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Abstract—Over the last couple of years, Quantum Computing
(QC) has captured the interest of computer scientists due to
the fact of quantum speedup, the possibility of solving NP-
hard problems, and achieving higher compute power. However,
mitigating the impact of the noise inside each quantum device
presents an immediate challenge. These changes open up new
opportunities to investigate the effect of calibration parameters
for individual characteristics of each qubit in a manner of
time. In this paper, we investigate the temporal behavior of
noisy intermediate-scale quantum (NISQ) computers based on
calibration data and the characteristics of individual devices. In
particular, we collect calibration data of IBM-Q machines over
the last two years and compare the quantum error robustness
against the processor types, quantum topology, and quantum
volumes of the IBM-Q machines.

Index Terms—Quantum Computing, Quantum Characteristics,
Quantum Temporal Study, Quantum Error

I. INTRODUCTION

Over the last couple of years, quantum computers has
exceed new era of development. Scientist developed new quan-
tum computers with capability of running quantum circuits
up-to 127 qubits. However, these machines are not perfect
and due to the high noise values over qubits, environment,
and measurement they considered as NISQ quantum ma-
chines. Noisy Intermediate-Scale Quantum (NISQ) refers to
the quantum computers with a number of qubits ranging
from 50 to a few hundreds, where the computers experience
imperfect control over qubits; thus, the noise places a severe
limitation on what quantum computers can achieve in the
near term [1]. Currently, NISQ computers are increasingly
used to demonstrate the benefits of quantum computing verse
traditional high-performance computing (HPC) domains, such
as modelling and simulation, new material discovery, com-
binatorial optimization and scientific machine learning, etc.
[1]-[5].

Prior studies [1], [3], [6] shows that NISQ computers suffer
from high error rates; thereby, their utilization and adoption are
inhibited. Due to the uncertainty and the various amplitudes

978-1-6654-7355-2/22/$31.00 ©2022 IEEE

of the noise, the probabilistic based method may not be able
to distinguish between the correct and incorrect results. For
example, the Bernstein-Vazirani (BV) algorithm that allows
the program to infer the hidden key in a single shot on a perfect
quantum machine would result in a probability of 100% on
the correct state. Tannu et al. [7] showed that based on the
quality of qubits and the topology of the machine, the result
could be far from the desired outcome.

To characterize the severity of the noise, major quantum
computing service providers such as IBM-Q systems make the
noise metrics including T1, T2, frequency and readout error for
each quantum computer publicly available. This information
is further exploited by the research [7]-[18] that focus on
intelligently mapping a quantum circuit onto different parts
of a NISQ computer that exhibit different error rates.

The focus of this paper is to study the time serial quantum
error data, and building a temporal error observation, pre-
diction and comparison model to provide important system
reliability information for end-users while submitting the jobs
to the system. We conduct a detailed analysis to study the
quantum error characteristics over a long period against the
widely-used quantum computers - IBM-Q systems, and com-
prehensively explore the space of factors for the correctness
of a quantum circuit execution.

In summary, this paper makes the following contributions:

e« We study the quantum errors from the collected cali-
bration data of 9 recent IBM quantum computers. The
performance of the quantum machines is compared across
topology, different temporal tests, and individual qubit
evaluation.

« We define multiple observation based on different statis-
tical methods to exploit new information about quantum
computers.

« We applied stationary and non-stationary statistical tests
on the collected quantum error data and find that most
of the time, the quantum errors are stationary (i.e., the
mean and the variance of the errors do not change over
time). We leverage such stationary to predict the statistical
properties of quantum errors.
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II. BACKGROUND

Generally, quantum errors fit into two different categories,
the retention (coherence) errors and operational errors. A qubit
can retain data (position) for an only limited period of time,
and this duration is called the Coherence Time. Retention
errors are categorized into two types, T1 and T2 errors.

A qubit in high energy state |1) naturally decays to lower
energy state |0), the time associated with this decay is called
the T1 (spin-lattice) Coherence Time (time that qubit would
relax to state |0)). Similarly, T2, also known as spin-spin
relaxation process, is the effect of the environment or other
qubits on the target qubit.

Quantum operation errors can be categorized into three
different sub-groups, including single-qubit gate errors, single
qubit readout errors, and two qubit gate errors (referred to as
CX gate errors). Single and two qubit gate errors occur when
there is noise in the system when applying a gate to a qubit
state. Readout errors are the errors related to the faulty reading
of final qubit state.

A. Quantum Computer Topology

Quantum algorithms are normally designed as a set of
quantum gates to be applied to the qubits of a quantum com-
puter. The mapping between the logical qubits and physical
qubits on NISQ machines depends on the qubit connectivity
and supported gates. Each NISQ machine can have its own
topology: some qubits can be directly accessible by one subset
of qubits while other qubits cannot.
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(-] 0—0—0
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Source: https://quantum-computing.ibm.com

Fig. 1: IBM-Q Machine Topology: (a) IBM-Q Bogota, Manila,
and Santiago with linear connection between qubits, (b) IBM-
Q Belem, Lima, and Quito With tree shape connectivity (c)
IBM-Q Lagos, Perth, and Jakarta with "H’ shape connectivity.
Circles represent qubits and Lines represent direct connection
between qubits [19].

For example, Figure 1 shows the different connectivity
patterns of qubits in the IBM-Q systems. On Linear topology
1 (a), qubits 1, 2, 3, 4, and 5 are connected in a linear fashion
way, in order to apply CX gate between qubit 2 and qubit 4
compiler applies swap operation. In practice when a quantum
algorithm is compiled for a particular NISQ computer, the two
qubits that are not directly connected would be compiled with
swap gates so that the original circuit would be redesigned
in favor of that NISQ computer’s topology. Thus, the same
quantum algorithm can be mapped in different ways to gener-
ate different quantum circuits on different machines, or even
with different swap strategies for the same machine.

III. METHODOLOGY

Based on the collected data, for each interested quantum
computer property, we conduct detailed analysis on their
potential relations to the overall error resilience of the system.
IBM-Q quantum computers are accessible to the public users.
In totally we collected calibration data from 9 real IBM-Q
quantum systems from July 2020 to the end of April 2022. The
general configurations of target IBM-Q machines are shown
in Table I. The data trace is open-sourced for public access.

TABLE I: Configurations of available IBM-Q machines.

[ Machine [ # of Qubits [ Processor | Topology |
Santiago 5 Falcon r4L L
Quito 5 Falcon r4T T
Lima 5 Falcon r4T T
Bogota 5 Falcon r4L L
Belem 5 Falcon r4T T
Manila 5 Falcon r5.11L L
Jakarta 7 Falcon r5.11H H
Perth 7 Falcon r5.11H H
Lagos 7 Falcon r5.11H H

We collected T1, T2, the number of qubits, Readout error,
and CNOT errors from 9 recent active IBM-Q machines
through Qiskit API [20].

The total time interval of data collection spans for up to 2
years for calibration data on 9 different IBM-Q machines. We
show the time trend analysis on 5 Qubits and some 7 Qubits as
a example to plot the difference between individual features.

A. Observations

T1 and T2 errors rely on different factors such as quality
of qubits [15], different processor types and many other
related design factors. As shown in Figure 2a, T1 time can
diverge based on the machine and the time of calibration.
For example, in Figure 2a IBM-Q Santiago the values of T1
drops significantly for half of 2021 and most of 2022. But on
IBM-Q Belem and Lima, the T1 values for all the qubits are
more clustered. On top of last argument, we observe that one
single machine can experience different phases for T1, T2 and
Readout errors. Based on our observation and historical data
for one particular machine we can detect unmoral behavioural
for qubits properties.

Similarly in Figure 2b IBM-Q Bogota and Santiago’s T2
value is fluctuating for most of year 2021 whereas IBM-Q
Manila, Belem, Lima show consistency for their Qubits’ T2
Value.

We can use the same method to observe the faults for
Readout errors along with CNOT gate error. An example of
these observation has been shown in Figure 3.

IV. QUBITS’ STATISTICAL ANALYSIS

To further investigate the temporal data, we explore one
of the classical statistical methods [21], the unit root test, on
quantum calibration data to test if the collected temporal error
data is stationary or not.

We observe that the properties such as variance and co-
variance of time series for T1, T2, and readout errors do not
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Fig. 4: IBM-Q 5-Qubits Machines Qubits 0 T1 and T2 Cross
co-relations Errors. X axis represents the timestamp intervals
and Y axis represents the crfoss correlations between T1 and
T2 on qubits O for entire data-set.

change over time. In Figure 4, the blue line represents the
significant limits (out of bound) for entire 2020 to 2022 data-

set. As shown in Figure 4 the cross co-relation between T1
and T2 shows no changes except for one significant event,
therefore for most of the time the prediction between T1 and
T2 value would be successful. We can observe this better in
Figure 5.

300
250
200

150

T1-Q0

100

T2-Q0

Fig. 5: IBM-Q 5-Qubits Machines Qubits 0 T1 and T2 Cross
co-relations heatmap

In Figure 6, the p-values for stationary data-set should be
above 0.05 [22]. As shown in this Figure, for T1, T2 most
of the time the KPSS p-value is above the threshold, and
for readout and CNOT the KPSS test satisfy the stationary
trend. In terms of CNOT depending on other factors such as
T1, T2, the p-value fluctuates between stationary and non-
stationary trends. We observed that using stationary trends we
can successfully predict the behavior of each machine for the
fixed time interval. For more accurate prediction for CNOT
trends we might need to combine non-stationary and stationary
methods.

V. STATISTICAL MODELS

In this section, investigation about different temporal sta-
tistical methods on individual features of IBM-Q machines is
being presented. Using temporal analysis we investigate the
possibility of mapping and predicting the T1, T2, Readout,
and CNOT errors through time.

Authorized licensed use limited to: Kent State University Libraries. Downloaded on June 15,2023 at 20:38:42 UTC from IEEE Xplore. Restrictions apply.



© @

Fig. 6: IBM-Q 5-Qubits Machines KPSS Test (a) KPSS test

on T1 Error (b) KPSS Test on T2 Error (¢c) KPSS Test on
Readout Error (d) KPSS on CNOT Errors

Depending on the frequency, a time series can be monthly,
daily, or even hourly. Using time series models such as the
Autoregressive Integrated Moving Average (ARIMA) [23], we
predict the temporal error behavior of IBM-Q machines. An
ARIMA model is characterized by 3 terms (p, d,and q) where
p is the order of AR (Auto-Regression) term, and ¢ is the
order of MA (Moving Average). Similarly, d is the number of
differences required to make the time series stationary.

Exponential Smoothing (ES) is another method for forecast-
ing time series data, proposed in the late 1950s [24]. There are
three main types of exponential smoothing: Single Exponential
Smoothing (SES), Double Exponential Smoothing (DES), and
Triple Exponential Smoothing (TES) aka Winters’ method.
Using our collected data and data from other researches [7],
[9], [13], [14], we apply three methods on the data and find out
that the SES method offers the 23% accuracy, the DEs offers
47% to 80% accuracy and the Winters’ method has the highest
prediction accuracy for the behavior of each qubit’s error
characteristic in respect to the overall system. An Example
of these results has been shown in Figure 7.

Using single machine calibration data helps to increase
the accuracy to predicting the behaviour of individual qubits.
However, the co-relations between different characteristic
would not be held. Figure 8 show the same algorithm pre-
viously ran on qubit O for a single machine instead of entire
data-set.

VI. RELATED WORK

Understanding the quantum error behaviors on different
quantum computers is essential for future quantum compiler
design, quantum result uncertainty analysis, and resource man-
agement for multi-processor quantum computing architecture
design. Tannu et. al. [7], [14] characterized quantum errors
over qubits and discuss the variety of quantum error charac-
teristics on NISQ quantum computers. Followed by Patel et al.
[25], collecting months of quantum error-related data, a study
has been conducted exploring the noise characteristics on
different quantum operations and gates on five IBM quantum
computers.
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VII. CONCLUSION

We investigate the temporal behavior of NISQ computer
errors based on the calibration data and used the characteristics
of individual devices to characterize the errors temporally. We
also showcase that most of the time the quantum errors are
stationary, and we leverage this characteristic to predict the
statistical properties of quantum errors. We show that a better
more depth investigation of machine behaviour can help to
understand the errors and determine the health of machine.
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