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Abstract—Current and imminent quantum hardware
lacks reliability and applicability due to noise and limited
qubit counts. Quantum circuit cutting — a technique
dividing large quantum circuits into smaller subcircuits
with sizes appropriate for the limited quantum resource
at hand — is used to mitigate these problems. However,
classical postprocessing involved in circuit cutting generally
grows exponentially with the number of cuts and quantum
counts. This article introduces the notion of approximate
circuit reconstruction. Using a sampling-based method like
Markov Chain Monte Carlo (MCMC), we probabilistically
select bit strings of high probability upon reconstruction.
This avoids excessive calculations when reconstructing
the full probability distribution. Our results show that
such a sampling-based postprocessing method holds great
potential for fast and reliable circuit reconstruction in the
NISQ era and beyond.

I. INTRODUCTION

Quantum computers are believed to enable polynomial

or even exponential speed-up over classical computers

for many classes of problems [1]. However, current

quantum computing hardware, also known as NISQ

computers, is characterized by its lack of scalability and

reliability [2]. To effectively handle noise, the quantum

algorithm community has leveraged classical resources

to aid computation, which led to the emergence of

quantum-classical hybrid algorithms [3]. In particular,

variational quantum circuits has so far received great

attention [4], with well-known examples like quan-

tum approximate optimization algorithm (QAOA) [5]

and variational quantum eigensolver (VQE) [6] [7].

Such variational circuits perform expensive calculations

(such as solving NP classical optimization or simulating

Hamiltonians) using a quantum computer and update

the circuit parameters using classical optimizers like

COBYLA [8] or gradient descent [9].

Hybrid algorithms mentioned above have enjoyed

some success in the NISQ era, showing their robust-

ness against noisy computation [10]. At the same time,

escaping the issue of vanishing gradients, or barren

plateaus, induced by noise, remains a problem [11].

Also, the size of NISQ computers poses barriers for

most real applications. Thus, Peng et al. [12] developed

a method for dividing any quantum circuit into multiple

smaller subcircuits that can be executed independently.

Then, one could use the information gathered from each

subcircuit to reproduce the theoretical outcome from

running the full, uncut circuit. In addition to making

evaluation of large circuits possible, it is also shown that

evaluating smaller circuits improves fidelity while being

more robust to noise [13] [14] [15].

Despite the theoretical success, reconstructing the

probability distribution of the full circuit is time-

consuming. More specifically, the classical post-

processing procedures generally scale exponentially with

respect to the size of the circuits. If one desires the

classical probability distribution of the full circuit, there

will be an additional exponential factor with respect

to the circuit size. One way to avoid this scaling is

to design algorithms that reduce the number of cuts

needed [16]. However, we take a more direct approach in

attempting to lower the reconstruction time complexity.

Similar to how probabilistic methods are used to provide

approximate solutions to problems that are difficult to

solve exactly, we propose the concept of an approximate
circuit reconstruction. Instead of exploring exponentially

growing state-space via brute force, we probabilistically

explore the space of bit-strings and sample the points that

are of higher likelihood. This procedure is asymptotically

correct as the number of samples taken increases. We

also found a significant reduction in run time, shedding

light on the potential utility of applying this technique

for larger, more practical problems.

The contribution of this work can be summarized as

follows:

• We introduce the notion of approximate circuit
reconstruction using Monte Carlo methods for re-

constructing measurement outcomes of subcircuits
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after cutting.

• Our model puts no explicit restriction on the run

time: one can decide the trade-off between speed

and accuracy depending on one’s resources.

• The naive implementation was able to reconstruct

the circuit outcome at speed an order of magnitude

faster without losing much accuracy, motivating fur-

ther development and optimization of this method.

II. QUANTUM CIRCUIT CUTTING

In short, the idea of quantum circuit cutting is sep-

arating circuits by applying a set of measurements and

state preparation such that, when combined, results in a

trivial action. Consider the Pauli matrices.

σx =

(
0 1
−1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(1)

Together with I =

(
1 0
0 1

)
, these four matrices form

an orthonormal basis over the set of 2 × 2 complex

matrices. We can apply a combination of measurements

and initializations in different Pauli bases such that the

state itself is unchanged. For the formalism presented in

this paper, readers should refer to [14].

We will begin by considering the case that there is

one cut. Suppose there is an m-qubit quantum circuit

C, which can be cut into subcircuits A,B (c.f. Figure

1). Subcircuit A has n qubits whose measurement out-

come in the computational basis will be represented as

b̂1 . . . b̂n−1â. We can compactly store the set of outcomes

of subcircuit A with a rank-3 tensor p
(b̂1...b̂n−1,â,β)
A .

The first index denotes the measurement outcome of

the first n − 1 qubits. The second index refers to the

extra “connection” bit â ∈ {0, 1}. There is always this

extra bit upstream of the cut that will be measured

in different bases. It naturally exists as part of the

subcircuit and does not directly correspond to the circuit

output. The third index refers to the measurement basis,

β ∈ B = {σx, σy, σz}.
Similarly, subcircuit B is a m − n + 1 qubit circuit

with measurement outcomes b̂n . . . b̂m. This can again

be written compactly as a rank-3 tensor p
(b̂n...b̂m,e,β)
B .

The first index represents the measurement outcome of

subcircuit B. The second and third indices are related:

e denotes the eigenbasis, with respect to β ∈ B, that the

qubit immediately downstream of the cut is initialized

to. For example, if e = 0 and β = σx, then the

qubit is initialized to the |+〉 state (the eigenvector of

β corresponding to eigenvalue 1).

The probability distribution P corresponding to the

outcome can simply be written as a vector of 2m

bins, each corresponding to a measurement outcome.

Finding the probability of an outcome b̂1b̂2 . . . b̂m from

its subcircuits is represented in the following equation,

which one can think of as a tensor contraction over

indices â, e, β.

P (b̂1...b̂n−1,b̂n...b̂m)

=
∑
â,e,β

γ(â,e,β)p
(b̂1...b̂n−1,â,β)
A p

(b̂n...b̂m,e,β)
B (2)

and the rank-3 tensor γ is defined as follows.

γ(â,e,β) =

{
2δâ,e − 1 if β = σx or σy

2δâ,e if β = σz

(3)

The same formalism can also be extended to the

case of multiple cuts with additional bookkeeping. Let

there be K cuts and K + 1 subcircuits. For each cut,

there will be an associated triple (âk, ek, βk) repre-

senting the connection bit, the eigenvalue, and mea-

surement/initialization basis respectively. Furthermore,

each subcircuit tensor will have its respective elements,

namely, âk or ek, depending on whether it is the up-

stream or downstream circuit. The matrix-product state

formalism gives a concise representation for generalized

circuit cutting (cf. [14], [17], [18]).

This contraction involves summing over 12 terms —

there are two possibilities each for â and e, three for β
— which means that simulating the probability of ob-

taining one particular bit string takes only constant time.

However, the naive method for constructing the output

of the full distribution requires querying the probability

of each bit string, which there are exponentially many,

one by one. Also, since the representation above is only

exact given completely accurate state tomography, the

realistic recovered “probability distribution” might con-

tain negative probabilities or are not normalized due to

finite-shot noise and hardware noise (if ran on a physical

device). Moreover, the time complexity of reconstructing

the full distribution also grows exponentially with respect

to the number of cuts as three additional indices are to

be contracted for each additional cut. These unfavorable

scaling factors inhibit circuit cutting from being used at

its full potential.

III. APPROXIMATE CIRCUIT RECONSTRUCTION

This section introduces the idea of an approximate
circuit reconstruction that seeks to avoid exponential

scaling. For ease of exposition, we will demonstrate

the reconstruction for the case of a single cut and two

cuts; generalizing to arbitrary cuts is straightforward but

tedious.

The high-level idea is as follows: our goal is to build

an approximate distribution with polynomially many

queries from an exponentially growing state space. Since

the weight of each bit string is unknown a priori, there is

not a good deterministic strategy for approximating the
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(a) Circuit prior to cutting. The cut location is
specified at the red cross. Upon performing the cut,
the circuit naturally separates into two independent
subcircuits that can be run in parallel.

(b) Resulting subcircuits. (top) The last qubit of
the upstream subcircuit, denoted by â, requires
measurements in basis β. The first qubit of down-
stream subcircuit (bottom) requires preparing the
eigenstate of β corresponding to eigenvalue e.

Fig. 1: A pictorial representation of the circuit cutting procedure.

distribution. Thus, we introduce a naive version of the

Metropolis-Hastings (MH) algorithm, which is a type

of Markov Chain Monte Carlo (MCMC) method. Let

f(x̂) be a probability distribution, x̂ ∈ {0, 1}n, that

we would like to sample from. Moreover, the unnor-

malized likelihood ratio between adjacent points in the

support of the distribution can be computed efficiently.

To avoid computing f(x̂) on every x in the support,

we perform random walks on a Markov chain defined

on {0, 1}n with transition kernel g(ŷ|x̂). Then, at each

step of the random walk, we move to state ŷ from

state x̂ probabilistically with the probability of transition

increasing if the ratio of likelihoods increases. For details

of MH algorithms and Markov chain mixing, readers are

referred to [19], [20], [21], [22].

A. Example: one-cut case

Consider the case that a single cut has been made,

producing outcomes pA and pB from the respective

subcircuits where equation (2) describes the relationship

between the subcircuits and the full circuit. In our case,

each state x̂ represents a possible output from the full

quantum circuit and the distribution we would like to

sample from is the one described in equation (2). The

complete procedure is described in Algorithm 1.

Here, the transition kernel is one that flips one

randomly-chosen bit from the conditioned bit string. This

procedure is easily parallelizable in the case of one cut.

One can establish multiple chains: implementation of the

same algorithm with different initial conditions running

in parallel. This comes at the advantage of not only time

complexity, but also prevents improper chain mixing and

guarantees convergence in the sample size limit.

Algorithm 1: Metropolis-Hastings algorithm for

the one-cut case
Input: N: number of samples, BI: burn-in

Output: S: histogram of accepted bit strings

1 S ← {}, n← 0
2 x̂← random bit string of length m
3 while n < N do
4 ŷ ← bit string of length m that is different

with x in only 1 entry

5 Let r = min{1, P (ŷ)/P (x̂)} (cf. eq. (2))

6 if u ∼ Uniform(0,1) < r then
7 x̂← ŷ

8 if n > BI ·N then
9 S[x̂]← S[x̂] + 1

10 n← n+ 1

11 return S

Fig. 2: Example of a circuit with two cuts. Subcircuits

A, B, and C can be arbitrary.

B. Example: two-cut case

Now consider the case where two cuts are made,

resulting in three subcircuits A, B, and C of size

n1, n2, n3 respectively. For concreteness, suppose the

cuts follow the cascade-like structure depicted in Figure
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2. We will refer to the cut between subcircuit A and B
as the first cut, and the one between B and C as the

second. Subcircuit A is upstream of B, meaning that

it will need additional measurements at the location of

the cut, denoted by indices â1 and β1. Subcircuit C is

downstream of B, so it will need additional initializa-

tions at the location of the cut, represented by the indices

e2, β2. Subcircuit B is downstream of A and upstream

of C, which means that it will contain information about

both subcircuits, meaning that pB will be a rank-5 tensor

with indices e1, β1, â2, β2 along with the measurement

bit strings.

We begin to realize the exponential scaling starting

in the two-cut case. The exponential growth comes

from the fact that, for each cut, we produce a pair of

measurement-initialization combinations. Quantum in-

formation must be passed through each cut, which means

that we must sum over all measurement-initialization

pairs for every cut, resulting in roughly 2polyK in runtime

complexity. Here, we will propose two types of ap-

proximate reconstruction. The first obeys the exponential

scaling with K to gain accuracy at the cost of efficiency.

It involves running six chains, one for each index pair

(e1, β1), as shown in Algorithm 2.

Algorithm 2: Metropolis-Hastings algorithm for

the two-cut case
Input: N: number of samples, BI: burn-in

Output: S: histogram of accepted bit strings

1 pBC ← zeros(b̂1...b̂n2+n3−1,e1,β1)

2 n← [0, 0, 0, 0, 0, 0]
3 [x̂1, . . . , x̂6]← random bit strings of length

n2 + n3 − 1
4 while min(n) < N do
5 for (e1, β1) ∈ {0, 1} × B do
6 ŷ ← bit string of length n2 + n3 − 1 that

is different with x̂ in only 1 entry

7 Let r = min{1, P (ŷ)/P (x̂)}
8 if u ∼ Uniform(0,1) < r then
9 x̂i ← y

10 if n > BI ·N then
11 p

(x̂,e1,β1)
BC ← p

(x̂,e1,β1)
BC + 1

12 n[i]← n[i] + 1

13 return reconstructOneCut(pA, pBC)

The function reconstructOneCut calls Algo-

rithm 1. Here, we simply avoided the exponential scaling

in the space of bit strings. However, the scaling with

respect to the number of cuts will be preserved as more

indices are added into the middle for-loop. As an attempt

to avoid this scaling as well, we propose to select which

index to contract uniformly at random. The algorithm is

presented in Algorithm 3

Algorithm 3: Metropolis-Hastings algorithm for

the two-cut case with randomized indexing

Input: N: number of samples, BI: burn-in

Output: S: histogram of accepted bit strings

1 pBC ← zeros(b̂1...b̂n2+n3−1,e1,β1)

2 n← [0, 0, 0, 0, 0, 0]
3 [x̂1, . . . , x̂6]← random bit strings of length

n2 + n3 − 1
4 while min(n) < N do
5 e1 ← 0, 1 uniformly at random

6 β ← σx, σy, σz uniformly at random

7 ŷ ← bit string of length n2 + n3 − 1 that is

different with x̂ in only 1 entry

8 Let r = min{1, P (ŷ)/P (x̂)}
9 if u ∼ Uniform(0,1) < r then

10 x̂i ← y

11 if n > BI ·N then
12 p

(x̂,e1,β1)
BC ← p

(x̂,e1,β1)
BC + 1

13 n[i]← n[i] + 1

14 return reconstructOneCut(pA, pBC)

The asymptotic property is preserved even if we

randomly choose which index to contract over. However,

the rate at which it converges is slowed, which is the

usual trade-off between efficiency and accuracy.

C. Generalizing to an arbitrary number of cuts
Implementing a general circuit cutting routine is a

rather tedious task. The tensor network formalism be-

comes convenient for consistent book-keeping [12]. For

each quantum circuit, we can map it to a corresponding

directed graph: the vertices are quantum gates and an

initial set of qubits. Two vertices (gates) are connected

if it is directly connected by a qubit wire in the circuit.

An example is demonstrated in Figure 3.
The circuit cut then corresponds to removing one

edge. And by the graph formalism, we can immediately

identify the gates and qubits those gates operate on

upstream and downstream of the cut. A subcircuit is

produced only when the resulting graph is no longer in

one component and this procedure might take multiple

cuts (removal of edges) to achieve. For each subcircuit,

the associated tensor will be of rank 2k+1 where k is the

number of cuts the subcircuit is involved in. For example,

in the two-cut example (Figure 1b), subcircuit A can

be stored into a rank-3 tensor because it is upstream of

one cut. On the other hand, subcircuit B is sandwiched

between two cuts, so there are 2 ∗ 2 + 1 = 5 indices.

To combine two subcircuits, one can use Algorithm 1,

2, or 3 depending on the situation, so long as the right

indices are being contracted.
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Fig. 3: Example mapping from quantum circuit to a

directed graph. Each gate is a vertex and an edge

connects two vertices if the two gates are connected

directly by a qubit wire.

IV. EXPERIMENTS

We give preliminary empirical results for the effective-

ness of our proposed approximate circuit cutting scheme.

The experiments were run on a personal computer

equipped with Intel i5 processors. The algorithms im-

plemented follow exactly as sketched in the pseudocode

presented in the previous section. We will show that,

despite the simplicity of the program, our method scales

well with circuit size both in terms of time complexity

and performance.

To compare two distributions, we propose the follow-

ing average variational distance metric: for distribution

p(x) and q(x) over the same sample space X , the

average variational distance is define by the following:

D(p; q) =
∑
x∈X

(p(x)− q(x))μ(x) (4)

where μ(x) is the average probability distribution over

X of p and q:

μ(x) =
p(x) + q(x)

2
(5)

Intuitively, this represents the difference in likelihood

functions with respect to the average distribution. This

metric effectively captures the goal of approximate cir-

cuit cutting: estimating bit strings of large probability.

If our estimate distribution has the same shape as the

intended distribution, that is, the two distributions share

the same high-probability bit strings, then D(p; q) will

not punish the discrepancy for bit strings in the low

likelihood regime.

A. Case of One Cut

For the one-cut case, we generated random subcircuits

of the same sizes using Qiskit [23], then connect the

Fig. 4: The average distance (in log scale) with respect

to the size of each subcircuit in the case of one cut. The

error bars show the 25-th and 75-th quantiles.

two subcircuits using a CNOT gate. We compared the

distributions resulting from the exact reconstruction and

the approximate reconstruction against a run of the full

circuit without any cuts. This process is repeated for

30 trials, and the results are shown in Figure 4. We

can see that the exact reconstruction method consistently

outperformed the approximate one, which was expected

by virtue of probabilistic methods. However, the discrep-

ancy is not large and overall was close to that of the exact

reconstruction. The main advantage of the approximate

reconstruction is the computational complexity, which

was measured empirically and displayed in Figure 5.

Here, we linearly increased the number of samples taken

with respect to the size of each subcircuit. As a result, the

time needed for computation only grows linearly. How-

ever, performing exact reconstruction naively will require

exponential time. Moreover, the time recorded did not

account for time for normalizing the distribution. This

shows another advantage of approximate reconstruction:

it requires no extra post-processing for normalization. It

is important to note that, like all Monte Carlo methods,

the more samples are taken, the better the performance

is. One could choose to scale the number of samples

taken to be more than linear with respect to the size of

the circuit if one can afford the time and computational

resources.

B. Case of Two Cuts

We repeat a similar experiment for the case of two

cuts. We generate subcircuits of equal size randomly and

connect each subcircuit using a CNOT gate, structured

like one depicted in Figure 2. And since circuit cutting

generally improves the fidelity [13], we will compare

the exact reconstruction method with the two proposed

approximate methods: one that loops over all indices,

and the other randomly selects the index. Again, for
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Fig. 5: Comparison of running time with respect to the

size of subcircuits in the case of one cut.

Fig. 6: The average distance (in log scale) with respect

to the size of each subcircuit for the case of two cuts.

The error bars show the 25-th and 75-th quantiles.

each size of subcircuits, the same experiment was re-

peated 30 times. The results are shown in Figure 6.

The approximate method without randomized indexing

behaved similarly to the case of one cut, showing that

the approximate reconstruction procedure can be ap-

plied sequentially without significant deterioration in the

quality of reconstruction. However, randomly choosing

indices resulted in poor accuracy. It is important to

keep in mind that randomized indexing was used to

escape the exponential scaling in the number of cuts.

We suspect that the accuracy of the randomized indexing

method can be improved with much larger sample sizes.

However, for only a few cuts, sacrificing such magnitude

of accuracy is inappropriate. Meanwhile, exponential

runtime is again mitigated by controlling the inflation

of sample sizes, as in Figure 7.

Fig. 7: Comparison of running time with respect to the

size of subcircuits in the case of two cuts.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed the concept of approximate
circuit reconstruction, which aims at piecing together the

measurement outcome of subcircuits in a randomized

way to avoid unfavorable scaling both in terms of the

circuit size and the number of cuts. The experimental

results show that this is a promising direction. Below,

we list two particular directions to explore.

a) Improved Algorithm Design: The current im-

plementation uses the simplest implementation of the

Metropolis-Hastings algorithm. Furthermore, no assump-

tions of quantumness were made throughout. As a result,

there is significant room for designing more sophisti-

cated sampling methods that take advantage of existing

structures.

b) Bayesian Reconstruction: Traditionally, MCMC

methods are used for Bayesian computation to neglect

an intractable normalizing factor that is produced in

invoking Bayes’ theorem. Here, sampling was used to

escape the imperfect normalizing factor from statistical

shot noise. Yet, there is potential for further exploiting

the properties of MCMC algorithms. For example, in-

tegrating priors into reconstructions might be beneficial

for reducing noise while keeping computation tractable.

However, one would need a probabilistic model for

classical distributions generated by quantum circuits,

which will also be left as a future direction.
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