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of hardware, resource management and task scheduling. For

instance, CPU-intensive tasks need to be optimized to enhance

the instruction throughput. Memory-intensive tasks should be

scheduled in such a way as to minimize the use of global

memory and only write back the final results; this configura-

tion can be achieved by setting the proper configuration in the

existing HPC resource manager.

On the other hand, I/O intensive tasks should minimize the

data transfers between different infrastructures. In some cases,

workflows require different resources. For example, part of the

workflow can be executed on CPU-based HPC, and the rest

would be benefit from GPU-based HPC or cloud infrastructure.

In this case, the cost of executing the tasks of such workflow

on two or more different cloud systems should be considered.

Even though these challenges can be solved partially

through meticulously designed heuristics, two or more of

these factors should be considered for complex workflows.

Pursuing recent research in HPC scheduling algorithms, the

most common designs either apply an optimal solution for

heuristic models or require changes at the system level that

may need to replace the existing resource manager in the

HPC system. This process must be repeated if the system

workload changes or the metric of interest changes (e.g., more

memory-intensive tasks than CPU-intensive tasks). The more

appropriate solution is to use the existing resource manager by

introducing an intermediate layer to create scheduling tasks.

Following this architecture design, we can achieve a better

optimal result without changing the system level resource

manager.

In summary, we illustrate the major challenges within

existing scheduling systems:

• The same scheduling strategy may not necessarily work

for different infrastructures. For instance, in cluster

scheduling, the execution time of a task varies with data

locality, hardware health characteristics, interactions with

other tasks, and interference on shared resources such as

CPU caches, network bandwidth, etc.

• HPC system resources are usually managed by a resource

manager, e.g., SLURM. However, these tools are not

optimized for dynamic changes in workflow performance
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I. INTRODUCTION

As workflow a pplications g row i n c omplexity, Scientific

Workflow M anagement S ystems ( SWMS’s) h ave b ecome es-

sential components in recent HPC-cloud infrastructure [1]. Ac-

tive research in scientific w orkflow ma nagement ha s enabled

systems used by scientists in practice, addressing many scien-

tists’ needs and improving system efficiency. Current workflow

management systems, integrated with resource management

systems, offer generic services to handle task management,

distribution, monitoring and failure management on various

types of platforms [2], [3]. Although workflow s ystems on

cloud and HPC infrastructures have been studied with many

services offering various capabilities, we still lack optimized

and sophisticated scheduler systems, which allow for collab-

oration of scientists running tasks on HPC systems and those

running tasks on cloud systems.

Disparate workflows require different optimizations depend-

ing on the condition of the execution environment, state

2022 IEEE International Performance, Computing, and Communications Conference (IPCCC)

978-1-6654-8018-5/22/$31.00 ©2022 IEEE 217

2
0
2
2
 I

E
E

E
 I

n
te

rn
at

io
n
al

 P
er

fo
rm

an
ce

, 
C

o
m

p
u
ti

n
g
, 
an

d
 C

o
m

m
u
n
ic

at
io

n
s 

C
o
n
fe

re
n
ce

 (
IP

C
C

C
) 

| 9
7
8
-1

-6
6
5
4
-8

0
1
8
-5

/2
2
/$

3
1
.0

0
 ©

2
0
2
2
 I

E
E

E
 | 

D
O

I:
 1

0
.1

1
0
9
/I

P
C

C
C

5
5
0
2
6
.2

0
2
2
.9

8
9
4
3
1
5

Authorized licensed use limited to: Kent State University Libraries. Downloaded on June 15,2023 at 20:23:59 UTC from IEEE Xplore.  Restrictions apply. 



characteristics. Accordingly, there are no optimizations

for cost-effectiveness based on performance prediction.

• Practical instances have to make online decisions with

noisy inputs and work well under diverse conditions.

The decision between CPU, Memory, I/O and cost can

have different meanings for individual workflow. Sub-

optimization for an individual task may improve after

running a couple of batches on the HPC system.

• Scheduling policy switching between different systems

can be challenging, workflow requirements and system

configuration can be different on an individual HPC

system. In most cases switching the scheduling system

means re-initiating the HPC system, which requires time

and termination of other users’ tasks.

• On basic workflows, optimization can be done using one

dimension (CPU, Memory or I/O) optimization; there is

no need for a multi-layer machine learning scheduler. The

practical applications do not need further optimization.

Simply using the existing resource manager would satisfy

the users’ needs.

• Lastly, workflows might benefit from various multi-level

optimization and using machine learning scheduling tech-

niques. In this case, each task has its own characteristics,

which may be so sophisticated that we need to consider

multi-dimension of the metrics of interest, such as IO,

CPU and Memory.

To overcome these issues, we design a generic scheduling

system, enabling self-learning, performance adaptation and

naturally working with the existing resource manager on HPC

systems.

In this paper, we introduce a malleable actor-critic reinforce-

ment learning scheduler (MARS) to address the challenges

within existing scheduling systems with the following features:

• MARS presents a malleable scheduling policy ensembling

A3C reinforcement learning and heuristic policies.

• MARS optimizes scheduling performance through task

parallelism and workflow classification through graph

comparison and outperforms the state-of-the-art HPC

schedulers by 5-60%.

• MARS requires none to minimal changes to the existing

HPC resource manager such as Slurm and other cloud

resource managers. From a design perspective, MARS is

a good candidate for HPC-cloud heterogeneous environ-

ment.

• MARS design supports both simple and complex work-

flows, and the scheduling profile can be expanded from

one to more dimensionality to bring more optimization

on the desired characteristic.

• MARS requires none to minimal changes in users’ work-

flows configuration, task optimization between user con-

figuration and HPC system is done in the intermediate

layer. Scheduling in such a way that we can benefit

from simple optimization and complex machine learning

schedulers.

The rest of the paper is organized as follows: in section

II-A we discuss HPC workflow requirements and descriptions

along with server parameters and our motivation. We explain

how MARS integrates previous heuristic algorithms along with

asynchronous actor-critic reinforcement learning, and we give

a detailed explanation of the reinforcement learning approach

and our decision on how to select the best suitable schedul-

ing algorithm in section III. We discuss our implementation

methods in section IV. In section V, we discuss our results

and compare them to previous works and present our obser-

vations. We also explain why MARS is outperforming the other

approaches. Lastly, in section VI we discuss prior work in this

area and conclude in section VII.

II. BACKGROUND AND MOTIVATION

A. Background

A workflow application is a set of tasks or instructions

executed on arbitrary input by particular order as steps. Work-

flow can be chained computation in physics, chemistry, etc.

To improve the performance of workflows and create more

meaningful relations between tasks, steps and requirements,

we can use a directed acyclic graph (DAG) based on each

component. As Hongzi M. and et al showed in their approach,

creating DAG from workflows can be done in two categories.

First, it can be done considering pure output related and their

dependency. Second, another DAG can be generated based on

tasks’ resource requirements.

Any workflow can have just one or multiple requirement

DAGs based on the complexity of the workflow. Similarly,

both DAGs can represent the target system resources and

scheduling requirements. System resources are queries from

existing resource manager which are explained in detail in

section III-A1, scheduling requirements are the number of

CPUs per node and/or entire workflow, the amount of memory,

I/O and the cost based on desired parameters such as I/O

throughput, CPU usage, GPU usage, etc. More details are

provided in section III.

In order to better understand how to solve the complexity of

both complicated and straightforward workflows scheduling,

traditional optimization and machine learning techniques need

to be studied. Mu’alem introduced optimization over First

Come First Serve (FCFS) scheduling method, and AAhuva

W. Mu’alem et al. [4], their Backfilling method over well

known FCFS algorithm was to overcome the fragmentation

problem. Backfilling uses dynamic partitioning to schedule

tasks on distributed systems to maximize performance. There

are two major implementations, conservative Backfilling and

Easy Backfilling. However, even though both methods were

introduced to reduce starvation in the case of large work-

flows, both versions can cause starvation. In practice, if the

workflow contains many tasks, it might be more beneficial to

use machine learning techniques. In contrast, the Backfilling

scheduling method would achieve better optimization when

the workflows do not contain enough tasks to train and test

the machine learning model.

The volume of workflows tasks recently caused researchers

to focus on machine learning techniques instead of traditional
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methods. One of the most recent and popular methods is rein-

forcement learning. The reinforcement learning (RL) method

uses vector-based image transition. In order to translate the

HPC scheduling parameters into this method, each resource,

CPU, Memory, and I/O would be shaped into images. One

requirement of this method is that the workflows‘ sizes must

be the same. Then the translated images would be used to

train the RL model. The optimal solution can be achieved

after training the system.

Knowing that both methods have limitations, we need to

balance Backfilling and RL methods to support workflows

more diversely. The backfilling method suffers from optimiza-

tion for large workflows, and the reinforcement technique

needs initialization to be optimal, depending on workflow

requirement and the volume scheduling algorithm needs to

switch between these methods.

B. Motivation

The regular Reinforcement Learning (RL) schedulers re-

quire replacing existing HPC resource management tools,

and in most cases, users have to adapt and change their

workflow to satisfy the new system’s requirements. In a more

specific explanation, HPC’s existing resource manager would

be replaced with an RL scheduler, and user configuration

would have to change to use the new scheduler system.

One reinforcement learning limitation is that the entire

training set must be specific for the HPC system. Otherwise,

the training model would not be optimized. Tuning hyperpa-

rameters and optimizing in favour of all dimensions is one of

the limitations of RL methods.

Existing HPC resource managers suffer from large numbers

of tasks. For better optimization, we need to either replace

them with more specific algorithms depending on workflow or

use an intermediate layer to communicate with the resource

manager. Replacing the resource manager is time-consuming

and requires knowledge of workflows. Since replacing the

resource manager is costly and compromises support for

legacy workflows, in our approach, we do not require to

change the subsystem, and we use the existing tools to increase

the performance [5].

In our approach, we introduce a median layer to the existing

HPC resource manager to avoid replacing the entire system

and not depending on one solution for all possible cases. The

user can specify how many parameter servers and nodes to

use, including the amount of required resource (e.g. CPU,

Memory, GPU, I/O, etc.), then submit the workflow to MARS.

Our Scheduler MARS chooses between simple Backfilling or

an advanced reinforcement learning (A3C) algorithm and then

assigns tasks to nodes for execution by communicating with

the existing resource manager on the HPC system.

III. MARS DESIGN AND IMPLEMENTATION

A. MARS System Overview

Figure 1 shows the overall system structure of MARS. We

assume that the workflow description and generated DAG

graph are provided to the scheduling system. One example

Fig. 1. MARS System Overview

of previous work done in BEEFlow [6], which proposed

an in-situ analysis-enabled workflow management system that

supports multiple platforms using HPC containers.

Our design consists of several parts as shown in the figure 1,

MARS Interface is the API that provides an interface to HPC

users to submit their workflows on an HPC system. MARS

decision-maker is in charge of deciding between Backfilling

and RL-A3C algorithm, where algorithm selection and differ-

ent optimizer can be assigned based on workflows requirement

DAG. As shown, we use heuristic data, users’ configuration,

along randomization for unknown workflows characteristics.

As mentioned before, large workflows can be optimized based

on more than one dimension. In order to achieve the optimal

solution, the RL-A3C needs to train on data, and in our

case, a randomizer helps speed up this process and tune the

hyper-parameters faster. More sophisticated methods such as

population-based (PBT) in ML can surely help but, we observe

it is unnecessary to use more complicated methods. The rest

of our design follows the RL-A3C principle with reward

value read from the HPC resource manager, two policies, the

model parameters from the DNN network, and the initial state

of HPC resources. The Slurm commands and HPC resource

information can be derived from existing resource managers

such as Slurm, MARS uses the same commands to schedule

tasks on an HPC system.

In general, we take the following steps shown in algorithm

1 to accomplish the optimization for each workflow.

The corresponding benefits to our design are:

• Each workflow can be executed independently from oth-

ers

• HPC systems do not depend on a single algorithm

• Workflows can run simultaneously with other workflows.

In respect to users’ workflows are not restricted or limited

by the algorithms used for scheduling
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Result: Saved Model M

Input: Created DAG from workflows ζ

Input : Decision D

Input: Policy ν

Input: Available HPC Resources from Existing

Resource Manager (SLURM) HPCR

if Task ι and ιi+1 ! = dependency then
Compare and Parallel Tasks ι+ ιi+1

else
D = MARSDecision(ζ)

ν = MARSP olicy(D)

M = MARS(ζ,ν,HPCR)

return M
end

Algorithm 1: MARS Overall Algorithm

• Since the full optimization is done regardless of existing

HPC systems. We can update saved models based on best

suitable parameters

1) Algorithm Selection: In typical cases, resource manage-

ment in the HPC system is based on CPU, memory, and I/O

utilization. On the other point of interest, considering the cost

of each task execution on other cloud infrastructures can help

scientists minimize the overall cost.

Traditionally schedulers optimize tasks only on one di-

mension. A simple Backfilling scheduler can be an example.

In Backfilling scheduling, the scheduler tries to optimize

CPU usage. In the next step, more sophisticated schedulers

use modern Machine Learning algorithms to optimize tasks

based on CPU, Memory and I/O. However, in most methods,

schedulers either sacrifice one feature for another or find

the average solution. Recent ML schedulers use one specific

reward function to update the trained model and learn from

the previous execution.

In our proposal, MARS can adapt on different reward values

read from the HPC resource manager and decide between a

simple algorithm such as Backfilling to a more complicated

online algorithm such as asynchronous actor-critic reinforce-

ment learning to execute tasks. By creating a model based

on the RL-A3C algorithm and updating that model with the

similar technique that D. Zhang previously introduced and et

al. [7] we can reuse a trained model with similar workflows.

However, the training of the system is highly correlated to the

size and number of tasks in one arbitrary workflow.

Based on our observation, small workflows such as a simple

RNA search would be an inefficient model. On the other hand,

complex and large workflows in RL, such as Blast, would

cause an over-fitting of the network. This phenomenon would

result in an inefficient reward value and model. In our ap-

proach, by combining time window and custom loss function,

the reward value and model generated from the workflow

would be more accurate compared to previous approaches.

B. Policy Model and Algorithm

Our policy model depends on the size of the workflow.

In terms of small workflows that can be optimized with the

simple FCFS algorithm, MARS bypasses the RL algorithm and

creates a simple schedule for tasks ready to be executed on

HPC. On the other hand, when workflows contain a large

subsection of tasks and the running time requires hours to

days, MARS selects an arbitrary RL-A3C algorithm based on

previously saved models.

The reinforcement learning module in MARS contains a

scheduler agent, environment, and neural network based on

server parameters input and reward value from the HPC envi-

ronment. At each time step t the agent observes the parameters

on HPC state st, then chooses an action at. Following that

action, the environment’s state would proceed to st+1 and the

agent receives reward rt. The state transitions and rewards are

stochastic and are assumed to have the Markov property; i.e.

the state transition probabilities and rewards depend only on

the state of the environment st and the action taken by the

agent at.

In most RL approaches, learning is done by performing

gradient-decent on the policy parameters. The critical idea

in policy gradient methods is to estimate the gradient by

observing the trajectories of executions obtained by following

the policy. Similar to Monte Carlo Method [8], samples are

taken of multiple trajectories, and the empirically computed

cumulative discounted reward is used. However, this approach

is based on a naive algorithm and usually calculates a lo-

cal maximum instead of the global maximum. In order to

overcome this limitation, we use a similar method as other

researchers , RL with Actor-Critic Algorithm (ACA) in MARS.

1) Reinforcement Learning Objects: Based on the def-

inition for objective function for policy gradients, in our

approach, parameters are read from the existing resource

manager, and the action taken upon optimizing task execu-

tion is done by MARS. Using well-known machine learning

techniques [9], [10], mapping between HPC server parameters

and RL properties, we can redesign reinforcement learning to

support HPC systems.

2) Reinforcement Learning Using Actor Critic : We can

define the Actor-Critic method, where the Critic estimates the

value function, which can be Q-Value or state value V-Value

[11]. In our approach, we took the state value from an existing

resource manager such as Slurm. MARS uses Slurm manager

outputs to calculate the reward value. 2 MARS Policy RL-A3C

Algorithm:

As we explained earlier, the computation of the reward

value can have different meanings. The critic is a state-value

function, MARS can be optimized based on Parameter Server

values read from Slurm or any other resource manager, and

final value results can be used to determine if there was an

improvement or not.

Figure 2 shows the Policy Structure of MARS. User’s

workflow description can be in any standard format such as

Common Workflow Language (CWL), The Workflow Descrip-

tion Language (WDL), Standard Workload Format (SWF),

etc. As mentioned before in section II preferably, the DAG is

generated from workflow description containing tasks (tasks)

to execute and the dependency between them. In our example,

one workflow can be as simple as one task or have multiple
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Result: HPC Reward Estimation πθ ≈ π∗

Input: HPC Scheduling Action based on State

Parameters π(a|s, θ) Input: HPC CPU, Memory, I/O,

Cost Values v̌(s,w)
Algorithm parameters: step sizes αθ >0, αw >0
Initialize policy parameter θ ∈ R

d′

and state-value

weights w ∈ R
d(e.g., to 0) Set weights to 0 at

beginning,

Initializing C as the Cost Probability added to

evaluation;

while for each epochs do

Initialize S (first state of episode);

I ← 1;

while S is not terminal (for each time step) do

A ≈ π(·|S, θ);
Take action A, Observe S′, R;

δ ← R+ γ v̌(S′, w)−v̌(S,w)(if S′ is terminal,

then v̌(S′, w) = 0);
w ← w + αwIδ∇wv̌(S,w);
θ ← θ + αθIδ∇θlnπ(A|S, θ);
θ ← θ +∇C;

I ← γI;

S ← S′;

end

end
Algorithm 2: MARS RL-A3C Policy

dependent parts, such as the Blast example, or similar to a

linear search workflow. The generated data then would be

fed to our categorizing module, which determines the depth

of the workflow based on the description, graph comparison

algorithm and heuristic generated models.

The algorithm selector module decides whether to use

RL-A3C or basic FCFS, as mentioned before, for simple

workflows which require only limited execution time. If no

other workflows are running, and the description requires most

system resources, running RL-A3C would cause overhead.

However, in case MARS can combine multiple independent

workflows and run RL-A3C, it would switch back to using

the RL-A3C algorithm and build the best suitable model for

that specific type. We kept the traditional algorithms such as

FCFS, Backfilling, etc.

In order to support legacy workflows and save on training

time and in case an HPC system is not equipped with a GPU,

a small optimization based on the known graph combining

algorithm [12] would run next to combine the parallel tasks.

Compared to the standard Reinforcement Learning technique,

we use this graph search algorithm to identify the best possible

model to gain an optimal outcome and user input as a variable

to differentiate between CPU, Memory, I/O, and Cost of

each task. The generated model will train the system for

optimization and feedback output.

Next, MARS queries the available resources from Slurm,

knowing the current state of the system and workflow de-

scription. Next MARS creates a state description based on

Job type, the number of time slots run, remaining epochs,

allocated resources on HPC, the number of workers based

on the workflow description, and the number of parameters.

Based on the previous discussion, we build a policy and value

network, calculate a baseline, and initiate action; then, using

the Slurm interface on HPC, we initiate a batch of tasks on

HPC (Action).

In addition, MARS needs to decide the best split between

tasks and parallelism based on available resources, knowing

that each workflow can be divided into sub-workflows based

on searching paths, MARS categorizes tasks into groups. After

this separation, it generates a deep neural network based on

user input and CPU, Memory and I/O values.

Finally, using Slurm CTL MARS queries about remain-

ing available resources, current executing tasks, previously

executed times, and corrupted previous tasks. MARS then

calculates the reward value and uses a baseline. It updates

the neural network. In order to overcome training overhead

and inefficient models, MARS creates an arbitrary base network

based on heuristic workflow data. If the data is absent from the

database, we generate a similar workflow with smaller tasks

to train the network.

3) Graph Comparison and Parallel Optimizer: In most

RL-based schedulers, the generated workflow graph and cost

are not considered. The deep neural network is purely based

on workflow input data or previous execution. However, if we

consider the graph generated from the workflow and use search

algorithms to find the similarities in individual tasks, we can

predict and categorize each task based on their CPU, Memory,

I/O intensity. In addition, we can also consider the cost of each

execution. Based on a predefined table, we can calculate how

much each task would cost to run on some arbitrary cloud

infrastructure.

In practice, Directed Acyclic Graphs (DAGs) have tens or

hundreds of stages with different requirements and execution

times. Based on the dependencies and requirements, each task

can be executed in parallel or wait for other tasks to be

completed. This complexity can be challenging in terms of

scheduling, and to solve this issue MARS needs to execute

tasks in parallel as much as possible without wasting CPU, or

Memory utilization [13].

As mentioned before, graph comparison is algorithmically

hard, similar to C. Delimitrou and et al. [14] approach, we use

a scale-up and scale-out method to achieve the categorization.

Assuming that the individual parts of a workflow’s DAG can

be categorized and compared to each other based on size and

resources, MARS tries to combine the independent tasks as a

single parallel task.

4) Decision Making: MARS decision making is based on

comparing the DAG and heuristic data, using a heuristic

data model, DAG classification, or based on the size of the

workflow MARS chooses the best suitable algorithm between

basic back-filling and RL-A3C to execute an arbitrary work-

flow 2. In complementing combining CPU, Memory, I/O and

creating a general neural network, we generate an individual

network based on graph comparison and user input for RL-

A3C candidate workflows. Complementary to the previous
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Fig. 2. MARS Policy Network

method, the users’ variable is used to determine the intensity

of requirements and also, in order to achieve a better result, the

logs from the target HPC system will be used in the evaluation.

In the case of RL-A3C workflows, the first initiation and

task execution would have to be on a more general deep neural

network with a more straightforward reward function due to

the lack of training data. However, after a couple of workflow

executions, the first network can be replaced with a more

complex network. After that process, MARS would get the

output from the HPC system and calculate the universal reward

means. As we know, returning a positive value from the reward

function can identify the desired settings then and would cause

MARS to continue optimizing on the same network for similar

workflows. On the other hand, the cumulative negative reward

value would cause a feature selection change in the network

and update the loss function.

Algorithm 3 shows the basic decision making of the MARS

scheduler. Our design uses workflow size and configuration to

decide on the algorithm policy. In our experiment, we observe

that workflows with a size less than 512 are not sufficient to

run directly on RL-A3C. In order to improve this issue, we

either combine the following workflow with the previous one

or run the heuristic algorithm. In the algorithm’s first part, we

combine the following workflow with the current workflow.

Next, if the compatibility of dimension fails or the existence

of the following workflow is absent, then MARS chooses the

heuristic algorithm. Next, for the large workflows, we split

those into sub-workflows and execute the RL-A3C algorithm

to avoid over-fitting the network. In each step, we save the

RL-A3C model for future use.

IV. IMPLEMENTATION

The MARS algorithms are implemented using Tensorflow

[15] and Gym OpenAI [16]. For the training process we used

Proximal Policy Optimization (PPO) algorithm derived from

OpenAI Spinning Up library [10], [17].

We used a randomly generated data set based on real

workflows and actual real-world data from different sources

to evaluate the proposed solution. The real-world workflows

are based on SWF archive data as shown in Table I.

TABLE I
LIST OF WORKLOAD TRACES

Name CPU Month(s) Date

SDSC IBM-SP2 128 24 1998
SDSC IBM-Blue 1152 32 2000
High Performance Computing Center 240 42 2002
Argonne National Laboratory Intrepid 163840 8 2009
Synthetic G001 256 12 2019
Synthetic G002 1024 6 2019

In our experiment, we aim to compare the previous works

with MARS. We compare MARS with heuristic job scheduling

algorithms, shown in Table II. The table II shows the heuristic

scheduling policies infused with MARS, which can improve

the performance of legacy and modern workflows. MARS is

compared with two well-known policies: First Come First

Served (FCFS), where the arrival order schedules tasks; and

Shortest Job First (SJF), where tasks with shorter processing

times are scheduled ahead of the other tasks. Some other

comparative policies are WFP3, and UNICEF [18], which are

based on the processing time, requested number of cores and

waiting time of the tasks. WFP3 favours shorter and older

tasks over large ones without starvation, and UNI favours

small tasks by using a fast turnaround policy for performance
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Result: Best Suitable Action α

Input: Workflow χ & Workflow size η

Initializing workflow task size, Queue, Task, Model:

η ← χ , Q, ω, M

if η <MEDIAN then
if χi+1 == TRUE & χi+1 is compatible

(RL-A3C vector dimensions) with χi then
χ = χi + χi+1 >MEDIAN ;

Q← η;

M ←MARS −RL−A3C(Q);
else

if η <MIN then
Q← η;

SJF(Q);
else

Q← η;

UNICEF(Q);
end

end

M ←MARS −RL−A3C(Q);
else

while η >MAX do
ω = ω

2

Q← ω;

MARS −RL−A3C(ω)
M ←MARS −RL−A3C(Q);

end

Q← ω;

MARS −RL−A3C(ω)
M ←MARS −RL−A3C(Q);

end
Algorithm 3: MARS Decision Making Policy

enhancement. Policy F1, F2, F3, and F4 [19] represent the

nonlinear machine learning-based scheduling algorithms for

minimizing the average bounded slowdown of tasks. Based

on our observation, switching to known heuristic algorithms

and RL-A3C increases the performance and saves a noticeable

amount of time in training for the basic legacy workflows.

TABLE II
HEURISTIC SCHEDULING POLICY USED

Name Function

FCFS ABS(t) = st
SJF ABS(t) = rt
WFP3 ABS(t) = −(wt/rt)3 ∗ nt

UNICEP ABS(t) = −wt/(log2(nt) ∗ rt)
F1 ABS(t) = log10(rt) ∗ nt + 8.70 ∗ 102log10(st)
F2 ABS(t) =

√
rt ∗ nt + 2.56 ∗ 104 ∗ log10(st)

F3 ABS(t) = rt ∗ nt + 6.86 ∗ 106log10(st)
F4 ABS(t) = rt ∗

√
nt + 5.30 ∗ 105log10(st)

In an HPC system, workflow tasks may arrive continuously.

In order to train the model using RL-A3C, we save the training

results after a predefined window time, and then we let the

actor-critic algorithm improve the model. After building a

basic model based on the RL algorithm, the Actor-Critic part

evaluates the network. This strategy would create a training

batch for the workflow. If the batch size is too small, MARS’

decision module gives two options if the remaining workflow

size is sufficient enough MARS combine sub-workflows. On

the other hand, in the absence of sufficient size, MARS would

switch back to back-filling or FCFS algorithm.

In our experiment running basic workflows on RL-A3C

takes a significant amount of time to train and causes inef-

ficiency in HPC systems. In order to overcome this issue,

a combination of legacy and RL-A3C algorithms would be

more appropriate. Another issue in RL-A3C is over-fitting the

model due to the large batch size and exponential growth of

the number of possible tasks. In order to solve this issue,

we introduce a median layer to create sub-workflows. Based

on our observation, the best training sets are between 512 to

20000 running on 2000 to 4000 epochs for RL-A3C. Knowing

that the smaller or larger batch sizes could introduce an issue,

the MARS decision module would combine or split the sub-

workflows.

As we described in Section III, in RL-A3C, the state is

the input of the DNN agent, and the representation of state is

a vector containing available resources and pending tasks. In

HPC number of pending and arriving tasks can vary. However,

in DNN, the vector to create the network should be fixed-sized.

In order to overcome this issue, we took the same approach

as previous works and added extra 0s to the end of the vector

[20].

V. EVALUATION

In this section, we present our results obtained by running

MARS scheduler on a simulated environment using data traces

generated from HPC data centers. First, we describe the en-

vironment setup and workflow traces used in our experiment,

then we evaluate different algorithms and compare them to

our approach. We discuss the performance evaluation under

different conditions and workloads of HPC environments. Our

simulator was inspired by a similar method used by D. Zhang

et al. [7]. However, to comply with our approach, we extended

the simulator with Gym and OpenAI to return the proper

reward values from the environment. Running the training set

on an actual HPC environment requires an enormous number

of iterations to learn, considering that most HPC environments

are not capable of running the RL-A3C algorithm due to

lacking GPU capability or available resources for non-HPC

applications. The best approach is to either dedicate an arbi-

trary external server to train the model or run the simulation

in a local environment.

A. Simulation Environment

We simulate a homogeneous HPC environment executing

tasks based on moving forward the timestamp instead of

running those tasks. These workflows were based on traces

collected from real systems, but we use the CWL and SWF

workflows formats to guarantee compatibility. When a work-

flow is generated, if the resources required to run an arbitrary

task belonging to the generated workflow are not present, the

simulator uses the back-filling method to run smaller tasks

first.
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Fig. 3. Performance of scheduling policies with different workload traces.

Fig. 4. Performance of MARS under different learning ratios

B. HPC Reward and Metrics

HPC scheduling metrics are mostly based on response time,

and it is defined as the total wall-clock time from the instant

at which the task is submitted to the system until it finishes

its run. The most basic method to calculate the running time

and wait time for tasks is slowdown, slowdown = Tw+Tr

Tr

. A

more sophisticated method is to take the average slowdown to

minimize the wait time [21]. Table III shows different evalua-

tion metrics. The problem with the slowdown metric is that it

overemphasizes the importance of short jobs; to overcome this

issue, Feitelson et al. [22] have suggested Bounded-slowdown.

The behaviour of this metric depends on the choice of τ , which

is the threshold value. Zotkin and et al. [23] have introduced

a new problem where tasks that do the same amount of

work with the same response time may lead to different

slowdowns results due to their shape, which is the ratio of

processors to time. This introduces another metric known as a

per-processor slowdown. We used average bounded slowdown

instead of per-processor because, in our workflow examples,

the shape of our test systems are identical to each other.
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In our approach we set the goal as minimizing the average

TABLE III
SCHEDULING METRICS Tr IS THE EXECUTION TIME OF THE JOB, Tw IS

THE TIME SPENT IN TURNAROUND [24]

Metric Formula

Slowdown Tw+Tr

Tr

Bounded-slowdown max{ Tw+Tr

max{Tr,τ}
, 1}

pp-slowdown max{ Tw+Tr

P∗max{Tr,τ}
, 1}

bounded slowdown = −max{ Tω+Tr

max{Tr,τ}
, 1}(−ABS). At the

start of the algorithm, calculating the average is not possible,

instead we return 0 as a reward. After finishing the entire task

sequence then the RL-A3C agent gets the average as −ABS.

C. Results

In this section, we show that MARS, by using a combina-

tion of heuristic and the RL-A3C algorithms, can improve

the performance, time and avoid over-fitting the network

for scheduling tasks on HPC systems. Most reinforcement

learning algorithms need to be configured with proper param-

eters from HPC. Figure 3 shows the different policies based

on different configurations, where the y-axis is the average

bounded slowdown, and the x-axis is the different scheduling

policies.

Our scheduler ratio of training and testing was 70% to 30%,

similar to most other RL algorithms. We categorized three

different configurations and sizes for our testbed: the small

data-set contained between 512 to 2000 tasks, the medium size

data-set was from 2000 to 9000 tasks, and lastly, the large data-

set was between 10000 to 25000 tasks. We randomly selected

tasks from different data sets and performed experiments

with different configurations. We considered the number of

iterations per task in DNN and the delay between task arrival.

By experimenting with different configurations, we showed

that the proper configuration causes a significant difference

in result in reinforcement learning and heuristic algorithms.

Lastly, we added the cost-aware probabilities after creating

the RL-A3C model.

In figure 3 part (a), we choose a large data-set from IBM

SDSC Blue with 20000 tasks to train and 6000 tasks to test.

However, since the data configuration was chosen randomly,

the reinforcement learning algorithm reacts worst than MARS.

Similarly, in part (b), we selected 15000 random tasks and

observed the same result; however, if the workflow size is

large enough and the data is consistent with the configuration

of DNN, the RL-A3C algorithm will improve. Figure 3 part

(c) was HPC2N data-set with 4000 selected tasks, and Figure 3

part (d) contains small selected tasks from ANL Intrepid data-

set. All three experiment configurations were chosen randomly.

As discussed, the MARS scheduler tries to solve this issue

in two ways: it either combines the tasks to generate a proper

size for training and testing in RL-A3C or switches back to

a heuristic algorithm. In our experiment, we showed that in

the case of a proper and ideal configuration 3 (e), RL-A3C

performs better compared to MARS. However, since in HPC,

achieving the ideal configuration is rather difficult, in other

cases, such as Figure 3 part (f), using the suggested method

derives a better performance. Our experiment shows MARS on

average can achieve between 5% to 60% better performance

compared to other policies.

Another issue in reinforcement learning to consider is over-

fitting the network. In figure 4 we observe that based on data-

set configuration and learning ratio, we can achieve different

performances. Figure 4 part (a) is a large data-set with 50000

iterations per task, which causes RL-A3C learning to interact

frequently with the HPC system.

Figure 4 part (b) is the optimal configuration with the proper

size data-set; however, in part (c), the configuration and HPC

parameters change randomly, and that causes the RL-A3C

agent to interact with HPC more often. Figure 4 part (d)

and part (e) shows the comparison of different experiments

together, and lastly, part (f) shows an insufficient data-set size

to train. To resolve these issues, MARS tries to update the

reward values from HPC after each iteration, and by selecting

a heuristic algorithm for small data-set sizes, we bypass the

inefficient training model.

In our test experiment, the cost of each task was randomly

generated, and after RL-A3C soft-max values, we incorporate

costs as another probability function as a probability between

0 and 1. We used Gaussian distribution to add the cost factor to

the final step of the DNN soft-max calculation. As discussed

before, adding the cost to the training model would result in a

unique data model. As a consequence of keeping the model’s

generality, the cost would be incorporated after creating the

DNN network. A more specific reward value can be derived

from the HPC system by calculating the cost with each action

taken by the agent. As shown in figure 3, with random

configuration for RL-A3C, the performance decreases between

5% to 60%. However, by using MARS policy and combining

heuristic and RL-A3C with cost-awareness, the performance

improves back to an optimal solution.

VI. RELATED WORK

HPC task scheduling has been a long-time research topic.

Countless studies have been done, including heuristic al-

gorithms such as First Come First Serve (FCFS), Shortest

Job First (SJF) and more sophisticated policies like WEP3,

UNICEF and even machine learning approaches. MARS is

clearly different from the existing studies as it takes advantage

of existing resource management on HPC systems and it com-

bines the best suitable algorithm to maximize the performance

and reduce the training time [18], [19].

Mirhoseini et al. [25], [26] use DRL to optimize placement

of computation graph, Xu et al. [27] use the same method

to select routing paths between network nodes for traffic, and

Mao et al. [28] used the same principle to select video stream

rates dynamically.

Recently, several studies also started to leverage deep rein-

forcement learning in resource allocation and job scheduling in

a distributed environment, such as DeepRM [29], and Decima
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[20]. However, none of these uses existing HPC resource

management and combines the heuristic algorithm with deep

reinforcement learning.

Although they used similar DRL methods as MARS, these

studies are not designed for scheduling HPC tasks, which are

fixed, rigid, and non-preemptable.

These differences led to different designs and optimizations

in MARS, detailed in Section III-A. The most recent HPC

tasks scheduling [19] uses brute force simulations to generate

a large number of data samples, each of which shows the

best scheduling decision given a random job sequence. Then,

applying machine learning methods on these data samples to

build scheduling functions that can best fit these samples.

VII. CONCLUSION

In this study, we proposed a new cost-aware reinforcement

learning policy for task scheduling on HPC systems using the

existing resource manager, allowing the system administrators

and users to optimize the scheduling of tasks based on any

preferred algorithm and cost-effectiveness. We showed that

using MARS, which combines heuristic and deep reinforcement

learning actor-critic algorithm, HPC systems can be optimized

for both legacy and complex workflows. We performed better

by choosing different configurations and switching between

heuristic and RL-A3C. MARS can improve the modularity

and support for both legacy and complex workflows, and it

can optimize task execution based on the most appropriate

approach.
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