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ABSTRACT: This paper describes the development of U-net11 models, a type of neural network that performs deep

learning, to emulate the shortwaveRapid Radiative TransferModel (RRTM). The goal is to emulate the RRTMaccurately

in a small fraction of the computing time, creating aU-net11 that could be used as a parameterization in numerical weather

prediction (NWP). Target variables are surface downwelling flux, top-of-atmosphere upwelling flux (FTOA
up ), net flux, and a

profile of radiative-heating rates. We have devised several ways to make the U-net11models knowledge-guided, recently

identified as a key priority in machine learning (ML) applications to the geosciences. We conduct two experiments to find

the best U-net11 configurations. In experiment 1, we train on nontropical sites and test on tropical sites, to assess extreme

spatial generalization. In experiment 2, we train on sites from all regions and test on different sites from all regions, with the

goal of creating the best possiblemodel for use inNWP. The selectedmodel from experiment 1 shows impressive skill on the

tropical testing sites, except four notable deficiencies: large bias and error for heating rate in the upper stratosphere, un-

reliable FTOA
up for profiles with single-layer liquid cloud, large heating-rate bias in the midtroposphere for profiles with

multilayer liquid cloud, and negative bias at low zenith angles for all flux components and tropospheric heating rates. The

selected model from experiment 2 corrects all but the first deficiency, and both models run ;104 times faster than the

RRTM. Our code is available publicly.
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1. Introduction

Radiation is a key component of the global energy budget.

In the shortwave part of the spectrum (mostly solar radiation,

with wavelengths & 4mm), incoming radiation is much

greater in the tropics than at the poles. This imbalance, which

is due to Earth–sun geometry, sets up a meridional gradient in

absorbed shortwave radiation that drives the global circula-

tion [sections 4.6 and 10.1.1 of Wallace and Hobbs (2006)].

Surface albedo has a secondary effect on absorbed shortwave

radiation: at high latitudes the surface is often covered by

snow and ice, which increases albedo and causes less short-

wave radiation to be absorbed. This enhances the meridional

gradient in absorbed shortwave radiation. In the longwave part

of the spectrum (mostly terrestrial radiation, with wavelengths

* 4 mm), there is also an albedo effect: areas with high al-

bedo, typically at high latitude, are colder and emit less

longwave radiation. In terms of net radiation (absorbed

shortwave minus emitted longwave), the two albedo effects

approximately cancel out. Thus, in a globally and annually

averaged sense, the meridional distribution of net radia-

tion is similar to that of absorbed shortwave radiation

(Stone 1978).

When radiation propagates through the atmosphere, heating

(cooling) occurs in areas of radiative-flux convergence (diver-

gence). Most radiative-transfer models (RTM) assume hori-

zontal independence, i.e., that radiation is transferred only in

the vertical dimension. In this case, radiative transfer is gov-

erned by the following equation:

dT

dt
5

g

c
p

DF
net

Dp
, (1)

where g is the gravitational constant (;9.81m s22), cp is the

specific heat of dry air (1004 J kg21 K21), Dp is the thickness

of a layer in pressure coordinates (Pa), DFnet 5DFdown 2DFup

is the net flux into the layer (Wm22), and dT/dt is the resulting

heating rate (K s21). Radiative transfer is extremely important

in numerical weather prediction (NWP) and climate models.

However, because radiative transfer is a subgrid-scale process,

it must be parameterized—i.e., estimated outside the dynamical

core by a separate RTM, rather than explicitly resolved.

Radiative transfer is inherently complex, due to the spectral

(wavelength-dependent) nature of gaseous absorption, as well

as changes in the refractive index and shape of particles acting

to scatter and absorb radiation. The most accurate RTMs are

line-by-line models, which explicitly simulate gaseous absorp-

tion in each spectral band (Turner et al. 2004; Mlawer and

Turner 2016). However, the radiative properties of clouds and

aerosols are much smoother in spectral space than those of

gaseous molecules. Thus, simpler scattering models can be

used for clouds and aerosols (e.g., Stamnes et al. 1988).

Nonetheless, both line-by-line and scattering models are
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extremely computationally expensive, so cannot be used as pa-

rameterizations in NWP. There is an inherent trade-off between

computational cost and accuracy, and the goal is typically to

reduce computational cost by orders of magnitude without a

large reduction in accuracy.

Perhaps the most common approach is correlated-k models,

like the Rapid Radiative TransferModel (RRTM;Mlawer et al.

1997), which emulates line-by-line models but is many orders of

magnitude faster. When implemented as a parameterization, an

RTMmust provide three variables to the parentNWPmodel for

both the shortwave and longwave spectra: a vertical profile of

radiative-heating rates, surface downwelling flux (Fsfc
down), and

top-of-atmosphere upwelling flux (FTOA
up ). For the RRTM, Fsfc

down

andFTOA
up are accurate within;1Wm22, while heating rates are

accuratewithin;0.1K day21 (Iacono et al. 2008). The longwave

RRTM has been used in NWP since the early 2000s (Iacono

et al. 2000), and the shortwave RRTM since the mid-2000s

(Iacono et al. 2005). Although the RRTM is much faster than

line-by-line models, it is still too slow for operational NWP. The

RRTMG(RRTM for global climatemodels; Pincus and Stevens

2013) makes additional simplifications and is approximately

twice as fast as the RRTM, but it is still too slow to call at every

atmospheric time step in NWP. Thus, while other parameteri-

zations (microphysics, boundary layer, etc.) are called at every

time step, the RRTMG is called less often, which makes the

NWPmodel less accurate. Also, even when called less often, the

RRTMG still accounts for ;50% of the computation of

the overall NWP model (Krasnopolsky 2020).

Due to these issues, some groups have used neural networks

(part II of Goodfellow et al. 2016), a type of machine learning

(ML), to emulate RTMs (Krasnopolsky 2020, and references

therein). Neural networks are also popular for emulating other

atmospheric processes, especially subgrid-scale convection in

NWP models (Gentine et al. 2018; Brenowitz and Bretherton

2018; Brenowitz et al. 2020; Krasnopolsky 2020; Beucler et al.

2021). Because neural networks can theoretically approximate a

function of arbitrary complexity, they are often called ‘‘universal

function-approximators.’’ Although neural networks are often

slow to train, at inference time (when applying a trained neural

network to new data), they are much faster than process-based

RTMs, even the RRTMG.Neural networks often contain many

layers with many weights in each layer, allowing them to rep-

resent important features at various levels of abstraction, which

they ultimately transform into predictions. However, each

weight is one degree of freedom and neural networks often

contain millions of weights, which makes them prone to over-

fitting. Also, ML is typically poor at extrapolating to conditions

outside those seen in the training data. This diminishes the

trustworthiness of ML, which is a key requirement for tran-

sitioning ML to operational products such as NWP (Gil

et al. 2019).

We have developed neural networks to emulate shortwave

radiative transfer, with three main characteristics that make

our work unique. First, we use U-net11 models (Zhou et al.

2020), as opposed to the fully connected networks [sometimes

called ‘‘dense’’ or ‘‘feed-forward’’; see chapter 6 ofGoodfellow

et al. (2016)] used in previous work. U-net11 models are a

type of deep learning, which can exploit spatial patterns in

gridded data to make better predictions. Second, we have built

physical constraints and vertical nonlocality into the U-net11
models, allowing them to handle nonadjacent cloud layers and

better extrapolate to different conditions (e.g., from nontrop-

ical to tropical sites). Third, we train U-net11 models to

emulate the RRTM, instead of the less accurate RRTMG used

in previous work (Krasnopolsky et al. 2010, henceforth K10;

Krasnopolsky 2020). Although line-by-line models are the most

accurate, they are only slightly more accurate than the RRTM

(Iacono et al. 2008) and many orders of magnitude slower, so

emulating line-by-line models would vastly increase the time

required to create training data for the U-net11 models.

The rest of this paper is organized as follows. Section 2

describes the inner workings of a U-net11, section 3 de-

scribes the input data and methods used to train the U-net11
models, section 4 describes experiments to find the best

U-net11 configuration (hyperparameters), sections 5 and 6

evaluate and interpret the selected U-net11 models, and

section 7 concludes.

2. Background on U-net11

This section focuses mainly on traditional U-nets, extending

the discussion toU-net11 at the end.We use the Keras library

for Python (Chollet et al. 2020) to implement all U-net11
models, and our code is freely available on the internet (see

data availability statement).

U-nets are a specialized type of convolutional neural net-

work (CNN; Fukushima 1980; Fukushima and Miyake 1982).

CNNs are a deep-learning method (section 1.1.4 of Chollet

2018) designed to exploit spatial patterns in gridded data,

which they achieve via convolution and pooling, spatial op-

erations defined later in this section. CNNs have become

popular tools in atmospheric science (Wang et al. 2016; Racah

et al. 2017; Kurth et al. 2018; Bolton and Zanna 2019; Gagne

et al. 2019; McGovern et al. 2019; Wimmers et al. 2019;

Lagerquist et al. 2019; Ebert-Uphoff and Hilburn 2020;

Lagerquist et al. 2020a,b). U-nets (Ronneberger et al. 2015)

retain all the advantages of CNNs but are designed for pix-

elwise prediction1—i.e., to make a prediction at every grid

point. CNNs are typically used for full-image prediction—i.e.,

to make one prediction based on the full grid. There are

several U-net applications to atmospheric science in the

refereed literature (Chen et al. 2021; Kumler-Bonfanti et al.

2020; Sadeghi et al. 2020; Sha et al. 2020a,b), and we are aware

of several other atmospheric scientists currently adopting

U-nets (Stewart et al. 2020; Berthomier and Pradel 2021; Felt

et al. 2021; Hayatbini et al. 2021).

As shown in Fig. 1, a U-net contains four types of specialized

components: convolutional layers, pooling (downsampling)

layers, upsampling layers, and skip connections. The left side of

the U-shape is the downsampling side, where spatial resolution

1U-nets are not the only type of CNN designed for pixelwise

prediction. Other examples, in the encoder-decoder family along

with U-nets, include convolutional autoencoders (Chen et al. 2017)

and fully convolutional networks (Long et al. 2015).
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decreases with depth, and the right side is the upsampling side,

where resolution increases with depth. The convolutional layers

detect spatial features, and the other components allow con-

volutional layers to detect features at various spatial resolutions,

which is important due to the multiscale nature of atmospheric

phenomena. Inputs to the first convolutional layer (top-left

green box in Fig. 1) consist of raw predictors (here, physical

variables like temperature and pressure), while inputs to all

other layers consist of feature maps, which are transformed

versions of the raw predictors. As the spatial resolution de-

creases, the number of feature maps (‘‘channels’’) typically in-

creases, to offset the loss of spatial information. Convolution is

both a spatial and multivariate transformation, so the feature

maps encode spatial patterns that include all predictor variables.

Most CNN applications involve data with two spatial dimen-

sions (2D), for which the inner workings of a convolutional layer

are illustrated in supplemental Fig. S1 of Lagerquist et al.

(2020b). For 1Ddata like those used in the current work, see our

online supplemental Fig. S1 (an animation). In general, a con-

volutional layer is followed by an activation function and pos-

sibly batch normalization (supplemental Table S2).

Each pooling layer downsamples the featuremaps to a lower

resolution (larger grid spacing), using either a maximum or

mean filter. On the downsampling side of theU-net (left side of

Fig. 1), feature maps at deeper layers contain higher-level

abstractions, because they contain information from a wider

variety of spatial scales and have passed through more con-

volutions. For 2D data, the inner workings of a pooling layer

are illustrated in supplemental Fig. S2 of Lagerquist et al.

(2020b). For 1D data, see our supplemental Fig. S2 (an

animation).

Each upsampling layer upsamples the feature maps to a

higher resolution, using an interpolation method such as

nearest neighbor or linear. In this work we use nearest neigh-

bor. However, the choice of interpolation method is unim-

portant: upsampling always consists of interpolation followed

by convolution, because interpolation cannot adequately re-

construct high-resolution information from low-resolution in-

formation. On the upsampling side of the U-net (right side of

Fig. 1), while spatial resolution increases the number of chan-

nels decreases, terminating in the number of output channels.

In this work there is one output channel (radiative-heating

rate, as discussed in section 3). For 1D data, the inner workings

of an upsampling layer are shown in supplemental Fig. S3 (an

animation).

Skip connections preserve high-resolution information from

the downsampling side of the U-net and carry it to the

upsampling side, as shown in Fig. 1. Without skip connections,

FIG. 1. Architecture of traditional U-net with two fully connected layers. In each green box, ‘‘h’’ and ‘‘c’’ are the

number of heights and channels (feature maps), respectively. The convolutional layer included with each up-

sampling layer (upward purple arrow), in addition to filling in spatial information, reduces the number of channels.

For example, in the set of featuremaps labeled ‘‘A,’’ 256 channels come from the skip connection to the left and 512

channels come from the upsampling layer below. Thus, the convolutional layer included with this upsampling layer

must reduce 768 channels to 512, which it achieves by having 512 filters. The shallowest layer is the convolutional

layer at the top left, and the deepest is the convolutional layer at the top right. The top-left set of feature maps

contains predictors: 14 variables at 73 heights. Although two predictor variables (albedo and zenith angle) are

scalars, they are repeated over the 73 heights to create dummy grids, which are more easily input to the U-net. The

outputs (predictions) are a length-73 grid of radiative-heating rates (top right) and three scalar fluxes (bottom).
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the U-net would simply perform downsampling followed by

upsampling, which is a lossy operation. In other words, up-

sampling cannot fully recover the high-resolution information

lost during downsampling. On the upsampling side of the

U-net, at each spatial resolution r (each row in Fig. 1), some

feature maps are provided by the upsampling layer at the next-

coarsest resolution (the row below in Fig. 1), while some are

provided by a skip connection. The advantage of feature maps

from the upsampling layer is that they contain higher-level ab-

stractions, because they include information from more spatial

scales and more convolutions. The advantage of feature maps

from the skip connection is that they are truly at resolution r, not

merely upsampled to r. In other words, for the skip connection

the nominal and effective resolutions are both r, whereas for the

upsampling layer the effective resolution is coarser than r.

Feature maps from the skip connection and upsampling layer

are both passed through a convolutional layer, which combines

information from both (‘‘the best of both worlds’’).

Fully connected layers (sometimes called ‘‘dense’’; see

chapter 6 of Goodfellow et al. 2016) are designed for full-image

prediction, so they are not typically included in a U-net.

However, we include fully connected layers in our U-nets,

because the task is a combination of pixelwise prediction (a

vertical profile of radiative-heating rates) and full-image

prediction (scalar fluxes). See section 3 for more on the

output variables. Since fully connected layers are spatially

agnostic, feature maps are flattened into a vector before

they are passed to the fully connected layers (in Fig. 1, this

is a vector of length 4 3 1024 5 4096). Each feature in one

fully connected layer is a weighted sum of those in the

previous layer. Like convolutional layers, each fully con-

nected layer is followed by an activation function and pos-

sibly batch normalization.

Figure 1 shows a U-net with the traditional architecture

(Ronneberger et al. 2015), but we have adopted the U-net11
architecture (Zhou et al. 2020), shown in Fig. 2. The U-net11
architecture contains more skip connections, allowing features

from more than two scales to be combined at each level. For

example, the set of feature maps labeled ‘‘D’’ in Fig. 2 is pro-

duced by combining A, B, and the upsampled version of C.

Although these feature maps all have a nominal resolution of

18h (18 heights in the profile, or ;1/4 the resolution of the

predictors), their effective resolutions, due to upsampling, are,

respectively, 18h, 9h, and 4h. This ability to combine infor-

mation from many scales at once can allow the U-net11 to

make better predictions than the U-net (Zhou et al. 2020).

Before training, all weights (in the convolutional, fully

connected, and batch-normalization layers) are initialized to

random values; during training, they are adjusted to minimize

the loss function. Our particular loss function is discussed in

section 3c(2).

3. Data and methods

a. Data description

Like the RRTM, our U-net11 models assume horizontal

independence and thus treat each vertical column separately.

To create inputs (predictors) for the RRTM and U-net11
models, we use data from the Rapid Refresh (RAP) model

(Benjamin et al. 2016). The RAP is a nonhydrostatic, meso-

scale, operational NWP model, run every hour with 13-km

horizontal grid spacing and 51 vertical levels. We have ob-

tained RAP data from an internal NOAA archive in height

coordinates, running from 10 to 50 000m above ground level

(m AGL), with 20-m vertical spacing near the surface and

4000-m vertical spacing near the top.We extract 0-h analyses of

14 variables (Table 1 and Fig. 3) from 30 sites throughout the

Northern Hemisphere (Fig. 4), at every hour in the years 2017–

20. We are currently emulating a simplified version of the

RRTM, which assumes a climatological profile of trace gases

(O3, CO2, CH4, etc.) and does not consider aerosols or pre-

cipitation (see future work in section 7), which is why the

predictors do not include this information. Other than trace

gases, aerosols, and precipitation, the main controls on radia-

tive transfer are the solar zenith angle, albedo, profiles of at-

mospheric state variables (temperature and pressure), and

profiles of the three water species. This explains our choice of

predictors (Table 1).

To create desired outputs (‘‘targets’’ or ‘‘labels’’ in the ML

literature), we run the RRTM separately for each example,

where one ‘‘example’’ is one profile at one time. The output

variables are those required by an NWP model from a short-

wave RTM, namely, the heating-rate profile and the two flux

components: Fsfc
down and FTOA

up (see Fig. 3d).

b. Preprocessing

Before training U-net11models, we preprocess the data in

two ways. First, we split the data into training, validation, and

testing sets. We split the data differently for the two experi-

ments (section 4), as shown in Table 2. For each experiment,

the datasets are mutually independent—i.e., any pair of data-

sets contains different years and/or different sites. Also, there

TABLE 1. Description of predictor variables. ‘‘Vector’’ means

that the variable is defined at all 73 heights. If the cell does not

contain a check mark, the variable is a scalar. Downward LWP at

height z is LWC integrated from the top of the atmosphere down to

z, and upward LWP at height z is LWC integrated from the surface

up to z. The definitions of IWP and WVP are analogous.

Variable Units Vector?

Solar zenith angle 8
Surface albedo —

Temperature K ✓

Pressure Pa ✓

Specific humidity kg kg21
✓

Relative humidity — ✓

Liquid water content (LWC) kg m23
✓

Ice water content (LWC) kg m23
✓

Downward liquid water path (LWP) kg m22
✓

Downward ice water path (IWP) kg m22
✓

Downward water vapor path (WVP) kg m22
✓

Upward LWP kg m22
✓

Upward IWP kg m22
✓

Upward WVP kg m22
✓
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is a 1-week gap between each pair of consecutive datasets, to

eliminate temporal autocorrelation. Second, we normalize

predictor and target variables, using the methods listed in

Table 3. The procedure is described below for each scalar

predictor2 x; only step 1 is applied to the target variables.

Note that only the U-net11-training data (Table 2) are used

for scaling, i.e., to compute percentiles in step 1. This ensures

that no information from the isotonic-regression-training,

validation, or testing set is used to train the U-net11. If it

were, the four datasets would no longer be independent.

1) Uniformization. Transform x to a uniform distribution over

[0, 1], by converting each value to its percentile over all x

values in the U-net11-training set. Let the transformed

variable be x0.

2) z-score normalization. Transform x0 to a standard Gaussian

distribution (withmean of 0.0 and variance of 1.0), using the

inverse of the cumulative density function (CDF).

The purpose of normalizing predictors is to ensure that they

have equal variance, which prevents the U-net11 models

from unduly focusing on predictors with higher variance due to

physical units. For example, in our dataset, specific humidity

has a variance of 2.4 3 1025 kg2 kg22, while temperature has a

variance of 672.1K2. The z-score normalization is common

practice for neural networks (section 3.6.2 of Chollet, 2018;

Shanker et al. 1996), but the standard approach is to divide

each variable by its standard deviation in the raw data. We

use a different approach (uniformization followed by the in-

verse CDF) because the standard approach assumes that the

raw data follow aGaussian distribution, which is untrue for our

predictors.

The purpose of normalizing target variables is similar: to

ensure that they have equal ranges, so that one target variable

FIG. 2. Architecture of U-net11 with two fully connected layers. Each ‘‘downsampling’’ arrow corresponds to a

pooling layer followed by two convolutional layers with three-pixel filters, as in one row of the downsampling side in

Fig. 1. Each ‘‘upsampling’’ arrow corresponds to an upsampling layer followed by two convolutional layers with

three-pixel filters, as in one row of the upsampling side in Fig. 1. For each green box with multiple incoming arrows,

feature maps are combined by concatenation (i.e., stacking along the channel dimension), then convolution (with

three-pixel filters) to achieve the desired number of channels. For example, the set of feature maps labeled ‘‘D’’ is

produced by concatenating A, B, and the upsampled version of C—which yields 1024 channels—then applying a

convolutional layer that has 256 filters and therefore outputs 256 channels.

2 A scalar predictor may be zenith angle, albedo, or one vector

predictor at one height.
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cannot dominate the loss function. For example, in our dataset,

FTOA
up ranges from 0 to 993.3Wm22 with a median of

118.7Wm22, while Fsfc
down ranges from 0 to 1198.9Wm22

with a median of 322.1Wm22. Without normalization, errors

for Fsfc
down would generally be larger, causing Fsfc

down to have a

greater influence on the loss function. Unlike the predictors,

we apply only uniformization, not z-score normalization, to

the target variables. Normalizing to a distribution without

negative values allows us to use the rectified linear unit, which

prohibits negative values, as the activation function for the

output layers (supplemental Table S2).

Note that we normalize only two target variables: FTOA
up and

Fsfc
down. We do not normalize heating rate, for reasons discussed

in section 3c(2).

c. Knowledge-guided machine learning

We have devised three ways to make the U-net11
models knowledge-guided—i.e., to include physical rela-

tionships in the training—which is a key priority in ML ap-

plications to the geosciences (Reichstein et al. 2019; Gil

et al. 2019).

1) PHYSICALLY CONSISTENT AND SKILLFUL NET FLUX

The U-net11 models predict three flux components, but

they predict only Fsfc
down and FTOA

up independently, with the net-

flux predictions constrained by the following law:

F
net

5Fsfc
down 2FTOA

up ; (2)

FIG. 3. Predictor and target variables for one example: Santa Barbara, California, at 2200 UTC 16 Jan 2019.

(a)–(c) All but four predictor variables: pressure, relative humidity, surface albedo, and solar zenith angle.

(d) Target variables. Although the RRTM produces full profiles of downwelling and upwelling flux, the U-net11
models predict only the flux components required by an NWPmodel: Fsfc

down (the bottom value in the downwelling-

flux profile), FTOA
up (the top value in the upwelling-flux profile), and Fnet, defined as Fsfc

down 2FTOA
up .
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Fnet is included in an output neuron (in the last fully connected

layer, at the bottom of Fig. 2) and is therefore included in the

loss function. Equation (2) could have been easily satisfied by

postprocessing (i.e., computing Fnet outside the U-net11
models), but this would leave Fnet out of the loss function. As

discussed in section 5b, the postprocessing approach allowed

the models to make poor predictions of Fnet, while our ap-

proach forces predictions of all flux components to be both

physically consistent and skillful.

2) CUSTOM LOSS FUNCTION TO EMPHASIZE LARGE

HEATING RATES

We use a custom loss function:

J5
1

NH
�
N

i51
�
H

j51

max(r
ij
, r̂

ij
)(r

ij
2 r̂

ij
)2

1a
1

NM
�
N

i51
�
M

k51

(F
ik
2 F̂

ik
)
2
, (3)

where N is the number of examples, H 5 73 is the number of

heights per example, rij is the actual heating rate for the jth

height in the ith example, r̂ij is the corresponding prediction,M5
3 is the number of flux components, Fik is the actual value of the

kth flux component in the ith example, and F̂ ik is the corre-

sponding prediction.a is a coefficient thatwill be discussed later.

The first term in Eq. (3) is the dual-weighted mean squared

error (MSE) for heating rates, and the second term is the MSE

FIG. 4. Sites used for model development (training, validation, and testing). Purple sites are in the Arctic; green

sites are in the midlatitudes; and orange sites are in the tropics. (a) All sites. (b) Testing sites for experiment 1.

(c) Testing sites for experiment 2.

TABLE 2. Training, validation, and testing data for each experiment. ‘‘Nontropical’’ means both Arctic and midlatitude. ‘‘Assorted1’’

contains sites from all regions; ‘‘Assorted2’’ also contains sites from all regions that do not overlap with those in Assorted1. The validation

and testing sets are used to evaluate bias-corrected U-net11 models (with isotonic regression).

Dataset Years Sites No. of examples

Experiment 1

Training for U-net11 2019–20 Nontropical 1.50 million

Training for isotonic regression 2018, excluding last week Nontropical 0.89 million

Validation 2017, excluding last week Nontropical 0.42 million

Testing 2017, excluding last week Tropical 0.26 million

Experiment 2

Training for U-net11 2019–20 Assorted1 1.72 million

Training for isotonic regression 2018, excluding last week Assorted1 0.99 million

Validation 2017, excluding last week Assorted1 0.55 million

Testing 2017, excluding last week Assorted2 0.13 million
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for fluxes.Using the dual-weightedMSE for heating rates, rather

than the standard MSE, weights points with a large predicted or

actual heating rate more heavily. In early experiments (not

shown), we found that this is necessary to skillfully predict large

heating rates. Large heating rates are important in many

atmospheric regimes, including stratocumulus clouds and the

upper stratosphere. Shortwave radiation is absorbed by liquid

water at the top of a stratocumulus cloud, leading to diabatic

heating and a turbulent circulation that maintains the cloud; this

is why stratocumulus clouds tend to be long-lived (Morrison et al.

2012;Wood2012). In the upper stratosphere, shortwave radiation

is absorbed by ozone, leading to extremediabatic heating (Iacono

et al. 2008); this is why the temperature profile of the stratosphere

increases with height. However, large heating rates in the tro-

posphere are rare (Fig. 5d), making them difficult to predict

unless they are emphasized with a custom loss function such as

dual-weighted MSE. The flux components follow less skewed

distributions (Figs. 5a–c), so no custom loss function is needed

to make the U-net11models skillfully predict extreme fluxes.

The U-net11 models predict heating rates in raw physical

units (K day21), and values in our dataset range from 0 to

TABLE 3. Normalization of predictor and target variables for

U-net11 models.

Variable(s) Method

Predictor variables Transform to uniform distribution, then

z-scores

Fsfc
down and FTOA

up Transform to uniform distribution over

[0, 1]

Heating rate No normalization (leave in units

of K day21)

FIG. 5. Distributions of target variables over the full dataset (all sites from 2017 to 2020).
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42K day21, so the weight ranges from approximately 0 to 42.

Meanwhile, the U-net11 models predict flux components in

normalized units, ranging from 0 to 1. In early experiments (not

shown), we tried balancing the two terms by setting a $ 1 in

Eq. (3). However, we found that regardless of a, training is

effectively partitioned into two phases. During early training,

heating-rate predictions improve rapidly while flux predictions

improve slowly; during late training, heating-rate predictions

improve slowly while flux predictions improve rapidly. In other

words, theU-net11models learn to predict heating rates well,

then learn to predict fluxes well. Thus, for models shown in the

paper, we use a 5 1.

3) CUSTOM PREDICTORS TO ACCOUNT FOR NONLOCAL

EFFECTS

Our choice of predictors allows the U-net11 models to

consider vertically nonlocal effects, which occur when the

heating rate at height z is affected by predictors far away from

z. Specifically, we include height-integrated paths of the three

water species: downward and upward LWP, IWP, and WVP

(Table 1). The raw RAP data include only concentrations of

the three water species: LWC, IWC, and humidity. Height-

integrated paths are crucial in many scenarios—e.g., to predict

the heating-rate profile in a column with multilayer liquid

cloud, like that shown in Fig. 3. The top cloud layer attenuates a

lot of downwelling solar radiation, leading to large heating

rates in the top cloud layer (around 5.5 km AGL in Fig. 3; the

cloud layer itself is shown in Fig. 3b, and the resulting radiative

heating is shown in Fig. 3d). However, lower cloud layers do

not produce large heating rates, because at lower heights most

downwelling solar radiation has already been attenuated by

the top cloud layer (e.g., Turner et al. 2018). This is exemplified

in Fig. 3 for the lower cloud layer, stretching from 0 to 2.4 km

AGL. When trained with only concentrations and not paths,

the U-net11 models cannot represent these relationships,

which are typically vertically nonlocal because the cloud layers

are far apart (more than a few grid cells from each other).

d. Isotonic regression for bias correction

We bias-correct predictions from each U-net++ with iso-

tonic regression (Barlow and Brunk 1972), which is an ML

method commonly used to bias-correct other ML methods.

The ML method being corrected is called the ‘‘base model.’’

For each target variable y, isotonic regression creates a map-

ping of the following form:

y
i
/ y0i , (4)

where yi is the ith cutoff point for base-model predictions and y0i is
the bias-corrected value. For y values that fall between two cutoff

points, isotonic regression uses linear regression. For example, if a

base-model prediction falls halfway between yj and yk, the bias-

corrected prediction will fall halfway between y0j and y0k. During

training, the mapping is adjusted to minimizeMSE, subject to the

isotonic constraint: if yk. yj, then y
0
k . y0j. In other words, isotonic

regression cannot change the rank order of predictions.

Because isotonic regression is a univariate method (with one

input variable and one output variable), we apply isotonic re-

gression separately to heating rate at each height, Fsfc
down, and

FTOA
up . We do not apply isotonic regression to Fnet, so Fnet pre-

dictions from isotonic regression are computed outside themodel,

via Eq. (2). Thus, unlike for the U-net11 models, Fnet is not in-

cluded in the loss function for isotonic regression (which is MSE).

However, we have found that Fnet predictions are still better with

isotonic regression than without. In other words, bias-correcting

Fsfc
down and FTOA

up bias-corrects Fnet as a side effect.

We use separate training data (sites and times) for U-

net11 and isotonic regression, as shown in Table 2. If we

used the same training data, isotonic regression would learn

to bias correct the U-net11 models only for data that they

have already ‘‘seen,’’ for which the U-net11 predictions are

unrepresentatively good.

4. Hyperparameter experiments

A hyperparameter is a property of an ML model that, un-

like the weights (sometimes called ‘‘parameters’’), cannot be

adjusted by training. We conduct two experiments to find the

best U-net11 hyperparameters for emulating the shortwave

RRTM. In experiment 1, we train ML models (U-net11 and

isotonic regression) with data from nontropical sites in 2018–

20, then test with data from tropical sites in 2017 (Table 2).

This tests the ability of the ML models to generalize in both

space and time. It is crucial that we test the ability to gener-

alize in space, because although 30 sites are used for model

development3 (Fig. 4), an ML-based parameterization would

be applied to every site (horizontal grid location) in the NWP

model. Also, extreme differences between the training and

application data might be seen in other scenarios, such as

climate change (if an ML model remains in production for

long enough, it may be applied to a different climate than in

the training data) and rare events (the application data may

contain a weather pattern not found in the training data). In

experiment 2, we train ML models with data from ‘‘Assorted1’’

sites in 2018–20, then test with data from ‘‘Assorted2’’ sites in

2017 (Table 2). The difference here is that both the Assorted1

and Assorted2 sites include all three regions: Arctic, midlati-

tude, and tropical. Thus, although to some extent the testing

data for experiment 2 test the models’ ability to generalize in

space (to different sites), this test is less stringent than in ex-

periment 1 (to a completely different region). The goal of ex-

periment 2 is to create the best possible ML model for use as a

parameterization in NWP.We hypothesize that a model trained

with data from all three regions will perform better than one

trained with only nontropical data.

In both experiments we perform a grid search (section 11.4.3

ofGoodfellow et al. 2016) to optimize hyperparameters. A grid

3We have obtained RAP data from only 30 sites, because (i) the

native RAP-output files are large and stored on a tape archive,

which makes processing computationally slow; (ii) the 30 sites

chosen are important for other NOAA projects, so the data will be

reused; (iii) extracting millions of examples from 30 sites yields a

large sample size at each site, as opposed to extracting millions of

examples from thousands of sites. This allows us to robustly test the

models’ generalization ability to each site in the testing data.
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search involves four steps: 1) define the experimental hyper-

parameters and values to be attempted for each, 2) train a

model with every possible combination of values, 3) evaluate

all models on the validation data, 4) select the model that

performs best on validation data and evaluate it on testing

data. We choose three experimental hyperparameters and at-

tempt the values listed in Table 4: the number of fully con-

nected layers, dropout rate for fully connected layers, and L2

weight for convolutional layers. The number of fully connected

layers (dashed black arrows in Fig. 2) controls the complexity

of features used to predict flux components, with more layers

allowing for higher complexity. Although higher complexity

would ideally improve predictions, the number of weights in-

creases dramatically with the number of fully connected layers,

which can lead to overfitting. Meanwhile, dropout (Hinton

et al. 2012) and L2 are both regularization methods; regulari-

zation encourages a simpler model, which reduces overfitting.

The amount of regularization increases with both the dropout

rate and L2 weight [see section 4b of Lagerquist et al. (2020b)

for details].

U-net11 models have many hyperparameters, and it is

impossible to experiment with them all, due to combinatorial

explosion. For example, at a conservative estimate of 20 hy-

perparameters, if we attempted 5 values for each, we would

need to train 520 5 9.5 3 1013 U-net11 models. Training one

U-net11 takes approximately 192 core hours on graphics-

processing units (GPU) and 480 core hours on central pro-

cessing units (CPU), so training more than a few hundred to a

few thousand U-net11 models is infeasible. Some important

fixed (nonexperimental) hyperparameters are listed in sup-

plemental Tables S1 and S2, along with the value chosen for

each and a justification. This leaves the three experimental

hyperparameters listed in Table 4.

5. Model evaluation

a. Evaluation methods

For both experiments 1 and 2, we evaluate the selected

model overall (on the whole testing set) and in three regime-

based settings. First, we evaluate the model by cloud regime:

on profiles with no liquid cloud, single-layer liquid cloud, and

multilayer liquid cloud. For this purpose, a cloud layer is de-

fined as a contiguous set of heights with LWC . 0 gm23 and

total LWP $ 25 gm22. Clouds add immense complexity to

radiative transfer, because they both absorb and scatter radi-

ation, creating a discontinuity in the profile of extinction op-

tical depth. Thus, a model that performs well in cloud-free

situations is not guaranteed to perform well in cloudy situa-

tions. Also, radiative heating is a key process in the mainte-

nance of stratocumulus clouds, which makes it key for climate

prediction. Second, we evaluate the model by solar zenith an-

gle. The zenith angle determines the amount of incoming top-

of-atmosphere solar radiation, as well as its incidence angle,

which determines the amount of atmosphere through which

radiation must pass en route to the surface. A model that

performs well for intermediate zenith angles, may not perform

well when the sun is directly overhead (zenith angle of 08) or on
the horizon (908). Third, we evaluate the model by site.

Different sites around the globe have different properties not

accounted for in the partitioning by cloud regime and zenith

angle, such as temperature, albedo, and cloud type (e.g., stra-

tocumulus clouds are very common in the Arctic).

Wemake abundant use of the reliability curve and attributes

diagram. Although both graphics were initially developed for

classification (i.e., to evaluate probabilistic predictions of an

event), we have adapted them for regression (i.e., to evaluate

real-valued predictions). For classification, the reliability curve

plots predicted probability versus conditional event frequency

and answers the question, ‘‘For a given probability, what is the

expected event frequency?’’ For regression, the reliability

curve plots the predicted value versus conditional mean ob-

served value and answers the question, ‘‘For a given prediction,

what is the expected observation?’’ For both classification and

regression, a perfect reliability curve follows the x 5 y line

(diagonal gray line in Fig. 6a). Meanwhile, the attributes dia-

gram (Hsu and Murphy 1986) is a reliability curve with extra

reference lines: the no-resolution line (horizontal gray in

Fig. 6a), climatology line (vertical gray in Fig. 6a), and positive-

skill area (blue shading in Fig. 6a). For classification, the no-

resolution and climatology lines both correspond to the event

frequency in the dataset; for regression, these lines correspond

to the mean observation (in Fig. 6a, mean Fsfc
down) in the dataset.

For a model with no resolution, the reliability curve follows the

no-resolution line—i.e., the conditional mean observation is

the same for every prediction. For a climatological model (one

that always predicts the mean value), the reliability curve

consists of one point, at the intersection of the no-resolution

and climatology lines. Where the reliability curve passes

through the positive-skill area, the model has a lowerMSE (for

classification, MSE is called the Brier score) than a climato-

logical model. Last, the inset histograms show the distribution

for both the predictions and observations. In a perfect attri-

butes diagram, the reliability curve is perfect (follows the x5 y

line) and the two histograms are identical.

Both the reliability curve and attributes diagram are useful

for diagnosing conditional bias. For example, if a model has

positive bias for low predictions and negative bias for high

predictions, these biases may offset, making overall bias (on

the whole testing set) negligible. Thus, using the reliability

curve and attributes diagram fits our motif of conducting

regime-based evaluation, since averaging over the whole

testing set may obscure issues that occur in certain regimes.

For the scalar target variables (flux components), we plot

one attributes diagram for each (e.g., Figs. 6a-c). For the vector

target variable (heating rate), we plot one reliability curve for

TABLE 4. Experimental hyperparameters for U-net11 models.

The loss function is Eq. (3).

Hyperparameter Values attempted

Number of fully connected

layers

2, 3, 4, 5

Dropout rate for fully

connected layers

0.0, 0.1, 0.2, 0.3, 0.4, 0.5

L2 weight for convolutional

layers

1027.0, 1026.5, 1026.0, 1025.5, 1025.0,

1024.5, 1024.0, 1023.5, 1023.0
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each height (e.g., Figs. 6g-i), omitting the reference lines in the

attributes diagram. The reference lines would be different for

each of the 73 heights, and it is not feasible to show 73 sets of

reference lines.

b. Experiment 1

Results of the hyperparameter experiment, used to select

the preferred model, are relegated to the supplemental mate-

rial. The main conclusion to note here is that the U-net11
performs best when the dropout rate and L2 weight are small

(less regularization), which suggests that overfitting is not a

serious problem for emulating the shortwave RRTM. This is

surprising, as our experience with ML for atmospheric science

indicates that overfitting is a serious problem and aggressive

regularization is needed (e.g., Lagerquist et al. 2019, 2020b).

We suspect that overfitting is less problematic for our task

because it is a perfect-model experiment, where theMLmodel

is trained to emulate another model (the shortwave RRTM),

rather than to fit real-world observations, which have more

noise and uncertainty. Ultimately, we select the model with

three fully connected layers, a dropout rate of 0.1, and L2

weight of 1026.5. Results shown in the rest of this section, for

the selected model only, are based on testing data rather than

validation data.

Figure 6 shows the model’s performance on the whole test-

ing set (tropical sites in 2017). Themean absolute error (MAE)

skill score is defined as (MAEclimo 2MAEactual)/MAEclimo,

where MAEclimo is the MAE that would result from always

FIG. 6. Performance of selected model from experiment 1 on

testing data. (a)–(c) Attributes diagram for each flux component.

The orange curve is the reliability curve; the diagonal gray line is

the perfect-reliability line; the vertical gray line is the climatology

line; the horizontal gray line is the no-resolution line; the blue

shading is the positive-skill area, where MSE skill score. 0; and

the inset histograms show the distributions of predicted and ob-

served values. (d)–(f) Profiles of bias, MAE, andMAE skill score

for heating rate. (g) Reliability curve at each height for heating

rate. Each orange curve in (a)–(f) is themean over 1000 bootstrap

replicates. The 99% confidence interval is also plotted, but it is

narrower than the line and thus invisible.
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predicting the climatological mean, estimated here as themean

over the U-net11-training data. The definition of MSE skill

score is analogous. Both skill scores range from (2‘, 1]; the
optimal value is 1; and values . 0 signal an improvement over

climatology. Figures 6a–c show the attributes diagram for each

flux component; the reliability curves are nearly perfect, and

as shown by the inset histograms, the predictions and obser-

vations are similarly distributed. Figure 6d shows the bias

profile for heating rates; nearly all heights have an absolute

bias , 0.1K day21, which is considered a threshold for stable

integration into NWP (Iacono et al. 2008). Figure 6e shows the

MAE profile for heating rates, which has a similar shape but

with slightly larger values, because MAE includes both sys-

tematic error (bias) and random error. Both absolute bias and

MAE are largest in the upper stratosphere, specifically at

46 km. This is the height with the largest climatological mean

(32.2K day21 in the U-net11-training data), due to absorp-

tion of solar radiation by ozone. Thus, both the actual and

climatological models have a large MAE at 46 km, leading to

only a small dip in the MAE skill score (Fig. 6f). Figure 6g

shows the reliability curve for heating rate at each height; all

curves nearly follow the line of perfect reliability.

Figure 7 shows the model’s performance by cloud regime. In

the attributes diagram for F sfc
down (Fig. 7a), reliability is nearly

perfect for all three cloud regimes, except a general under-

prediction up to ;20Wm22 for no-cloud examples. For FTOA
up

(Fig. 7b), reliability is good for all three cloud regimes, except a

general underprediction up to;20Wm22 for single-layer cloud

and ;50Wm22 for multilayer cloud, as well as a large under-

prediction for single-layer cloud in the two lowest bins. In other

words, the lowest predicted FTOA
up values for single-layer cloud

tend to be far too low. For Fnet (Fig. 7c), reliability is nearly

perfect for all three cloud regimes, except a general over-

prediction up to ;20Wm22 for multilayer cloud. In the bias

profile for heating rate (Fig. 7d), examples with no cloud and

single-layer cloud have an absolute bias, 0.1K day21 except in

the upper stratosphere, as for the whole testing set (Fig. 6d).

However, for examples with multilayer cloud, absolute bias

slightly exceeds 0.1K day21 at a few heights in the midtropo-

sphere. Also, in the profiles of MAE and MAE skill score

(Figs. 7e,f), the worst values in the troposphere are for multi-

layer cloud in the middle to upper troposphere. This is because

(i) multilayer clouds lead to the most complex heating-rate

profiles, due to the nonlocal effects discussed in section 3c(3);

(ii) examples with multilayer cloud are rare (0.86% of U-net11-

training examples), and rare events are inherently hard to

predict. For all three cloud regimes, the reliability curves for

heating rate (Figs. 7g–i) are near the perfect line. However, the

reliability curves are jagged for multilayer cloud, due to small

sample size.

Supplemental Fig. S20 is analogous to Fig. 7, except for a U-

net11 that does not include Fnet in the loss function [i.e., one

that uses the postprocessing approachdiscussed in section 3c(1)].

For examples with liquid cloud, predictions of Fsfc
down (Fig. S20a)

and Fnet (Fig. S20c) are significantly worse with the post-

processing approach.

Figure 8 shows themodel’s performance by site. In attributes

diagrams for the flux components (Figs. 8a–c), reliability is

nearly perfect, except that at a few sites, small positive pre-

dictions of Fsfc
down and Fnet are up to ;20Wm22 too low. In the

error profiles for heating rate (Figs. 8d–f), all seven sites are

similar to the whole testing set (Figs. 6d–f), so there are no

apparent outliers. Figures 8g–i show the reliability curves for

heating rate at three randomly selected sites. Reliability is

nearly perfect, except in the lower troposphere at the Perdido

oil rig, where higher predictions are up to ;0.5K day21 too

low. This issue does not occur at the other four sites (not

shown), whose reliability curves look similar to those for

Bishop and Hilo.

Figure 9 shows themodel’s performance by zenith angle. For

the sake of brevity, we show results for 1-km heating rate

(lower troposphere), 10-km heating rate (upper troposphere in

the testing data, which contain only tropical sites), 46-km

heating rate (upper stratosphere; the height with the largest

climatological heating rate), and Fnet. Correlation is the

Pearson correlation between predictions and observations,

which ranges from [21, 1] and has an optimal value of 1. Kling–

Gupta efficiency (KGE; Gupta et al. 2009) ranges from (2‘,
1], and the optimal value of 1 occurs when the predictions and

observations have perfect correlation, equal means, and equal

variances. The unitless scores (left column of Fig. 9) show that

performance is worst at the extreme zenith angles, when the

sun is close to directly overhead or the horizon. However, ex-

cept correlation and KGE for 46-km heating rate, unitless

scores are close to their optimal values, even at local min-

ima. Meanwhile, scores with units (MAE, RMSE, and bias)

are shown in the right column of Fig. 9. These scores are

generally close to their optimum (0), except at zenith angles

below 208. At these zenith angles, the model has a negative

bias for heating rate through most of the troposphere (in-

cluding heights not shown) and negative bias for Fnet, caused

by a large negative bias for Fsfc
down and small negative bias for

FTOA
up (not shown). Zenith angles below 208 rarely occur in

the training data (nontropical sites only), so it is not sur-

prising that the model has difficulty in generalizing to these

scenarios.

c. Experiment 2

Again, results of the hyperparameter experiment are rele-

gated to the supplementalmaterial. Themain conclusion to note

here is the same as for experiment 1: the U-net11 performs

better with less regularization, which controls overfitting.

Because models in experiment 2 are trained with data from

all latitudes, this is the model that would be used in NWP.

Ultimately, we select the model with 4 fully connected

layers, a dropout rate of 0.0, and L2 weight of 10
27. Results

shown in the rest of this section, for the selected model only,

are based on testing data rather than validation data.

Figure 10 shows the model’s performance on the whole

testing set (Assorted2 sites in 2017). For each flux component,

the reliability is nearly perfect, as is the match between the

observed and predicted histograms (Figs. 10a–c). For heating

rate, all heights have an absolute bias� 0.1K day21, including

in the upper stratosphere (Fig. 10d). As for the tropical testing

data in experiment 1, there is a spike in MAE at 46 km

(Fig. 10e), due to absorption by ozone, but the corresponding
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dip inMAE skill score is small (Fig. 10f). In the reliability curve

for heating rate (Fig. 10g), all heights are nearly perfect, except

in the lower troposphere, where higher predictions are up to

;0.25K day21 too low.

Figure 11 shows the model’s performance by cloud regime.

For each flux component and each cloud regime, the reliability

is nearly perfect (Figs. 11a–c). For heating rate, all heights and

all cloud regimes have an absolute bias � 0.1K day21

(Fig. 11d), while values ofMAE (Fig. 11e) andMAE skill score

(Fig. 11f) are similar to the whole testing set. For all three cloud

regimes, the reliability curves for heating rate (Figs. 11g–i) are

nearly perfect, with two exceptions: jagged curves for multi-

layer cloud, due to small sample size, and the lower tropo-

sphere for single-layer cloud, where higher predictions are up

;0.5K day21 too low.

Figure 12 shows the model’s performance by site. For each

flux component and each site, the reliability is nearly perfect

(Figs. 12a–c), except an underprediction of ;50Wm22 at the

north pole for the lowest FTOA
up bin (Fig. 12b). In other words,

the lowest predicted FTOA
up values here tend to be 50Wm22 too

FIG. 7. Performance of selected model from experiment 1 on testing data, by cloud regime. (a)–(c) Attributes diagram (explained in the

caption of Fig. 6) for each flux component. The inset histograms and reference lines are based only on examples with multilayer cloud.

(d)–(f) Profiles of bias, MAE, and MAE skill score for heating rate. (g) Reliability curve at each height for heating rate, based only on

examples with no cloud. (h) As in (g), but for single-layer cloud. (i) As in (g), but for multilayer cloud. Each curve in (a)–(f) is the mean

over 1000 bootstrapped replicates, and the surrounding shaded area is the 99% confidence interval.
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low. By inspection (not shown), we have found that this un-

derprediction is associated with low albedos (, 0.7) at the

north pole, which occur during the ice-free part of the year.

Although themodel correctly predicts that a lower albedo (less

reflection from the surface) will lead to less upwelling radia-

tion, it exaggerates this effect. For heating rates, all heights and

sites have an absolute bias, 0.1K day21, except at 46 km at the

Perdido oil rig, where bias is ;20.11K day21 (Fig. 12d).

Profiles of MAE (Fig. 12e) and MAE skill score (Fig. 12f) are

similar to the whole testing set, except for MAE at 46 km,

where values are smaller at the Arctic sites (north pole and

Tiksi) and larger at the tropical sites (Perdido and Bishop).

This is because climatological 46-km heating rates are smaller

at the Arctic sites (average of 29.7K day21 over the testing

data) and larger at the tropical sites (36.3K day21). Reliability

for heating rate is nearly perfect at the three sites shown

(Fig. 12g–i), except in the lower troposphere at Perdido, where

higher predictions are up to ;0.5K day21 too low. This issue

FIG. 8. Performance of selectedmodel from experiment 1 on testing data, by site. (a)–(c)Attributes diagram (explained in the caption of

Fig. 6) for each flux component. In this case, the inset histograms and reference lines are based only on examples at Hilo, Hawaii. (d)–(f)

Profiles of bias, MAE, and MAE skill score for heating rate. (g) Reliability curve at each height for heating rate, at Bishop, Grenada.

(h) As in (g), but for Hilo, Hawaii. (i) As in (g), but for the Perdido oil rig. Each curve in (a)–(f) is the mean over 1000 bootstrapped

replicates, and the surrounding shaded area is the 99% confidence interval.
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also occurs for Perdido in experiment 1 (Fig. 8i). For the two

sites not shown, reliability at Bishop is nearly perfect (similar

to North Pole and Lamont), while reliability at Tiksi has a

similar issue to Perdido, except only at the lowest few heights

and with an underprediction up to only ;0.25K day21.

Figure 13 shows the model’s performance by zenith angle.

The unitless scores (left column) show that performance is

worst at the extreme zenith angles, but in general scores are

better than for experiment 1 (Fig. 9), including at the lowest

zenith angles. This is because the model from experiment 2 is

trained with more low zenith angles, due to the inclusion of

tropical sites. Meanwhile, scores with units (right column of

Fig. 13) are very close to their optimum (0), especially bias, at

all zenith angles. This contrasts starkly with the results for

experiment 1 (Fig. 9), where every target variable has sub-

stantial bias for zenith angles , 208.

d. Additional analyses

Supplemental section Ca presents a Kolmogorov–Smirnov

and bias-variance analysis for both selected models (from ex-

periments 1 and 2). The main conclusions are (i) the models

have more random variance than systematic bias; (ii) although

the difference between the predicted and observed distribu-

tions of heating rate are small, they are generally significant at

the 99% level (as determined by the Kolmogorov–Smirnov p

value), because the sample sizes are large. Supplemental

section Cb shows results on training, validation, and testing

data for both selected models. Although both models overfit to

some extent, results on the testing data are highly skillful, as

discussed in sections 5b and 5c. Also, the model from experi-

ment 1 overfits more, because it performsmore extreme spatial

generalization (from nontropical to tropical sites).

e. Comparison of selected models

Overall, the model from experiment 2 appears to outper-

form the model from experiment 1 on testing data, consistent

with our hypothesis. The comparison is not perfectly apples-to-

apples, because the two testing sets contain different collec-

tions of sites, but they have two sites in common, both in the

tropics: the Perdido oil rig and Bishop, Grenada. According to

the site-specific reliability curves for heating rate (cf. Figs. 8g–i

and 12g–i), there is no substantial difference between the two

models. According to the site-specific attributes diagrams for

flux components (cf. Figs. 8a–c and 12a–c), site-specific error

profiles for heating rates (cf. Figs. 8d–f and 12d–f), and results for

the lowest zenith angles (cf. Figs. 9 and 13)—seen primarily in

the tropics—themodel from experiment 2 is significantly better.

Supplemental section Cc compares the two models on a sec-

ond testing set, containing nontropical sites in 2017. The purpose

of this analysis is to achieve a fairer comparison, using the same

data. The model from experiment 2 performs better on the sec-

ond testing set as well, even though it was trained with only some

nontropical sites, while the model from experiment 1 was trained

with all nontropical sites. We suspect that training on tropical

sites allowed the model from experiment 2 to learn additional

relationships that improve its performance on nontropical sites.

At inference time, both models (including the U-net11 and

isotonic regression) can generate predictions for;500 000 profiles

in 1min, while the shortwave RRTM can process;50 profiles in

1min. Thus, the ML models are ;104 times faster than the

shortwave RRTM, which they emulate with impressive skill.

Last, supplemental section Cd compares the selected model

(U-net11) from experiment 1 to a traditional U-net and fully

connected neural network (FCNN), developed via similar hy-

perparameter searches. The U-net and U-net11 clearly and

significantly (at the 99% level) outperform the FCNN, dem-

onstrating the advantage of spatially aware layers (convolution

and pooling). However, differences between the U-net and

U-net11 are mixed, with the U-net performing better on some

target variables and the U-net11 performing better on others.

However, we believe that amajor advantage of theU-net11 is

superior performance on Fnet in profiles with multilayer cloud.

Fnet is arguably the single most important target variable (i.e.,

more important than Fsfc
down, F

TOA
up , or heating rate at any indi-

vidual height), and Fnet errors are highest in profiles with

multilayer cloud, where radiative transfer is most complicated.

Specifically, in profiles with multilayer cloud, the U-net11 im-

proves the absolute bias on Fnet by;15Wm22 compared to the

U-net, and the difference is statistically significant. Also, the U-

net11 significantly outperforms theU-net in predicting the other

two flux components, Fsfc
down and FTOA

up , with multilayer cloud. We

believe that this advantage of the U-net11 is due to more skip

connections better preserving high-resolution information, which

is crucial in profiles with multilayer cloud and cloud in general

(clouds create a discontinuity in the profile of extinction optical

depth, so their exact boundariesmatter). Sincewe do not train the

U-net11 with deep supervision [another modification to U-nets

proposed byZhou et al. (2020), where intermediate featuremaps,

not only the output, are included in the loss function], this ad-

vantage of the U-net11 is not a result of deep supervision.

6. Model interpretation

The permutation test measures the overall importance of each

predictor variable, averaged over all grid points (i.e., all heights

for vector predictors) and testing examples. There are four ver-

sions of the permutation test—forward single-pass, forward mul-

tipass, backward single-pass, and backward multipass—which

each handle correlated predictors differently. The backward

multipass test begins with all predictors permuted—i.e., randomly

shuffled so that values are assigned to the wrong examples—and

iteratively restores (puts back in the correct order) the most

important predictor still permuted, until all predictors have

been restored. The kth predictor to be restored is considered

the kth-most important. For more details on the permutation

test, see McGovern et al. (2019). We run the permutation test

with one of two loss functions—the dual-weighted MSE for

heating rates [first term in Eq. (3)] or standard MSE for flux

components [second term in Eq. (3)]—so that we can deter-

mine the most important predictors for each type of output.

Figure 14 shows results for the backward multipass test, and

supplemental Figs. S21–S23 show results for the other versions,

which are very similar. We run the permutation test for both

selected models, from experiments 1 and 2.

With the heating-rate-only loss function, results for the two

models (Figs. 14a,c) agree on the top four predictors: zenith
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FIG. 9. Performance of selected model from experiment 1 on testing

data, by solar zenith angle (08 means directly overhead, and 908 means

on the horizon). (a),(b) Scores without and with units, respectively, for

heating rate at 1000m AGL. (c),(d) As in (a) and (b), but for heating

rate at 10 000m AGL. (e),(f) As in (a) and (b), but for heating rate at
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angle, LWC, downward LWP, and relative humidity. In other

words, the most important factors for radiative heating are sun

angle, liquid water, and water vapor, with ice being much less

important—likely because the dual-weightedMSE emphasizes

large heating rates, which typically are not caused by ice clouds

(Turner et al. 2018).With the flux-only loss function, results for

the two models (Figs. 14b,d) agree on the top four predictors:

downward LWP, LWC, zenith angle, and surface albedo.

Surface albedo is especially important for FTOA
up , as higher-

albedo surfaces reflect more radiation back to space. Surface

albedo is much less important for heating rates (Figs. 14a,c),

because heating rates are measured at all 73 heights, which are

 
46 000m AGL. (g),(h) As in (a) and (b), but for net flux. In each box-

plot, the center line is the median; the ends are the 25th and 75th per-

centiles; and the whiskers are the 5th and 95th percentiles. Each curve

in (a)–(h) is the mean over 1000 bootstrapped replicates, and the sur-

rounding shaded area is the 99% confidence interval.

FIG. 10. Performance of selected model from experiment 2 on

testing data. Formatting is explained in the caption of Fig. 6, and

each panel here is analogous to the same-letter panel in Fig. 6.

The x-axis ranges in (d) and (e) are markedly smaller here than

in Fig. 6.
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generally far from the surface. All results discussed in this

paragraph are significant at the 99% level, as indicated by the

bold font in Fig. 14.

7. Summary and future work

We developed U-net11models, a type of deep learning, to

emulate the shortwave RRTM. The U-net11 architecture

contains more skip connections than the traditional U-net ar-

chitecture, which improved our flux predictions in profiles with

multilayer cloud, while the inclusion of physical constraints

improved both flux and heating-rate predictions for multilayer

cloud. We bias-corrected the U-net11 models with isotonic

regression, a simple ML method often used for this purpose.

We conducted two hyperparameter experiments to find the

best U-net11 configurations for predicting two output types: a

heating-rate profile and three flux components (Fsfc
down, F

TOA
up ,

and Fnet). In both experiments we found that the models per-

form best with minimal regularization, contrary to our prior

experience with ML in atmospheric science. This result may

FIG. 11. Performance of selected model from experiment 2 on testing data, by cloud regime. (a)–(c) In the attributes diagrams for flux

components, the inset histograms and reference lines are based only on examples with multilayer cloud. Formatting is explained in the

caption of Fig. 7, and each panel here is analogous to the same-letter panel in Fig. 7. The x-axis ranges in (d) and (e) are markedly smaller

here than in Fig. 7.
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generalize to other perfect-model experiments, where ML is

used to emulate another model rather than fit observations.

We performed two experiments, with sites split among

training and testing in differentways. In experiment 1, we trained

the models on nontropical sites and tested on tropical sites, with

the purpose of testing the models’ spatial-generalization ability

under extreme conditions (to a completely different region). In

experiment 2, we trained the models on assorted sites from all

regions and tested on a different set of assorted sites from all

regions, with the purpose of creating the best model possible for

use as a parameterization in NWP. The selected model from

experiment 1 showed impressive skill on the testing set (tropical

sites), but with four notable deficiencies. First, it has a large bias

and MAE for heating rate in the upper stratosphere, where ra-

diative heating is dominated by ozone absorption. Second, the

lowest FTOA
up predictions for examples with single-layer cloud

have a large negative bias, of several hundred watts per square

meter. Third, the heating-rate bias for multilayer cloud slightly

exceeds 0.1K day21 (considered a threshold for stable integra-

tion into NWP) in the midtroposphere. Fourth, at zenith angles

FIG. 12. Performance of selected model from experiment 2 on testing data, by site. (a)–(c) In the attributes diagrams for flux com-

ponents, the inset histograms and reference lines are based only on examples at Lamont,Oklahoma. Formatting is explained in the caption

of Fig. 8, and each panel here is analogous to the same-letter panel in Fig. 8. The x-axis ranges in (d) and (e) aremarkedly smaller here than

in Fig. 8.
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FIG. 13. Performance of selected model from experiment 2 on testing

data, by solar zenith angle. Formatting is explained in the caption of

Fig. 9, and each panel here is analogous to the same-letter panel

in Fig. 9.
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below 208 (seldom seen in the training data), the model has a

negative bias for the three flux components and for heating rates

throughout the troposphere. With the exception of large MAE

for heating rates in the upper stratosphere, none of these defi-

ciencies appear in the testing data for the selected model from

experiment 2. According to the permutation test for both

models, the most important predictors for heating rate (flux

components) are zenith angle, liquid water, and water vapor

(liquid water, zenith angle, and surface albedo).

The remainder of this section focuses on the model from

experiment 2, which outperforms the model from experiment

1. In addition to closely emulating the shortwave RRTM, this

model is;104 times faster than the shortwave RRTM. In terms

of heating rate, our performance is better than the emulator of

K10, which is a traditional (or fully connected) neural network.

Their neural network achieves a profile root mean squared

error (PRMSE; defined in K10) of 0.15K day21 (their Table 1),

versus our 0.056K day21 on testing data.4 In terms of FTOA
up

(K10 do not show results for the other flux components),

our bias on the whole testing set is 22.2Wm22, with bias

at individual testing sites ranging from 23.2 to 21.2Wm22.

FIG. 14.Results of backwardmultipass test on testing data for (a) bestmodel fromexperiment 1, with the heating-rate-

only loss function; (b) best model from experiment 1, with the flux-only loss function; (c) best model from experiment 2,

with the heating-rate-only loss function; and (d) best model from experiment 2, with the flux-only loss function. The

value for the bar labeled xj is the loss after restoring xj and all predictors in the bars above xj. The kth predictor to be

restored, and thus the kth-most important, is kth from the top. Orange error bars show the 99% confidence interval,

based on bootstrapping 1000 times. If variable xj is in boldface font, thismeans that xj is significantlymore important than

the variable below (at the 99% confidence level), based on a paired-bootstrapping test with 1000 replicates.

4 Even for the model from experiment 1, which is trained on

nontropical sites and tested on tropical sites, the testing PRMSE is

0.108K day21.
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The overall bias of K10’s emulator (their Fig. 2, top right) is also

negative, with zonal-mean bias ranging from approximately 23

to 11.25Wm22. Thus, our results for FTOA
up are comparable with

K10. However, the comparison is not apples-to-apples, because

K10 evaluate on data from different times and locations; they em-

ulate the RRTMG, rather than the RRTM; and they emulate the

full RRTMG, including aerosols and nonclimatological trace gases.

We attribute the success of ourmodels to four factors. The first

is the adoption of U-nets, which are specially designed to learn

from gridded data and make pixelwise predictions. The second is

the adoption of the U-net11 architecture, which outperforms

the traditional U-net architecture in predicting fluxes with mul-

tilayer cloud. The third factor is using isotonic regression for bias

correction, and the fourth is knowledge-guidedML.We achieved

knowledge-guided ML by incorporating a physical law [Eq. (2)]

into the U-net11 models to ensure physically consistent and

skillful Fnet predictions, developing a custom loss function [Eq.

(3)] to emphasize large heating rates, and including custom pre-

dictors to allow vertical nonlocality in heating-rate predictions,

which is especially important for examples with multilayer cloud.

We will continue this work along five lines. The first is de-

velopingmodels to emulate the full shortwaveRRTM, including

the effects of aerosols, precipitation, and nonclimatological

profiles of trace gases. Second, we will also emulate the long-

wave RRTM, using a similar framework. Third, we will make

the models grid-agnostic (insensitive to exact heights in the

profile), so that they can be applied to NWP models with dif-

ferent vertical grids. Fourth, we will experiment with other

neural-network architectures, such as the U-net 31 (Huang

et al. 2020), which contains ‘‘full-scale’’ skip connections, com-

bining data from all spatial resolutions at once, rather than just

neighboring resolutions as in the U-net11. Fifth, we will test

the new models (emulating the full shortwave and longwave

RRTM) online, i.e., inside anNWPmodel as parameterizations.

Since the models developed herein are orders of magnitude

faster than the RRTM, if they were integrated stably into NWP,

they could also be called at every atmospheric time step, which

should improve the overall accuracy of the NWPmodel and free

up computing time for other improvements to NWP.

Acknowledgments. We acknowledge Christina Kumler for

ideological input during this project, as well as exploratory

work during the preparation phase. This work was partially

supportedby theNOAAGlobal SystemsLaboratory,Cooperative

Institute for Research in the Atmosphere, and NOAA Award

NA19OAR4320073. Author Ebert-Uphoff’s work was partially

supported by NSF AI Institute Grant 2019758 and NSF Grant

1934668.

Data availability statement. Input data (predictors and tar-

gets from 2017 to 2020) are available upon request from the

authors, as well as the selected models (U-net11 and isotonic

regression) for both experiments 1 and 2. We used version 1.0.0

of Machine Learning for Radiative Transfer (ML4RT; doi:

10.5281/zenodo.4470077), a Python library managed by author

Lagerquist, to train, evaluate, and interpret allMLmodels (both

U-net11 and isotonic regression) in this work. Since U-net11
architecture is complicated, for each experiment we have

included a script that creates the architecture for the selected

U-net11. These can be found at scripts/make_best_architecture_

exp1.py and scripts/make_best_architecture_exp2.py, respec-

tively, in the Python library.

REFERENCES

Barlow, R., and H. Brunk, 1972: The isotonic regression problem

and its dual. J. Amer. Stat. Assoc., 67, 140–147, https://doi.org/

10.1080/01621459.1972.10481216.

Benjamin, S., and Coauthors, 2016: A North American hourly assim-

ilation and model forecast cycle: The Rapid Refresh. Mon. Wea.

Rev., 144, 1669–1694, https://doi.org/10.1175/MWR-D-15-0242.1.

Berthomier, L., and B. Pradel, 2021: Cloud cover nowcasting

with deep learning. Conf. on Artificial Intelligence for

Environmental Science, Virtual, Amer. Meteor. Soc., 12.9,

https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/

Paper/380983.

Beucler, T., M. Pritchard, S. Rasp, J. Ott, P. Baldi, and P. Gentine,

2021: Enforcing analytic constraints in neural networks emu-

lating physical systems. Phys. Rev. Lett., 126, 098302, https://

doi.org/10.1103/PhysRevLett.126.098302.

Bolton, T., and L. Zanna, 2019: Applications of deep learning to

ocean data inference and subgrid parameterization. J. Adv.

Model. Earth Syst., 11, 376–399, https://doi.org/10.1029/

2018MS001472.

Brenowitz, N., and C. Bretherton, 2018: Prognostic validation of a

neural network unified physics parameterization.Geophys. Res.

Lett., 45, 6289–6298, https://doi.org/10.1029/2018GL078510.

——,T.Beucler,M. Pritchard, andC. Bretherton, 2020: Interpreting

and stabilizing machine-learning parametrizations of convec-

tion. J. Atmos. Sci., 77, 4357–4375, https://doi.org/10.1175/JAS-

D-20-0082.1.

Chen, M., X. Shi, Y. Zhang, D. Wu, and M. Guizani, 2017: Deep

features learning for medical image analysis with convolu-

tional autoencoder neural network. IEEE Trans. Big Data, 7,

750–758, https://doi.org/10.1109/TBDATA.2017.2717439.

Chen, Y., L. Bruzzone, L. Jiang, and Q. Sun, 2021: ARU-net:

Reduction of atmospheric phase screen in SAR interferome-

try using attention-based deep residual U-net. IEEE Trans.

Geosci. Remote Sens., 59, 5780–5793, https://doi.org/10.1109/

TGRS.2020.3021765.

Chollet, F., 2018: Deep Learning with Python. Manning, 361.

——, and Coauthors, 2020: Keras. GitHub, https://github.com/

fchollet/keras.

Ebert-Uphoff, I., and K. Hilburn, 2020: Evaluation, tuning and

interpretation of neural networks for working with images in

meteorological applications. Bull. Amer. Meteor. Soc., 101,

E2149–E2170, https://doi.org/10.1175/BAMS-D-20-0097.1.

Felt, V., S. Samsi, and M. Veillette, 2021: A comprehensive

evaluation of deep neural network architectures for pre-

cipitation nowcasting. Conf. on Artificial Intelligence for

Environmental Science, Virtual, Amer. Meteor. Soc., 2.4,

https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/

Paper/383115.

Fukushima, K., 1980: Neocognitron: A self-organizing neural net-

work model for a mechanism of pattern recognition unaf-

fected by shift in position. Biol. Cybern., 36, 193–202, https://

doi.org/10.1007/BF00344251.

——, and S. Miyake, 1982: Neocognitron: A new algorithm for

pattern recognition tolerant of deformations and shifts in po-

sition. Pattern Recognit., 15, 455–469, https://doi.org/10.1016/

0031-3203(82)90024-3.

1694 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 38

Unauthenticated | Downloaded 06/15/23 08:37 PM UTC

doi:10.5281/zenodo.4470077
doi:10.5281/zenodo.4470077
https://doi.org/10.1080/01621459.1972.10481216
https://doi.org/10.1080/01621459.1972.10481216
https://doi.org/10.1175/MWR-D-15-0242.1
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/380983
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/380983
https://doi.org/10.1103/PhysRevLett.126.098302
https://doi.org/10.1103/PhysRevLett.126.098302
https://doi.org/10.1029/2018MS001472
https://doi.org/10.1029/2018MS001472
https://doi.org/10.1029/2018GL078510
https://doi.org/10.1175/JAS-D-20-0082.1
https://doi.org/10.1175/JAS-D-20-0082.1
https://doi.org/10.1109/TBDATA.2017.2717439
https://doi.org/10.1109/TGRS.2020.3021765
https://doi.org/10.1109/TGRS.2020.3021765
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1175/BAMS-D-20-0097.1
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/383115
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/383115
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
https://doi.org/10.1016/0031-3203(82)90024-3
https://doi.org/10.1016/0031-3203(82)90024-3


Gagne, D., S. Haupt, D. Nychka, and G. Thompson, 2019:

Interpretable deep learning for spatial analysis of severe

hailstorms. Mon. Wea. Rev., 147, 2827–2845, https://doi.org/

10.1175/MWR-D-18-0316.1.

Gentine, P., M. Pritchard, S. Rasp, G. Reinaudi, and G. Yacalis,

2018: Could machine learning break the convection parame-

terization deadlock? Geophys. Res. Lett., 45, 5742–5751,

https://doi.org/10.1029/2018GL078202.

Gil, Y., and Coauthors, 2019: Intelligent systems for geosciences:

An essential research agenda. Commun. ACM, 62, 76–84,

https://doi.org/10.1145/3192335.

Goodfellow, I., Y. Bengio, and A. Courville, 2016:Deep Learning.

MIT Press, 781 pp., https://www.deeplearningbook.org.

Gupta, H., H. Kling, K. Yilmax, and G. Martinez, 2009:

Decomposition of the mean squared error and NSE per-

formance criteria: Implications for improving hydrological

modelling. J. Hydrol., 377, 80–91, https://doi.org/10.1016/

j.jhydrol.2009.08.003.

Hayatbini,N.,A.Badrinath,W.Chapman,L.D.Monache, F.Cannon,

P. Gibson, A. Subramanian, and F. Ralph, 2021: A two-stage

deep learning framework to improve short range rainfall pre-

diction.Conf. onArtificial Intelligence for Environmental Science,

Virtual, Amer. Meteor. Soc., 819, https://ams.confex.com/ams/

101ANNUAL/meetingapp.cgi/Paper/381949.

Hinton, G., N. Srivastava, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, 2012: Improving neural networks by pre-

venting co-adaptation of feature detectors. arXiv, https://

arxiv.org/abs/1207.0580.

Hsu, W., and A. Murphy, 1986: The attributes diagram: A geomet-

rical framework for assessing the quality of probability fore-

casts. Int. J. Forecasting, 2, 285–293, https://doi.org/10.1016/

0169-2070(86)90048-8.

Huang, H., and Coauthors, 2020: UNet 31: A full-scale connected

UNet for medical image segmentation. Int. Conf. on Acoustics,

Speech, and Signal Processing, Barcelona, Spain, IEEE, https://

doi.org/10.1109/ICASSP40776.2020.9053405.

Iacono,M.,E.Mlawer, S. Clough, and J.Morcrette, 2000: Impact of an

improved longwave radiation model, RRTM, on the energy

budget and thermodynamic properties of theNCARCommunity

Climate Model, CCM3. J. Geophys. Res., 105, 14 873–14 890,

https://doi.org/10.1029/2000JD900091.

——,——, J. Delamere, S. Clough, J. Morcrette, and Y.Hou, 2005:

Application of the Shortwave Radiative Transfer Model,

RRTMG_SW, to the National Center for Atmospheric Research

and National Centers for Environmental Prediction general cir-

culation models. Atmospheric Radiation Measurement Science

TeamMeeting, Daytona Beach, FL, ARM, https://www.arm.gov/

publications/proceedings/conf15/extended_abs/iacono_mj.pdf.

——, J. Delamere, E.Mlawer,M. Shephard, S. Clough, andW. Collins,

2008: Radiative forcing by long-lived greenhouse gases:

Calculations with theAER radiative transfermodels. J.Geophys.

Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

Krasnopolsky, V., 2020: Using machine learning for model physics:

An overview. arXiv, https://arxiv.org/abs/2002.00416.

——,M. Fox-Rabinovitz, Y. Hou, S. Lord, andA. Belochitski, 2010:

Accurate and fast neural network emulations of model radia-

tion for the NCEP coupled Climate Forecast System: Climate

simulations and seasonal predictions. Mon. Wea. Rev., 138,

1822–1842, https://doi.org/10.1175/2009MWR3149.1.

Kumler-Bonfanti, C., J. Stewart, D. Hall, and M. Govett, 2020:

Tropical and extratropical cyclone detection using deep

learning. J. Appl. Meteor. Climatol., 59, 1971–1985, https://

doi.org/10.1175/JAMC-D-20-0117.1.

Kurth, T., and Coauthors, 2018: Exascale deep learning for cli-

mate analytics. Int. Conf. for High Performance Computing,

Networking, Storage, andAnalysis, Dallas, TX, IEEE, https://

doi.org/10.1109/SC.2018.00054.

Lagerquist, R., A. McGovern, and D. Gagne, 2019: Deep learning

for spatially explicit prediction of synoptic-scale fronts. Wea.

Forecasting, 34, 1137–1160, https://doi.org/10.1175/WAF-D-

18-0183.1.

——, J. Allen, and A. McGovern, 2020a: Climatology and vari-

ability of warm and cold fronts over North America from 1979

to 2018. J. Climate, 33, 6531–6554, https://doi.org/10.1175/

JCLI-D-19-0680.1.

——, A. McGovern, C. Homeyer, D. Gagne, and T. Smith, 2020b:

Deep learning on three-dimensional multiscale data for next-

hour tornado prediction. Mon. Wea. Rev., 148, 2837–2861,

https://doi.org/10.1175/MWR-D-19-0372.1.

Long, J., E. Shelhamer, and T. Darrell, 2015: Fully convolutional

networks for semantic segmentation. Conf. on Computer

Vision and Pattern Recognition, Boston, MA, IEEE, https://

doi.org/10.1109/CVPR.2015.7298965.

McGovern, A., R. Lagerquist, D. Gagne, G. Jergensen, K. Elmore,

C. Homeyer, and T. Smith, 2019: Making the black box more

transparent: Understanding the physical implications of ma-

chine learning. Bull. Amer. Meteor. Soc., 100, 2175–2199,

https://doi.org/10.1175/BAMS-D-18-0195.1.

Mlawer, E., and D. Turner, 2016: Spectral radiation measure-

ments and analysis in the ARM Program. The Atmospheric

Radiation Measurement Program: The First 20 Years,

Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://

doi.org/10.1175/AMSMONOGRAPHS-D-15-0027.1.

——, S. Taubman, P. Brown, M. Iacono, and S. Clough, 1997:

Radiative transfer for inhomogeneous atmospheres: RRTM, a

validated correlated-k model for the longwave. J. Geophys.

Res., 102, 16 663–16 682, https://doi.org/10.1029/97JD00237.

Morrison, H., G. deBoer, G. Feingold, J. Harrington,M. Shupe, and

K. Sulia, 2012: Resilience of persistent Arctic mixed-phase

clouds.Nat. Geosci., 5, 11–17, https://doi.org/10.1038/ngeo1332.

Pincus, R., and B. Stevens, 2013: Paths to accuracy for radiation

parameterizations in atmospheric models. J. Adv. Model.

Earth Syst., 5, 225–233, https://doi.org/10.1002/jame.20027.

Racah, E., C. Beckham,T.Maharaj, S. Kahou, Prabhat, andC. Pal, 2017:

ExtremeWeather: A large-scale climate dataset for semi-supervised

detection, localization, and understanding of extreme weather

events. Advances in Neural Information Processing Systems,

LongBeach,CA,NeurIPS, https://proceedings.neurips.cc/paper/

2017/hash/519c84155964659375821f7ca576f095-Abstract.html.

Reichstein, M., G. Camps-Balls, B. Stevens, M. Jung, J. Denzler,

and N. Carvalhais, 2019: Deep learning and process under-

standing for data-driven Earth system science. Nature, 566,

195–204, https://doi.org/10.1038/s41586-019-0912-1.

Ronneberger, O., P. Fischer, and T. Brox, 2015: U-net: Convolutional

networks for biomedical image segmentation. Int. Conf. on

Medical Image Computing and Computer-assisted Intervention,

Munich, Germany, Technical University of Munich, https://

doi.org/10.1007/978-3-319-24574-4_28.

Sadeghi, M., P. Nguyen, K. Hsu, and S. Sorooshian, 2020:

Improving near real-time precipitation estimation using a

U-net convolutional neural network and geographical in-

formation. Environ. Modell. Software, 134, 104856, https://

doi.org/10.1016/j.envsoft.2020.104856.

Sha, Y., D. Gagne, G.West, and R. Stull, 2020a: Deep-learning-based

gridded downscaling of surface meteorological variables in

complex terrain. Part I: Daily maximum and minimum 2-m

OCTOBER 2021 LAGERQU I S T ET AL . 1695

Unauthenticated | Downloaded 06/15/23 08:37 PM UTC

https://doi.org/10.1175/MWR-D-18-0316.1
https://doi.org/10.1175/MWR-D-18-0316.1
https://doi.org/10.1029/2018GL078202
https://doi.org/10.1145/3192335
https://www.deeplearningbook.org
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/381949
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/381949
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1207.0580
https://doi.org/10.1016/0169-2070(86)90048-8
https://doi.org/10.1016/0169-2070(86)90048-8
https://doi.org/10.1109/ICASSP40776.2020.9053405
https://doi.org/10.1109/ICASSP40776.2020.9053405
https://doi.org/10.1029/2000JD900091
https://www.arm.gov/publications/proceedings/conf15/extended_abs/iacono_mj.pdf
https://www.arm.gov/publications/proceedings/conf15/extended_abs/iacono_mj.pdf
https://doi.org/10.1029/2008JD009944
https://arxiv.org/abs/2002.00416
https://doi.org/10.1175/2009MWR3149.1
https://doi.org/10.1175/JAMC-D-20-0117.1
https://doi.org/10.1175/JAMC-D-20-0117.1
https://doi.org/10.1109/SC.2018.00054
https://doi.org/10.1109/SC.2018.00054
https://doi.org/10.1175/WAF-D-18-0183.1
https://doi.org/10.1175/WAF-D-18-0183.1
https://doi.org/10.1175/JCLI-D-19-0680.1
https://doi.org/10.1175/JCLI-D-19-0680.1
https://doi.org/10.1175/MWR-D-19-0372.1
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1175/BAMS-D-18-0195.1
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0027.1
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0027.1
https://doi.org/10.1029/97JD00237
https://doi.org/10.1038/ngeo1332
https://doi.org/10.1002/jame.20027
https://proceedings.neurips.cc/paper/2017/hash/519c84155964659375821f7ca576f095-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/519c84155964659375821f7ca576f095-Abstract.html
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.envsoft.2020.104856
https://doi.org/10.1016/j.envsoft.2020.104856


temperature. J. Appl.Meteor. Climatol., 59, 2057–2073, https://

doi.org/10.1175/JAMC-D-20-0057.1.

——, ——, ——, and ——, 2020b: Deep-learning-based gridded

downscaling of surface meteorological variables in com-

plex terrain. Part II: Daily precipitation. J. Appl.Meteor. Climatol.,

59, 2075–2092, https://doi.org/10.1175/JAMC-D-20-0058.1.

Shanker, M., M. Hu, and M. Hung, 1996: Effect of data standard-

ization on neural network training. Omega, 24, 385–397,

https://doi.org/10.1016/0305-0483(96)00010-2.

Stamnes, K., S. Tsay, W. Wiscombe, and K. Jayaweera, 1988:

Numerically stable algorithm for discrete-ordinate-method radi-

ative transfer in multiple scattering and emitting layered media.

Appl. Opt., 27, 2502–2509, https://doi.org/10.1364/AO.27.002502.

Stewart, J., C. Kumler, D. Hall, and M. Govett, 2020: Deep learning

approach for the detection of areas likely for convection initia-

tion. Conf. on Artificial Intelligence for Environmental Science,

Boston, MA, Amer. Meteor. Soc., 4.5, https://ams.confex.com/

ams/2020Annual/meetingapp.cgi/Paper/365670.

Stone, P., 1978: Constraints on dynamical transports of energy on a

spherical planet. Dyn. Atmos. Oceans, 2, 123–139, https://

doi.org/10.1016/0377-0265(78)90006-4.

Turner, D. D., and Coauthors, 2004: The QME AERI LBLRTM:

A closure experiment for downwelling high spectral resolution

infrared radiance. J. Atmos. Sci., 61, 2657–2675, https://

doi.org/10.1175/JAS3300.1.

——, M. Shupe, and A. Zwink, 2018: Characteristic atmospheric

radiative heating rate profiles in Arctic clouds as observed at

Barrow, Alaska. J. Appl. Meteor. Climatol., 57, 953–968,

https://doi.org/10.1175/JAMC-D-17-0252.1.

Wallace, J., and P. Hobbs, 2006: Atmospheric Science: An

Introductory Survey. Vol. 2. Elsevier, 483 pp.

Wang, L., K. Scott, L. Xu, and D. Clausi, 2016: Sea ice concen-

tration estimation during melt from dual-pol SAR scenes us-

ing deep convolutional neural networks: A case study. IEEE

Trans. Geosci. Remote Sens., 54, 4524–4533, https://doi.org/
10.1109/TGRS.2016.2543660.

Wimmers, A., C. Velden, and J. Cossuth, 2019: Using deep learning

to estimate tropical cyclone intensity from satellite passive

microwave imagery. Mon. Wea. Rev., 147, 2261–2282, https://

doi.org/10.1175/MWR-D-18-0391.1.

Wood, R., 2012: Stratocumulus clouds.Mon. Wea. Rev., 140, 2373–

2423, https://doi.org/10.1175/MWR-D-11-00121.1.

Zhou, Z., M. Siddiquee, N. Tajbakhsh, and J. Liang, 2020:

Unet11: Redesigning skip connections to exploit multiscale

features in image segmentation. IEEE Trans. Med. Imaging,

39, 1856–1867, https://doi.org/10.1109/TMI.2019.2959609.

1696 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 38

Unauthenticated | Downloaded 06/15/23 08:37 PM UTC

https://doi.org/10.1175/JAMC-D-20-0057.1
https://doi.org/10.1175/JAMC-D-20-0057.1
https://doi.org/10.1175/JAMC-D-20-0058.1
https://doi.org/10.1016/0305-0483(96)00010-2
https://doi.org/10.1364/AO.27.002502
https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/365670
https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/365670
https://doi.org/10.1016/0377-0265(78)90006-4
https://doi.org/10.1016/0377-0265(78)90006-4
https://doi.org/10.1175/JAS3300.1
https://doi.org/10.1175/JAS3300.1
https://doi.org/10.1175/JAMC-D-17-0252.1
https://doi.org/10.1109/TGRS.2016.2543660
https://doi.org/10.1109/TGRS.2016.2543660
https://doi.org/10.1175/MWR-D-18-0391.1
https://doi.org/10.1175/MWR-D-18-0391.1
https://doi.org/10.1175/MWR-D-11-00121.1
https://doi.org/10.1109/TMI.2019.2959609

