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Abstract—Current and imminent quantum hardware
lacks reliability and applicability due to noise and limited
qubit counts. Quantum circuit cutting — a technique
dividing large quantum circuits into smaller subcircuits
with sizes appropriate for the limited quantum resource
at hand — is used to mitigate these problems. However,
classical postprocessing involved in circuit cutting generally
grows exponentially with the number of cuts and quantum
counts. This article introduces the notion of approximate
circuit reconstruction. Using a sampling-based method like
Markov Chain Monte Carlo (MCMC), we probabilistically
select bit strings of high probability upon reconstruction.
This avoids excessive calculations when reconstructing
the full probability distribution. Our results show that
such a sampling-based postprocessing method holds great
potential for fast and reliable circuit reconstruction in the
NISQ era and beyond.

I. INTRODUCTION

Quantum computers are believed to enable polynomial
or even exponential speed-up over classical computers
for many classes of problems [1]. However, current
quantum computing hardware, also known as NISQ
computers, is characterized by its lack of scalability and
reliability [2]. To effectively handle noise, the quantum
algorithm community has leveraged classical resources
to aid computation, which led to the emergence of
quantum-classical hybrid algorithms [3]. In particular,
variational quantum circuits has so far received great
attention [4], with well-known examples like quan-
tum approximate optimization algorithm (QAOA) [5]
and variational quantum eigensolver (VQE) [6] [7].
Such variational circuits perform expensive calculations
(such as solving NP classical optimization or simulating
Hamiltonians) using a quantum computer and update
the circuit parameters using classical optimizers like
COBYLA [8] or gradient descent [9].

Hybrid algorithms mentioned above have enjoyed
some success in the NISQ era, showing their robust-
ness against noisy computation [10]. At the same time,
escaping the issue of vanishing gradients, or barren

plateaus, induced by noise, remains a problem [11].
Also, the size of NISQ computers poses barriers for
most real applications. Thus, Peng et al. [12] developed
a method for dividing any quantum circuit into multiple
smaller subcircuits that can be executed independently.
Then, one could use the information gathered from each
subcircuit to reproduce the theoretical outcome from
running the full, uncut circuit. In addition to making
evaluation of large circuits possible, it is also shown that
evaluating smaller circuits improves fidelity while being
more robust to noise [13] [14] [15].

Despite the theoretical success, reconstructing the
probability distribution of the full circuit is time-
consuming. More specifically, the classical post-
processing procedures generally scale exponentially with
respect to the size of the circuits. If one desires the
classical probability distribution of the full circuit, there
will be an additional exponential factor with respect
to the circuit size. One way to avoid this scaling is
to design algorithms that reduce the number of cuts
needed [16]. However, we take a more direct approach in
attempting to lower the reconstruction time complexity.
Similar to how probabilistic methods are used to provide
approximate solutions to problems that are difficult to
solve exactly, we propose the concept of an approximate
circuit reconstruction. Instead of exploring exponentially
growing state-space via brute force, we probabilistically
explore the space of bit-strings and sample the points that
are of higher likelihood. This procedure is asymptotically
correct as the number of samples taken increases. We
also found a significant reduction in run time, shedding
light on the potential utility of applying this technique
for larger, more practical problems.

The contribution of this work can be summarized as
follows:

o We introduce the notion of approximate circuit

reconstruction using Monte Carlo methods for re-
constructing measurement outcomes of subcircuits
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after cutting.

¢ Our model puts no explicit restriction on the run
time: one can decide the trade-off between speed
and accuracy depending on one’s resources.

o The naive implementation was able to reconstruct
the circuit outcome at speed an order of magnitude
faster without losing much accuracy, motivating fur-
ther development and optimization of this method.

II. QUANTUM CIRCUIT CUTTING

In short, the idea of quantum circuit cutting is sep-
arating circuits by applying a set of measurements and
state preparation such that, when combined, results in a
trivial action. Consider the Pauli matrices.

(0 1 (0 =i /1 0
92=\-1 0/ " \i o) 7“7 \o -1
(1

1 0
0 1
an orthonormal basis over the set of 2 x 2 complex
matrices. We can apply a combination of measurements
and initializations in different Pauli bases such that the
state itself is unchanged. For the formalism presented in
this paper, readers should refer to [14].

We will begin by considering the case that there is
one cut. Suppose there is an m-qubit quantum circuit
C, which can be cut into subcircuits A, B (c.f. Figure
1). Subcircuit A has n qubits whose measurement out-
come in the computational basis will be represented as

by ...by_14. We can compactly store the set of outcomes
(b1 })n_l,&,ﬁ)

Together with I = , these four matrices form

of subcircuit A with a rank-3 tensor p
The first index denotes the measurement outcome of
the first n — 1 qubits. The second index refers to the
extra “connection” bit @ € {0,1}. There is always this
extra bit upstream of the cut that will be measured
in different bases. It naturally exists as part of the
subcircuit and does not directly correspond to the circuit
output. The third index refers to the measurement basis,
BeB={os,0y,0:}

Similarly, subcircuit B is a m — n + 1 qubit circuit

with measurement outcomes by, . . . by,. This can again

be written compactly as a rank-3 tensor p(b” meh),

The first index represents the measurement outcome of
subcircuit B. The second and third indices are related:
e denotes the eigenbasis, with respect to 3 € B, that the
qubit immediately downstream of the cut is initialized
to. For example, if e = 0 and g 0., then the
qubit is initialized to the |+) state (the eigenvector of
[ corresponding to eigenvalue 1).

The probability distribution P corresponding to the
outcome can simply be written as a vector of 2™
bins, each corresponding to a measurement outcome.
Finding the probability of an outcome b1 b2 b m from

its subcircuits is represented in the following equation,
which one can think of as a tensor contraction over
indices a,e, 3.

P(i)l-~-i7n—1;l;n,-~-l;7n)

B by...bn_1,a, bp...b
_ Z ,Y(a,e,ﬁ)pfql 1 aﬁ)p(B
a.e,f

m»€;0) (2)

and the rank-3 tensor + is defined as follows.

5 205 — 1
(c.8) — ) 2e
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if B =0, )

The same formalism can also be extended to the
case of multiple cuts with additional bookkeeping. Let
there be K cuts and K + 1 subcircuits. For each cut,
there will be an associated triple (ag,eg,Sk) repre-
senting the connection bit, the eigenvalue, and mea-
surement/initialization basis respectively. Furthermore,
each subcircuit tensor will have its respective elements,
namely, ai or ey, depending on whether it is the up-
stream or downstream circuit. The matrix-product state
formalism gives a concise representation for generalized
circuit cutting (cf. [14], [17], [18]).

This contraction involves summing over 12 terms —
there are two possibilities each for a and e, three for
— which means that simulating the probability of ob-
taining one particular bit string takes only constant time.
However, the naive method for constructing the output
of the full distribution requires querying the probability
of each bit string, which there are exponentially many,
one by one. Also, since the representation above is only
exact given completely accurate state tomography, the
realistic recovered “probability distribution” might con-
tain negative probabilities or are not normalized due to
finite-shot noise and hardware noise (if ran on a physical
device). Moreover, the time complexity of reconstructing
the full distribution also grows exponentially with respect
to the number of cuts as three additional indices are to
be contracted for each additional cut. These unfavorable
scaling factors inhibit circuit cutting from being used at
its full potential.

III. APPROXIMATE CIRCUIT RECONSTRUCTION

This section introduces the idea of an approximate
circuit reconstruction that seeks to avoid exponential
scaling. For ease of exposition, we will demonstrate
the reconstruction for the case of a single cut and two
cuts; generalizing to arbitrary cuts is straightforward but
tedious.

The high-level idea is as follows: our goal is to build
an approximate distribution with polynomially many
queries from an exponentially growing state space. Since
the weight of each bit string is unknown a priori, there is
not a good deterministic strategy for approximating the
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(a) Circuit prior to cutting. The cut location is
specified at the red cross. Upon performing the cut,
the circuit naturally separates into two independent
subcircuits that can be run in parallel.
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(b) Resulting subcircuits. (top) The last qubit of
the upstream subcircuit, denoted by a, requires
measurements in basis 3. The first qubit of down-
stream subcircuit (bottom) requires preparing the
eigenstate of 5 corresponding to eigenvalue e.

Fig. 1: A pictorial representation of the circuit cutting procedure.

distribution. Thus, we introduce a naive version of the
Metropolis-Hastings (MH) algorithm, which is a type
of Markov Chain Monte Carlo (MCMC) method. Let
f(2) be a probability distribution, Z € {0,1}", that
we would like to sample from. Moreover, the unnor-
malized likelihood ratio between adjacent points in the
support of the distribution can be computed efficiently.
To avoid computing f(Z) on every = in the support,
we perform random walks on a Markov chain defined
on {0,1}™ with transition kernel g(§|Z). Then, at each
step of the random walk, we move to state y from
state Z probabilistically with the probability of transition
increasing if the ratio of likelihoods increases. For details
of MH algorithms and Markov chain mixing, readers are
referred to [19], [20], [21], [22].

A. Example: one-cut case

Consider the case that a single cut has been made,
producing outcomes p4 and pp from the respective
subcircuits where equation (2) describes the relationship
between the subcircuits and the full circuit. In our case,
each state & represents a possible output from the full
quantum circuit and the distribution we would like to
sample from is the one described in equation (2). The
complete procedure is described in Algorithm 1.

Here, the transition kernel is one that flips one
randomly-chosen bit from the conditioned bit string. This
procedure is easily parallelizable in the case of one cut.
One can establish multiple chains: implementation of the
same algorithm with different initial conditions running
in parallel. This comes at the advantage of not only time
complexity, but also prevents improper chain mixing and
guarantees convergence in the sample size limit.

Algorithm 1: Metropolis-Hastings algorithm for
the one-cut case

Input: N: number of samples, BI: burn-in

Output: S: histogram of accepted bit strings

S« {}, n<0

Z < random bit string of length m

while n < N do

y < bit string of length m that is different
with x in only 1 entry

Let » = min{1, P(¥) /P@)} (cf. eq. (2))

6 if u ~ Uniform(0,1) < r then

7 L T g

8 if n > BI- N then

9 LS[@]%S[&?H—l

10 n+<n+1

B W N =

wm

11 return S

Measure

U n

Fig. 2: Example of a circuit with two cuts. Subcircuits
A, B, and C can be arbitrary.

B. Example: two-cut case

Now consider the case where two cuts are made,
resulting in three subcircuits A, B, and C of size
ni,ne,ns respectively. For concreteness, suppose the
cuts follow the cascade-like structure depicted in Figure
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2. We will refer to the cut between subcircuit A and B
as the first cut, and the one between B and C as the
second. Subcircuit A is upstream of B, meaning that
it will need additional measurements at the location of
the cut, denoted by indices a; and S;. Subcircuit C' is
downstream of B, so it will need additional initializa-
tions at the location of the cut, represented by the indices
€2, B2. Subcircuit B is downstream of A and upstream
of C, which means that it will contain information about
both subcircuits, meaning that pp will be a rank-5 tensor
with indices ey, 81, 4o, B2 along with the measurement
bit strings.

We begin to realize the exponential scaling starting
in the two-cut case. The exponential growth comes
from the fact that, for each cut, we produce a pair of
measurement-initialization combinations. Quantum in-
formation must be passed through each cut, which means
that we must sum over all measurement-initialization
pairs for every cut, resulting in roughly 2P°Y% in runtime
complexity. Here, we will propose two types of ap-
proximate reconstruction. The first obeys the exponential
scaling with K to gain accuracy at the cost of efficiency.
It involves running six chains, one for each index pair
(e1, 1), as shown in Algorithm 2.

Algorithm 2: Metropolis-Hastings algorithm for
the two-cut case
Input: N: number of samples, BI: burn-in
Output: S: histogram of accepted bit strings
1 ppo zeros®1-bnytng-1,€1,81)
2 n <+ [0,0,0,0,0,0]
3 [#1,...,%¢) + random bit strings of length
No —|— ng — 1
4 while min(n) < N do

5 | for (e1,51) € {0,1} x B do

6 g <— bit string of length no 4+ ns — 1 that
is different with Z in only 1 entry

7 Let 7 = min{1, P /P(#)}

8 if u ~ Uniform(0,1) < r then

9 L QA?Z —y

10 if n > BI- N then

1 t p(g,c?hﬁl) « p(BIglﬂl) +1

12 | nli] < nfi] +1

13 return reconstructOneCut(pa,ppc)

The function reconstructOneCut calls Algo-
rithm 1. Here, we simply avoided the exponential scaling
in the space of bit strings. However, the scaling with
respect to the number of cuts will be preserved as more
indices are added into the middle for-loop. As an attempt
to avoid this scaling as well, we propose to select which
index to contract uniformly at random. The algorithm is

presented in Algorithm 3

Algorithm 3: Metropolis-Hastings algorithm for
the two-cut case with randomized indexing

Input: N: number of samples, BI: burn-in
Output: S: histogram of accepted bit strings

1 ppCc zeros(i’l'“i’”2+"3*1~r51751)

2 n <+ [0,0,0,0,0,0]

3 [&#1,...,4%¢] < random bit strings of length

Nno + Ny — 1

4 while min(n) < N do

5 e; < 0,1 uniformly at random

6 B ¢ 04,0y, 0. uniformly at random

7 4 < bit string of length ne 4+ ng — 1 that is

different with £ in only 1 entry

8 | Letr=min{l, P /P&)}

9 if u ~ Uniform(0,1) < r then

10 L Tiy

11 if n > BI- N then

2 tpgghﬁl) (_p(gglﬂl) +1

13 | nli] < nfi]+1

14 return reconstructOneCut(pa,ppc)

The asymptotic property is preserved even if we
randomly choose which index to contract over. However,
the rate at which it converges is slowed, which is the
usual trade-off between efficiency and accuracy.

C. Generalizing to an arbitrary number of cuts

Implementing a general circuit cutting routine is a
rather tedious task. The tensor network formalism be-
comes convenient for consistent book-keeping [12]. For
each quantum circuit, we can map it to a corresponding
directed graph: the vertices are quantum gates and an
initial set of qubits. Two vertices (gates) are connected
if it is directly connected by a qubit wire in the circuit.
An example is demonstrated in Figure 3.

The circuit cut then corresponds to removing one
edge. And by the graph formalism, we can immediately
identify the gates and qubits those gates operate on
upstream and downstream of the cut. A subcircuit is
produced only when the resulting graph is no longer in
one component and this procedure might take multiple
cuts (removal of edges) to achieve. For each subcircuit,
the associated tensor will be of rank 2k+1 where k is the
number of cuts the subcircuit is involved in. For example,
in the two-cut example (Figure 1b), subcircuit A can
be stored into a rank-3 tensor because it is upstream of
one cut. On the other hand, subcircuit B is sandwiched
between two cuts, so there are 2 * 2 + 1 = 5 indices.
To combine two subcircuits, one can use Algorithm 1,
2, or 3 depending on the situation, so long as the right
indices are being contracted.
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Fig. 3: Example mapping from quantum circuit to a
directed graph. Each gate is a vertex and an edge
connects two vertices if the two gates are connected
directly by a qubit wire.

IV. EXPERIMENTS

We give preliminary empirical results for the effective-
ness of our proposed approximate circuit cutting scheme.
The experiments were run on a personal computer
equipped with Intel i5 processors. The algorithms im-
plemented follow exactly as sketched in the pseudocode
presented in the previous section. We will show that,
despite the simplicity of the program, our method scales
well with circuit size both in terms of time complexity
and performance.

To compare two distributions, we propose the follow-
ing average variational distance metric: for distribution
p(z) and g¢(x) over the same sample space X, the
average variational distance is define by the following:

D(p;q) = Y (p(x) — q(x)) p() 4)

reX

where u(x) is the average probability distribution over
X of p and ¢:

p(z) +q(z)
Re s)
Intuitively, this represents the difference in likelihood
functions with respect to the average distribution. This
metric effectively captures the goal of approximate cir-
cuit cutting: estimating bit strings of large probability.
If our estimate distribution has the same shape as the
intended distribution, that is, the two distributions share
the same high-probability bit strings, then D(p;q) will
not punish the discrepancy for bit strings in the low
likelihood regime.

() =

A. Case of One Cut

For the one-cut case, we generated random subcircuits
of the same sizes using Qiskit [23], then connect the

1071 —@- Exact vs. Full
Approximate vs. Full

Average Distance

Size of Subcircuits

Fig. 4: The average distance (in log scale) with respect
to the size of each subcircuit in the case of one cut. The
error bars show the 25-th and 75-th quantiles.

two subcircuits using a CNOT gate. We compared the
distributions resulting from the exact reconstruction and
the approximate reconstruction against a run of the full
circuit without any cuts. This process is repeated for
30 trials, and the results are shown in Figure 4. We
can see that the exact reconstruction method consistently
outperformed the approximate one, which was expected
by virtue of probabilistic methods. However, the discrep-
ancy is not large and overall was close to that of the exact
reconstruction. The main advantage of the approximate
reconstruction is the computational complexity, which
was measured empirically and displayed in Figure 5.
Here, we linearly increased the number of samples taken
with respect to the size of each subcircuit. As a result, the
time needed for computation only grows linearly. How-
ever, performing exact reconstruction naively will require
exponential time. Moreover, the time recorded did not
account for time for normalizing the distribution. This
shows another advantage of approximate reconstruction:
it requires no extra post-processing for normalization. It
is important to note that, like all Monte Carlo methods,
the more samples are taken, the better the performance
is. One could choose to scale the number of samples
taken to be more than linear with respect to the size of
the circuit if one can afford the time and computational
resources.

B. Case of Two Cuts

We repeat a similar experiment for the case of two
cuts. We generate subcircuits of equal size randomly and
connect each subcircuit using a CNOT gate, structured
like one depicted in Figure 2. And since circuit cutting
generally improves the fidelity [13], we will compare
the exact reconstruction method with the two proposed
approximate methods: one that loops over all indices,
and the other randomly selects the index. Again, for
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Fig. 5: Comparison of running time with respect to the
size of subcircuits in the case of one cut.
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Fig. 6: The average distance (in log scale) with respect
to the size of each subcircuit for the case of two cuts.

The error bars show the 25-th and 75-th quantiles.

each size of subcircuits, the same experiment was re-
peated 30 times. The results are shown in Figure 6.
The approximate method without randomized indexing
behaved similarly to the case of one cut, showing that
the approximate reconstruction procedure can be ap-
plied sequentially without significant deterioration in the
quality of reconstruction. However, randomly choosing
indices resulted in poor accuracy. It is important to
keep in mind that randomized indexing was used to
escape the exponential scaling in the number of cuts.
We suspect that the accuracy of the randomized indexing
method can be improved with much larger sample sizes.
However, for only a few cuts, sacrificing such magnitude
of accuracy is inappropriate. Meanwhile, exponential
runtime is again mitigated by controlling the inflation
of sample sizes, as in Figure 7.

514
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Fig. 7: Comparison of running time with respect to the
size of subcircuits in the case of two cuts.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed the concept of approximate
circuit reconstruction, which aims at piecing together the
measurement outcome of subcircuits in a randomized
way to avoid unfavorable scaling both in terms of the
circuit size and the number of cuts. The experimental
results show that this is a promising direction. Below,
we list two particular directions to explore.

a) Improved Algorithm Design: The current im-
plementation uses the simplest implementation of the
Metropolis-Hastings algorithm. Furthermore, no assump-
tions of quantumness were made throughout. As a result,
there is significant room for designing more sophisti-
cated sampling methods that take advantage of existing
structures.

b) Bayesian Reconstruction: Traditionally, MCMC
methods are used for Bayesian computation to neglect
an intractable normalizing factor that is produced in
invoking Bayes’ theorem. Here, sampling was used to
escape the imperfect normalizing factor from statistical
shot noise. Yet, there is potential for further exploiting
the properties of MCMC algorithms. For example, in-
tegrating priors into reconstructions might be beneficial
for reducing noise while keeping computation tractable.
However, one would need a probabilistic model for
classical distributions generated by quantum circuits,
which will also be left as a future direction.
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