as well as methods
that allow a user to visualize patterns of activation in neural networks.

e Interpretable Al—An interpretable Al method is a model that is designed to be understood by humans without additional explanation.
This does not include methods with large numbers of hyperparameters such as neural networks.

e Interactivity—The more interactive a method is, the more an end user can change parameters, select features, change weights on
data points or parameters, visualize and select a specific model or ensemble of models, and change how they view the explanation
and Al output (Rudin et al. 2022).

e Trustworthiness—Trustworthiness and trust are related, yet distinct, concepts. Trust is relational, in that it is “given to” or “placed
in" someone or something, and trustworthiness is evaluative, in that it is a perceived characteristic of someone or something. With
this in mind, trustworthiness is a (potential) trustor’s evaluation, or perception, of whether, when, why, or to what degree someone
or something should or should not be trusted. Current efforts to develop standards for trustworthiness (e.g., High-Level Expert Group
on Al 2019) may lead some to confuse the broader concept of perceived trustworthiness with assessment of compliance with formal
standards or policies for trustworthiness. A key distinction is that trustworthiness is a subjective evaluation that is largely dependent
on the perceptions, values, experiences, and context of the assessor, which may or may not be influenced by standards or policies
for trustworthiness.

¢ Deontological—Derived from the Greek word for duty (deon). Deontological ethics are rule-based ethics, or moral duties, such as
the moral duty to be honest (Alexander and Moore 2021).

Acknowledgments. This material is based upon work supported by the National Science Foundation
under Grant ICER-2019758.
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