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ABSTRACT: This paper describes the development of U-net++ models, a type of neural network that performs deep
learning, to emulate the shortwave Rapid Radiative Transfer Model (RRTM). The goal is to emulate the RRTM accurately
in a small fraction of the computing time, creating a U-net+ + that could be used as a parameterization in numerical weather
prediction (NWP). Target variables are surface downwelling flux, top-of-atmosphere upwelling flux (FLTF?A), net flux, and a
profile of radiative-heating rates. We have devised several ways to make the U-net+ + models knowledge-guided, recently
identified as a key priority in machine learning (ML) applications to the geosciences. We conduct two experiments to find
the best U-net+ + configurations. In experiment 1, we train on nontropical sites and test on tropical sites, to assess extreme
spatial generalization. In experiment 2, we train on sites from all regions and test on different sites from all regions, with the
goal of creating the best possible model for use in NWP. The selected model from experiment 1 shows impressive skill on the
tropical testing sites, except four notable deficiencies: large bias and error for heating rate in the upper stratosphere, un-
reliable F’UTPOA for profiles with single-layer liquid cloud, large heating-rate bias in the midtroposphere for profiles with
multilayer liquid cloud, and negative bias at low zenith angles for all flux components and tropospheric heating rates. The
selected model from experiment 2 corrects all but the first deficiency, and both models run ~10* times faster than the
RRTM. Our code is available publicly.
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1. Introduction When radiation propagates through the atmosphere, heating
(cooling) occurs in areas of radiative-flux convergence (diver-
gence). Most radiative-transfer models (RTM) assume hori-
zontal independence, i.e., that radiation is transferred only in

the vertical dimension. In this case, radiative transfer is gov-

Radiation is a key component of the global energy budget.
In the shortwave part of the spectrum (mostly solar radiation,
with wavelengths < 4 pum), incoming radiation is much
greater in the tropics than at the poles. This imbalance, which

is due to Earth—sun geometry, sets up a meridional gradient in
absorbed shortwave radiation that drives the global circula-
tion [sections 4.6 and 10.1.1 of Wallace and Hobbs (2006)].
Surface albedo has a secondary effect on absorbed shortwave
radiation: at high latitudes the surface is often covered by
snow and ice, which increases albedo and causes less short-
wave radiation to be absorbed. This enhances the meridional
gradient in absorbed shortwave radiation. In the longwave part
of the spectrum (mostly terrestrial radiation, with wavelengths
= 4 um), there is also an albedo effect: areas with high al-
bedo, typically at high latitude, are colder and emit less
longwave radiation. In terms of net radiation (absorbed
shortwave minus emitted longwave), the two albedo effects
approximately cancel out. Thus, in a globally and annually
averaged sense, the meridional distribution of net radia-
tion is similar to that of absorbed shortwave radiation
(Stone 1978).
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erned by the following equation:
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where g is the gravitational constant (~9.81 ms™?), cp is the
specific heat of dry air (1004Tkg 'K™1), Ap is the thickness
of a layer in pressure coordinates (Pa), AFye = AFgown — AFyp
is the net flux into the layer (W m~2), and d7/dt is the resulting
heating rate (K s~ 1). Radiative transfer is extremely important
in numerical weather prediction (NWP) and climate models.
However, because radiative transfer is a subgrid-scale process,
it must be parameterized—i.e., estimated outside the dynamical
core by a separate RTM, rather than explicitly resolved.
Radiative transfer is inherently complex, due to the spectral
(wavelength-dependent) nature of gaseous absorption, as well
as changes in the refractive index and shape of particles acting
to scatter and absorb radiation. The most accurate RTMs are
line-by-line models, which explicitly simulate gaseous absorp-
tion in each spectral band (Turner et al. 2004; Mlawer and
Turner 2016). However, the radiative properties of clouds and
aerosols are much smoother in spectral space than those of
gaseous molecules. Thus, simpler scattering models can be
used for clouds and aerosols (e.g., Stamnes et al. 1988).
Nonetheless, both line-by-line and scattering models are
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extremely computationally expensive, so cannot be used as pa-
rameterizations in NWP. There is an inherent trade-off between
computational cost and accuracy, and the goal is typically to
reduce computational cost by orders of magnitude without a
large reduction in accuracy.

Perhaps the most common approach is correlated-k models,
like the Rapid Radiative Transfer Model (RRTM; Mlawer et al.
1997), which emulates line-by-line models but is many orders of
magnitude faster. When implemented as a parameterization, an
RTM must provide three variables to the parent NWP model for
both the shortwave and longwave spectra: a vertical profile of

radiative-heating rates, surface downwelling flux (F3€, ), and
top-of-atmosphere upwelling flux (F;°*). For the RRTM, F, ,

and FA are accurate within ~1 W m ™2, while heating rates are
accurate within ~0.1 K day ™' (Tacono et al. 2008). The longwave
RRTM has been used in NWP since the early 2000s (Iacono
et al. 2000), and the shortwave RRTM since the mid-2000s
(Iacono et al. 2005). Although the RRTM is much faster than
line-by-line models, it is still too slow for operational NWP. The
RRTMG (RRTM for global climate models; Pincus and Stevens
2013) makes additional simplifications and is approximately
twice as fast as the RRTM, but it is still too slow to call at every
atmospheric time step in NWP. Thus, while other parameteri-
zations (microphysics, boundary layer, etc.) are called at every
time step, the RRTMG is called less often, which makes the
NWP model less accurate. Also, even when called less often, the
RRTMG still accounts for ~50% of the computation of
the overall NWP model (Krasnopolsky 2020).

Due to these issues, some groups have used neural networks
(part II of Goodfellow et al. 2016), a type of machine learning
(ML), to emulate RTMs (Krasnopolsky 2020, and references
therein). Neural networks are also popular for emulating other
atmospheric processes, especially subgrid-scale convection in
NWP models (Gentine et al. 2018; Brenowitz and Bretherton
2018; Brenowitz et al. 2020; Krasnopolsky 2020; Beucler et al.
2021). Because neural networks can theoretically approximate a
function of arbitrary complexity, they are often called ‘‘universal
function-approximators.” Although neural networks are often
slow to train, at inference time (when applying a trained neural
network to new data), they are much faster than process-based
RTMs, even the RRTMG. Neural networks often contain many
layers with many weights in each layer, allowing them to rep-
resent important features at various levels of abstraction, which
they ultimately transform into predictions. However, each
weight is one degree of freedom and neural networks often
contain millions of weights, which makes them prone to over-
fitting. Also, ML is typically poor at extrapolating to conditions
outside those seen in the training data. This diminishes the
trustworthiness of ML, which is a key requirement for tran-
sitioning ML to operational products such as NWP (Gil
et al. 2019).

We have developed neural networks to emulate shortwave
radiative transfer, with three main characteristics that make
our work unique. First, we use U-net++ models (Zhou et al.
2020), as opposed to the fully connected networks [sometimes
called “dense” or “‘feed-forward”’; see chapter 6 of Goodfellow
et al. (2016)] used in previous work. U-net++ models are a
type of deep learning, which can exploit spatial patterns in
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gridded data to make better predictions. Second, we have built
physical constraints and vertical nonlocality into the U-net++
models, allowing them to handle nonadjacent cloud layers and
better extrapolate to different conditions (e.g., from nontrop-
ical to tropical sites). Third, we train U-net++ models to
emulate the RRTM, instead of the less accurate RRTMG used
in previous work (Krasnopolsky et al. 2010, henceforth K10;
Krasnopolsky 2020). Although line-by-line models are the most
accurate, they are only slightly more accurate than the RRTM
(Tacono et al. 2008) and many orders of magnitude slower, so
emulating line-by-line models would vastly increase the time
required to create training data for the U-net+ + models.

The rest of this paper is organized as follows. Section 2
describes the inner workings of a U-net++, section 3 de-
scribes the input data and methods used to train the U-net++
models, section 4 describes experiments to find the best
U-net++ configuration (hyperparameters), sections 5 and 6
evaluate and interpret the selected U-net++ models, and
section 7 concludes.

2. Background on U-net+ +

This section focuses mainly on traditional U-nets, extending
the discussion to U-net+ + at the end. We use the Keras library
for Python (Chollet et al. 2020) to implement all U-net++
models, and our code is freely available on the internet (see
data availability statement).

U-nets are a specialized type of convolutional neural net-
work (CNN; Fukushima 1980; Fukushima and Miyake 1982).
CNNs are a deep-learning method (section 1.1.4 of Chollet
2018) designed to exploit spatial patterns in gridded data,
which they achieve via convolution and pooling, spatial op-
erations defined later in this section. CNNs have become
popular tools in atmospheric science (Wang et al. 2016; Racah
et al. 2017; Kurth et al. 2018; Bolton and Zanna 2019; Gagne
et al. 2019; McGovern et al. 2019; Wimmers et al. 2019;
Lagerquist et al. 2019; Ebert-Uphoff and Hilburn 2020;
Lagerquist et al. 2020a,b). U-nets (Ronneberger et al. 2015)
retain all the advantages of CNNs but are designed for pix-
elwise prediction'—i.e., to make a prediction at every grid
point. CNNs are typically used for full-image prediction—i.e.,
to make one prediction based on the full grid. There are
several U-net applications to atmospheric science in the
refereed literature (Chen et al. 2021; Kumler-Bonfanti et al.
2020; Sadeghi et al. 2020; Sha et al. 2020a,b), and we are aware
of several other atmospheric scientists currently adopting
U-nets (Stewart et al. 2020; Berthomier and Pradel 2021; Felt
et al. 2021; Hayatbini et al. 2021).

As shown in Fig. 1, a U-net contains four types of specialized
components: convolutional layers, pooling (downsampling)
layers, upsampling layers, and skip connections. The left side of
the U-shape is the downsampling side, where spatial resolution

! U-nets are not the only type of CNN designed for pixelwise
prediction. Other examples, in the encoder-decoder family along
with U-nets, include convolutional autoencoders (Chen et al. 2017)
and fully convolutional networks (Long et al. 2015).
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FIG. 1. Architecture of traditional U-net with two fully connected layers. In each green box, “h’” and “‘c’’ are the
number of heights and channels (feature maps), respectively. The convolutional layer included with each up-
sampling layer (upward purple arrow), in addition to filling in spatial information, reduces the number of channels.
For example, in the set of feature maps labeled “A,” 256 channels come from the skip connection to the left and 512
channels come from the upsampling layer below. Thus, the convolutional layer included with this upsampling layer
must reduce 768 channels to 512, which it achieves by having 512 filters. The shallowest layer is the convolutional
layer at the top left, and the deepest is the convolutional layer at the top right. The top-left set of feature maps
contains predictors: 14 variables at 73 heights. Although two predictor variables (albedo and zenith angle) are
scalars, they are repeated over the 73 heights to create dummy grids, which are more easily input to the U-net. The
outputs (predictions) are a length-73 grid of radiative-heating rates (top right) and three scalar fluxes (bottom).

decreases with depth, and the right side is the upsampling side,
where resolution increases with depth. The convolutional layers
detect spatial features, and the other components allow con-
volutional layers to detect features at various spatial resolutions,
which is important due to the multiscale nature of atmospheric
phenomena. Inputs to the first convolutional layer (top-left
green box in Fig. 1) consist of raw predictors (here, physical
variables like temperature and pressure), while inputs to all
other layers consist of feature maps, which are transformed
versions of the raw predictors. As the spatial resolution de-
creases, the number of feature maps (“channels”) typically in-
creases, to offset the loss of spatial information. Convolution is
both a spatial and multivariate transformation, so the feature
maps encode spatial patterns that include all predictor variables.
Most CNN applications involve data with two spatial dimen-
sions (2D), for which the inner workings of a convolutional layer
are illustrated in supplemental Fig. S1 of Lagerquist et al.
(2020b). For 1D data like those used in the current work, see our
online supplemental Fig. S1 (an animation). In general, a con-
volutional layer is followed by an activation function and pos-
sibly batch normalization (supplemental Table S2).

Each pooling layer downsamples the feature maps to a lower
resolution (larger grid spacing), using either a maximum or
mean filter. On the downsampling side of the U-net (left side of

Fig. 1), feature maps at deeper layers contain higher-level
abstractions, because they contain information from a wider
variety of spatial scales and have passed through more con-
volutions. For 2D data, the inner workings of a pooling layer
are illustrated in supplemental Fig. S2 of Lagerquist et al.
(2020b). For 1D data, see our supplemental Fig. S2 (an
animation).

Each upsampling layer upsamples the feature maps to a
higher resolution, using an interpolation method such as
nearest neighbor or linear. In this work we use nearest neigh-
bor. However, the choice of interpolation method is unim-
portant: upsampling always consists of interpolation followed
by convolution, because interpolation cannot adequately re-
construct high-resolution information from low-resolution in-
formation. On the upsampling side of the U-net (right side of
Fig. 1), while spatial resolution increases the number of chan-
nels decreases, terminating in the number of output channels.
In this work there is one output channel (radiative-heating
rate, as discussed in section 3). For 1D data, the inner workings
of an upsampling layer are shown in supplemental Fig. S3 (an
animation).

Skip connections preserve high-resolution information from
the downsampling side of the U-net and carry it to the
upsampling side, as shown in Fig. 1. Without skip connections,
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the U-net would simply perform downsampling followed by
upsampling, which is a lossy operation. In other words, up-
sampling cannot fully recover the high-resolution information
lost during downsampling. On the upsampling side of the
U-net, at each spatial resolution r (each row in Fig. 1), some
feature maps are provided by the upsampling layer at the next-
coarsest resolution (the row below in Fig. 1), while some are
provided by a skip connection. The advantage of feature maps
from the upsampling layer is that they contain higher-level ab-
stractions, because they include information from more spatial
scales and more convolutions. The advantage of feature maps
from the skip connection is that they are truly at resolution r, not
merely upsampled to 7. In other words, for the skip connection
the nominal and effective resolutions are both r, whereas for the
upsampling layer the effective resolution is coarser than r.
Feature maps from the skip connection and upsampling layer
are both passed through a convolutional layer, which combines
information from both (“the best of both worlds”).

Fully connected layers (sometimes called ‘“dense”; see
chapter 6 of Goodfellow et al. 2016) are designed for full-image
prediction, so they are not typically included in a U-net.
However, we include fully connected layers in our U-nets,
because the task is a combination of pixelwise prediction (a
vertical profile of radiative-heating rates) and full-image
prediction (scalar fluxes). See section 3 for more on the
output variables. Since fully connected layers are spatially
agnostic, feature maps are flattened into a vector before
they are passed to the fully connected layers (in Fig. 1, this
is a vector of length 4 X 1024 = 4096). Each feature in one
fully connected layer is a weighted sum of those in the
previous layer. Like convolutional layers, each fully con-
nected layer is followed by an activation function and pos-
sibly batch normalization.

Figure 1 shows a U-net with the traditional architecture
(Ronneberger et al. 2015), but we have adopted the U-net++
architecture (Zhou et al. 2020), shown in Fig. 2. The U-net++
architecture contains more skip connections, allowing features
from more than two scales to be combined at each level. For
example, the set of feature maps labeled “D”’ in Fig. 2 is pro-
duced by combining A, B, and the upsampled version of C.
Although these feature maps all have a nominal resolution of
18h (18 heights in the profile, or ~1/4 the resolution of the
predictors), their effective resolutions, due to upsampling, are,
respectively, 18k, 9k, and 4h. This ability to combine infor-
mation from many scales at once can allow the U-net++ to
make better predictions than the U-net (Zhou et al. 2020).

Before training, all weights (in the convolutional, fully
connected, and batch-normalization layers) are initialized to
random values; during training, they are adjusted to minimize
the loss function. Our particular loss function is discussed in
section 3c(2).

3. Data and methods
a. Data description

Like the RRTM, our U-net++ models assume horizontal
independence and thus treat each vertical column separately.
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TABLE 1. Description of predictor variables. “Vector” means
that the variable is defined at all 73 heights. If the cell does not
contain a check mark, the variable is a scalar. Downward LWP at
height z is LWC integrated from the top of the atmosphere down to
z,and upward LWP at height z is LWC integrated from the surface
up to z. The definitions of IWP and WVP are analogous.

Variable Units Vector?

Solar zenith angle °

Surface albedo —

Temperature K v
Pressure Pa v
Specific humidity kg kg ! v
Relative humidity — v
Liquid water content (LWC) kgm™? v
Ice water content (LWC) kgm™? v
Downward liquid water path (LWP) kg m~? v
Downward ice water path (IWP) kgm 2 v
Downward water vapor path (WVP) kgm 2 v
Upward LWP kg m 2 v
Upward IWP kg m 2 v
Upward WVP kg m ™2 v

To create inputs (predictors) for the RRTM and U-net++
models, we use data from the Rapid Refresh (RAP) model
(Benjamin et al. 2016). The RAP is a nonhydrostatic, meso-
scale, operational NWP model, run every hour with 13-km
horizontal grid spacing and 51 vertical levels. We have ob-
tained RAP data from an internal NOAA archive in height
coordinates, running from 10 to 50 000 m above ground level
(m AGL), with 20-m vertical spacing near the surface and
4000-m vertical spacing near the top. We extract 0-h analyses of
14 variables (Table 1 and Fig. 3) from 30 sites throughout the
Northern Hemisphere (Fig. 4), at every hour in the years 2017—
20. We are currently emulating a simplified version of the
RRTM, which assumes a climatological profile of trace gases
(03, CO,, CHy, etc.) and does not consider aerosols or pre-
cipitation (see future work in section 7), which is why the
predictors do not include this information. Other than trace
gases, aerosols, and precipitation, the main controls on radia-
tive transfer are the solar zenith angle, albedo, profiles of at-
mospheric state variables (temperature and pressure), and
profiles of the three water species. This explains our choice of
predictors (Table 1).

To create desired outputs (“‘targets” or “labels” in the ML
literature), we run the RRTM separately for each example,
where one “‘example” is one profile at one time. The output
variables are those required by an NWP model from a short-
wave RTM, namely, the heating-rate profile and the two flux
components: Fy;,, and Fi°* (see Fig. 3d).

down

b. Preprocessing

Before training U-net+ + models, we preprocess the data in
two ways. First, we split the data into training, validation, and
testing sets. We split the data differently for the two experi-
ments (section 4), as shown in Table 2. For each experiment,
the datasets are mutually independent—i.e., any pair of data-
sets contains different years and/or different sites. Also, there
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FIG. 2. Architecture of U-net+ + with two fully connected layers. Each ‘““‘downsampling” arrow corresponds to a
pooling layer followed by two convolutional layers with three-pixel filters, as in one row of the downsampling side in
Fig. 1. Each “‘upsampling” arrow corresponds to an upsampling layer followed by two convolutional layers with
three-pixel filters, as in one row of the upsampling side in Fig. 1. For each green box with multiple incoming arrows,
feature maps are combined by concatenation (i.e., stacking along the channel dimension), then convolution (with
three-pixel filters) to achieve the desired number of channels. For example, the set of feature maps labeled “D” is
produced by concatenating A, B, and the upsampled version of C—which yields 1024 channels—then applying a
convolutional layer that has 256 filters and therefore outputs 256 channels.

is a 1-week gap between each pair of consecutive datasets, to
eliminate temporal autocorrelation. Second, we normalize
predictor and target variables, using the methods listed in
Table 3. The procedure is described below for each scalar
predictor? x; only step 1 is applied to the target variables.
Note that only the U-net++-training data (Table 2) are used
for scaling, i.e., to compute percentiles in step 1. This ensures
that no information from the isotonic-regression-training,
validation, or testing set is used to train the U-net++. If it
were, the four datasets would no longer be independent.

1) Uniformization. Transform x to a uniform distribution over
[0, 1], by converting each value to its percentile over all x
values in the U-net+ +-training set. Let the transformed
variable be x'.

2 A scalar predictor may be zenith angle, albedo, or one vector
predictor at one height.

2) z-score normalization. Transform x’ to a standard Gaussian
distribution (with mean of 0.0 and variance of 1.0), using the
inverse of the cumulative density function (CDF).

The purpose of normalizing predictors is to ensure that they
have equal variance, which prevents the U-net++ models
from unduly focusing on predictors with higher variance due to
physical units. For example, in our dataset, specific humidity
has a variance of 2.4 X 10 kg?kg 2, while temperature has a
variance of 672.1 K% The z-score normalization is common
practice for neural networks (section 3.6.2 of Chollet, 2018;
Shanker et al. 1996), but the standard approach is to divide
each variable by its standard deviation in the raw data. We
use a different approach (uniformization followed by the in-
verse CDF) because the standard approach assumes that the
raw data follow a Gaussian distribution, which is untrue for our
predictors.

The purpose of normalizing target variables is similar: to
ensure that they have equal ranges, so that one target variable
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FIG. 3. Predictor and target variables for one example: Santa Barbara, California, at 2200 UTC 16 Jan 2019.
(a)-(c) All but four predictor variables: pressure, relative humidity, surface albedo, and solar zenith angle.
(d) Target variables. Although the RRTM produces full profiles of downwelling and upwelling flux, the U-net++

models predict only the flux components required by an NWP model:
flux profile), F7O* (the top value in the upwelling-flux profile), and Fy.,, defined as

cannot dominate the loss function. For example, in our dataset,
FTOA ranges from 0 to 993.3Wm 2 with a median of
118.7Wm 2, while F} . ranges from 0 to 1198.9Wm >
with a median of 322.1 W m 2. Without normalization, errors
for F5  would generally be larger, causing Fi<  to have a
greater influence on the loss function. Unlike the predictors,
we apply only uniformization, not z-score normalization, to
the target variables. Normalizing to a distribution without
negative values allows us to use the rectified linear unit, which
prohibits negative values, as the activation function for the
output layers (supplemental Table S2).

Note that we normalize only two target variables: FLT[?A and
F3k . We do not normalize heating rate, for reasons discussed

in section 3c(2).

Fcfc

e (the bottom value in the downwelling-

sfc TOA
F down —F .

c. Knowledge-guided machine learning

We have devised three ways to make the U-net++
models knowledge-guided—i.e., to include physical rela-
tionships in the training—which is a key priority in ML ap-
plications to the geosciences (Reichstein et al. 2019; Gil
et al. 2019).

1) PHYSICALLY CONSISTENT AND SKILLFUL NET FLUX

The U-net++ models predict three flux components, but
they predict only F3j,, and F;2* independently, with the net-

down

flux predictions constrained by the following law:

— stc

down

F, _ FTOA.

@
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(c) Testing sites for experiment 2.

Fyet is included in an output neuron (in the last fully connected
layer, at the bottom of Fig. 2) and is therefore included in the
loss function. Equation (2) could have been easily satisfied by
postprocessing (i.e., computing F,. outside the U-net++
models), but this would leave F,, out of the loss function. As
discussed in section 5b, the postprocessing approach allowed
the models to make poor predictions of F,e, while our ap-
proach forces predictions of all flux components to be both
physically consistent and skillful.

2) CUSTOM LOSS FUNCTION TO EMPHASIZE LARGE
HEATING RATES

We use a custom loss function:

1 N M -
+aWZZ(F,'k_F,'k)’ (3)

where N is the number of examples, H = 73 is the number of
heights per example, r;; is the actual heating rate for the jth
height in the i example, 7;; is the corresponding prediction, M =
3 is the number of flux components, Fj; is the actual value of the
kth flux component in the ith example, and F i« 1s the corre-
sponding prediction. « is a coefficient that will be discussed later.

The first term in Eq. (3) is the dual-weighted mean squared
error (MSE) for heating rates, and the second term is the MSE

TABLE 2. Training, validation, and testing data for each experiment. ‘“‘Nontropical’’ means both Arctic and midlatitude. ““Assorted1”
contains sites from all regions; ““Assorted2” also contains sites from all regions that do not overlap with those in Assortedl. The validation
and testing sets are used to evaluate bias-corrected U-net++ models (with isotonic regression).

Dataset Years Sites No. of examples

Experiment 1

Training for U-net++ 2019-20 Nontropical 1.50 million

Training for isotonic regression 2018, excluding last week Nontropical 0.89 million

Validation 2017, excluding last week Nontropical 0.42 million

Testing 2017, excluding last week Tropical 0.26 million
Experiment 2

Training for U-net++ 2019-20 Assorted1 1.72 million

Training for isotonic regression 2018, excluding last week Assortedl 0.99 million

Validation 2017, excluding last week Assorted1 0.55 million

Testing 2017, excluding last week Assorted2 0.13 million
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TABLE 3. Normalization of predictor and target variables for
U-net++ models.

Variable(s) Method
Predictor variables Transform to uniform distribution, then
z-scores
Fsfe and FUT}?A Transform to uniform distribution over
[0,1]
Heating rate No normalization (leave in units
of K day™ 1)

for fluxes. Using the dual-weighted MSE for heating rates, rather
than the standard MSE, weights points with a large predicted or
actual heating rate more heavily. In early experiments (not
shown), we found that this is necessary to skillfully predict large
heating rates. Large heating rates are important in many
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atmospheric regimes, including stratocumulus clouds and the
upper stratosphere. Shortwave radiation is absorbed by liquid
water at the top of a stratocumulus cloud, leading to diabatic
heating and a turbulent circulation that maintains the cloud; this
is why stratocumulus clouds tend to be long-lived (Morrison et al.
2012; Wood 2012). In the upper stratosphere, shortwave radiation
is absorbed by ozone, leading to extreme diabatic heating (Iacono
et al. 2008); this is why the temperature profile of the stratosphere
increases with height. However, large heating rates in the tro-
posphere are rare (Fig. 5d), making them difficult to predict
unless they are emphasized with a custom loss function such as
dual-weighted MSE. The flux components follow less skewed
distributions (Figs. Sa—c), so no custom loss function is needed
to make the U-net++ models skillfully predict extreme fluxes.

The U-net++ models predict heating rates in raw physical
units (K day™!), and values in our dataset range from 0 to
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FIG. 5. Distributions of target variables over the full dataset (all sites from 2017 to 2020).
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42K day !, so the weight ranges from approximately 0 to 42.
Meanwhile, the U-net++ models predict flux components in
normalized units, ranging from 0 to 1. In early experiments (not
shown), we tried balancing the two terms by setting « = 1 in
Eq. (3). However, we found that regardless of «, training is
effectively partitioned into two phases. During early training,
heating-rate predictions improve rapidly while flux predictions
improve slowly; during late training, heating-rate predictions
improve slowly while flux predictions improve rapidly. In other
words, the U-net+ + models learn to predict heating rates well,
then learn to predict fluxes well. Thus, for models shown in the
paper, we use @ = 1.

3) CUSTOM PREDICTORS TO ACCOUNT FOR NONLOCAL

EFFECTS

Our choice of predictors allows the U-net++ models to
consider vertically nonlocal effects, which occur when the
heating rate at height z is affected by predictors far away from
z. Specifically, we include height-integrated paths of the three
water species: downward and upward LWP, IWP, and WVP
(Table 1). The raw RAP data include only concentrations of
the three water species: LWC, IWC, and humidity. Height-
integrated paths are crucial in many scenarios—e.g., to predict
the heating-rate profile in a column with multilayer liquid
cloud, like that shown in Fig. 3. The top cloud layer attenuates a
lot of downwelling solar radiation, leading to large heating
rates in the top cloud layer (around 5.5km AGL in Fig. 3; the
cloud layer itself is shown in Fig. 3b, and the resulting radiative
heating is shown in Fig. 3d). However, lower cloud layers do
not produce large heating rates, because at lower heights most
downwelling solar radiation has already been attenuated by
the top cloud layer (e.g., Turner et al. 2018). This is exemplified
in Fig. 3 for the lower cloud layer, stretching from 0 to 2.4km
AGL. When trained with only concentrations and not paths,
the U-net++ models cannot represent these relationships,
which are typically vertically nonlocal because the cloud layers
are far apart (more than a few grid cells from each other).

d. Isotonic regression for bias correction

We bias-correct predictions from each U-net++ with iso-
tonic regression (Barlow and Brunk 1972), which is an ML
method commonly used to bias-correct other ML methods.
The ML method being corrected is called the “‘base model.”
For each target variable y, isotonic regression creates a map-
ping of the following form:

Vi ™ Vis )

where y; is the ith cutoff point for base-model predictions and y; is
the bias-corrected value. For y values that fall between two cutoff
points, isotonic regression uses linear regression. For example, if a
base-model prediction falls halfway between y; and yy, the bias-
corrected prediction will fall halfway between y; and y;. During
training, the mapping is adjusted to minimize MSE, subject to the
isotonic constraint: if y, > y;, then y; > y’. In other words, isotonic
regression cannot change the rank order of predictions.

Because isotonic regression is a univariate method (with one
input variable and one output variable), we apply isotonic re-
gression separately to heating rate at each height, F3<_, and

down>

LAGERQUIST ET AL.

1681

FiP*. We do not apply isotonic regression to Frer, SO Foer pre-
dictions from isotonic regression are computed outside the model,
via Eq. (2). Thus, unlike for the U-net++ models, F, is not in-
cluded in the loss function for isotonic regression (which is MSE).
However, we have found that F,,, predictions are still better with
isotonic regression than without. In other words, bias-correcting
Fiyn and FiOA bias-corrects Fr as a side effect.

We use separate training data (sites and times) for U-
net++ and isotonic regression, as shown in Table 2. If we
used the same training data, isotonic regression would learn
to bias correct the U-net++ models only for data that they
have already “seen,” for which the U-net++ predictions are
unrepresentatively good.

4. Hyperparameter experiments

A hyperparameter is a property of an ML model that, un-
like the weights (sometimes called “‘parameters’’), cannot be
adjusted by training. We conduct two experiments to find the
best U-net++ hyperparameters for emulating the shortwave
RRTM. In experiment 1, we train ML models (U-net+ + and
isotonic regression) with data from nontropical sites in 2018—
20, then test with data from tropical sites in 2017 (Table 2).
This tests the ability of the ML models to generalize in both
space and time. It is crucial that we test the ability to gener-
alize in space, because although 30 sites are used for model
development® (Fig. 4), an ML-based parameterization would
be applied to every site (horizontal grid location) in the NWP
model. Also, extreme differences between the training and
application data might be seen in other scenarios, such as
climate change (if an ML model remains in production for
long enough, it may be applied to a different climate than in
the training data) and rare events (the application data may
contain a weather pattern not found in the training data). In
experiment 2, we train ML models with data from ““Assorted1”
sites in 2018-20, then test with data from ““Assorted2” sites in
2017 (Table 2). The difference here is that both the Assortedl
and Assorted? sites include all three regions: Arctic, midlati-
tude, and tropical. Thus, although to some extent the testing
data for experiment 2 test the models’ ability to generalize in
space (to different sites), this test is less stringent than in ex-
periment 1 (to a completely different region). The goal of ex-
periment 2 is to create the best possible ML model for use as a
parameterization in NWP. We hypothesize that a model trained
with data from all three regions will perform better than one
trained with only nontropical data.

In both experiments we perform a grid search (section 11.4.3
of Goodfellow et al. 2016) to optimize hyperparameters. A grid

3 We have obtained RAP data from only 30 sites, because (i) the
native RAP-output files are large and stored on a tape archive,
which makes processing computationally slow; (ii) the 30 sites
chosen are important for other NOAA projects, so the data will be
reused; (iii) extracting millions of examples from 30 sites yields a
large sample size at each site, as opposed to extracting millions of
examples from thousands of sites. This allows us to robustly test the
models’ generalization ability to each site in the testing data.
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search involves four steps: 1) define the experimental hyper-
parameters and values to be attempted for each, 2) train a
model with every possible combination of values, 3) evaluate
all models on the validation data, 4) select the model that
performs best on validation data and evaluate it on testing
data. We choose three experimental hyperparameters and at-
tempt the values listed in Table 4: the number of fully con-
nected layers, dropout rate for fully connected layers, and L,
weight for convolutional layers. The number of fully connected
layers (dashed black arrows in Fig. 2) controls the complexity
of features used to predict flux components, with more layers
allowing for higher complexity. Although higher complexity
would ideally improve predictions, the number of weights in-
creases dramatically with the number of fully connected layers,
which can lead to overfitting. Meanwhile, dropout (Hinton
et al. 2012) and L, are both regularization methods; regulari-
zation encourages a simpler model, which reduces overfitting.
The amount of regularization increases with both the dropout
rate and L, weight [see section 4b of Lagerquist et al. (2020b)
for details].

U-net++ models have many hyperparameters, and it is
impossible to experiment with them all, due to combinatorial
explosion. For example, at a conservative estimate of 20 hy-
perparameters, if we attempted 5 values for each, we would
need to train 5°° = 9.5 X 10" U-net++ models. Training one
U-net++ takes approximately 192 core hours on graphics-
processing units (GPU) and 480 core hours on central pro-
cessing units (CPU), so training more than a few hundred to a
few thousand U-net++ models is infeasible. Some important
fixed (nonexperimental) hyperparameters are listed in sup-
plemental Tables S1 and S2, along with the value chosen for
each and a justification. This leaves the three experimental
hyperparameters listed in Table 4.

5. Model evaluation
a. Evaluation methods

For both experiments 1 and 2, we evaluate the selected
model overall (on the whole testing set) and in three regime-
based settings. First, we evaluate the model by cloud regime:
on profiles with no liquid cloud, single-layer liquid cloud, and
multilayer liquid cloud. For this purpose, a cloud layer is de-
fined as a contiguous set of heights with LWC > 0gm ™ and
total LWP = 25gm ™2 Clouds add immense complexity to
radiative transfer, because they both absorb and scatter radi-
ation, creating a discontinuity in the profile of extinction op-
tical depth. Thus, a model that performs well in cloud-free
situations is not guaranteed to perform well in cloudy situa-
tions. Also, radiative heating is a key process in the mainte-
nance of stratocumulus clouds, which makes it key for climate
prediction. Second, we evaluate the model by solar zenith an-
gle. The zenith angle determines the amount of incoming top-
of-atmosphere solar radiation, as well as its incidence angle,
which determines the amount of atmosphere through which
radiation must pass en route to the surface. A model that
performs well for intermediate zenith angles, may not perform
well when the sun is directly overhead (zenith angle of 0°) or on
the horizon (90°). Third, we evaluate the model by site.
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TABLE 4. Experimental hyperparameters for U-net++ models.
The loss function is Eq. (3).

Hyperparameter Values attempted

2,3,4,5

Number of fully connected
layers

Dropout rate for fully
connected layers

L, weight for convolutional
layers

0.0,0.1,0.2,0.3,0.4, 0.5

1077.0 1076.5 1076.0 1075.5 1075,0
107’4.5 107’41) 107’3.5 107’30 ’

Different sites around the globe have different properties not
accounted for in the partitioning by cloud regime and zenith
angle, such as temperature, albedo, and cloud type (e.g., stra-
tocumulus clouds are very common in the Arctic).

We make abundant use of the reliability curve and attributes
diagram. Although both graphics were initially developed for
classification (i.e., to evaluate probabilistic predictions of an
event), we have adapted them for regression (i.e., to evaluate
real-valued predictions). For classification, the reliability curve
plots predicted probability versus conditional event frequency
and answers the question, “For a given probability, what is the
expected event frequency?” For regression, the reliability
curve plots the predicted value versus conditional mean ob-
served value and answers the question, “For a given prediction,
what is the expected observation?”’ For both classification and
regression, a perfect reliability curve follows the x = y line
(diagonal gray line in Fig. 6a). Meanwhile, the attributes dia-
gram (Hsu and Murphy 1986) is a reliability curve with extra
reference lines: the no-resolution line (horizontal gray in
Fig. 6a), climatology line (vertical gray in Fig. 6a), and positive-
skill area (blue shading in Fig. 6a). For classification, the no-
resolution and climatology lines both correspond to the event
frequency in the dataset; for regression, these lines correspond
to the mean observation (in Fig. 6a, mean F5<_ ) in the dataset.
For a model with no resolution, the reliability curve follows the
no-resolution line—i.e., the conditional mean observation is
the same for every prediction. For a climatological model (one
that always predicts the mean value), the reliability curve
consists of one point, at the intersection of the no-resolution
and climatology lines. Where the reliability curve passes
through the positive-skill area, the model has a lower MSE (for
classification, MSE is called the Brier score) than a climato-
logical model. Last, the inset histograms show the distribution
for both the predictions and observations. In a perfect attri-
butes diagram, the reliability curve is perfect (follows the x = y
line) and the two histograms are identical.

Both the reliability curve and attributes diagram are useful
for diagnosing conditional bias. For example, if a model has
positive bias for low predictions and negative bias for high
predictions, these biases may offset, making overall bias (on
the whole testing set) negligible. Thus, using the reliability
curve and attributes diagram fits our motif of conducting
regime-based evaluation, since averaging over the whole
testing set may obscure issues that occur in certain regimes.
For the scalar target variables (flux components), we plot
one attributes diagram for each (e.g., Figs. 6a-c). For the vector
target variable (heating rate), we plot one reliability curve for

Unauthenticated | Downloaded 06/15/23 08:37 PM UTC



OCTOBER 2021

Attributes diagram for Fi5,
Observation frequency

(b)

~ 700
T

Observation frequency

2) -
)
&
S

02|

800 600 01
0.00
ey 0.0
romon e
RERETYSER 500 miSTorsiome
it S2RERTRRS
600 i P
400
Prediction frequency

400{

200

Conditional mean observation (W m~
Conditional mean observation (W m

LAGERQUIST ET AL.

Attributes diagram for F94

1683

Attributes diagram for F.¢
Observation frequency

(=]

Prediction fri c: Prediction frequenc
iction frequency redicti q
0.4] 0.10

|
N
(=}
=]

Conditional mean observation (W m~2)
|
B
o
=3

Fomuys 100 0,00 8 had~aean
i s SRR
ol ] ) ~600.7 S
0 200 400 600 800 1000 0 T 700 -500 -250 0 250 500 750
k. - 2 -
Prediction (W m~?%) Prediction (W m~?) Prediction (W m~?%)
Bias for heating rate Mean absolute error for heating rate MAE skill score for heating rate
(d) (e) (f)
10.0. 10.0| 10.0|
3 3 3
2 2 2 |
E 1.0 E 1.0 E 1.0|
2 z £
b= b= £
= o =
[T} Q [T}
T T T |
o1 . 0.1
-0.20 -0.15 -0.10 -0.05 0.00 0.0 0.1 0.2 0.3 0.4 0.5 ojo 0.2 0.4 0.6 08
Bias (K day™?) Mean absolute error (K day™?) MAE skill score
Reliability curves for heating rate
(9) -
125 FIG. 6. Performance of selected model from experiment 1 on
3 10.0 testing data. (a)—(c) Attributes diagram for each flux component.
Ezo The orange curve is the reliability curve; the diagonal gray line is
2 i the perfect-reliability line; the vertical gray line is the climatology
© 9 . . . . . .
z y, - ; line; the horizontal gray line is the no-resolution line; the blue
2 = / 1 shading is the positive-skill area, where MSE skill score > 0; and
N E the inset histograms show the distributions of predicted and ob-
L) o . .
£10 / T served values. (d)—(f) Profiles of bias, MAE, and MAE skill score
g 0.1 for heating rate. (g) Reliability curve at each height for heating
= / rate. Each orange curve in (a)—(f) is the mean over 1000 bootstrap
é replicates. The 99% confidence interval is also plotted, but it is
o ) ) 501 narrower than the line and thus invisible.
0 5 10 15 20 25 :

Prediction (K day~!)

each height (e.g., Figs. 6g-i), omitting the reference lines in the
attributes diagram. The reference lines would be different for
each of the 73 heights, and it is not feasible to show 73 sets of
reference lines.

b. Experiment 1

Results of the hyperparameter experiment, used to select
the preferred model, are relegated to the supplemental mate-
rial. The main conclusion to note here is that the U-net++
performs best when the dropout rate and L, weight are small
(less regularization), which suggests that overfitting is not a
serious problem for emulating the shortwave RRTM. This is
surprising, as our experience with ML for atmospheric science
indicates that overfitting is a serious problem and aggressive

regularization is needed (e.g., Lagerquist et al. 2019, 2020b).
We suspect that overfitting is less problematic for our task
because it is a perfect-model experiment, where the ML model
is trained to emulate another model (the shortwave RRTM),
rather than to fit real-world observations, which have more
noise and uncertainty. Ultimately, we select the model with
three fully connected layers, a dropout rate of 0.1, and L,
weight of 107%. Results shown in the rest of this section, for
the selected model only, are based on testing data rather than
validation data.

Figure 6 shows the model’s performance on the whole test-
ing set (tropical sites in 2017). The mean absolute error (MAE)
skill score is defined as (MAEcimo — MAE, ctua1/MAE imo,
where MAE i, is the MAE that would result from always
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predicting the climatological mean, estimated here as the mean
over the U-net+ +-training data. The definition of MSE skill
score is analogous. Both skill scores range from (—o, 1]; the
optimal value is 1; and values > 0 signal an improvement over
climatology. Figures 6a—c show the attributes diagram for each
flux component; the reliability curves are nearly perfect, and
as shown by the inset histograms, the predictions and obser-
vations are similarly distributed. Figure 6d shows the bias
profile for heating rates; nearly all heights have an absolute
bias < 0.1K day™ ', which is considered a threshold for stable
integration into NWP (Tacono et al. 2008). Figure 6e shows the
MAE profile for heating rates, which has a similar shape but
with slightly larger values, because MAE includes both sys-
tematic error (bias) and random error. Both absolute bias and
MAE are largest in the upper stratosphere, specifically at
46 km. This is the height with the largest climatological mean
(322K day ™! in the U-net+ +-training data), due to absorp-
tion of solar radiation by ozone. Thus, both the actual and
climatological models have a large MAE at 46 km, leading to
only a small dip in the MAE skill score (Fig. 6f). Figure 6g
shows the reliability curve for heating rate at each height; all
curves nearly follow the line of perfect reliability.

Figure 7 shows the model’s performance by cloud regime. In
the attributes diagram for Fi&  (Fig. 7a), reliability is nearly
perfect for all three cloud regimes, except a general under-
prediction up to ~20 Wm™? for no-cloud examples. For A
(Fig. 7b), reliability is good for all three cloud regimes, except a
general underprediction up to ~20 W m 2 for single-layer cloud
and ~50 W m ™2 for multilayer cloud, as well as a large under-
prediction for single-layer cloud in the two lowest bins. In other
words, the lowest predicted F;* values for single-layer cloud
tend to be far too low. For F, (Fig. 7c), reliability is nearly
perfect for all three cloud regimes, except a general over-
prediction up to ~20 Wm 2 for multilayer cloud. In the bias
profile for heating rate (Fig. 7d), examples with no cloud and
single-layer cloud have an absolute bias < 0.1 K day ! except in
the upper stratosphere, as for the whole testing set (Fig. 6d).
However, for examples with multilayer cloud, absolute bias
slightly exceeds 0.1K day ™' at a few heights in the midtropo-
sphere. Also, in the profiles of MAE and MAE skill score
(Figs. 7e.f), the worst values in the troposphere are for multi-
layer cloud in the middle to upper troposphere. This is because
(i) multilayer clouds lead to the most complex heating-rate
profiles, due to the nonlocal effects discussed in section 3¢c(3);
(ii) examples with multilayer cloud are rare (0.86% of U-net+ +-
training examples), and rare events are inherently hard to
predict. For all three cloud regimes, the reliability curves for
heating rate (Figs. 7g—i) are near the perfect line. However, the
reliability curves are jagged for multilayer cloud, due to small
sample size.

Supplemental Fig. S20 is analogous to Fig. 7, except for a U-
net++ that does not include F; in the loss function [i.e., one
that uses the postprocessing approach discussed in section 3¢(1)].
For examples with liquid cloud, predictions of F5<, = (Fig. S20a)
and F,e (Fig. S20c) are significantly worse with the post-
processing approach.

Figure 8 shows the model’s performance by site. In attributes
diagrams for the flux components (Figs. 8a—c), reliability is
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nearly perfect, except that at a few sites, small positive pre-
dictions of F3  and F, are up to ~20 Wm 2 too low. In the
error profiles for heating rate (Figs. 8d-f), all seven sites are
similar to the whole testing set (Figs. 6d—f), so there are no
apparent outliers. Figures 8g—i show the reliability curves for
heating rate at three randomly selected sites. Reliability is
nearly perfect, except in the lower troposphere at the Perdido
oil rig, where higher predictions are up to ~0.5K day ' too
low. This issue does not occur at the other four sites (not
shown), whose reliability curves look similar to those for
Bishop and Hilo.

Figure 9 shows the model’s performance by zenith angle. For
the sake of brevity, we show results for 1-km heating rate
(lower troposphere), 10-km heating rate (upper troposphere in
the testing data, which contain only tropical sites), 46-km
heating rate (upper stratosphere; the height with the largest
climatological heating rate), and F,,. Correlation is the
Pearson correlation between predictions and observations,
which ranges from [—1, 1] and has an optimal value of 1. Kling—
Gupta efficiency (KGE; Gupta et al. 2009) ranges from (—o,
1], and the optimal value of 1 occurs when the predictions and
observations have perfect correlation, equal means, and equal
variances. The unitless scores (left column of Fig. 9) show that
performance is worst at the extreme zenith angles, when the
sun is close to directly overhead or the horizon. However, ex-
cept correlation and KGE for 46-km heating rate, unitless
scores are close to their optimal values, even at local min-
ima. Meanwhile, scores with units (MAE, RMSE, and bias)
are shown in the right column of Fig. 9. These scores are
generally close to their optimum (0), except at zenith angles
below 20°. At these zenith angles, the model has a negative
bias for heating rate through most of the troposphere (in-
cluding heights not shown) and negative bias for F,., caused
by a large negative bias for F5<, and small negative bias for
FiP* (not shown). Zenith angles below 20° rarely occur in
the training data (nontropical sites only), so it is not sur-
prising that the model has difficulty in generalizing to these
scenarios.

c. Experiment 2

Again, results of the hyperparameter experiment are rele-
gated to the supplemental material. The main conclusion to note
here is the same as for experiment 1: the U-net++ performs
better with less regularization, which controls overfitting.
Because models in experiment 2 are trained with data from
all latitudes, this is the model that would be used in NWP.
Ultimately, we select the model with 4 fully connected
layers, a dropout rate of 0.0, and L, weight of 10~7. Results
shown in the rest of this section, for the selected model only,
are based on testing data rather than validation data.

Figure 10 shows the model’s performance on the whole
testing set (Assorted? sites in 2017). For each flux component,
the reliability is nearly perfect, as is the match between the
observed and predicted histograms (Figs. 10a—c). For heating
rate, all heights have an absolute bias < 0.1 K day ™, including
in the upper stratosphere (Fig. 10d). As for the tropical testing
data in experiment 1, there is a spike in MAE at 46km
(Fig. 10e), due to absorption by ozone, but the corresponding
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FI1G. 7. Performance of selected model from experiment 1 on testing data, by cloud regime. (a)—(c) Attributes diagram (explained in the
caption of Fig. 6) for each flux component. The inset histograms and reference lines are based only on examples with multilayer cloud.
(d)—(f) Profiles of bias, MAE, and MAE skill score for heating rate. (g) Reliability curve at each height for heating rate, based only on
examples with no cloud. (h) As in (g), but for single-layer cloud. (i) As in (g), but for multilayer cloud. Each curve in (a)—(f) is the mean
over 1000 bootstrapped replicates, and the surrounding shaded area is the 99% confidence interval.

dip in MAE skill score is small (Fig. 10f). In the reliability curve  regimes, the reliability curves for heating rate (Figs. 11g—i) are
for heating rate (Fig. 10g), all heights are nearly perfect, except  nearly perfect, with two exceptions: jagged curves for multi-
in the lower troposphere, where higher predictions are up to  layer cloud, due to small sample size, and the lower tropo-

~0.25K day ! too low. sphere for single-layer cloud, where higher predictions are up
Figure 11 shows the model’s performance by cloud regime. ~0.5K day ™' too low.
For each flux component and each cloud regime, the reliability Figure 12 shows the model’s performance by site. For each

is nearly perfect (Figs. 11a—c). For heating rate, all heights and  flux component and each site, the reliability is nearly perfect
all cloud regimes have an absolute bias <« 0.1K day ' (Figs. 12a—c), except an underprediction of ~50 W m ™2 at the
(Fig. 11d), while values of MAE (Fig. 11e) and MAE skill score  north pole for the lowest FEPOA bin (Fig. 12b). In other words,
(Fig. 11f) are similar to the whole testing set. For all three cloud  the lowest predicted FEPOA values here tend to be 50 W m ™2 too

Unauthenticated | Downloaded 06/15/23 08:37 PM UTC



1686 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 38
Attributes diagram for F5 Attributes diagram for FJ04 Attributes diagram for Fre;
(B0 crmsimmaney (b o e— 5 (€)oo eere
0.10 800 010/
700{ o2
& soo £ 600l | & 600 00%
=] = | =
g 809 s rnzoe 2 e 5 400 °*
a R f5000  esgsssned 2 W
2 600 : £ pEs i o .
= —— Hilo HI < 400 Hilo HI § 200] — Hilo HI
E —— Honolulu HI E —— Honolulu HI g ~—— Honolulu HI
T 400 Prediction frequency - — o © 0 Guantana prediction frequency
g | p T 300 - o Frediction frequency 5 ---- San Jua 0.10]
= =] =
= 2 2 -200{ --=-
2 0.05 5 - o b
5 - op, Grenada ’ 2 200! 02 5 GG 0.05
o 200 2 e S = [} g o
fl rdido oil rig o —400, —— Perdido oil rig |
G0 i 1001 D 090 orotunrminrie
% = d sEEsE 600 B
0 200 400 600 800 1000 0} - -500 -250 0 250 500 750
Prediction 0 200 Pre:jliggon 600 Prediction
(d) _ Bias for heating rate (e) Mean absolute error for heating rate (f) MAE skill score for heating rate
10.0/ 10.0| 10.0
_ —— Hilo HI _ Hilo HI = —— Hilo HI
- ) — -
o —— Honolulu HI 1G] Honolulu HI G} —— Honolulu HI
‘é‘ 10— Guantanamo Bay E 1.0 Guantanamo Bay ; 10 Guantanamo Bay
2 | ---- SanJuan PR 2 San Juan PR 2 77| ---- SanJuan PR
%\ ---- Rohlsen USVI EU‘ - Rohlsen USVI 2 ---- Rohlsen USVI
T ---- Bishop, Grenada ‘@ Bishop, Grenada % ---- Bishop, Grenada
+ —— Perdido oil rig * perdido oil rig * — Perdido oil rig
0.1 0.1 0.1
| /
| :
i
\ :
-0.30 —0.25 —0.20 —0.15 —0.10 —0.05 0.00 0.0 01 0.2 0.3 0.4 0.5 0.0 0.2 0.4 0. 0.8
Bias (K day™) Mean absolute error (K day™!) MAE skill score
Reliability curves for heating rate h Reliability curves for heating rate = Reliability curves for heating rate
(9) Bishop, Grenada (h) Hilo HI (i) ) Perdido oil rig
? 25| ’?25 ?25
Ey By z
k-] 10.0 o° 10.0 o 10.0
X ¥ =
£20 g2 _ 520 _
g 3 % 3 3 3
§ / 2 g / < 2 2
élS' / 1.0 § -§15 y 1.0 E -é 15 1.0 E
= = < / £ < £
V4 o o o
210/ o 3 £ / 2 2o / -
g /S 0.1 g 0.1 g 0.1
5 5/ 5 5 s 5 o
c c [ /
(=] P o o 4
] g (&) o
% 5 10 15 20 25 0.01 % 5 10 15 20 25 0.01 % 5 10 15 20 25 0.01

Prediction (K day™1)

Prediction (K day™?)

Prediction (K day~!)

FI1G. 8. Performance of selected model from experiment 1 on testing data, by site. (a)—(c) Attributes diagram (explained in the caption of
Fig. 6) for each flux component. In this case, the inset histograms and reference lines are based only on examples at Hilo, Hawaii. (d)-(f)
Profiles of bias, MAE, and MAE skill score for heating rate. (g) Reliability curve at each height for heating rate, at Bishop, Grenada.
(h) As in (g), but for Hilo, Hawaii. (i) As in (g), but for the Perdido oil rig. Each curve in (a)—(f) is the mean over 1000 bootstrapped

replicates, and the surrounding shaded area is the 99% confidence

low. By inspection (not shown), we have found that this un-
derprediction is associated with low albedos (< 0.7) at the
north pole, which occur during the ice-free part of the year.
Although the model correctly predicts that a lower albedo (less
reflection from the surface) will lead to less upwelling radia-
tion, it exaggerates this effect. For heating rates, all heights and
sites have an absolute bias < 0.1 K day !, except at 46 km at the
Perdido oil rig, where bias is ~—0.11K day ' (Fig. 12d).
Profiles of MAE (Fig. 12¢) and MAE skill score (Fig. 12f) are

interval.

similar to the whole testing set, except for MAE at 46 km,
where values are smaller at the Arctic sites (north pole and
Tiksi) and larger at the tropical sites (Perdido and Bishop).
This is because climatological 46-km heating rates are smaller
at the Arctic sites (average of 29.7K day ! over the testing
data) and larger at the tropical sites (36.3 K day " !). Reliability
for heating rate is nearly perfect at the three sites shown
(Fig. 12g—i), except in the lower troposphere at Perdido, where
higher predictions are up to ~0.5K day ' too low. This issue
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also occurs for Perdido in experiment 1 (Fig. 8i). For the two
sites not shown, reliability at Bishop is nearly perfect (similar
to North Pole and Lamont), while reliability at Tiksi has a
similar issue to Perdido, except only at the lowest few heights
and with an underprediction up to only ~0.25K day .

Figure 13 shows the model’s performance by zenith angle.
The unitless scores (left column) show that performance is
worst at the extreme zenith angles, but in general scores are
better than for experiment 1 (Fig. 9), including at the lowest
zenith angles. This is because the model from experiment 2 is
trained with more low zenith angles, due to the inclusion of
tropical sites. Meanwhile, scores with units (right column of
Fig. 13) are very close to their optimum (0), especially bias, at
all zenith angles. This contrasts starkly with the results for
experiment 1 (Fig. 9), where every target variable has sub-
stantial bias for zenith angles < 20°.

d. Additional analyses

Supplemental section Ca presents a Kolmogorov—Smirnov
and bias-variance analysis for both selected models (from ex-
periments 1 and 2). The main conclusions are (i) the models
have more random variance than systematic bias; (ii) although
the difference between the predicted and observed distribu-
tions of heating rate are small, they are generally significant at
the 99% level (as determined by the Kolmogorov—Smirnov p
value), because the sample sizes are large. Supplemental
section Cb shows results on training, validation, and testing
data for both selected models. Although both models overfit to
some extent, results on the testing data are highly skillful, as
discussed in sections 5b and 5c. Also, the model from experi-
ment 1 overfits more, because it performs more extreme spatial
generalization (from nontropical to tropical sites).

e. Comparison of selected models

Opverall, the model from experiment 2 appears to outper-
form the model from experiment 1 on testing data, consistent
with our hypothesis. The comparison is not perfectly apples-to-
apples, because the two testing sets contain different collec-
tions of sites, but they have two sites in common, both in the
tropics: the Perdido oil rig and Bishop, Grenada. According to
the site-specific reliability curves for heating rate (cf. Figs. 8g—i
and 12g-i), there is no substantial difference between the two
models. According to the site-specific attributes diagrams for
flux components (cf. Figs. 8a—c and 12a—c), site-specific error
profiles for heating rates (cf. Figs. 8d-f and 12d-f), and results for
the lowest zenith angles (cf. Figs. 9 and 13)—seen primarily in
the tropics—the model from experiment 2 is significantly better.

Supplemental section Cc compares the two models on a sec-
ond testing set, containing nontropical sites in 2017. The purpose
of this analysis is to achieve a fairer comparison, using the same
data. The model from experiment 2 performs better on the sec-
ond testing set as well, even though it was trained with only some
nontropical sites, while the model from experiment 1 was trained
with all nontropical sites. We suspect that training on tropical
sites allowed the model from experiment 2 to learn additional
relationships that improve its performance on nontropical sites.

Atinference time, both models (including the U-net+ + and
isotonic regression) can generate predictions for ~500 000 profiles
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in 1 min, while the shortwave RRTM can process ~50 profiles in
1min. Thus, the ML models are ~10* times faster than the
shortwave RRTM, which they emulate with impressive skill.
Last, supplemental section Cd compares the selected model
(U-net++) from experiment 1 to a traditional U-net and fully
connected neural network (FCNN), developed via similar hy-
perparameter searches. The U-net and U-net++ clearly and
significantly (at the 99% level) outperform the FCNN, dem-
onstrating the advantage of spatially aware layers (convolution
and pooling). However, differences between the U-net and
U-net+ + are mixed, with the U-net performing better on some
target variables and the U-net+ + performing better on others.
However, we believe that a major advantage of the U-net+ + is
superior performance on F in profiles with multilayer cloud.
Fe( is arguably the single most important target variable (i.e.,
more important than F3, , FiO4, or heating rate at any indi-
vidual height), and F,., errors are highest in profiles with
multilayer cloud, where radiative transfer is most complicated.
Specifically, in profiles with multilayer cloud, the U-net+ + im-
proves the absolute bias on Fe by ~15Wm ™2 compared to the
U-net, and the difference is statistically significant. Also, the U-
net+ + significantly outperforms the U-net in predicting the other
two flux components, Fys,, and F;?*, with multilayer cloud. We
believe that this advantage of the U-net+ + is due to more skip
connections better preserving high-resolution information, which
is crucial in profiles with multilayer cloud and cloud in general
(clouds create a discontinuity in the profile of extinction optical
depth, so their exact boundaries matter). Since we do not train the
U-net+ + with deep supervision [another modification to U-nets
proposed by Zhou et al. (2020), where intermediate feature maps,
not only the output, are included in the loss function], this ad-
vantage of the U-net+ + is not a result of deep supervision.

6. Model interpretation

The permutation test measures the overall importance of each
predictor variable, averaged over all grid points (i.e., all heights
for vector predictors) and testing examples. There are four ver-
sions of the permutation test—forward single-pass, forward mul-
tipass, backward single-pass, and backward multipass—which
each handle correlated predictors differently. The backward
multipass test begins with all predictors permuted—i.e., randomly
shuffled so that values are assigned to the wrong examples—and
iteratively restores (puts back in the correct order) the most
important predictor still permuted, until all predictors have
been restored. The kth predictor to be restored is considered
the kth-most important. For more details on the permutation
test, see McGovern et al. (2019). We run the permutation test
with one of two loss functions—the dual-weighted MSE for
heating rates [first term in Eq. (3)] or standard MSE for flux
components [second term in Eq. (3)]—so that we can deter-
mine the most important predictors for each type of output.
Figure 14 shows results for the backward multipass test, and
supplemental Figs. S21-S23 show results for the other versions,
which are very similar. We run the permutation test for both
selected models, from experiments 1 and 2.

With the heating-rate-only loss function, results for the two
models (Figs. 14a,c) agree on the top four predictors: zenith
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FIG. 9. Performance of selected model from experiment 1 on testing
data, by solar zenith angle (0° means directly overhead, and 90° means
on the horizon). (a),(b) Scores without and with units, respectively, for
heating rate at 1000m AGL. (c),(d) As in (a) and (b), but for heating
rate at 10000 m AGL. (e),(f) As in (a) and (b), but for heating rate at
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angle, LWC, downward LWP, and relative humidity. In other
words, the most important factors for radiative heating are sun
angle, liquid water, and water vapor, with ice being much less
important—Ilikely because the dual-weighted MSE emphasizes
large heating rates, which typically are not caused by ice clouds
(Turner et al. 2018). With the flux-only loss function, results for

the two models (Figs. 14b,d) agree on the top four predictors:
downward LWP, LWC, zenith angle, and surface albedo.
Surface albedo is especially important for FuT}?A, as higher-
albedo surfaces reflect more radiation back to space. Surface
albedo is much less important for heating rates (Figs. 14a,c),
because heating rates are measured at all 73 heights, which are

«—

46000 m AGL. (g),(h) As in (a) and (b), but for net flux. In each box-
plot, the center line is the median; the ends are the 25th and 75th per-
centiles; and the whiskers are the Sth and 95th percentiles. Each curve
in (a)—(h) is the mean over 1000 bootstrapped replicates, and the sur-
rounding shaded area is the 99% confidence interval.
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FI1G. 11. Performance of selected model from experiment 2 on testing data, by cloud regime. (a)—(c) In the attributes diagrams for flux
components, the inset histograms and reference lines are based only on examples with multilayer cloud. Formatting is explained in the
caption of Fig. 7, and each panel here is analogous to the same-letter panel in Fig. 7. The x-axis ranges in (d) and (e) are markedly smaller

here than in Fig. 7.

generally far from the surface. All results discussed in this
paragraph are significant at the 99% level, as indicated by the

bold font in Fig. 14.

7. Summary and future work

We developed U-net+ + models, a type of deep learning, to

multilayer cloud, while the inclusion of physical constraints
improved both flux and heating-rate predictions for multilayer

cloud. We bias-corrected the U-net++ models with isotonic
regression, a simple ML method often used for this purpose.
We conducted two hyperparameter experiments to find the
best U-net+ + configurations for predicting two output types: a

heating-rate profile and three flux components (F3<

TOA
down> F up

emulate the shortwave RRTM. The U-net++ architecture
contains more skip connections than the traditional U-net ar-
chitecture, which improved our flux predictions in profiles with

and F,,). In both experiments we found that the models per-
form best with minimal regularization, contrary to our prior
experience with ML in atmospheric science. This result may
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FIG. 12. Performance of selected model from experiment 2 on testing data, by site. (a)—(c) In the attributes diagrams for flux com-
ponents, the inset histograms and reference lines are based only on examples at Lamont, Oklahoma. Formatting is explained in the caption
of Fig. 8, and each panel here is analogous to the same-letter panel in Fig. 8. The x-axis ranges in (d) and (e) are markedly smaller here than

in Fig. 8.

generalize to other perfect-model experiments, where ML is
used to emulate another model rather than fit observations.
We performed two experiments, with sites split among
training and testing in different ways. In experiment 1, we trained
the models on nontropical sites and tested on tropical sites, with
the purpose of testing the models’ spatial-generalization ability
under extreme conditions (to a completely different region). In
experiment 2, we trained the models on assorted sites from all
regions and tested on a different set of assorted sites from all
regions, with the purpose of creating the best model possible for

use as a parameterization in NWP. The selected model from
experiment 1 showed impressive skill on the testing set (tropical
sites), but with four notable deficiencies. First, it has a large bias
and MAE for heating rate in the upper stratosphere, where ra-
diative heating is dominated by ozone absorption. Second, the
lowest FEI?A predictions for examples with single-layer cloud
have a large negative bias, of several hundred watts per square
meter. Third, the heating-rate bias for multilayer cloud slightly
exceeds 0.1 K day ! (considered a threshold for stable integra-
tion into NWP) in the midtroposphere. Fourth, at zenith angles
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in Fig. 9.
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(b) Exp 1, fluxes only
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FIG. 14. Results of backward multipass test on testing data for (a) best model from experiment 1, with the heating-rate-
only loss function; (b) best model from experiment 1, with the flux-only loss function; (c) best model from experiment 2,
with the heating-rate-only loss function; and (d) best model from experiment 2, with the flux-only loss function. The
value for the bar labeled x; is the loss after restoring x; and all predictors in the bars above x;. The kth predictor to be
restored, and thus the kth-most important, is kth from the top. Orange error bars show the 99% confidence interval,
based on bootstrapping 1000 times. If variable x; is in boldface font, this means that x; s significantly more important than
the variable below (at the 99% confidence level), based on a paired-bootstrapping test with 1000 replicates.

below 20° (seldom seen in the training data), the model has a
negative bias for the three flux components and for heating rates
throughout the troposphere. With the exception of large MAE
for heating rates in the upper stratosphere, none of these defi-
ciencies appear in the testing data for the selected model from
experiment 2. According to the permutation test for both
models, the most important predictors for heating rate (flux
components) are zenith angle, liquid water, and water vapor
(liquid water, zenith angle, and surface albedo).

The remainder of this section focuses on the model from
experiment 2, which outperforms the model from experiment
1. In addition to closely emulating the shortwave RRTM, this
model is ~10* times faster than the shortwave RRTM. In terms

of heating rate, our performance is better than the emulator of
K10, which is a traditional (or fully connected) neural network.
Their neural network achieves a profile root mean squared
error (PRMSE; defined in K10) of 0.15 K day ' (their Table 1),
versus our 0.056 K day ™' on testing data.* In terms of F "
(K10 do not show results for the other flux components),
our bias on the whole testing set is —2.2Wm™ 2, with bias

at individual testing sites ranging from —3.2 to —1.2Wm™ >

“Even for the model from experiment 1, which is trained on
nontropical sites and tested on tropical sites, the testing PRMSE is
0.108 K day ..
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The overall bias of K10’s emulator (their Fig. 2, top right) is also
negative, with zonal-mean bias ranging from approximately —3
to +1.25Wm™2 Thus, our results for FO* are comparable with
K10. However, the comparison is not apples-to-apples, because
K10 evaluate on data from different times and locations; they em-
ulate the RRTMG, rather than the RRTM; and they emulate the
full RRTMG, including aerosols and nonclimatological trace gases.

We attribute the success of our models to four factors. The first
is the adoption of U-nets, which are specially designed to learn
from gridded data and make pixelwise predictions. The second is
the adoption of the U-net++ architecture, which outperforms
the traditional U-net architecture in predicting fluxes with mul-
tilayer cloud. The third factor is using isotonic regression for bias
correction, and the fourth is knowledge-guided ML. We achieved
knowledge-guided ML by incorporating a physical law [Eq. (2)]
into the U-net++ models to ensure physically consistent and
skillful F,, predictions, developing a custom loss function [Eq.
(3)] to emphasize large heating rates, and including custom pre-
dictors to allow vertical nonlocality in heating-rate predictions,
which is especially important for examples with multilayer cloud.

We will continue this work along five lines. The first is de-
veloping models to emulate the full shortwave RRTM, including
the effects of aerosols, precipitation, and nonclimatological
profiles of trace gases. Second, we will also emulate the long-
wave RRTM, using a similar framework. Third, we will make
the models grid-agnostic (insensitive to exact heights in the
profile), so that they can be applied to NWP models with dif-
ferent vertical grids. Fourth, we will experiment with other
neural-network architectures, such as the U-net 3+ (Huang
et al. 2020), which contains ““full-scale” skip connections, com-
bining data from all spatial resolutions at once, rather than just
neighboring resolutions as in the U-net++. Fifth, we will test
the new models (emulating the full shortwave and longwave
RRTM) online, i.e., inside an NWP model as parameterizations.
Since the models developed herein are orders of magnitude
faster than the RRTM, if they were integrated stably into NWP,
they could also be called at every atmospheric time step, which
should improve the overall accuracy of the NWP model and free
up computing time for other improvements to NWP.
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expl.py and scripts/make_best_architecture_exp2.py, respec-
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