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Abstract: We show that coherent laser networks (CLNs)

exhibit emergent neural computing capabilities. The pro-

posed scheme is built on harnessing the collective behavior

of laser networks for storing a number of phase patterns

as stable fixed points of the governing dynamical equations

and retrieving such patterns through proper excitation con-

ditions, thus exhibiting an associative memory property. It

is discussed that despite the large storage capacity of the net-

work, the large overlap between fixed-point patterns effec-

tively limits pattern retrieval to only two images. Next, we

show that this restriction can be uplifted by using nonrecip-

rocal coupling between lasers and this allows for utilizing

a large storage capacity. This work opens new possibilities

for neural computation with coherent laser networks as

novel analog processors. In addition, the underlying dynam-

ical model discussed here suggests a novel energy-based

recurrent neural network that handles continuous data as

opposed to Hopfield networks and Boltzmann machines

that are intrinsically binary systems.

Keywords: lasers ; machine learning; neural networks ;

nonlinear dynamics; optical computing.

1 Introduction

In the recent years, there has been a growing inter-

est in developing new platforms for general-purpose or

application-specific computing that offer an advantage over

classical processors in terms of computational time, energy

efficiency and scalability [1]. Although quantum comput-

ing is widely considered as a promising route, it appears
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that the classical nonlinear systems exhibit a largely under-

explored computational capacity that is not properly uti-

lized in conventional digital computers [2]. In this regard,

there is great interest in developing alternative hardware

platforms, which subsequently demand for compatible new

algorithms.

Inspired by the biological brain, an interesting compu-

tational platform seems to be a network of nonlinear units,

i.e., neurons, with a complex architecture that allows dense

long-range interactions [3]. In such systems, computing is

an emergent nonlinear dynamical behavior of the network,

and, in principle, can be much more efficient for certain

tasks in comparison with the well-established sequential

architecture. Interestingly, in the physics community inter-

est in the subject of neural computation was raised at an

early stage by the introduction of Hopfield networks [4, 5].

In these contexts, mainly influenced by spin systems in

statistical mechanics, computing is viewed as finding states

that minimize a global network energy function. Analog

physical implementations of Hopfield networks with opto-

electronics [6] and CMOS circuits [7, 8] were demonstrated

for a small number of neurons at early stages. More impor-

tantly, such networks inspired unconventional methods for

solving combinatorial optimization problems [9] as well

as energy-based models for machine learning [10]. On the

other hand, interest in physical implementation of uncon-

ventional computing with densely connected architectures

has recently regained interest in photonics [11–14]. In fact,

energy-efficiency and the possibility of implementing long-

range interactions make photonics an attractive candidate

for neural computation. Accordingly, there is interest in

developing novelmethods and algorithms that allow for tak-

ing advantage of the existing photonics systems for uncon-

ventional computing.

Here, we show that coherent laser networks (CLNs)

exhibit collective neural computing capabilities, and devise

the fundamental requirements for realizing an associative

memory for continuous patterns. What facilitates this work

is recent experimental progress in creating large networks

of coherently coupled photonic oscillators [11, 12, 15–17].

These activities have been primarily centered on solving

computationally-hard problems by optical simulation of

classical spinmodels. In particular, coherent laser networks
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have been used for solving nonconvex optimization prob-

lems of the form of the classical XY Hamiltonian [18], while

numerical simulation of the governing dynamical models

have been shown to be an efficient optimization method

[19]. Here, it is shown that coherent laser networks hold a

great potential as a physical energy-based neural computing

platform.

The present work is timely due to two important recent

realizations that make coupled laser systems an attractive

choice as a physical neural network. First, is the possibility

of implementing dissipative interaction among laser net-

works which ensures the presence of fixed point attractors

for such dynamical systems [15, 20]. The presence of dissi-

pative coupling is shown to shift the dynamical model gov-

erning laser networks toward a class of reaction-diffusion

systems that are known to be the host of exotic phenomena

most notably pattern formation, which is the core of the

presentwork [21]. In contrast, driven by device applications,

traditionally the general trend has been centered on dis-

persive interaction among laser arrays to avoid power loss,

which in turn could result in unstable and chaotic behavior.

Second, several recent works show the possibility of creat-

ing coupling through complex graph topologies, which is

essential for implementing and training a recurrent neu-

ral network based on laser networks with desired wiring

[15, 22]. In contrast, in the past the emphasis has been on

lattice geometries with nearest neighbor couplings. It is

because of this latter that we opt to call the system a laser

network rather than a laser array.

Figure 1 illustrates the concept of the proposed neural

network based on coherent laser networks. Considering two

coupled lasers, as shown schematically in Figure 1(a), by uti-

lizing dissipative coupling, the two lasers can reach an equi-

librium frequency-locked regime which can be described

through the lasers phase degrees of freedom interacting

with the coupling rate𝑤 (Figure 1(b)). The associated energy

landscape function governing the equilibrium phases of the

two lasers is shown in Figure 1(c). It can be shown that for

𝑤 > 0 (attractive coupling) the energy function isminimum

at 𝜙2 = 𝜙1, while for𝑤 < 0 (repulsive coupling) the energy

function is minimum for 𝜙2 − 𝜙1 = ±𝜋 [20, 21, 23]. There-

fore, the dynamic interaction between these two lasers can

promote the stabilization of the system into a given equilib-

rium phase distribution, in this case either in-phase or out-

of-phase depending on the sign of the coupling coefficient,

which forms the basis of utilizing larger laser networks for

storing high-dimensional patterns.

Figure 1(d) schematically depicts a network of n lasers

that are coherently coupled through diffraction engineer-

ing. This coherent laser network can be considered as a

complex network represented with a graph as shown in

Figure 1(b). Here, each graph node, represents an artificial

neuron associatedwith a laser that is described by its ampli-

tude and phase, ai(t) = |ai(t)| exp(i𝜙i(t)), as two dynamical

variables. In addition, two representative neurons i and j,

interact dynamically through rates (𝑤ij,𝑤ji), which could in

general be nonreciprocal, i.e., 𝑤ij ≠ 𝑤ji. Assuming that all

lasers are identical, starting from an initial condition, under

proper conditions the network can reach a phase-locking

state where the amplitudes are nearly equal and the phases

have a fixed pattern [20]. In this regime, the system can be

viewed as a network of phase oscillators that are governed

by an n-dimensional energy landscape function as shown

schematically in Figure 1(c). The equilibriumphase patterns

of the laser network are associated with the local minima

of this energy landscape function. Thus, the laser network

can be viewed as an energy-based neural network. The use

of such an energy-based model can be best demonstrated

through associativememory functionality. In such a system,

by properly choosing the weight matrix, one can suitably

engineer the landscape function such that desired patterns

are located at its localminima as illustrated in Figure 1(d). In

this manner, the network memorizes a given pattern which

can be retrieved when it is suitably initialized.

In this work, first, it is shown that the conservative

reciprocal coupling allows for the formation of binary pat-

terns. We show that by using the Hebbian learning desired

patterns can be memorized by the network, although the

storage capacity is limited to only two images. Next, it is

shown that these restrictions can be uplifted by considering

nonreciprocal coupling that allows for treating continuous

patterns, while increasing the storage capacity. A simple

learning rule for training such coherent laser networks is

introduced, which is based on simultaneously embedding a

number of patterns as fixed point solutions of the dynamical

models governing laser networks. These results are justified

by numerical simulation of the dynamical equations gov-

erning laser networks.

2 Formulation

2.1 A single laser

Given the importance of a single laser oscillator as an arti-

ficial neuron and a building block of the coherent laser

network, first we discuss it in the following. Here, laser

oscillations is modeled through a second-order nonlinear

oscillator as: [24, 25]

ȧ = −a+ g0(1− |a|2)a+ b+ 𝜉(t) (1)
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Figure 1: Neural computing with coherenet laser networks. (a) A schematic of two lasers coupled through diffraction engineering. (b) Under proper

conditions, the coupled lasers can be represented with their equilibrium phase degrees of freedom, interacting with the coupling rate𝑤. (c) The

associated energy landscape function governing the equilibrium phases of the two lasers. For𝑤 > 0 (attractive coupling) the energy function is

minimum at 𝜙2 = 𝜙1, while for𝑤 < 0 (repulsive coupling) the energy function is minimum for 𝜙2 − 𝜙1 = ±𝜋. (d) A schematic of a coherent laser
network (CLN) composed of an array of coupled lasers that can reach an equilibrium frequency-locked state with constant relative phase for each

laser. (e) The associated network graph representing an energy-based neural network with pairwise interactions between lasers described through

matrix elements𝑤ij . (f) The governing multivariate energy function. By locating a desired pattern at a local minimum of the energy function, it can be

retrieved when the network is suitably initialized to start from the attractor basin of the embedded fixed point.

where, a is the complexmodal amplitude of the electric field

in laser cavity, g0 is the small signal gain, b represents the

complex amplitude of a drive laser for seeding or optical

injection [26–28], and 𝜉 represents fluctuations. Here, the

oscillation frequency 𝜔0 is gauged out for simplicity, the

laser is assumed to be frequency-locked with the drive, and

the time is normalized to the photon lifetime, 1∕𝛾 , where 𝛾
is the passive cavity decay rate. This model, which is simi-

lar to the single-sideband Van der Pol [29] or the so-called

Stuart–Landau oscillator [30], represents a class-A laser, in

which the field decay rate is much less than the decay rates

of the atomic degrees of freedom, i.e., atomic polarization

and population inversion [31]. The analysis presented in

this work is based on this minimal model which facilitates

integrability. However, it is later discussed that the results

are applicable to a more general class of laser systems.

In the absence of seeding, i.e., b = 0, Eq. (1) admits a

stable fixed point at ā = 0 for g0 < 1. For g0 > 1, the sta-

tionary solution at zero becomes unstable, while the oscil-

lator stabilizes at ā =
√
(g0 − 1)∕g0 exp(i𝜙), where, 𝜙 is an

arbitrary phase. In the presence of seeding with a complex

amplitude b = |b| exp(i𝜑), the equilibrium state becomes

ā = |ā| exp(i𝜑). Therefore, while in the absence of seeding

the phase is random; seeding can fix the phase of the laser to

that of the drive laser, irrespective of the initial conditions

and fluctuations. This aspect is best described in the phase

space. By considering a Lyapunov function F = (g0 − 1)|a|2 − (g0∕2)|a|4 − (a∗b+ ab
∗), relation (1) is written as

ȧ = −𝜕F∕𝜕a∗ + 𝜉(t). The governing Lyapunov function is

plotted in Figure 2 for three different scenarios of operat-

ing below threshold, above threshold, and in presence of

seeding.

2.2 Laser networks

The extension of the dynamical model to the case of n

coupled laser oscillators is straightforward. Considering n

identical oscillators, the evolution equations can be written

as:

ȧ = −a+ g0(1− a
∗ ⋅ a) ⋅ a−Wa+ b+ 𝝃(t). (2)

In this relation, ‘⋅’ shows entry-wise product, a =
(a1,… , an)

t represents the oscillator amplitudes, W is the

coupling matrix, b = (b1,… , bn)
t is the seeding vector,

and 𝝃(t) = (𝜉1(t),… , 𝜉n(t))
t contains the fluctuation terms.
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Figure 2: The Lyapunov function of a single laser (a) un-pumped, (b)

pumped, (c) pumped and seeded, in the in-phase and quadrature phase

coordinates, x = (a+ a∗)∕
√
2 and y = (a− a∗)∕

√
2i.

It is important to note that this model builds on the

assumption of phase-sensitive coupling [32–35]. In a pas-

sive coupled cavity arrangement the coupling coefficients

are subject to the power conservation and reciprocity

relations, which respectively demand (W − diag(W))†(W −
diag(W)) = 2 diag(W) and W

t = W . In the following, it is

first assumed that the coupling is of pure dissipative nature,

thus the matrix elements 𝑤ij are taken to be real, and the

coupling matrix is assumed to be restricted to the afore-

mentioned conservation relations. A more general case

that involves complex coupling coefficients is discussed

later.

The symmetry of the couplingmatrix allows forwriting

the dynamical model in terms of the gradient of a Lyapunov

function, i.e., ȧi = −𝜕F∕𝜕a∗
i
+ 𝜉i(t), where [20]

F = −(g0 − 1)a†a+ g0

2
(a ⋅ a)†(a ⋅ a)

+ 1

2
a
†
Wa− (a†b+ b

†
a), (3)

It is straightforward to show that along the trajectories

of Eq. (2) the timederivative ofF is negative. This guarantees

that starting from a given set of initial conditions, the evolu-

tion of the dynamical system (2) is toward the local minima

of the multivariate cost function F
(
a1,… , an, a

∗
1
,… , a∗

n

)
.

It is important to note that the governing cost function F

can be greatly simplified in the strong pump regime, where

the amplitudes tend to become uniform and the phase

degrees of freedom become the key players in the phase

space [20]. This can be seen from Eq. (3), which shows the

pump parameter g0 as a penalty for intensity inhomogene-

ity across the laser network. By directly enforcing the condi-

tion of equal equilibrium intensity, i.e., |ai| = √
(g0 − 1)∕g0,

the cost function reduces to the XY Hamiltonian for the

phase degrees of freedom:

f =
∑
i, j

𝑤i j cos(𝜙i − 𝜙 j)−
∑
i

|bi| cos(𝜙i − 𝜑i). (4)

It is worth recalling that 𝜙i (i = 1,… , n) represent the

phases of the lasers as dynamical variables that describe

the phase space of the system, while 𝜑i (i = 1,… , n) are

constants that represent the phases of the drives. In the fol-

lowing, the attention is focused on the case of the large gain

limit, which concerns only the phase degrees of freedom. In

addition, for simplicity, the drive term is not considered.

3 Associative memory

The cost function of Eq. (4) is in general a nonconvex func-

tion, thus, a coherent laser network with a given weight

matrix W could have numerous local minima with differ-

ent basins of attractions in the phase space. In this case,

if the initial point in the phase space is located within the

attractor basin of a local minimum, the network will evolve

toward the associate stationary state, say Φ̄ = (𝜙̄1,… , 𝜙̄n)
t.

For memorizing a given pattern in the network, the inverse

problem is of interest. In this case, the weight matrix

W should be devised such that a desired pattern Θ =
(𝜃1,… , 𝜃n)

t becomes a local minimum of the energy func-

tion governing the network. In addition, when more than

one pattern is to bememorized, of interest is to find aweight

matrixW that guarantees the local minima associated with

the patterns are located far apart in the phase space such

that they can be successfully retrieved. These aspects form

the core of training an associative memory, and are dis-

cussed in the following.

The cases of binary and continuous patterns are to be

treated separately. First, the case of binary pattern, e.g.,Θ =
(𝜃1,… , 𝜃n)

t, where each pixel is limited to two discrete val-

ues with contrast 𝜋, say 𝜃i = ±𝜋∕2, is considered. Next, the
analysis is extended to the general case that can treat con-

tinuous phase patterns, e.g., Θ = (𝜃1,… , 𝜃n)
t, where each

pixel takes continuous values, −𝜋 ≤ 𝜃i < +𝜋.

3.1 Binary patterns

As mentioned earlier, the goal of the training is to find the

coupling matrixW that results in the presence of local min-

ima of the energy landscape function f (Eq. (4)) at desired

points. To draw this connection, it is easier to start with

identifying the stationary points of the energy landscape

function f . Enforcing the condition of stationary solutions
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∇ f ≡ 0, results in the following stationary phase relations

for the fixed points:∑
j

𝑤i j sin(𝜙̄i − 𝜙̄ j) = 0 ; i = 1,… , n (5)

Clearly, the stationary state condition is satisfied for

any binary pattern 𝜙̄i = 𝜃i = ±𝜋∕2 ; i = 1,… , n, for any

weight matrix. This, however, does not guarantee the pres-

ence of stable local minima at such stationary points. On

the other hand, a proper weight matrix can be identified

that ensures a desired patternΘ is a local minimum. This is

given by:

𝑤i j = − 1

n
cos(𝜃i − 𝜃 j), (6)

for i ≠ j. This weight matrix clearly respects the reciprocity

condition, i.e.,𝑤ij = 𝑤ji, while the energy conservation can

be enforced by choosing the diagonal elements as 𝑤ii =∑
j
|𝑤ij|. It can be shown that for the weight matrix given

by Eq. (6), the desired pattern is a local minimum. This can

be shown by using this weightmatrix in the XYHamiltonian

of Eq. (6), which results in f = −∑
i, j

1

n
cos(𝜃i − 𝜃 j) cos(𝜙i −

𝜙 j). Now, one can show that the associated Hessian

matrixH, with matrix elements hij = 𝜕2 f∕𝜕𝜙i𝜙 j at𝜙i = 𝜃i;
i = 1,… , n is positive semi-definite, which, in turn ensures

that the desired pattern is a stable local minimum of the XY

Hamiltonian (see Methods).

Figure (3) depicts the reconstruction of a binary pat-

tern in a coherent laser network trained according to

Eq. (6). Here, a binary 64 × 64 pixel image is considered

(Figure 3(a)). Accordingly, we consider a network of n =
4096 lasers with the coupling coefficients of Eq. (6) based

on the desired pattern shown in Figure 3(a). A corrupted

version of the image is considered as the initial phases of

the oscillators (Figure 3(b)). By numerically integrating the

dynamics of Eq. (2), it is observed that the network success-

fully retrieves the original image after reaching equilibrium

(Figure 3(c)). It is worth noting that in practice, the initial

phases might not be controllable, while instead seeding can

beused to suitably drive thenetwork toward thememorized

pattern.

It is worth mentioning the similarity of the laser

network with the Hopfield network in case of binary

patterns. For binary values with 𝜋 contrast, the XY Hamil-

tonian of Eq. (4) becomes equivalent with the Ising Hamil-

tonian
∑

i, j𝑤ijsisj (si = ±1), which forms the basis of the

Hopfield network. Similarly, the weight matrix given by

Eq. (6) becomes equivalent to the Hebbian learning rule of

the Hopfield network, i.e., 𝑤i j = − 1

n
sis j [4]. However, this

similarity could be misleading given that the phase model

discussed above is fundamentally different from the Hop-

field network. In fact, in the dynamical model proposed

by Hopfield, often called the Hopfield–Tank network, non-

linear activation functions enforce binary operation of the

underlying neurons, which instead allows for physical real-

ization of a combinatorialmodel [5, 9]. On the other hand, in

the phase model discussed above, the neurons individually

operate in continuous phases. In fact, here the formation of

a binary pattern is solely a collective behavior that happens

as a result of embedding such a pattern as a local minimum

of the XYHamiltonian through a proper design of theweight

matrix. This aspect results in a fundamental challenge in

using the XY model with real-valued weights as an associa-

tive memory as discussed in the following.

The Hebbian learning of Eq. (6) can be readily gener-

alized to store more than one pattern. In this case, for k

given patterns {Θ(1)
,… ,Θ(k)}, where, Θ(l) = (𝜃(l)

1
,… , 𝜃(l)

n
)t

are n-dimensional binary phase vectors, the weight matrix

is chosen as 𝑤i j = − 1

k

1

n

∑
k
cos(𝜃(k)

i
− 𝜃(k)

j
). However, it is

shown that the learning capacity of such a network of

phase oscillators is very limited [36, 37]. In fact, using a

mean-field formalism it is proven that in a network trained

with the aforementioned weights, the landscape function

f = − 1

k

1

n

∑
k

∑
i, j cos(𝜃

(k)

i
− 𝜃(k)

j
) cos(𝜙i − 𝜙 j) exhibits a large

number of local minima [36]. However, these local minima

have significant overlapwhich prevents successful retrieval

of the memorized patterns.

It is worth noting that in case of nonbinary patterns the

weight matrix of Eq. (6) does not guarantee that a desired

continuous pattern is a stationary point. However, it guaran-

tees local convexity of the landscape function at that point

(see Methods). Accordingly, a network trained with relation

(6) can evolve into a nearby local minimum, which, given

the highly nonconvex nature of the landscape function

could be close to the desired pattern. The exact reconstruc-

tion of continuous patterns is possible by utilizing complex

coupling as discussed next.

3.2 Continuous patterns

The challenge with embedding a continuous pattern as a

stable local minimum of the XY Hamiltonian of Eq. (4) can

be resolved by making a simple change in the form of

the Hamiltonian as suggested in Ref. [36]. This is done by

considering the training parameters as a phase factor in

the sinusoidal function according to f = ∑
i, j cos(𝜙i − 𝜙 j −

𝜓 ij), where the network can be simply trained to exhibit a

stable localminimumat the desired continuous patternΘ =
(𝜃1,… , 𝜃n)

t by the choice of 𝜓 ij = 𝜃i − 𝜃 j. It is important
to note that this simple change in the phase cost function

demands for complex and nonreciprocal coupling among

the lasers that is to be discussed later. In addition, its gen-

eralization to storing more than one patterns, according to
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(a) (b) (c)

Figure 3: Reconstruction of a binary image by a coherent laser network with a properly trained weight matrix. (a) A binary 64 × 64 pixel image

memorized by the CLN. (b) A corrupted version of the memorized binary image is used as initial phase distribution of the trained CLN. (c) The original

image is reconstructed as the network evolves to its equilibrium state.

f = 1

k

1

n

∑
k

∑
i, j cos

[(
𝜙i − 𝜙 j

)
−
(
𝜃(k)
i

− 𝜃(k)
j

)]
, suffers from

large overlap between the memories [36, 37].

Inspired by the clock model proposed in Ref. [36], here

the following modification of the XY Hamiltonian is sug-

gested:

f =
∑
i, j

|𝑤i j| cos(𝜙i − 𝜙 j − 𝜓i j)−
∑
i

|bi| cos(𝜙i − 𝜑i), (7)

where, 𝑤ij = |𝑤ij| exp(i𝜓 ij) are complex weights. This

energy function contains additional parameters, i.e., the

amplitudes and phases of the weight matrix elements,

which can be trained to store multiple patterns. In the fol-

lowing, it is shown that this phase cost function can be effec-

tively mapped onto a coherent laser network by uplifting

the physical limitations of the coupling matrix.

Considering a given continuous pattern (𝜃1,… , 𝜃n)
t

as the equilibrium phase pattern of a laser network,

and assuming that the lasers reach uniform intensities,

the associated stationary state complex field amplitude

is ā ≡
(
ei𝜃1 ,… , ei𝜃n

)t
. To make this a fixed point of the

dynamical model governing the coherent laser network,

i.e., dā∕dt ≡ 0, one needs to ensure W ā = 0̄. This relation

can be solved forW , which gives result toW = C(I − āā+),

where, C is an arbitrary n × n matrix, I represents an

n × n identity matrix, and ā+ = ā†∕ā†ā is the pseudo

inverse of ā. For the straightforward choice of C = I, the

elements of the weight matrix,𝑤i j = 𝛿i j − 1

n
exp[i(𝜃i − 𝜃 j)],

are complex and respecting 𝑤i j = 𝑤∗
ji
. In this case,

apart from the diagonal elements, the elements of the

coupling matrix have uniform amplitudes. However, as

discussed next, the amplitudes |𝑤ij| play an important

role when more than one patterns are involved.

Next, consider memorizing k patterns {Θ(1)
,… ,Θ(k)},

where Θ(l) = (𝜃(l)
1
,… , 𝜃(l)

n
)t. The desired stationary

state complex field vectors are ā(l) = (ei𝜃
(l)
1 ,… , ei𝜃

(l)
n )t

which can be cast as columns of an n × k matrix

A = [ā(1),… , ā(k)]. To make these patterns stationary

states of the laser network, one needs to enforce the

condition ofWA ≡ 0, which can be satisfied by the choice of

W = C(I − AA
+) (8)

where, again, C is an arbitrary matrix and I is the identity

matrix. A convenient choice is C = I which results in W =
I − AA

+.

Assuming that the target k patterns are linearly inde-

pendent vectors, the weight matrix W is of rank k. There-

fore, its physical implementation requires n × k indepen-

dent matrix elements. In addition, similar to the case of a

single pattern, it is straightforward to show that this weight

matrix is generally complex but Hermitian, i.e.,W† = W .

It is important to note that the presence of nonrecip-

rocal coupling (𝑤ij ≠ 𝑤ji) does not generally rule out the

possibility of phase locking of the network [38]. In fact, the

Hermiticity of the weight matrix allows the system to admit

a Lyapunov function, which guarantees asymptotic stability

of the laser network. In this case, due to the Hermiticty of

the couplingmatrix,𝑤∗
i j
= 𝑤 ji, the Lyapunov function is the

same as relation (3). In addition, by taking ai = |ai|exp(i𝜙i)

and assuming homogeneous amplitudes, the energy func-

tion of relation (3) reduces to the desired phase function of

relation (7). It is worth stressing that the main difference

of the energy function of Eq. (7) with the clock Hamiltonian

proposed in Ref. [36] is the presence of the amplitudes of the

coupling elements |𝑤ij|. This additional degree of freedom
allows for increasing the storage capacity of the network

through the learning rule of Eq. (8).

The proposed learning is tested with a dataset of k =
64 continuous patterns of n = 64 × 64 pixels, shown in

Figure 4(a). These grayscale images are selected from a

collection of dog faces from the downsampled ImageNet

dataset [39]. The amplitude and phase of the complex

weightmatrix of Eq. (8) are plotted in Figures 4(b). Here, the
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Figure 4: Reconstruction of gray-scale images by CLNs with proper weight matrices. (a) A set of k = 64 grayscale images of n = 64 × 64 pixels used

for training the weight matrix of the CLN. (b) The amplitude and phase of the trained complex weight matrix. (c, d) reconstruction of the corrupted

versions of two images from the training dataset.

network successfully stores and retrieves all the 64 training

patterns. For demonstration purposes, the reconstruction

of two exemplary images from their corrupted versions is

depicted in Figure 4(c and d).

4 Discussion

4.1 Frequency locking

It is worth mentioning that the results presented above

were built on the idealistic assumption of identical oscil-

lators, while in practice, individual laser cavities can have

deviations in their resonance frequencies and linewidths.

However, simulation results show that the system exhibits

self-organizing behavior and can reach phase-locking in

presence of tolerable perturbations. To explore this aspect,

the network of Figure 4 is simulated under the presence of

random frequency and linewidth detunings of the individ-

ual network elements. The effect of detuning is considering

by changing the first term of Eq. (2) according to −a(t)→
−(1+ 𝜹𝜸 + i𝜹𝝎) ⋅ a(t), thus

ȧ = −(1+ 𝜹𝜸 + i𝜹𝝎) ⋅ a+ g0(1− a
∗ ⋅ a) ⋅ a−Wa, (9)

where, 𝜹𝝎 = (𝛿𝜔1,… , 𝛿𝜔n)
t, and 𝜹𝜸 = (𝛿𝛾1,… , 𝛿𝛾n)

t.

Here, 𝛿𝜔i, 𝛿𝛾i ∼  (0, 𝜎) with 𝜎 ∼ 0.05. The simulation

results show that the system exhibits self-organizing

behavior and can reach phase-locking in presence of

tolerable perturbations. Accordingly, the associative

memory functionality is preserved. Figure 5 shows an

exemplary simulation under the perturbation mentioned

above.
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0                  9

π/2
  0

  -π/2
1  

  
  

 0

 

Figure 5: An exemplary simulation of the network described in Figure 4

under frequency and linewidth detuning of individual oscillators

according to Eq. (9). Left: A raster plot of the dynamics of the amplitudes

and phases of the oscillators. Right: Reconstruction of a perturbed

image. Here, the normalized frequencies and decay rates of oscillators

are randomly perturbed with random numbers drawn from a normal

distribution with a standard deviation of 5% of the decay rate of a single

cavity.
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4.2 Gain dynamics

The results presented in this work were based on the so-

called class-A lasermodel, where the gain can be considered

a constant, while many practical lasers fall in the category

of class-B lasers, where the gain evolves dynamically [31].

The simplified model used here admits a Lyapunov func-

tion, which allows for an analytical treatment of the laser

network and finding a training method. However, it should

be noted that the proposed training method concerns solely

the stationary behavior of the network through the coupling

matrix. Therefore, the dynamics of the gain is not expected

to violate the associative memory functionality, so long as

the stability of the fixed points is guaranteed. As shown

recently, a large gain lifetime, compared to the photon life-

time, can give rise to destabilization of shallow localminima

or metastable states such as vortex states in a lattice of cou-

pled lasers [21]. In this case, however, numerical simulations

indicate that the patterns embedded through the learning

rule of Eq. (8) remain stable even for large gain lifetimes.

This is justified by repeating the simulations of Figure 4

with a class-B laser model. In this model, the gain of a laser

oscillator is driven at a constant pump rate, while it decays

linearly for small field intensities and nonlinearly when the

field intensity grows. The normalized rate equations can

then be written as:

ȧ = g ⋅ a−Wa, (10a)

ġ =
𝜏 p

𝜏g

[
g01− (1+ a

∗ ⋅ a) ⋅ g
]
. (10b)
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Figure 6: An exemplary simulation of the network described in Figure 4

when considering gain dynamics according to Eqs. (10). Left: A raster plot

of the dynamics of the amplitudes, phases and the gains of the

oscillators. Right: Reconstruction of a perturbed image. In these

simulations, the photon to gain lifetime ratio is taken to be 𝜏 p∕𝜏 g = 0.1.

Here, g = (g1,… , gn)
t, where g

i
represents the gain of

the ith oscillator, g0 is the pump parameter, and 1∕𝜏 g is the
gain decay rate. In these relations both the field amplitude

and gain are dimensionless and the time is normalized to

the photon lifetime 𝜏 p.

To investigate the effect of the dynamic gain, Eq. (10)

are simulated for the network described in Figure 4. The

results show that the associative memory functionality is

preserved. Figure 6 exemplifies the dynamics for recon-

structing one of the stored patterns.

5 Conclusions

In summary, in this paper the potential of using coherent

laser networks for neural computing was proposed. The

coherent laser network is governed by a nonconvex energy

landscape function that can contain a large number of fixed

point attractors. The use of the coherent laser network as

an energy-based neural network model was demonstrated

through an associative memory functionality. It was shown

that using nonreciprocal coupling between lasers allows

for going beyond binary data and adding the capability of

handling continuous patterns. This work outlines the great

potential of coherent laser networks for optical neural com-

puting. In addition, the proposed dynamical model could

have applications as a novel continuous-time neural net-

work for conventional digital computing.

The present work was focused on the associative mem-

ory functionality as a generic task for energy-based models,

while it remains to examine the full capacity of coherent

laser networks as energy-basedmodels in different network

architectures and for various machine learning functional-

ities [40]. Likewise, the proposed pseudo inverse learning

is a simplistic approach, which is suitable for experimental

realization given that it requires a low-rank weight matrix.

However, of interest would be to develop advanced training

algorithms that allow for harnessing the full capacity of the

coherent laser networks for machine learning. Finally, it

is worth stressing that the proposed system that builds on

simulating the dynamics of laser networks can pave theway

for developing novel energy-basedmodels for handling con-

tinuous patterns in applications such as pattern recognition

and feature extraction. In addition, while requiring large

numbers of laser oscillators, the proposedneural computing

framework can be implemented with the existing photonic

technology. In particular this systemcanbe realized through

solid state lasers in self-imaging cavities with high spatial

mode degeneracy [15, 18] and by harnessing diffraction engi-

neering for creating an arbitrary complex coupling matrix.

In addition, the proposed laser network can be realized in
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time-multiplexed oscillators in fiber loops and by utilizing

electronic feedback for realizing an arbitrary complex cou-

pling matrix [13, 14].

6 Methods

6.1 Numerical simulations

The coherent laser as described by Eq. (2) is in essence a continuous-

time energy-based recurrent neural network. Considering the poten-

tial importance of the proposed model for unconventional computing

through simulations of the underlyingmodel with digital computers, in

the following, numerical simulations are briefly discussed. The numer-

ical simulations of Eq. (2) are performed with a forward-difference

Euler method according to:

a(t +Δt) = Δt
[
−a(t)+ f(a(t))−Wa(t)+ b+ 𝝃(t)

]
. (11)

For the simulations discussed in this paper, the network con-

verges rapidly (after∼100 steps). In general, the most computationally-
costly process in Eq. (11) is the matrix-vector multiplication. It should

also be noted that Eq. (11) deal with complex numbers, which require

double-precision floating point format. To consider noise, uncorre-

lated delta noise is generated for each oscillator, i.e., ⟨𝜉
i
(t′)∗𝜉

j
(t)⟩ =

D𝛿
ij
𝛿(t − t

′). The effect of detuning is considering by changing the first

term of Eq. (11) according to −a(t)→−(1+ 𝜹𝜸 + i𝜹𝝎) ⋅ a(t), where,
𝜹𝝎 = (𝛿𝜔1,… , 𝛿𝜔

n
)t , and 𝜹𝜸 = (𝛿𝛾1,… , 𝛿𝛾

n
)t .

6.2 The Hessian matrix

The Lyapunov function of Eq. (3) is a function of 2n variables, which

can be cast in a vector as e =
(
a1,… , a

n
, a∗

1
,… , a∗

n

)t
. The Lyapunov

function near an arbitrary point can be expanded as:

F(ē+Δe) = F(ē)+Δet ∇F(ē)+ 1

2
Δet H(ē) Δe+ · · · (12)

where, ∇F is the gradient vector and H is a 2n × 2n Hessian matrix.

In this representation, stationary states are points associated with

∇F(ē) = 0. The Hessian matrix can be represented as:

H =
(
H
d

H
o

H
∗
o

H
∗
d

)
(13)

where,H
d
= (g0 − 1)I − 2g0diag(a

∗ · a)−W , andH
o
= −g0diag(a · a).

For the phase cost function of Eq. (4), the Hessian matrix is an

n × nmatrix with elements h
ij
= 𝜕2 f∕𝜕𝜙

i
𝜕𝜙

j
, which are found to be:

h
i j
=

⎧⎪⎨⎪⎩
𝑤

i j
cos(𝜙

i
− 𝜙

j
); i ≠ j

−
∑
j

𝑤
i j
cos(𝜙

i
− 𝜙

j
); i = j (14)

For the choice of the weight matrix of Eq. (6) for a given pattern

Θ = (𝜃1,… , 𝜃
n
)t , evaluating the Hessian at this pattern, results in the

off-diagonal elements h
i j
= − 1

n
cos2(𝜃

i
− 𝜃

j
), and diagonal elements

h
ii
= 1

n

∑
j
cos2(𝜃

i
− 𝜃

j
). In this case, the Hessian matrix is of the form

of the Laplacian matrix of a weighted graph with adjacency matrix

elements
1

n
cos2(𝜃

i
− 𝜃

j
) [41]. It is straightforward to show that this

Hessian matrix is positive semidefinite given that it is symmetric and

diagonally dominant [41]. This result is valid for both choices of binary

and continuous patterns, however, one should recall that the training

of Eq. (6) is limited to patterns that pass the stationary test of Eq. (5),

that is limited to binary patterns.
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