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Abstract: We show that coherent laser networks (CLNSs)
exhibit emergent neural computing capabilities. The pro-
posed scheme is built on harnessing the collective behavior
of laser networks for storing a number of phase patterns
as stable fixed points of the governing dynamical equations
and retrieving such patterns through proper excitation con-
ditions, thus exhibiting an associative memory property. It
isdiscussed that despite the large storage capacity of the net-
work, the large overlap between fixed-point patterns effec-
tively limits pattern retrieval to only two images. Next, we
show that this restriction can be uplifted by using nonrecip-
rocal coupling between lasers and this allows for utilizing
a large storage capacity. This work opens new possibilities
for neural computation with coherent laser networks as
novel analog processors. In addition, the underlying dynam-
ical model discussed here suggests a novel energy-based
recurrent neural network that handles continuous data as
opposed to Hopfield networks and Boltzmann machines
that are intrinsically binary systems.

Keywords: lasers; machine learning; neural networks;
nonlinear dynamics; optical computing.

1 Introduction

In the recent years, there has been a growing inter-
est in developing new platforms for general-purpose or
application-specific computing that offer an advantage over
classical processors in terms of computational time, energy
efficiency and scalability [1]. Although quantum comput-
ing is widely considered as a promising route, it appears
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that the classical nonlinear systems exhibit a largely under-
explored computational capacity that is not properly uti-
lized in conventional digital computers [2]. In this regard,
there is great interest in developing alternative hardware
platforms, which subsequently demand for compatible new
algorithms.

Inspired by the biological brain, an interesting compu-
tational platform seems to be a network of nonlinear units,
i.e., neurons, with a complex architecture that allows dense
long-range interactions [3]. In such systems, computing is
an emergent nonlinear dynamical behavior of the network,
and, in principle, can be much more efficient for certain
tasks in comparison with the well-established sequential
architecture. Interestingly, in the physics community inter-
est in the subject of neural computation was raised at an
early stage by the introduction of Hopfield networks [4, 5].
In these contexts, mainly influenced by spin systems in
statistical mechanics, computing is viewed as finding states
that minimize a global network energy function. Analog
physical implementations of Hopfield networks with opto-
electronics [6] and CMOS circuits [7, 8] were demonstrated
for a small number of neurons at early stages. More impor-
tantly, such networks inspired unconventional methods for
solving combinatorial optimization problems [9] as well
as energy-based models for machine learning [10]. On the
other hand, interest in physical implementation of uncon-
ventional computing with densely connected architectures
has recently regained interest in photonics [11-14]. In fact,
energy-efficiency and the possibility of implementing long-
range interactions make photonics an attractive candidate
for neural computation. Accordingly, there is interest in
developing novel methods and algorithms that allow for tak-
ing advantage of the existing photonics systems for uncon-
ventional computing.

Here, we show that coherent laser networks (CLNSs)
exhibit collective neural computing capabilities, and devise
the fundamental requirements for realizing an associative
memory for continuous patterns. What facilitates this work
is recent experimental progress in creating large networks
of coherently coupled photonic oscillators [11, 12, 15-17].
These activities have been primarily centered on solving
computationally-hard problems by optical simulation of
classical spin models. In particular, coherent laser networks
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have been used for solving nonconvex optimization prob-
lems of the form of the classical XY Hamiltonian [18], while
numerical simulation of the governing dynamical models
have been shown to be an efficient optimization method
[19]. Here, it is shown that coherent laser networks hold a
great potential as a physical energy-based neural computing
platform.

The present work is timely due to two important recent
realizations that make coupled laser systems an attractive
choice as a physical neural network. First, is the possibility
of implementing dissipative interaction among laser net-
works which ensures the presence of fixed point attractors
for such dynamical systems [15, 20]. The presence of dissi-
pative coupling is shown to shift the dynamical model gov-
erning laser networks toward a class of reaction-diffusion
systems that are known to be the host of exotic phenomena
most notably pattern formation, which is the core of the
present work [21]. In contrast, driven by device applications,
traditionally the general trend has been centered on dis-
persive interaction among laser arrays to avoid power loss,
which in turn could result in unstable and chaotic behavior.
Second, several recent works show the possibility of creat-
ing coupling through complex graph topologies, which is
essential for implementing and training a recurrent neu-
ral network based on laser networks with desired wiring
[15, 22]. In contrast, in the past the emphasis has been on
lattice geometries with nearest neighbor couplings. It is
because of this latter that we opt to call the system a laser
network rather than a laser array.

Figure 1 illustrates the concept of the proposed neural
network based on coherent laser networks. Considering two
coupled lasers, as shown schematically in Figure 1(a), by uti-
lizing dissipative coupling, the two lasers can reach an equi-
librium frequency-locked regime which can be described
through the lasers phase degrees of freedom interacting
with the coupling rate w (Figure 1(b)). The associated energy
landscape function governing the equilibrium phases of the
two lasers is shown in Figure 1(c). It can be shown that for
w > 0 (attractive coupling) the energy function is minimum
at ¢, = ¢;, while for w < 0 (repulsive coupling) the energy
function is minimum for ¢, — ¢, = +x [20, 21, 23]. There-
fore, the dynamic interaction between these two lasers can
promote the stabilization of the system into a given equilib-
rium phase distribution, in this case either in-phase or out-
of-phase depending on the sign of the coupling coefficient,
which forms the basis of utilizing larger laser networks for
storing high-dimensional patterns.

Figure 1(d) schematically depicts a network of n lasers
that are coherently coupled through diffraction engineer-
ing. This coherent laser network can be considered as a
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complex network represented with a graph as shown in
Figure 1(b). Here, each graph node, represents an artificial
neuron associated with a laser that is described by its ampli-
tude and phase, a;(t) = |a;(t)| exp(ig;(6)), as two dynamical
variables. In addition, two representative neurons i and j,
interact dynamically through rates (wy;, wj), which could in
general be nonreciprocal, i.e., w; # wy;. Assuming that all
lasers are identical, starting from an initial condition, under
proper conditions the network can reach a phase-locking
state where the amplitudes are nearly equal and the phases
have a fixed pattern [20]. In this regime, the system can be
viewed as a network of phase oscillators that are governed
by an n-dimensional energy landscape function as shown
schematically in Figure 1(c). The equilibrium phase patterns
of the laser network are associated with the local minima
of this energy landscape function. Thus, the laser network
can be viewed as an energy-based neural network. The use
of such an energy-based model can be best demonstrated
through associative memory functionality. In such a system,
by properly choosing the weight matrix, one can suitably
engineer the landscape function such that desired patterns
arelocated atitslocal minima as illustrated in Figure 1(d). In
this manner, the network memorizes a given pattern which
can be retrieved when it is suitably initialized.

In this work, first, it is shown that the conservative
reciprocal coupling allows for the formation of binary pat-
terns. We show that by using the Hebbian learning desired
patterns can be memorized by the network, although the
storage capacity is limited to only two images. Next, it is
shown that these restrictions can be uplifted by considering
nonreciprocal coupling that allows for treating continuous
patterns, while increasing the storage capacity. A simple
learning rule for training such coherent laser networks is
introduced, which is based on simultaneously embedding a
number of patterns as fixed point solutions of the dynamical
models governing laser networks. These results are justified
by numerical simulation of the dynamical equations gov-
erning laser networks.

2 Formulation

2.1 Asingle laser

Given the importance of a single laser oscillator as an arti-
ficial neuron and a building block of the coherent laser
network, first we discuss it in the following. Here, laser
oscillations is modeled through a second-order nonlinear
oscillator as: [24, 25]

a=—a+ g —laPa+b+&® (6]
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Figure 1: Neural computing with coherenet laser networks. (a) A schematic of two lasers coupled through diffraction engineering. (b) Under proper
conditions, the coupled lasers can be represented with their equilibrium phase degrees of freedom, interacting with the coupling rate w. (c) The
associated energy landscape function governing the equilibrium phases of the two lasers. For w > 0 (attractive coupling) the energy function is
minimum at ¢, = ¢, while for w < 0 (repulsive coupling) the energy function is minimum for ¢, — ¢p; = +x. (d) A schematic of a coherent laser
network (CLN) composed of an array of coupled lasers that can reach an equilibrium frequency-locked state with constant relative phase for each
laser. (e) The associated network graph representing an energy-based neural network with pairwise interactions between lasers described through
matrix elements wy;. (f) The governing multivariate energy function. By locating a desired pattern at a local minimum of the energy function, it can be
retrieved when the network is suitably initialized to start from the attractor basin of the embedded fixed point.

where, a is the complex modal amplitude of the electric field
in laser cavity, g, is the small signal gain, b represents the
complex amplitude of a drive laser for seeding or optical
injection [26-28], and £ represents fluctuations. Here, the
oscillation frequency w, is gauged out for simplicity, the
laser is assumed to be frequency-locked with the drive, and
the time is normalized to the photon lifetime, 1/y, where y
is the passive cavity decay rate. This model, which is simi-
lar to the single-sideband Van der Pol [29] or the so-called
Stuart-Landau oscillator [30], represents a class-A laser, in
which the field decay rate is much less than the decay rates
of the atomic degrees of freedom, i.e., atomic polarization
and population inversion [31]. The analysis presented in
this work is based on this minimal model which facilitates
integrability. However, it is later discussed that the results
are applicable to a more general class of laser systems.

In the absence of seeding, i.e., b =0, Eq. (1) admits a
stable fixed point at a = 0 for g, < 1. For g, > 1, the sta-
tionary solution at zero becomes unstable, while the oscil-
lator stabilizes at @ = /(g, — 1)/ g, exp(i¢h), where, ¢ is an
arbitrary phase. In the presence of seeding with a complex
amplitude b = |b| exp(igp), the equilibrium state becomes

a = |a| exp(ig). Therefore, while in the absence of seeding
the phase is random; seeding can fix the phase of the laser to
that of the drive laser, irrespective of the initial conditions
and fluctuations. This aspect is best described in the phase
space. By considering a Lyapunov function F = (g, — 1)
lal? — (g,/2)]al* — (a*b + ab®), relation (1) is written as
a = —0F /da* + &£(t). The governing Lyapunov function is
plotted in Figure 2 for three different scenarios of operat-
ing below threshold, above threshold, and in presence of
seeding.

2.2 Laser networks

The extension of the dynamical model to the case of n
coupled laser oscillators is straightforward. Considering n
identical oscillators, the evolution equations can be written
as:

a=-a+g,1—a*-a)-a—Wa+b+£&®. )]

In this relation, ‘’ shows entry-wise product, a =
(ay, ... ,a,) represents the oscillator amplitudes, W is the
coupling matrix, b = (b;,...,b,)! is the seeding vector,
and &€(t) = (§,(0), ..., &,(@®) contains the fluctuation terms.
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Figure 2: The Lyapunov function of a single laser (a) un-pumped, (b)
pumped, (c) pumped and seeded, in the in-phase and quadrature phase
coordinates, x = (a + a*)/\/i andy = (0 — a*)/\/ii.

It is important to note that this model builds on the
assumption of phase-sensitive coupling [32-35]. In a pas-
sive coupled cavity arrangement the coupling coefficients
are subject to the power conservation and reciprocity
relations, which respectively demand (W — diag(W))" (W —
diag(W)) = 2 diag(W) and W' = W. In the following, it is
first assumed that the coupling is of pure dissipative nature,
thus the matrix elements wy are taken to be real, and the
coupling matrix is assumed to be restricted to the afore-
mentioned conservation relations. A more general case
that involves complex coupling coefficients is discussed
later.

The symmetry of the coupling matrix allows for writing
the dynamical model in terms of the gradient of a Lyapunov
function, i.e., ¢ = —0F/ da’ + &,(t), where [20]

F=—(g —Da'a+ %(a .a)(a- a)

+ %af Wa— (a'h+b'a), 3

It is straightforward to show that along the trajectories
of Eq. (2) the time derivative of F is negative. This guarantees
that starting from a given set of initial conditions, the evolu-
tion of the dynamical system (2) is toward the local minima
of the multivariate cost function F(a,, ... , a,, a,..., ax).

Itis important to note that the governing cost function F
can be greatly simplified in the strong pump regime, where
the amplitudes tend to become uniform and the phase
degrees of freedom become the key players in the phase
space [20]. This can be seen from Eq. (3), which shows the
pump parameter g, as a penalty for intensity inhomogene-
ity across the laser network. By directly enforcing the condi-

tion of equal equilibrium intensity, i.e., |a;| = v/(g, — 1/ &o»
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the cost function reduces to the XY Hamiltonian for the
phase degrees of freedom:

f=Y wy cosip; — ¢ — Y Ibj coslp; — @). @)
Lj i

It is worth recalling that ¢; (i =1, ..., n) represent the
phases of the lasers as dynamical variables that describe
the phase space of the system, while ¢; (i=1,...,n) are
constants that represent the phases of the drives. In the fol-
lowing, the attention is focused on the case of the large gain
limit, which concerns only the phase degrees of freedom. In
addition, for simplicity, the drive term is not considered.

3 Associative memory

The cost function of Eq. (4) is in general a nonconvex func-
tion, thus, a coherent laser network with a given weight
matrix W could have numerous local minima with differ-
ent basins of attractions in the phase space. In this case,
if the initial point in the phase space is located within the
attractor basin of a local minimum, the network will evolve
toward the associate stationary state, say @ = (¢, ... , )"
For memorizing a given pattern in the network, the inverse
problem is of interest. In this case, the weight matrix
W should be devised such that a desired pattern ® =
0, ...,0,)t becomes a local minimum of the energy func-
tion governing the network. In addition, when more than
one pattern is to be memorized, of interest is to find a weight
matrix W that guarantees the local minima associated with
the patterns are located far apart in the phase space such
that they can be successfully retrieved. These aspects form
the core of training an associative memory, and are dis-
cussed in the following.

The cases of binary and continuous patterns are to be
treated separately. First, the case of binary pattern, e.g.,® =
0, ..., 0,)t, where each pixel is limited to two discrete val-
ues with contrast z, say 6; = +x /2, is considered. Next, the
analysis is extended to the general case that can treat con-
tinuous phase patterns, e.g., ® = (0;, ..., 8,)!, where each
pixel takes continuous values, -z < 0; < +.

3.1 Binary patterns

As mentioned earlier, the goal of the training is to find the
coupling matrix W that results in the presence of local min-
ima of the energy landscape function f (Eq. (4)) at desired
points. To draw this connection, it is easier to start with
identifying the stationary points of the energy landscape
function f. Enforcing the condition of stationary solutions
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Vf =0, results in the following stationary phase relations
for the fixed points:

Zwij sin(q'_)i—qgj)zo ;i=1,...,n )
j

Clearly, the stationary state condition is satisfied for
any binary pattern ¢; = §, = +x/2; i=1,...,n, for any
weight matrix. This, however, does not guarantee the pres-
ence of stable local minima at such stationary points. On
the other hand, a proper weight matrix can be identified
that ensures a desired pattern © is a local minimum. This is
given by:

1w = =3 cos(, — 0, ®)

for i # j. This weight matrix clearly respects the reciprocity
condition, i.e., Wy = Wj;, while the energy conservation can
be enforced by choosing the diagonal elements as w; =
¥ jlwyl. It can be shown that for the weight matrix given
by Eq. (6), the desired pattern is a local minimum. This can
be shown by using this weight matrix in the XY Hamiltonian
of Eq. (6), which results in f = —37; j% cos(0; — 6;) cos(¢p; —
¢j). Now, one can show that the associated Hessian
matrix H, with matrix elements h;; = 0*f |0 jatg; =05
i=1,...,nis positive semi-definite, which, in turn ensures
that the desired pattern is a stable local minimum of the XY
Hamiltonian (see Methods).

Figure (3) depicts the reconstruction of a binary pat-
tern in a coherent laser network trained according to
Eq. (6). Here, a binary 64 X 64 pixel image is considered
(Figure 3(a)). Accordingly, we consider a network of n =
4096 lasers with the coupling coefficients of Eq. (6) based
on the desired pattern shown in Figure 3(a). A corrupted
version of the image is considered as the initial phases of
the oscillators (Figure 3(b)). By numerically integrating the
dynamics of Eq. (2), it is observed that the network success-
fully retrieves the original image after reaching equilibrium
(Figure 3(c)). It is worth noting that in practice, the initial
phases might not be controllable, while instead seeding can
be used to suitably drive the network toward the memorized
pattern.

It is worth mentioning the similarity of the laser
network with the Hopfield network in case of binary
patterns. For binary values with z contrast, the XY Hamil-
tonian of Eq. (4) becomes equivalent with the Ising Hamil-
tonian ¥, ;wys;s; (s; = 1), which forms the basis of the
Hopfield network. Similarly, the weight matrix given by
Eq. (6) becomes equivalent to the Hebbian learning rule of
the Hopfield network, i.e., wij = —%sis]- [4]. However, this
similarity could be misleading given that the phase model
discussed above is fundamentally different from the Hop-
field network. In fact, in the dynamical model proposed
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by Hopfield, often called the Hopfield—Tank network, non-
linear activation functions enforce binary operation of the
underlying neurons, which instead allows for physical real-
ization of a combinatorial model [5, 9]. On the other hand, in
the phase model discussed above, the neurons individually
operate in continuous phases. In fact, here the formation of
a binary pattern is solely a collective behavior that happens
as a result of embedding such a pattern as a local minimum
of the XY Hamiltonian through a proper design of the weight
matrix. This aspect results in a fundamental challenge in
using the XY model with real-valued weights as an associa-
tive memory as discussed in the following.

The Hebbian learning of Eq. (6) can be readily gener-
alized to store more than one pattern. In this case, for k
given patterns {(9(1), ,®(k)}, where, e = (Qil), e HS))‘
are n-dimensional binary phase vectors, the weight matrix
is chosen as w;; = —%%Zk cos(ﬁl@ - 65.")). However, it is
shown that the learning capacity of such a network of
phase oscillators is very limited [36, 37]. In fact, using a
mean-field formalism it is proven that in a network trained
with the aforementioned weights, the landscape function
f= —i%ZkZi, i cos(efk’ - 95.")) cos(¢p; — ¢;) exhibits alarge
number of local minima [36]. However, these local minima
have significant overlap which prevents successful retrieval
of the memorized patterns.

It is worth noting that in case of nonbinary patterns the
weight matrix of Eq. (6) does not guarantee that a desired
continuous pattern is a stationary point. However, it guaran-
tees local convexity of the landscape function at that point
(see Methods). Accordingly, a network trained with relation
(6) can evolve into a nearby local minimum, which, given
the highly nonconvex nature of the landscape function
could be close to the desired pattern. The exact reconstruc-
tion of continuous patterns is possible by utilizing complex
coupling as discussed next.

3.2 Continuous patterns

The challenge with embedding a continuous pattern as a
stable local minimum of the XY Hamiltonian of Eq. (4) can
be resolved by making a simple change in the form of
the Hamiltonian as suggested in Ref. [36]. This is done by
considering the training parameters as a phase factor in
the sinusoidal function according to f = ¥, ; cos(¢; — ¢; —
v j), where the network can be simply trained to exhibit a
stable local minimum at the desired continuous pattern ® =
(63, ...,60,)" by the choice of y; = 6; — 6. It is important
to note that this simple change in the phase cost function
demands for complex and nonreciprocal coupling among
the lasers that is to be discussed later. In addition, its gen-
eralization to storing more than one patterns, according to
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Figure 3: Reconstruction of a binary image by a coherent laser network with a properly trained weight matrix. (a) A binary 64 X 64 pixel image
memorized by the CLN. (b) A corrupted version of the memorized binary image is used as initial phase distribution of the trained CLN. (c) The original

image is reconstructed as the network evolves to its equilibrium state.

=113, >, cos [(q’)i —-¢;) - (0;") - Gﬁk’)] , suffers from
large overlap between the memories [36, 37].
Inspired by the clock model proposed in Ref. [36], here
the following modification of the XY Hamiltonian is sug-
gested:

f= lwylcos(e; — b; — wy) = Y\ Iby| cos(eh; — @), (7)
i i

where, w; = |wy|exp(iy;) are complex weights. This
energy function contains additional parameters, i.e., the
amplitudes and phases of the weight matrix elements,
which can be trained to store multiple patterns. In the fol-
lowing, it is shown that this phase cost function can be effec-
tively mapped onto a coherent laser network by uplifting
the physical limitations of the coupling matrix.
Considering a given continuous pattern (6;,...,0,)
as the equilibrium phase pattern of a laser network,
and assuming that the lasers reach uniform intensities,
the associated stationary state complex field amplitude
is a= (e, ...,eien)t. To make this a fixed point of the
dynamical model governing the coherent laser network,
ie.,, da/dt =0, one needs to ensure Wa = 0. This relation
can be solved for W, which gives result to W = C(I — aat),
where, C is an arbitrary n X n matrix, I represents an
nxn identity matrix, and a* =af/afa is the pseudo
inverse of a. For the straightforward choice of C =1, the
elements of the weight matrix, w; j = 5,~j - % expli(d; — 9j)],
are complex and respecting w;; = wj‘l In this case,
apart from the diagonal elements, the elements of the
coupling matrix have uniform amplitudes. However, as
discussed next, the amplitudes |w;| play an important
role when more than one patterns are involved.
Next, consider memorizing k patterns {G)(D,...,@(k)},
where 00 = 09, ... ,Gﬁf))‘. The desired stationary
state complex field vectors are a® = (e, ..., ei0%")
which can be cast as columns of an nXk matrix

A=[a"?,...,a®]. To make these patterns stationary
states of the laser network, one needs to enforce the
condition of WA = 0, which can be satisfied by the choice of

W = CU — AAY) 8

where, again, C is an arbitrary matrix and I is the identity
matrix. A convenient choice is C = I which results in W =
I—AA*.

Assuming that the target k patterns are linearly inde-
pendent vectors, the weight matrix W is of rank k. There-
fore, its physical implementation requires n X k indepen-
dent matrix elements. In addition, similar to the case of a
single pattern, it is straightforward to show that this weight
matrix is generally complex but Hermitian, i.e, W' = W.

It is important to note that the presence of nonrecip-
rocal coupling (w; # wj;) does not generally rule out the
possibility of phase locking of the network [38]. In fact, the
Hermiticity of the weight matrix allows the system to admit
a Lyapunov function, which guarantees asymptotic stability
of the laser network. In this case, due to the Hermiticty of
the coupling matrix, w;k]. = wyj;, the Lyapunov function is the
same as relation (3). In addition, by taking a; = |a;|exp(i¢h;)
and assuming homogeneous amplitudes, the energy func-
tion of relation (3) reduces to the desired phase function of
relation (7). It is worth stressing that the main difference
of the energy function of Eq. (7) with the clock Hamiltonian
proposed in Ref. [36] is the presence of the amplitudes of the
coupling elements |w;|. This additional degree of freedom
allows for increasing the storage capacity of the network
through the learning rule of Eq. (8).

The proposed learning is tested with a dataset of k =
64 continuous patterns of n =64 X 64 pixels, shown in
Figure 4(a). These grayscale images are selected from a
collection of dog faces from the downsampled ImageNet
dataset [39]. The amplitude and phase of the complex
weight matrix of Eq. (8) are plotted in Figures 4(b). Here, the
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Figure 4: Reconstruction of gray-scale images by CLNs with proper weight matrices. (a) A set of k = 64 grayscale images of n = 64 X 64 pixels used
for training the weight matrix of the CLN. (b) The amplitude and phase of the trained complex weight matrix. (c, d) reconstruction of the corrupted
versions of two images from the training dataset.
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network successfully stores and retrieves all the 64 training
patterns. For demonstration purposes, the reconstruction
of two exemplary images from their corrupted versions is
depicted in Figure 4(c and d).

4 Discussion

4.1 Frequency locking

It is worth mentioning that the results presented above
were built on the idealistic assumption of identical oscil-
lators, while in practice, individual laser cavities can have
deviations in their resonance frequencies and linewidths.
However, simulation results show that the system exhibits
self-organizing behavior and can reach phase-locking in
presence of tolerable perturbations. To explore this aspect,
the network of Figure 4 is simulated under the presence of
random frequency and linewidth detunings of the individ-
ual network elements. The effect of detuning is considering
by changing the first term of Eq. (2) according to —al(t) —»
—(1+ 8y + idw) - a(t), thus
a=—-(1+d0y+ibw)-a+g,(1—a*-a)-a—Wa, (9

where, = (6w, ...,0w,), and 8y = 6y, ..., 07"
Here, éw;,6y; ~ N'(0,0) with o ~ 0.05. The simulation
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results show that the system exhibits self-organizing
behavior and can reach phase-locking in presence of
tolerable perturbations. Accordingly, the associative
memory functionality is preserved. Figure5 shows an
exemplary simulation under the perturbation mentioned
above.

N — =
~
N
i a
~
o
o~
o o
o
— =]
~
o
i o
& a
o) <
) N

0 t 9

Figure 5: An exemplary simulation of the network described in Figure 4
under frequency and linewidth detuning of individual oscillators
according to Eq. (9). Left: A raster plot of the dynamics of the amplitudes
and phases of the oscillators. Right: Reconstruction of a perturbed
image. Here, the normalized frequencies and decay rates of oscillators
are randomly perturbed with random numbers drawn from a normal
distribution with a standard deviation of 5% of the decay rate of a single

cavity.
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4.2 Gain dynamics

The results presented in this work were based on the so-
called class-A laser model, where the gain can be considered
a constant, while many practical lasers fall in the category
of class-B lasers, where the gain evolves dynamically [31].
The simplified model used here admits a Lyapunov func-
tion, which allows for an analytical treatment of the laser
network and finding a training method. However, it should
be noted that the proposed training method concerns solely
the stationary behavior of the network through the coupling
matrix. Therefore, the dynamics of the gain is not expected
to violate the associative memory functionality, so long as
the stability of the fixed points is guaranteed. As shown
recently, a large gain lifetime, compared to the photon life-
time, can give rise to destabilization of shallow local minima
or metastable states such as vortex states in a lattice of cou-
pled lasers [21]. In this case, however, numerical simulations
indicate that the patterns embedded through the learning
rule of Eq. (8) remain stable even for large gain lifetimes.
This is justified by repeating the simulations of Figure 4
with a class-B laser model. In this model, the gain of a laser
oscillator is driven at a constant pump rate, while it decays
linearly for small field intensities and nonlinearly when the
field intensity grows. The normalized rate equations can
then be written as:

a=g-a— Wa, (10a)

T
g=-Llgl-01+a*-a)-g| (10b)
Tg

L

e/

0

e/u-

o/

¢/u-

t 50

Figure 6: An exemplary simulation of the network described in Figure 4
when considering gain dynamics according to Egs. (10). Left: A raster plot
of the dynamics of the amplitudes, phases and the gains of the
oscillators. Right: Reconstruction of a perturbed image. In these
simulations, the photon to gain lifetime ratio is taken to be ‘rp/rg =0.1.
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Here, g = (g, ..., 8,)', where g; represents the gain of
the ith oscillator, g, is the pump parameter, and 1/7 g isthe
gain decay rate. In these relations both the field amplitude
and gain are dimensionless and the time is normalized to
the photon lifetime 7.

To investigate the effect of the dynamic gain, Eq. (10)
are simulated for the network described in Figure 4. The
results show that the associative memory functionality is
preserved. Figure 6 exemplifies the dynamics for recon-
structing one of the stored patterns.

5 Conclusions

In summary, in this paper the potential of using coherent
laser networks for neural computing was proposed. The
coherent laser network is governed by a nonconvex energy
landscape function that can contain a large number of fixed
point attractors. The use of the coherent laser network as
an energy-based neural network model was demonstrated
through an associative memory functionality. It was shown
that using nonreciprocal coupling between lasers allows
for going beyond binary data and adding the capability of
handling continuous patterns. This work outlines the great
potential of coherent laser networks for optical neural com-
puting. In addition, the proposed dynamical model could
have applications as a novel continuous-time neural net-
work for conventional digital computing.

The present work was focused on the associative mem-
ory functionality as a generic task for energy-based models,
while it remains to examine the full capacity of coherent
laser networks as energy-based models in different network
architectures and for various machine learning functional-
ities [40]. Likewise, the proposed pseudo inverse learning
is a simplistic approach, which is suitable for experimental
realization given that it requires a low-rank weight matrix.
However, of interest would be to develop advanced training
algorithms that allow for harnessing the full capacity of the
coherent laser networks for machine learning. Finally, it
is worth stressing that the proposed system that builds on
simulating the dynamics of laser networks can pave the way
for developing novel energy-based models for handling con-
tinuous patterns in applications such as pattern recognition
and feature extraction. In addition, while requiring large
numbers of laser oscillators, the proposed neural computing
framework can be implemented with the existing photonic
technology. In particular this system can be realized through
solid state lasers in self-imaging cavities with high spatial
mode degeneracy [15, 18] and by harnessing diffraction engi-
neering for creating an arbitrary complex coupling matrix.
In addition, the proposed laser network can be realized in
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time-multiplexed oscillators in fiber loops and by utilizing
electronic feedback for realizing an arbitrary complex cou-
pling matrix [13, 14].

6 Methods

6.1 Numerical simulations

The coherent laser as described by Eq. (2) is in essence a continuous-
time energy-based recurrent neural network. Considering the poten-
tial importance of the proposed model for unconventional computing
through simulations of the underlying model with digital computers, in
the following, numerical simulations are briefly discussed. The numer-
ical simulations of Eq. (2) are performed with a forward-difference
Euler method according to:

a(t + Ap) = At[—a(®) + fa(®) — Wa(t) + b + &(1)]. an

For the simulations discussed in this paper, the network con-
verges rapidly (after ~100 steps). In general, the most computationally-
costly process in Eq. (11) is the matrix-vector multiplication. It should
also be noted that Eq. (11) deal with complex numbers, which require
double-precision floating point format. To consider noise, uncorre-
lated delta noise is generated for each oscillator, i.e., (&;(¢ )*E;(0) =
Dé;6(t — t'). The effect of detuning is considering by changing the first
term of Eq. (11) according to —a(t) - —(1+ 8y + idw) - a(t), where,
6w = (6w, ...,6w,), and 8y = (6y;, ..., 67,)".

6.2 The Hessian matrix

The Lyapunov function of Eq. (3) is a function of 2n variables, which
can be cast in a vector as e = (a;, ..., a,, @, ... ,a:)t. The Lyapunov

function near an arbitrary point can be expanded as:
F(e + Ae) = F(8) + Ae' VF(€) + %Ae‘ He) Ae+--- 12)

where, VF is the gradient vector and H is a 2n X 2n Hessian matrix.
In this representation, stationary states are points associated with
VF(e) = 0. The Hessian matrix can be represented as:

H= Hi H‘; 13)
HS H;

where, H; = (g, — DI — 2g,diag(a* - a) — W,and H, = —gdiag(a - a).
For the phase cost function of Eq. (4), the Hessian matrix is an
n X n matrix with elements h; = *f /009 » Which are found to be:

wy; cos(; — ) i#]
hj = _Zwii cos(g; —¢); i=j (14)
j

For the choice of the weight matrix of Eq. (6) for a given pattern
®=(,,...,0,), evaluating the Hessian at this pattern, results in the
off-diagonal elements h;; = —% cos’(f; — 0,), and diagonal elements
h; = %Z j cos?(6; — 6,). In this case, the Hessian matrix is of the form
of the Laplacian matrix of a weighted graph with adjacency matrix
elements %cosz(ei —0)) [41]. It is straightforward to show that this
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Hessian matrix is positive semidefinite given that it is symmetric and
diagonally dominant [41]. This result is valid for both choices of binary
and continuous patterns, however, one should recall that the training
of Eq. (6) is limited to patterns that pass the stationary test of Eq. (5),
that is limited to binary patterns.
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