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In global QCD fits of parton distribution functions (PDFs), a large part of the estimated uncertainty on

the PDFs originates from the choices of parametric functional forms and fitting methodology. We argue that

these types of uncertainties can be underestimated with common PDF ensembles in high-stake

measurements at the Large Hadron Collider and Tevatron. A fruitful approach to quantify these

uncertainties is to view them as arising from sampling of allowed PDF solutions in a multidimensional

parametric space. This approach applies powerful insights gained in recent statistical studies of large-scale

population surveys and quasi-Monte Carlo integration methods. In particular, PDF fits may be affected by

the big data paradox, which stipulates that more experimental data do not automatically raise the accuracy

of PDFs—close attention to the data quality and sampling of possible PDF solutions is as essential. To test

if the sampling of the PDF uncertainty of an experimental observable is truly representative of all

acceptable solutions, we introduce a technique (“a hopscotch scan”) based on a combination of parameter

scans and stochastic sampling. With this technique, we examine the PDF uncertainty on key LHC cross

sections at 13 TeV obtained with the public NNPDF4.0 fitting code, while accounting for the likelihood

distribution. We show that the uncertainties on the charm distribution at a large momentum fraction x and

gluon PDF at small x are enlarged. In PDF ensembles obtained in the analytic minimization (Hessian)

formalism, the tolerance on the PDF uncertainty must be based on sufficiently complete sampling of PDF

functional forms and choices of the experiments.

DOI: 10.1103/PhysRevD.107.034008

I. INTRODUCTION

Precision phenomenology at hadron colliders relies

upon accurate predictions in the Standard Model (SM).

An overwhelming number of such theoretical predictions

require parton distribution functions (PDFs) in a proton,

the nonperturbative functions faðx;QÞ quantifying prob-

abilities for finding quarks and gluons in a proton at an

energy scale Q above 1 GeV. Multiple groups [1–9]

provide increasingly sophisticated parametrizations of

PDFs by fitting a growing collection of precise exper-

imental datasets to advanced multiloop calculations.

High-luminosity (HL) measurements at the Large

Hadron Collider (LHC) and planned DIS experiments

(Electron-Ion Collider [10], Large Hadron Electron

Collider [11], Muon-Ion Collider [12] …), combined

with the progress in perturbative QCD calculations, open

opportunities both to learn about the PDFs and to find

their new applications. The global QCD analysis to

determine the PDFs can be now attempted by a broad

circle of users thanks to the publicly available XFITTER

[13] and NNPDF [8] fitting codes. A recent whitepaper [14]

contributed to the Snowmass’2021 Summer Study

reviews ongoing progress in the PDF analysis.

In this article, we summarize a study of a rarely

discussed source of some observed differences between

the published parton distributions. A lot of attention has

been dedicated to various factors that determine the

accuracy of PDFs, usually associated with a combination

of experimental, theoretical, PDF parametrization, and
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methodological sources. Estimates of PDF uncertainties are

needed for inference from QCD experiments at the LHC

and other facilities [15–17]. However, in addition to the

accuracy of individual PDF fits, or “fitting accuracy,”

another factor in the total uncertainty may be as conse-

quential, reflecting the accuracy of exploration, or sam-

pling, of the space of acceptable PDF solutions. This space

is truly vast when large data samples are fitted using many

parameters. In fact, its exploration can be notoriously

difficult, as the sampling of multidimensional spaces is

exponentially inefficient [18,19].

In this context, sampled solutions can be obtained by

varying the fitted data (e.g., by resampling random fluc-

tuations in the measured values as in the NNPDF analyses

[8]), models of theory and experiment (e.g., the PDF

parametrization forms [5] or model parameters [20,21]

as in the CT and MSHT studies), and in other ways. The

pivotal role of adequate sampling in large-scale data

analyses has been emphasized in statistics applications

across diverse fields, notably in connection with large-scale

population surveys [22,23], multidimensional quasi-

Monte Carlo (QMC) integration [24], medical research

[25], variance-bias separation in machine learning [19,26],

and studies of predictivity of complex models [27].

Sampling issues are also pertinent to the multivariate

PDF fits. One key observation from the above studies is

that large samples do not guarantee convergence to the

correct solution, contrary to the common expectation based

on the law of large numbers. The reason is that nominally

small biases in sampling of possible solutions, such as in

the selection of best-fit models of PDFs obtained using

various choices of experiments or functional forms of

PDFs, may grow as the volume of fitted data and complex-

ity of the analysis increase. The growth reflects common

difficulties with sampling of parameter spaces of high

dimensionality. In an (unfortunately nonrare) situation

when the sampling is unrepresentative of the population

of allowed solutions, one may end up with a wrong

conclusion described by Xiao-Li Meng [22] as the big-

data paradox, namely, “the bigger the data, the surer we

fool ourselves.” Sampling accuracy must be controlled in

high-stake phenomenological measurements, such as the

recent measurement of W boson mass by the CDF

collaboration [28], together with other uncertainties.

Incomplete sampling of PDF solutions may result in

unstated sources of the differences among central PDFs or

the PDF uncertainties. The possible existence of such

differences is suggested by an observation that, while

several recent global analyses constrain the PDFs with

comparably strong sets of fitted experimental data, in some

phenomenologically important cases these analyses arrive

at noticeably different estimates of PDF uncertainties. In

the CTEQ-TEA analyses, some of the sampling uncertainty

is included, as discussed below. On the other hand, when

the “experimental” 1σ PDF uncertainty is defined accord-

ing to the Δχ2 ¼ 1 criterion, as in ABM and HERAPDF

studies, this uncertainty does not account for sampling over

a sufficient class of PDF parametrizations and other factors,

which must be done separately.

As another example, the estimates for the correlated

uncertainties on key LHC and Tevatron total cross sections

presented in [14,15] vary between the recent PDF fits. In

Fig. 1, the 95% confidence level (CL) uncertainty regions

on the Z, Higgs, and W� total production cross sections at

the LHC 14 TeV and Tevatron 1.96 TeV vary in size in a

large range. It has been demonstrated that the uncertainties

may reflect as much the fitting methodology as the strength

of experimental constraints. Indeed, while the differences

with the nonglobal (ABMP’16 and ATLAS) and combined

(PDF4LHC21) ensembles are reasonably understood, the

differences between three global fits—CT18, MSHT’20,

and NNPDF3.1—require additional attention. When CT18

FIG. 1. NNLO theoretical predictions for 95% CL PDF uncertainties for total cross sections of Z and SM Higgs boson production at

the LHC 14 TeV (left) and Z andW� boson production at the Tevatron 1.96 TeV (right). The Higgs cross sections are obtained at NNLO

multiplied by an N3LO=NNLO K factor of 1.097 and by an EW K factor of 1.0514. Predictions are shown for PDF4LHC21 [15],

PDF4LHC15 [29], NNPDF4.0 [8], CT18 [5], MSHT20 [7], ABMP16 [3], and ATLASpdf21 [9] NNLO PDFs with αsðMZÞ ¼ 0.118.
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[5] and NNPDF3.1.1 [4] NNLO PDFs were compared in

Sec. II of the 2021 benchmarking study by the PDF4LHC

group [15], the former systematically predicted a larger

uncertainty in the moderate x region than the latter. The

magnitudes of the MSHT20 NNLO uncertainties [7] in

these comparisons tended to lie between the CT18 and

NNPDF3.1 ones. More intriguingly, in the course of the

PDF4LHC21 exercise, the three global PDF groups con-

ducted fits to a set of common data, using common settings,

so as to establish comparisons/benchmarks. The common

dataset (termed the “reduced set”) was diverse enough to

provide constraints on all PDF flavors, but limited enough

so that all groups were expected to find similar estimates

of PDF uncertainties. In the fits to the same reduced

dataset [ [15], Sec. III, especially Figs. 3.4 and 3.5], the

NNPDF3.1 (reduced) uncertainties came out to be system-

atically smaller than the CT18 (reduced) and MSHT20

(reduced) uncertainties.

The discrepancies in estimated uncertainties have a

variety of implications. For example, they can explain

different conclusions about the strength of evidence for the

nonperturbative (intrinsic) charm component of the proton

obtained by the NNPDF [30] and CTEQ-TEA [31] groups.

They also affect projections for sensitivity of planned new

experiments, just like related mathematical issues affect

planning and policies in other fields [27]. Such differences

are often attributed to the tolerance conventions chosen by

the global analysis groups. [“Tolerance” refers to the

prescription for estimating the PDF uncertainty, see the

discussion in Ref. [16].] Are the tolerance conventions

mostly subjective, or can some conventions perform better

than the others? The question is sharpened by formulating it

as a problem about sampling of a specific PDF-dependent

observable that PDFs themselves.

Our article presents an introduction to the sampling of

PDF solutions, followed by a presentation of a technique to

improve sampling of PDF uncertainty for user-selected

QCD observables. Section II reviews mathematical essen-

tials for this discussion. Among these, we first introduce the

trio identity, useful for quantifying the convergence of

sampling estimates. The trio identity for the sample

deviation (Sec. II C) and cornerstone properties of multi-

dimensional (quasi) Monte Carlo integration (Sec. II D)

demonstrate that complex, large-scale analyses are at an

elevated risk of an unaccounted sampling bias. Global

QCD analyses must strive for representative sampling of all

acceptable solutions, which may increase the resulting PDF

uncertainties or effective tolerance.

Section II also points out fundamental difficulties in

performing an all-inclusive test for representative sampling

in a multiparametric global fit. Such sweeping test is likely

impractical. On the other hand, a practical question “What

is the sampling uncertainty on a given observable X?”
can be highly tractable using the already available

technology for PDF fits. We point out the general

rationale in Sec. II D. We then continue to Sec. III,

where we show that the question about PDF uncertainties

on specific QCD observables can be explored using the

general framework for large-scale surveys and QMC

integration presented in Sec. II. Section III A reviews

major types of sampling arising in PDF fits, from

experimental data to models for systematics. As a

specific application, Sec. III B investigates the PDF

uncertainty on the LHC benchmark cross sections using

the LHAPDF grids of NNPDF4.0 error sets and publicly

available MCGEN [21,32,33] and NNPDF [34,35] fitting

codes to compute the χ2 of the included datasets. The

hopscotch sampling technique introduced there suggests

that the PDF uncertainty on key LHC cross sections at

13 TeV is larger than the nominal uncertainty obtained

with the published NNPDF4.0 error sets. Section III C

explains the algorithm of the hopscotch scans.

Section III D offers a possible interpretation of our

findings. The PDF uncertainties must be also enlarged

in the case of the strangeness-antistrangeness asymmetry

and fitted charm PDF at large momentum fractions,

as demonstrated in Sec. III E. Section IV contains

conclusions.

II. QCD SAMPLING PROBLEM AND THE TRIO

IDENTITY

A. Setup of the problem; the R mechanism

We start by discussing multidimensional sampling in a

simplified context, by considering the probability for a

QCD observable G dependent on the PDFs, such a collider

cross section σ or perhaps the QCD coupling strength

αs determined from hadron scattering measurements.

Predictions for observables are the ultimate targets for

the propagation of the PDF uncertainties. The goal of the

physics endeavor is to estimate the truth value Gtruth of G
that is objectively realized in Nature. Historically, at most

we can hope to determine the expectation value EpðGÞ ¼
1
Np

PNp

i¼1 Gi on the population of many measurements or

other determinations Gi of G, where Np is a very large

number of determinations.

We assume that the determinations Gi are properly

designed, so that EpðGÞ agrees with Gtruth (i.e., EpðGÞ −
Gtruth is arbitrarily small) for Np that is sufficiently

large. For example, for G ¼ αs, the population expect-

ation EpðαsÞ could be computed on a future sample of

many measurements obtained after several more decades

of well-funded research. If G is a cross section σ

computed with a multiparameter PDF ensemble, EpðσÞ
can be the expectation value with the PDF ensemble that

densely and representatively samples the whole param-

eter space.

The conundrum for many studies is that achieving such

large Np may not be feasible. Often one selects a sample of
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Ns replicas from the population, with Ns < Np or even

Ns ≪ Np, and estimates the sample expectation value as

EsðGÞ ¼
1

Ns

XNs

i¼1

Gi ¼ EpðRGÞ=EpðRÞ: ð1Þ

In the last step, we expressed the sample expectation EsðGÞ
as a ratio of population expectations EpðRGÞ and EpðRÞ,
where Ri is an array of Np “sampling indicators” such that

for each element Gi of the population

Ri ¼
�
1; if the ith element is in the sample;

0; if it is not in the sample;
for i ¼ 1;…; Np: ð2Þ

The sample expectation deviation ΔE ≡ EsðGÞ −
EpðGÞ ≈ EsðGÞ − Gtruth is controlled by the accuracy of

each determination, or a replica in the case of PDFs, Gi, as
well as by the accuracy of sampling of Ns replicas from the
population. The fitting accuracy/sampling accuracy dis-

tinction and the representation using the R indicators (“the
R mechanism”) are borrowed from the study [22] of large-
scale surveys, in which “fits” or “replicas” are equivalent to
“responses to the survey.” Namely, the accuracy of a single
replica Gi can be raised by reducing experimental, theo-

retical, and computational errors. From here, we will
assume that the individual Gi are sufficiently accurate.
In contrast, the sampling accuracy reflects how adequately
we sample the population of Np acceptable replicas. If such

sampling is biased, the magnitude of the sample deviation
can be estimated using the R mechanism, see Eq. (3).
Small biases due to insufficiently representative sam-

pling of large populations may produce large deviations.
Surveys of the COVID-19 vaccination rate with very large

samples of responses and small statistical uncertainties
(e.g., Delphi-Facebook) greatly overestimated the actual
vaccination rate published by the Center for Disease
Control (CDC) after some time delay [23]. The deviation
has been traced to the sampling process. In contrast to the

random error, which decreases as 1=
ffiffiffiffiffiffi
Ns

p
, the sample

expectation deviation can grow with both Np and Ns.

Concurrently with the formalism for the large population

surveys, a related statistical formalism has been developed
to understand convergence of quasi-Monte Carlo (QMC)
methods for multidimensional integration [24]. Insights
from these formalisms help us to elucidate our problem in
the context of the PDF analysis, in which it can be posed as

follows:

Problem 1. Estimate an expectation value EpðGÞ of an
observable G on a [possibly unknown] population of Np

replicas, given a sample of Ns values Gi, where Ns < Np.

To get such estimate, it suffices to adopt an Rmechanism

that renders ΔE ¼ EsðGÞ − EpðGÞ ¼ 0 within a prescribed

error. In this section, we discuss convergence of such

sampling estimates.

B. A toy example

As a toy example, consider a population of NNLO Higgs

boson cross sections G≡ σgg→H at the LHC c.m. energy

14 TeV. The cross sections are computed with Np ¼ 900

error sets of the baseline PDF4LHC21 PDF ensemble [15]

consisting of 300 MSHT20, 300 NNPDF3.1.1, and 300

CT180 replicas, illustrated on the left panel of Fig. 2. [The

replicas are ordered as in the actual 900-replica baseline

ensemble. The mean cross section of the CT180

(NNPDF3.1.1) subset is slightly lower (higher) than the

population mean.] We have EpðGÞ ¼ 47.492 pb and wish

to obtain a close estimate by sampling only Ns ¼ 300

replicas out of 900.

If we randomly select Ns ¼ 300 replicas from the whole

population, we obtain ΔE ¼ 0� 0.033 pb, where the

68% CL uncertainty is computed by repeating the random

selection 1000 times. In this case, Es and Ep are statistically

indistinguishable (see the middle panel of Fig. 2). It is

known on general grounds that, with the random sampling

from the whole distribution, ΔE decreases as 1=
ffiffiffiffiffiffi
Ns

p
,

independently of Np [22].

As an instance of a different sampling, let us select 100

replicas from each of the MSHT, NNPDF, and CT18

subsamples, for a total of Ns ¼ 300 replicas. In this

case, we still get ΔE ¼ 0� 0.03 pb, i.e., no deviation.

Since the PDF4LHC21 baseline set of 900 replicas is

constructed by randomly selecting 300 replicas from

each of the MSHT20, NNPDF3.1.1, and CT180 1000-
replica samples, we conclude that this PDF4LHC21

nonrandom combination prescription introduces no

appreciable deviation.

We can generate various sample combinations selecting

100 replicas from one of the three groups, 200 replicas of

second group, and none of the third. Two of those are

shown on the right panel of Fig. 2, with deviations of ΔE ¼
−0.206� 0.036 pb and ΔE ¼ 0.138� 0.031 pb. In this

instance, the bias was introduced by hand, but in realistic

situations the bias can arise from apparently small depar-

tures from the random (probabilistic) sampling at various

stages of the analysis.

C. The trio identity

The trio identity [22,24] for the sample expectation

deviation ΔE is a representation introduced to examine

convergence of the sampling algorithm. For our problem,

the trio identity takes the form
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ΔE ¼ EsðGÞ − EpðGÞ ¼
Covp½R;G�
EpðRÞ

¼ Corrp½R;G�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

confounding correlation

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Np

Ns

− 1

s

|fflfflfflfflffl{zfflfflfflfflffl}

measure discrepancy

· Varp½G�
|fflfflfflffl{zfflfflfflffl}

population variation

:

ð3Þ
The three factors on the right-hand side are population

expectations with different dependencies on Ns and Np. In

Eq. (3), Covp½A;B�≡ EpððA − EpðAÞÞðB − EpðBÞÞÞ is the
population covariance. Variation Varp½G�≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Covp½G;G�

p

reflects the complexity of the population distribution.
1

Measure discrepancy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np=Ns − 1

p
is due to the mismatch

between the sizes of the population (Np) and the sample

(Ns). The confounding correlation Corrp½R;G� lies

between −1 and 1. It quantifies efficiency of the sampling

algorithm in comparison to simple random sampling. The

confounding correlation reflects methodology of the analy-

sis. Methodological correlations play a central role in

precise PDF analyses [36], together with data-driven

[37] and theory-driven [38–41] correlations.
If the sampling exercise is repeated NR times while

keeping the same Ns, each time choosing a different R
array, one can estimate a mean-square error (MSE) of the

sample deviation for a given R mechanism:

MSERðΔEÞ≡ ERðΔ2
EÞ ¼ ERðCorrp½R;G�2Þ

·

�
Np

Ns

− 1

�

· VarpðGÞ2: ð4Þ

The trio identity establishes dependence of the sample

deviation ΔE on the sampling algorithm [22].

(1) Under simple random sampling (SRS), when repli-

cas are independently selected with identical prob-

ability, the sample deviation converges to the truth as

1=
ffiffiffiffiffiffi
Ns

p
in compliance with the law of large numbers:

SRS∶ ΔE → 0 as Ns → Np;

with

MSESRSðΔEÞ≡ VSRS ¼ κσ̄2G=Ns;

where κ≡ ðNp − NsÞ=Np ∼ 1: ð5Þ
Comparison of Eqs. (4) and (5) shows that

ESRSðCorrp½R;G�2Þ ¼ 1=ðNp − 1Þ.
(2) For an arbitrary sampling algorithm, the sample

deviation satisfies

ΔE ¼ Corrp½R;G�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np − 1

p ffiffiffiffiffiffiffiffiffiffi

VSRS

p

;

MSERðΔEÞ ¼ ERðCorrp½R;G�2ÞðNp − 1ÞVSRS: ð6Þ

For the sampling deviation to vanish as Ns increases,

Corrp½R;G� should decrease at least as fast as

oð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np − 1

p
Þ. Absent this behavior, unrepresentative

sampling may lead to a situation when the sample deviation

remains large in spite of misleadingly small standard error

estimates. Meng dubbed this situation as “the big-data

paradox,” which is clearly undesirable and unfortunately

can go unnoticed if sampling accuracy is not controlled to a

sufficient degree.

D. Quasi-Monte Carlo integration

The trio identity elucidates why quasi-Monte-Carlo

(QMC) methods for multidimensional integration may

FIG. 2. The Rmechanism illustrated on a toy example. The left panel shows a histogram of predictions for NNLO Higgs cross sections

at the LHC based on 900 error PDFs of the PDF4LHC21 PDF ensemble (“the population”). The PDF4LHC21 ensemble is composed of

three groups with 300 predictions; the resulting histograms are superimposed. The middle panel shows 300 predictions that are

randomly sampled from the 900-member population, producing a sample average μ̂ that is indistinguishable from the population average

μ (i.e., ΔE ≈ 0). The right panel depicts two biased samples. Each contains 100 predictions from one group, 200 from a second group,

and none from the third. The biased samplings result in nonzero ΔE values.

1
Variation Varp½G� and standard deviation σ̄G are related as

σ̄2G ¼ Np=ðNp − 1ÞVarp½G�2.
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converge at a faster or slower rate compared to the

Monte Carlo integration based on SRS [24]. When inte-

gration is performed over a unit hypercube in Npar

dimensions, the sample deviation ΔE coincides with the

(hyper)cubature error and can be decomposed into three

factors that play the same roles as in Eq. (3).

Of particular interest to us is the convergence of QMC

integration when Npar is large. In this limit, the minimal

number of MC replicas that guarantees a convergent

integral for an arbitrary integrand grows as 2Npar [42],

reflecting the curse of dimensionality that was pointed out

long ago [18,19]. Not only dense sampling of a high-

dimensional volume requires an exponentially growing

number Np of replicas, such as 2Npar ∼ 1030 for

Npar ¼ 100; suppression of the confounding correlation

to the adequate degree is likely as a daunting feat.

The sample expectation of a QCD observable Gða⃗Þ in

PDF fits is merely an integral of the weighted probability

function Pða⃗Þ over Npar PDF parameters a⃗:

EsðGÞ ¼
Z

Gða⃗ÞPða⃗Þda⃗: ð7Þ

We immediately conclude that convergence of EsðGÞ to the
truth for an arbitrary Gða⃗Þ is not at all guaranteed in a PDF

fit that depends on too many parameters and does not

control for representative sampling.

In such a complex fit, one practically cannot know if the

sample PDF uncertainty covers the truth values for all

Gða⃗Þ. On the positive side, it follows from Eq. (7) that, if

Gða⃗Þ is known to substantially depend only on a few

components of a⃗, estimation of EsðGÞ becomes highly

tractable. The reason is that the convergence rate of QMC

integration is controlled by the effective number of com-

ponents, i.e. directions in the parameter space, along which

the variance of the integrand is significant [43]. If the

number of such components is small, integration can be

arranged so as to give more weight to the sampling of the

manifold spanning the corresponding “large dimensions.”

For example, the coordinates in the subspace with highest

variances of Gða⃗Þ can be sampled most densely. The

coordinates in the complementary subspace with low

variances can be either fixed or sampled with a low density.

Techniques exist for ranking theNpar coordinates according

to the variance of the integrand using the analysis of

variance (ANOVA) [44], principal component analysis

(PCA), or another dimensionality reduction method.

Accuracy of integration can be iteratively improved by

adding contributions from the coordinates with lower

variances [45]. See discussion in Sec. 8 of Ref. [24].

The role of effective dimensions in accounting for large

uncertainties from complex models, beyond Monte-Carlo

integration, was recently highlighted for the broader con-

text of applied science. Reference [27] stresses the role of

uncertainties in the decision making of new policies in the

real world, “where reliance on excessively complex and

overconfident models may have deleterious social-

environmental consequences.”

Experience with high-dimensional integration thus raises

a warning for the analyses that fit a large number of flexible

functions using a modest number of fitted replicas. While

these analyses excel at finding acceptable sets of functions

describing the data, they are nevertheless prone to the risk of

a sampling bias that grows with the dimensionality of the

problem. Apparent reduction of the variance does not

eliminate this risk because of the big-data paradoxquantified

by the trio identity. It has been known for awhile that precise

sampling of χ2 in the vicinity of the global minimum

becomes inefficient with traditional MC replicas: the

majority of such replicas have too large Δχ2 because of

high dimensionality of the parameter space [ [21], Sec. 3. B].

All-inclusive testing for representative sampling thus is

difficult with a lot of free parameters. Fortunately, typical

QCD cross sections depend on specific combinations of

PDFs that can be established using dataset diagonalization

[46] (for example, implemented as optimization of Hessian

sets for specific experiments in the ePump package [47]) or

a related method. Sampling of a known PDF combination

can be tested with a greatly reduced cost based on the

dimensionality-of-integration argument presented above.

Hopscotch scans described in the next section realize such

test in practice.

III. SAMPLING TESTS AND HOPSCOTCH SCANS

A. PDF uncertainties on QCD observables as a

sampling problem

Section II summarized recent mathematical approaches to

statistical surveys of large datasets and QMC integration of

functions dependent on many parameters. In this section, we

advance a viewpoint that the same approaches can guide

estimation of PDF dependence of specific QCD cross

sections. In this case, we consider a population of predictions

fGig for an observableG based on a large collection of PDF

sets that will be obtained in the future. Without the loss of

generality, we assume that the PDF sets are indexed by

independent countable parameters and are acceptable

according to the goodness-of-fit criteria explained below.

A prediction based on one such PDF set plays the role of

an individual response to the survey, given by the numerical

value Gi. Predictions based on one published PDF ensem-

ble can then be viewed as a sample with the size Ns that is

smaller than the population size Np. Again without the loss

of generality, we can assume that the expectation values can

be computed using the unweighted average as in Eq. (1), or,

if so necessary, using the weighted average as in Ref. [22].

The formalism from survey studies [22,23] then tells us

that, given the complexity of PDF models, confounding

correlations may dominate the sampling biasΔE even when

the sample SRS deviation, proportional to 1=
ffiffiffiffiffiffi
Ns

p
, is small.
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Validation of representative sampling is thus as essential

as the tests of quality of individual fits, such as strong

goodness-of-fit tests on resulting PDFs [16] and the closure

test [48] of the agreement of a trial fit with a predetermined

truth value within the uncertainty. However, for an all-out

sampling test, the computation of the confounding corre-

lation in the trio identity, Eq. (3), requires to know the

population distribution as an input, which is not known

while the fits are performed. The confounding correlation

can be predicted to a degree by using a model population

distribution based on simulated pseudodata in the same

spirit as done in the closure test. On the other hand, tests of

representative sampling are simpler for QCD observables

with low effective dimensionality.

But what exactly is sampled in the PDF fits? Several

types of PDF sampling are performed based either on a

known or unknown probability distribution. The uncertain-

ties from each sampling type may or may not be included as

a part of the final uncertainty. To illustrate how the groups

handle various types of sampling, we will compare two

recent NNLO PDF analyses, CT18 [5] based on the

analytic χ2 minimization and NNPDF4.0 based on the

MC sampling of neural network parametrizations of PDFs

[8]. We outline some common categories of sampling,

leaving out technical details of specific realizations.
2

a. Sampling of experimental datasets occurs when these

datasets are selected for the fit. As a variation, only a part of

the dataset can be included. Some datasets may be included

with χ2 weights that are different from unity, as has been

done in PDF fits circa year 2000. If there are inconsisten-

cies among the datasets, inclusion of a dataset from the

global fit may result in a larger-than-nominal shift of

the expectation value. The associated variation is latent

in the PDF fits with significant tensions among the experi-

ments, including the recent global PDF analyses. The

strengths of tensions among the fitted PDF sets are

comparable in CT18, MSHT’20, and NNPDF3.1 fits, as

reflected by χ2=Npt values of experimental datasets in

Tables 2.1–2.3 of [15]. Such tensions can be identified with

techniques described in [16,49]. Standard techniques for

estimation of the corresponding PDF uncertainty, like

jackknife cross-validation (computing the expectation

value on an ensemble of fits with one experiment left

out at a time), are hardly practical in the global fits. Instead,

global PDF fits may resort to a remedy of increasing the χ2

tolerance associated with one standard deviation from

Δχ2 ¼ 1 to a larger value. More complex tolerance pre-

scriptions can be alternatively used [16]. In the CT18

family of PDFs, a special CT18Z ensemble is provided to

obviate the change in the PDFs upon the inclusion of the

ATLAS 7 TeV W=Z production [50] that runs into tension

with dimuon SIDIS experiments. The difference between

the CT18 and CT18Z central values can exceed the sum of

90% intervals of two ensembles. The MSHT’20 and

NNPDF4.0 analyses publish only the PDF ensembles for

the default selection of experiments. Mutual consistency

of the datasets is thus a part of the data-quality requirement

for the reduction of uncertainties.

b. Sampling of experimental data fluctuations is the most

familiar type of sampling. The NNPDF and other (pre-)MC

approaches generate PDF sets by resampling and cross-

validation of the experimental data. In this paradigm,

multiple replicas of the fitted data are constructed by

randomly fluctuating the data’s central values according

to the experimental uncertainties. For each replica of data,

the PDFs are found by fitting to the training part of the

replica and simultaneously cross-validating against the

complementary, control part. The final PDFs optimally

agree with both training and control parts based on a

criterion that depends on the log-likelihood function χ2

computed with respect to the fluctuated data. Expectation

values are then computed using an unweighted average of

predictions on an ensemble of such replicas. The NNPDF

group [51] calls this approach “importance sampling.” It is

called “resampling” or “bootstrap” by other groups.

The CT approach, on the other hand, finds the best-fit

PDFs by minimization of the log-likelihood χ2 computed

with respect to unfluctuated data, i.e. the published data

with specified statistical and systematic errors (see below).

Expectation values in this approach are computed using the

best-fit PDF, confidence intervals are estimated using

Hessian eigenvector (EV) sets. The CT fit can also produce

MC error sets, usually done by the conversion of the final

Hessian PDF sets [21]. Reciprocally, the NNPDF4.0 MC

replica sets have been also converted into an ensemble of

50 Hessian PDFs, which reproduces the expectations,

standard deviations, and correlations of the NNPDF4.0

MC replicas. Resampling of experimental uncertainties and

conversions between Hessian and Monte Carlo PDFs are

well understood and numerically accurate.

c. Sampling of PDF functional forms and fitting/training

methodologies is another common source of an explicit or

latent uncertainty. It is independent from the data resam-

pling uncertainty. In the discussion of data fluctuations, we

assumed that the MC replicas are generated with the same

training methodology, including the same choices for the

sizes and contents of training and control partitions, as well

as the same condition to finish replica training. We also

assumed that the parametrization forms of the PDFs,

whether given by an analytic function or by a neural

network of a certain architecture, do not change in the

course of an individual fit or training cycle. Such settings of

the fit of course can also be varied.

In contrast to the experimental uncertainty, these choices

are associated with the prior probability. One aspect of this

kind is that the final PDFs, whether produced by analytical

2
In addition to the categories discussed here, Monte-Carlo

integration uncertainty of theoretical calculations may be im-
portant in some cases.
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minimization or an AI/ML method, aim to describe the data

without underfitting or overfitting parts of data. As a

consequence of the fundamental variance-bias dilemma

[19,26], overfitting is not sharply defined. Namely, a fit or

ML training with an arbitrary functional form can produce

multiple solutions that balance between agreeing with the

(un)fluctuated data, having the fitted function with high

variation, and allowing for random noise. One therefore

expects some differences between the overfitting tests

adopted by various groups.

Smoothness, such as the absence of sharp features in

acceptable PDFs, is a related condition that does not

necessarily imply data overfitting. Both CT18 and

NNPDF4.0 analyses require the PDFs to satisfy conditions

of smoothness, positivity, and integrability, again according

to varied prescriptions.

In the CT18 analysis, the candidate fits were repeated

with more than 250 alternative functional forms and

produced substantial spread of PDF solutions. The toler-

ance of the published CT18 ensembles, such as those

shown in the next subsections, was increased so that their

Hessian PDF uncertainty covers the solutions obtained with

the alternative parametrizations. CT18 parametrizations

utilize Bernstein polynomials, which allow examination

of a variety of flexible, yet usually smooth, functional

forms.

The NNPDF4.0 analysis adopts a specific optimized

algorithm to select the architecture, train neural networks,

and impose smoothness and other prior conditions. As a

part of the algorithm, the final 100 or 1000 NNPDF4.0

replicas are selected from a larger pool of replicas, many of

which exhibit nonsmooth, short-length features. The algo-

rithm is checked for self-consistency in a closure test by

fitting idealized pseudodata and verifying quantitative

estimators such as the bias-variance ratio and quantiles

of Δχ2 for groups of experiments. The closure test

demonstrates that the NNPDF4.0 optimized algorithm is

sufficient for generating well-behaving PDFs that agree

with the known “truth” PDFs.
3
Closure tests, however, do

not prove that the use of the NNPDF4.0 settings is a

necessary condition for obtaining well-behaving solutions

under acceptable variations in methodology. This espe-

cially applies to the case of fitting inconsistent datasets.

Other algorithms, which vary in terms of hyperparameters,

priors, and similar setting choices, may exist and produce

PDF solutions that enlarge the nominal NNPDF ensemble.

The availability of public NNPDF4.0 MC and Hessian

PDFs, together with the public NNPDF4.0 code, opens a

possibility for a test to evaluate performance of the

NNPDF4.0 algorithm in finding the PDF solutions.

Consider the Bayesian likelihood-ratio test in the context

of PDF comparisons [16,52]. Suppose two PDF solutions,

A and B, have the same likelihood, but solution A is

deemed unlikely compared to B based on the ratio of

posterior Bayesian probabilities. From this, we conclude

that solution A is disfavored because of its lower prior

probability, not because of its likelihood. Generalizing for a

collection of QCD observables, we can identify the regions

populated by new predictions that have the same or higher

likelihood as the nominal NNPDF4.0 regions. Differences

between these regions arise from the prior conditions

imposed on the new and nominal solutions. The ML

universal approximation theorem [53–55] implies that both

groups of solutions can be approximated by neural net-

works. The proposed test therefore examines sampling over

classes of eligible functions or, in the ML language, eligible

neural networks. If, in addition to having low χ2 values, the

new solutions pass all other goodness-of-fit criteria, they

must be accounted in the final PDF uncertainty e.g. in the

form of an enlarged tolerance. The design and implemen-

tation of the test are explained in Sec. III C.

d. Sampling of likelihood functions. There is another

ambiguity to consider, associated with the approximation

of the likelihood in the PDF fits. Since the experiments

rarely provide the full likelihood, it is usually expressed as

PðDjTÞ ¼ const · exp ð−χ2ðD; TÞ=2Þ, where χ2 is con-

structed from experimental data values Di, theoretical

predictions Ti, and associated uncertainties. The log-like-

lihood χ2 enters the figure-of-merit function in the fit,

where it can be combined with prior conditions or com-

puted with respect to fluctuated Di, as done during the

training of MC replicas. The log-likelihood χ2 is also used,

not necessarily in the same form as during the fit, for

external comparisons of PDFs like the ones done in our

study. Non-Gaussianities of the errors are frequently

neglected, and various approximations are made to the

correlated systematic errors, which still lack full under-

standing [Sec. 5 in [14] ]. These choices produce non-

identical forms of χ2 used by ATLAS [9], HERA [1], CT

[5], MSHT [7], and NNPDF [8].

In regard to the correlated errors, the PDF analyses

address a common ambiguity when converting percentage

uncertainties into absolute ones. For an experiment with

Npt data points and Nλ systematic errors, the χ2 functions

used by the three global groups can be reduced to

χ2 ¼
X
Npt

i;j

ðTi −DiÞðcov−1ÞijðTj −DjÞ; ð8Þ

where

ðcovÞij ¼ s2i δij þ
XNλ

α¼1

βi;αβj;α ð9Þ

depends on uncorrelated uncertainties si, and correlated

ones βi;α. In turn,

βi;α ¼ σi;αXi ð10Þ
3
Success of the closure test depends on the targeted precision

and accuracy of the truth-fit comparisons.
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are derived from the tables of published σi;α using unspeci-

fied normalization cross sections Xi. It has been observed

that plausible choices of Xi nontrivially affect the resulting

PDFs. Search for the “least biasing” choices prompted

scrupulous investigations [56–59]. The Appendix in [56]

reviews the rationales for these choices, which depend on

the type of the systematic error, while Refs. [1,5,7–9] detail

implementations of βi;α in the latest PDF fits.

The groups generally avoid fitting the PDFs with the

choice of Xi ¼ Di for multiplicative errors (so called

“experimental” scheme, or “exp”), on the count that it

was shown to bias the best-fit results with respect to

the truth in relatively simple examples examined by

D’Agostini [60,61] and NNPDF [58]. Partly for this reason,

CTEQ-TEA analyses normalize all βi;α by Xi ¼ Ti (the

current theory) [59]. The NNPDF group uses a “t0 scheme,”

which has been available in two versions: the pre-

NNPDF3.0 analyses multiplied only the normalization

uncertainties by an iteratively updated theory value, Xi ¼
T
ð0Þ
i [56,58], and the NNPDF3.0 and later analyses normal-

ize all βi;α with T
ð0Þ
i in several groups of experiments [ [48],

Sec. 2.4.2], while the rest of the errors are normalized

by Xi ¼ Di.
4

These are not the only χ2 forms in use, however, and in

fact the NNPDF4.0 publication quantifies the quality of the

fit and agreement with the experiments with χ2 values in the

“exp” scheme [Sec. 5.1 in [8] ]. It can be understood that

neither of these conventions is safe from biases by

recognizing that Xi are values of an initially unknown

function X that is fitted or learned together with the PDFs.

As such, X is subject to the already mentioned tradeoff

between variance, bias, and noise [19,26], with none of the

current implementations systematically controlling for this

tradeoff. The exp and t0 schemes correspond to the zero-

bias (with respect to Di) and low-variance options, respec-

tively, and a sequence of other possible schemes lies

in-between. [In the exp scheme, the function X goes

through the fluctuating data points Di. Other schemes

use a smoother function.] The well-known demonstrations

of D’Agostini’s bias assumed at most a few multiplicative

errors. The PDF fits deal with many multiplicative errors,

whose pulls on the PDFs may have opposite signs or be

nonlinear, adding up to an unpredictable effect. For high-

statistics data samples, it is even possible that random

fluctuations inDi are smaller than uncertainties in choosing

Xi ¼ T
ð0Þ
i ; and, finally, the truth Xi for some βi;α in the

experimental publication may not exactly coincide with Ti

or its user-selected analog T
ð0Þ
i in the PDF fit at hand.

The sampling test proposed above can also explore

dependence on the form of the likelihood, given that the

NNPDF4.0 fitting code can return χ2 values in the exp and

t0 schemes. As stated in a note of the NNPDF4.0 code

manual, “the t0 method is not used* by default *by

[applications of the validphys code other than replica

training], and instead the default is to compute the

experimental χ2” [62]. Our sampling test is agnostic about

the generation of PDFs and just compares available PDF

solutions without actually fitting them.

B. NNPDF4.0 probability regions for the LHC

benchmark cross sections

The main findings of the test are summarized in Fig. 3,

which shows the PDF uncertainties on LHC cross sections

at
ffiffiffi
s

p ¼ 13 TeV computed at NNLO in the QCD coupling

strength according to the settings listed in the Appendix.

For experimental collaborations, it is important to know

which theoretical predictions are acceptable given the latest

experimental and theoretical constraints. In the exercise to

be presented, all results are obtained using either error

PDFs available in the LHAPDF library [63], or linear

combinations thereof.

The elliptical regions seen in Fig. 3 are projections ofNeig-

dimensional volumes populated by PDFs with low χ2 for the

indicated Hessian PDF ensembles, whereNeig is the number

of EV directions in the Hessian ensemble. For each Hessian

PDF ensemble and χ2 scheme, there is one such approx-

imately ellipsoidal volume. The ellipses of the same style in

the six panels of Fig. 3 are the volume’s projections onto the

two-dimensional planes specified by the pairs of indicated

total cross sections. Here and in the following, the χ2 is

computed with respect to the published (unfluctuated)

central data values, except when we explicitly say otherwise.

Let us now go over the shown probability regions one-

by-one.

In the NNPDF4.0 approach, the Monte-Carlo error PDFs

are constructed by optimized training of neural networks on

replicas of randomly fluctuated experimental data. Each

replica fit achieves a good χ2 with respect to its fluctuated

dataset, while practically all MC replicas have a very high

χ2 (by hundreds of units) with respect to the unfluctuated

data. The individual MC PDFs are thus poor fits to the

published (unfluctuated) dataset—but their average (called

the “central replica“, or “replica 0”) agrees with the

unfluctuated data much better [21]. The standard deviation

on the ensemble of 1000 NNPDF replicas thus essentially

provides a 68% experimental error with fixed methodo-

logical settings, estimated around the central replica as the

spread of best fits to randomly fluctuated data points for the

chosen methodology, including selection (sampling) of

experiments, training and cross validation algorithm, and

treatment of systematic effects.

To examine the dependence of χ2 from the NNPDF4.0

code on PDF parameters, as discussed in Sec. III A, we will

4
In particular, the gluon at x > 0.1 varies depending on the

additive or multiplicative treatment of the errors in inclusive jet
production. For illustrations, see Fig. 18 in [59] and Figs. 60 and
61 in [48].
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FIG. 3. Red solid ellipses: the nominal 68% probability regions from the NNPDF4.0 NNLO analysis [8]. Green ellipses with a solid

contour: approximate regions with acceptable NNPDF4.0 solutions that have the same χ2t0 as the central PDF replica in the NNPDF4.0

publication. The reconstruction of the approximate ellipses is described in Sec. III C.
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employ theNNPDF4.0HessianEVset—50error PDFs,with

1 error PDFper each ofNeig ¼ 50EVdirections, obtained by

post-fit conversion of NNPDF4.0 MC replicas. In the

NNPDF implementation, the Hessian set is centered on

the NNPDF4.0 replica 0 and reproduces 1σ symmetric PDF

uncertainties of the MC set, i.e., the regions containing 68%

of the MC replicas. Section III D illustrates that, indeed, the

NNPDF4.0Hessian ensemble reproduceswell these regions.

In the standard interpretation, however, Hessian eigen-

vectors form a basis in linear space populated by vectors of

PDF solutions in the vicinity of the global minimum of χ2.

The position of the global minimum obviously depends

on the χ2 scheme, chosen to be the t0 scheme in the figures.

The approach that provides 1 EV set per EV direction is

usually based on the expectation that the global minimum is

very close to replica 0, and hence the χ2 is more or less

symmetric with respect to replica 0. We will compare

locations of replica 0 and global minima, and then examine

the χ2 dependence in this space.

In Fig. 3, red solid ellipses delineate the 68% probability

regions computed with the published NNPDF4.0 error

PDFs and centered on the predictions from the

NNPDF4.0 central replica.

Overlayed on the nominal uncertainties, the green

ellipses indicate approximate regions containing PDF

solutions that have better χ2, according to the NNPDF

fitting code, than the NNPDF4.0 central replica 0.

Section III A pointed out that comparisons in NNPDF

publications use two forms of χ2 as the figure-of-merit,

called “t0” and exp and computed with respect to the

unfluctuated data, which differ in their implementation of

experimental systematic uncertainties. The green ellipses

delineate regions for each pair of cross sections in which

our analysis have found regularly behaving PDF solutions

that have Δχ2 ≡ χ2 − χ20 ≲ 0 according to the “t0” defi-

nition, where χ20 is computed for replica 0. Inside the

ellipses, χ2 shows quasi-Gaussian dependence on the PDF

parameters with both definitions. The found low-χ2 PDF

solutions are linear superpositions of the NNPDF4.0

Hessian replicas. Among them, we find a few with Δχ2

as low as −37 with the t0 definition. Their χ2 values are

computed using the published NNPDF4.0 code [34,35].

We construct the alternative NNPDF4.0 solutions using

an algorithm that we call a hopscotch scan, which performs

focused sampling of PDF combinations giving the dom-

inant contribution to the PDF uncertainty of the shown

cross sections. Section III C explains this algorithm and

construction of the approximate ellipses. The technique

combines Lagrange multiplier (LM) scans of PDF param-

eters [64] along the Hessian EV directions with stochastic

sampling of the few “large” dimensions associated with the

largest variance of the LHC cross sections under consid-

eration, in accord with the general discussion in Sec. II D.

It is obvious from Fig. 3 that the ellipses containing the

PDFs that have Δχ2 ≤ 0 are larger than the nominal

68% CL NNPDF4.0 uncertainties. These PDFs have been

examined for possible nonsmooth features and other

pathologies. We did not observe obvious flaws and found

them to be acceptable, according to the CT18 procedure

[5], in light that they achieve the same or better χ2 as the

nominal fit, are smooth, and fall within the nominal

NNPDF4.0 errors nearly everywhere.

The t0 definition of the χ
2 reflects a certain implementation

of the experimental correlated systematic errors. We pointed

out that other definitions exist, reflecting incomplete knowl-

edge of systematic uncertainties provided to the global fits

[ [14], Sec. 5, and references therein]. Dependence on the χ2

definition must be scrutinized as a part of a more complete

exercise. Even within this limited scope, it is clear that there

can be acceptable solutions with Δχ2 ≤ 0 outside the

nominal NNPDF4.0 uncertainty. Section III D offers a

plausible interpretation of such alternative solutions.

C. A hopscotch scan, technical implementation

In this section we describe the construction of the

alternative PDF solutions that led to the ellipses of

Fig. 3. The procedure realizes the general considerations

in Sec. II D, namely:

(1) The NNPDF4.0 Hessian ensemble establishes natu-

ral basis coordinates a⃗ in space of MC replicas.

(2) For a typical QCD observable Gða⃗Þ, the largest

variances are associated with 4-8 “large dimensions”

in a⃗ space.

(3) The PDF uncertainty on Gða⃗Þ can be estimated with

a moderate number of MC PDF replicas that vary

along the large directions.

We generate LHAPDF6 tables for the sample PDF

replicas using the MCGEN program [21,32,33] and the

FIG. 4. Magnification of the χ2 scan for EV direction 9. The

green points and blue curve are the actual Δχ2 values and their

interpolation from the scan. The dot-dashed red curve represents

a symmetric parabola that would be obtained given only the

central replica 0 and the EV set 9 (two red diamonds), and

assuming that the third point necessary to build the parabola is the

mirror of ð1σ;Δχ2ð1σÞÞ.

PARTON DISTRIBUTIONS NEED REPRESENTATIVE SAMPLING PHYS. REV. D 107, 034008 (2023)

034008-11



FIG. 5. Scans of the total χ2 in the experimental definition along 50 eigenvector directions of the NNPDF4.0 Hessian NNLO PDF

ensemble. The red point corresponding to a displacement of þ1 in the x axis is not shown in the case of EV 1, as it is out of scale. Its

value is Δχ2 ¼ 32. See text.
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LHAPDF tables of the NNPDF4.0 NNLO Hessian ensem-

ble as the input. The total χ2 of the NNPDF4.0 analysis was

evaluated using the public code released by NNPDF

[34,35], without refitting. Specifically, the χ2 is computed

by the perreplica_chi2_table function of program

validphys included in the NNPDF code. We activate

the t0 definition by setting option “use_t0: True” in the

NNPDF code and using the theory reference values for the

210713-n3fit-001 PDF set provided with the NNPDF

code. The kinematics cuts were fixed to be the same as in

the NNPDF4.0 global analysis [8]. The minimum values of

Q2 andW2 for DIS measurements were hence chosen to be

3.49 GeV2 and 12.5 GeV2, respectively.

The Hessian representation of the NNPDF4.0 ensemble

provides the central replica (f0) and Neig ¼ 50 error PDF

sets fi corresponding to displacements by a þ1σ value

(f0 þ Δfi) along each independent eigenvector (EV)

direction. The total Δχ2i of each EV set, computed with

respect to replica 0, varies among the individual EV sets,

with some Δχ2i being as large as þ32 (for EV 1) or low as

−15 (for EV 2), and with the majority no more than 2–5

units in magnitude. As only one error set is provided per

EV direction, this creates an expectation of an approx-

imately symmetric quadratic behavior of Δχ2 centered on

f0. This expectation is illustrated in Fig. 4 for EV set 9 as a

red parabola, in which the red points correspond to replica 0

and EV set 9. The horizontal axis is labeled in units of

the 1σ displacement for EV set 9, and the vertical axis

shows Δχ2.

As an alternative to the red parabola, the actual Δχ2

behavior might have been very irregular, which may

happen if NN fits show large deviations from

Gaussianity. To test which of the two hypotheses is correct,

we explicitly computed the Δχ2 at green points, for which

the LHAPDF tables are constructed as f0 þ wiΔfi, where
the real parameter wi quantifies the displacement on the

respective horizontal axis. Figure 5 shows these Δχ2 scans

for allNeig EV directions. In each EV direction, we evaluate

χ2 at 16 green points for a total of 800 points, with Fig. 5

showing only the points with Δχ2 below a few tens. We

observe that Δχ2 follows regular dependence consistent

with a quadratic one along all EV directions. However, the

minima of the χ2 are displaced from the central replica

along many EV directions. Blue curves interpolating the

green points are consistent with symmetric parabolas

whose minima, fi;min ≠ f0, are displaced from replica 0

in many EV directions and render negativeΔχ2i;min for some

EV directions that can be as low as ≈ −15 (for EV 2). The

widths of the reconstructed parabolas vary noticeably.

These observations strongly suggest the regular, quasiqua-

dratic behavior of χ2 in the vicinity of the central

NNPDF4.0 replica and the existence of a displaced global

minimum in parameter space for which the χ2 is smaller

than the value provided by the central replica. EV sets and

replicas with negative Δχ2 were also pointed out in a thesis
by the NNPDF collaboration [65]. Yet that study did not
provide further details, such as regular, approximately

Gaussian dependence of χ2 revealed by the hopscotch
scans.
The hopscotch scan technique explores such low-χ2

region by focusing on specific QCD cross sections.
[Finding the displaced global minimum in the whole 50-
dimensional space is more computationally expensive and
beyond our study’s scope, as complexity of combinatorial
and geometrical factors increases quickly.] We draw a low-

dimensional “court” based on the χ2 behavior gleaned from
the EV direction scans and then repeatedly “throw a
marker” according to one of the strategies to generate
the PDF replicas at points inside the court.
Initially, to find a region with replicas satisfying Δχ2 ≤

T2 in the plane of two cross sections, such as σtt̄ and σZ, we
use the interpolated parabolas in Fig. 5 to find up to two

“pole” PDF sets corresponding to Δχ2 ¼ T2 for each of 50
EV directions. We plot the fσtt̄; σZg pair for each pole set,

as is done for T2 ¼ 0 in the upper left panel of Fig. 6. In the
Neig dimensional space, the pole sets correspond to

the corners of a rectangular block whose projection on
the fσtt̄; σZg plane is a polygon with the corners corre-
sponding to the EV directions with the largest displace-
ments of cross sections from the central predictions. In the
upper left Fig. 6, these are EV directions 5, 2, 7, 1, 30, 11,
3, and 12. The other EV directions (examined, but not
shown in the figure) generate smaller displacements. For
this cross section pair, we initially generated 2 × 300

replicas in the court consisting of two rectangular blocks
spanning complementary groups of EV directions. A
replica is generated in an n-dimensional block as f ¼ f0 þP

n
i¼1 wiΔfi, where each wi is a random real number that is

uniformly distributed along the ith EV direction between

the two corresponding pole sets with Δχ2 ¼ T2. We also
generated the replicas for three more pairs of cross sections:

Z vsW� (summed over theW boson charges); Wþ vsW−;
tt̄ vs H.
In the lower row of Figs. 6, we show the dominant EV

directions and replica samples for the σZ vs. σH pair, which
was not included in the generation of replicas. However,
since this pair shares the dominant directions with
the sampled cross section pairs, we can predict the PDF
uncertainties for this pair as well.

Our cumulative set from all scans contains 2329 PDF

ensembles.
5
In the right column of Fig. 6, we use varied

5
While we refer to the hopscotch ensembles as “replicas,” they

are not MC replicas in the sense adopted in the NNPDF
formalism. The hopscotch replicas simultaneously have very
good χ2 with respect to the central data values and large
displacements for the selected cross sections. The traditional
MC replicas are obtained by randomly fluctuating the data or
PDF parameters instead of directed search, like the hopscotch
scans: the majority of them have a positive Δχ2 in the range of
hundreds of units [21].
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colors to plot subsamples of replicas that have Δχ2 � 3

around the Δχ2 values specified in the figure. The dis-

tribution of these replicas is consistent with that of an

apparently displaced global minimum, near which some

replicas have Δχ2 as low as −37 units. The lowest Δχ2

corresponds to the regions populated by brown markers.

The hopscotch scan is mainly a search algorithm and, in

the current realization, does not include any convergence

criteria nor the certainty to find the true global minimum.

[These aspects can be further developed along the lines

discussed in Sec. II D.] The role of the hopscotch is to

reduce the dimensionality of the search for solutions with a

lower χ2 and to identify regions in the cross section space

corresponding to such solutions.

While our set of solutions is not exhaustive, it can be

used to estimate the size of the projected area for a given

value of Δχ2, say Δχ2 < 0. The sample’s convex hull gives

a crude boundary of this region. On the other hand, since

FIG. 6. Intermediate hopscotch scan results for Z vs. tt̄ cross sections (upper row) and Z vs. Higgs boson cross sections (lower row) for

ATLAS at 13 TeV. See the Appendix for details of the computation. The left panels shows polygons formed by the pole sets with

Δχ2 ¼ 0. In the right panels, the green triangles correspond to Δχ2 ¼ 0, with replicas with lower Δχ2 shown in increasing hue. Green

ellipses are approximate regions fitted to the Δχ2 < 0 boundary points. Red ellipses correspond to the 68% probability regions from the

published NNPDF4.0 Hessian set.
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the EV scans in Fig. 5 are strongly indicative of the

approximately Gaussian behavior of χ2, it seems reasonable

to assume that the populated regions in the cross section

planes are approximately elliptical. With this information, a

highly effective approach to estimate the boundary is to fit

an ellipse to the outermost points of the replica subsample

in the cross section plot. The quadratic form describing

each ellipse can be computed algebraically using a public

Mathematica program from [66] for reconstruction of

multidimensional ellipsoids from such projections. A 2-

dimensional ellipse can be reconstructed by having as few

as 6 points on the convex hull of the sample. In our case, we

select no less than 15 outermost points per ellipse, so they

can be fitted with good certainty.

These approximate elliptical regions for Δχ2 < 0 are

shown in Figs. 3 and 6 in light green. These approximate

areas covered by all hopscotch replicas with Δχ2 < 0 have

been chosen to be centered on the center-of-mass of the

hulls drawn on the left-hand side (lhs) of Fig. 6, instead of

the minimum χ2 value found through our scans. Their

absolute position is hence indicative of the initial hopscotch

“court.” To each of the hopscotch replicas with Δχ2 < 0,

represented by triangles in the right-hand side (rhs) of

Fig. 6, one could also associate the experimental uncer-

tainty due to data resampling in the same way as the

nominal uncertainties (red ellipses) are computed.

D. The hopscotch scans find the missing good solutions

The hopscotch exercise demonstrates the degree to

which predictions for LHC cross sections depend on the

sampling procedures and priors adopted by the groups. To

the question: “Which of our generated replicas are accept-

able for predicting the LHC cross sections?,” the answer

accounting only for the likelihoods is “Apparently, all of

them that have good χ2,” echoing the likelihood-ratio test

described in Sec. III A.

If we also want to explore the priors, seeking acceptable

PDF solutions becomes a notorious “needle in a high-

dimensional haystack” issue recognized in studies of

quasi-MC integration [24,42,45]. To see this, let us take a

step back and recall that eachNNPDFMCreplica is specified

by a vector of a large size (of order 800 elements) containing

NN latent parameters. The closure test demonstrates that of

order 1000 MC replicas reproduce, within some accuracy,

expected uncertainties in the PDFs and predictions due to

the fluctuations of the pseudodata when training the replicas

with a fixed methodology. When predicting a vector of N
observables, predictions based on the MC replicas are

distributed relatively isotropically. This is illustrated in

Fig. 7(left) and Fig. 8, where 2-dimensional projections of

the vectors of N LHC cross sections, computed for the 100

nominal replicas (red points) and 1000 replicas (green

points), can be converted into approximately spherical

distributions by coordinate rotations and rescalings.

Hessian PDFs provide a convenient eigenvector basis

that captures PDF variations in “only” 50 dominant

dimensions around the NNPDF replica 0. Examinations

of χ2 along the 50 EV directions in Fig. 5 suggest that the

global χ2 minimum is displaced with respect to replica 0 in

a direction that does not coincide with any EV direction.

And, if we identify a few EV directions that dominate a

FIG. 7. Left: Hopscotch scan results for the Higgs vs. Z cross section for ATLAS at 13 TeV. Here we show clouds of alternative

replicas (cyan) that have −35 ≤ Δχ2 ≤ 0with respect to the NNPDF4.0 central replica. The red points indicate predictions with the 100-

replica NNPDF4.0 ensemble, whoseΔχ2 values are typically at a few positive hundreds of units. See text and footnote 5 for more details.

Right: The distribution of 2329 hopscotch replicas.
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given cross section, we can sample these directions more

densely than allowed by the isotropic sampling based on

1000 replicas.

Figure 7 illustrates how the hopscotch scans perform

targeted sampling of the parameter space based on the

guidance from the quasi-parabolic χ2 distributions in

Fig. 5. For each selected pair of cross sections, the hopscotch

replicas densely populate a low-dimensional region in the

parameter spacewhere χ2 decreases, while the cross sections

show high variability. In Fig. 7(left), we show predictions

with the hopscotch replicas that have −35 < Δχ2 < 0 with

respect to the χ2 of theNNPDF4.0 central replica. The low-χ2

replicas are selected out of 2329 replicas that populate lower-

dimensional hyperplanes in which χ2 decreases or increases

slowly as a function of the selected cross sections. These

hyperplanes and directions of the scans are identified based

on Fig. 5. In Fig. 7(right), we see the projection of the

distribution of 2329 replicas (with any χ2) on the σZ vs σH
plane. The replicas are denser in the regions where the

hyperplanes cross the projection plane.We remind the reader

that this set of solutions is not exhaustive.

We already noted that both the NNPDF 100-replica

ensemble and the NNPDF Hessian ensemble reproduce

well the underlying distribution of replicas in their 1000-

replica ensemble. An illustration is provided in Fig. 8,

where the LHC cross sections are predicted using the three

ensembles. Here the clouds of 100 replicas are consistent

with the density distributions of 1000 replicas. The 68%

probability regions given by the ellipses are also consistent

among the three ensembles.

The NNPDF4.0 Hessian ensemble employed for χ2

scans in Fig. 5 captures overall properties of the underlying

replica distribution. Yet, the low density and distribution of

MC replicas does not capture the features of χ2 revealed by

the Hessian scans in Fig. 5 or predict the parametric

dependence of the replicas with the negative Δχ2 that have

been noticed before [65].

Upon a closer examination of the hopscotch scan, its

generated alternative PDFs for Δχ2 ≤ 0 appear to pass the

standard validation adopted in the CT fits. They are linear

combinations of well-behaving Hessian sets that are suffi-

ciently smooth and positive in the x region with the data

constraints. AtQ ¼ 2 GeV, only a few of them are negative

in the extrapolation regions, where their behavior can be

easily adjusted without changing the agreement with the

data. We haven’t scrutinized systematically the integrability

of T3 and T8, as done in the NNPDF4.0 fit, yet we observed

no compelling reason to discard these alternative solutions.
If the hopscotch solutions are acceptable, a natural

question to raise is why they are not covered by the

FIG. 8. LHC total cross sections at 14 TeV predicted using the NNPDF4.0 NNLO 1000-replica, 100-replica, and Hessian PDF

ensembles. The ellipses indicate 1σ probability regions computed with each ensemble.
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nominal NNPDF4.0 ensemble. Since these solutions have a

good χ2, the conclusion from our test is that they are
disqualified by the NNPDF prior probability. Indeed, the

preliminary studies by NNPDF indicate that some of these

replicas (possibly a few dozen out of 2329) fail NNPDF4.0

requirements for smoothness of PDF solutions [67]. If so,

the dependence on the priors would be best investigated in

collaborative, comprehensive benchmarking exercises

among the PDF-fitting groups, using agreed-upon criteria

and computational tools.
We also observe that any hopscotch solution can be

represented by a neural network in accord with the
universal approximation theorem [53–55]. The challenge

of representative sampling in a high-dimensional space

must therefore be also present in the NN approach. We

argued in Sec. III A that the use of data resampling (called

“importance sampling” by NNPDF), combined with a fixed

methodology that makes specific choices for the NN

architecture, the cost function, stopping and smoothness
conditions [34,68], does not address samplings over meth-

odology-related settings at the various levels of the global

analysis. In the NNPDF4.0 analysis and closure test, the

hyperparameters of the methodology were optimized

according to a convention, not sampled in the optimum’s

vicinity. Variations in training methodology are a part of the

full uncertainty, together with the theoretical uncertainty

and another insufficiently understood source of uncertainty
due to the prescription for experimental systematic errors.

We have emphasized that the distribution of replicas with

good χ2 depends on the χ2 definition. This dependence

cannot be neglected at the contemporary accuracy level.

E. A case study: Quark sea flavor composition

and small-x gluon

Implications of the hopscotch PDF solutions for uncer-

tainties on various QCD observables are of significant

practical interest. The χ2 scans along the NNPDF4.0

Hessian EV directions in Fig. 5 indicate that, for each

EV direction, there is a displaced PDF set that has exactly

the same χ2 as the NNPDF central replica 0. Just account-

ing for these alternative sets can enlarge the nominal PDF

uncertainty. On the companion website [69], we provide

the LHAPDF grids for two 50-member ensembles of the

alternative sets with Δχ2 ¼ 0 for the two χ2 definitions, as

well as figures comparing these PDFs with the nominal

NNPDF4.0 NNLO uncertainty bands.

For example, variations along Hessian EV directions

25 and 33 influence strongly the flavor composition of

sea quarks and antiquarks at x > 0.2, where the relevant

experimental constraints remain very weak. Figure 9

presents two illustrations. The left panel shows the

nominal NNPDF4.0 uncertainty at the 68% probability

for the strange-antistrange asymmetry, Astrðx;QÞ≡
ðsðx;QÞ − s̄ðx;QÞÞ=ðsðx;QÞ þ s̄ðx;QÞÞ at Q ¼ 1.7 GeV.

In the recent NNLO fits that allow strange quark and

antiquark PDFs to differ, the CT18As [70,71], MSHT’20,

and NNPDF4.0 analyses all prefer a very large positive

Astrðx;QÞ at x > 0.3, which can even exceed 100% by

allowing the s̄ PDF to go negative [Sec. 4.5 in [15] ]. Such

behavior may reflect some tensions between the experi-

ments. Among these fits, the positive Astrðx;QÞ in

NNPDF4.0 may be taken to be most significant at

x ≈ 0.2, given the smallest nominal uncertainty.

However, the alternative EV set 33 for Δχ2t0 ¼ 0 in the

left panel is consistent with a negative Astrðx;QÞ. From the

plot of parabolas for EV direction 33 in Fig. 5, we see that

even deeper negative variations of Astrðx;QÞ are allowed if

χ2exp is used, or if simultaneous variations along EV

direction 33 and other EV directions are considered.

[Note that the EV directions specified by the NNPDF4.0

Hessian set do not change among the χ2 definitions.]

FIG. 9. Solid bands indicate the nominal 68% NNPDF4.0 uncertainties for strangeness asymmetry (left) and charm PDF (right) at

Q ¼ 1.7 GeV. The alternative EV sets with Δχ2t0 ¼ 0 are plotted as dashed lines.
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The right panel of Fig. 9 shows the counterpart plot for

charm PDF cðx;QÞ at Q ¼ 1.7 GeV. The nominal error

band may suggest a significant nominal enhancement of the

charm PDF at x ¼ 0.2–0.3, approximately in the same x
range where a large Astrðx;QÞ appears in the left panel. The
hopscotch analysis shows that the uncertainty on charm

PDF is increased by considering the χ2 variations along the

EV directions revealed in Fig. 5. Most notably, the second

Δχ2t0 ¼ 0 set for EV direction 25 results in the very small

charm at x > 0.3 at Q ¼ 1.7 GeV. When evolved down to

Q < mc ¼ 1.51 GeV, this EV set will result in a vanishing

fitted charm at a low scale. After this set is included in the

PDF uncertainty, the NNPDF fit does not statistically prefer

a nonzero fitted charm at the initial scale, as would be

concluded based on the nominal 1σ uncertainty [30].

Including variations along the other EV directions, e.g.,

33 that favors a smaller (larger) charm PDF at x ¼ 0.05–0.1

(x > 0.4), as well as uncertainties in the model for

systematic errors, further washes out the preference for

the nonzero fitted charm at large x and low Q. Indeed, the
recent CT18 FC analysis conveys that there is no evidence

for intrinsic charm so far [31].

Similar examinations for other PDF flavors and flavor

combinations (collected on the companion website [69])

indicate that the alternative Δχ2 ¼ 0 solutions expand the

uncertainty on the gluon PDF at low x and on the T3 and T8

combinations of quark and antiquark flavors. One of the

unexpected findings of the NNPDF4.0 future test was that

the fit without including the HERA DIS data preferred the

general growth of the gluon PDF at Q ¼ 1.65 GeV and

x < 10−3, where no constraints were available. See Fig. 29

for xgðx;QÞ at Q ¼ 1.65 GeV in [8], where the solid green

band for NNPDF4.0 without the HERA data does not cover

the blue and red bands that include these data. A similar,

also less pronounced trend is also seen with the NNPDF3.1

methodology in their Fig. 28. Historically, the solutions

with the growing, flat, or even decreasing gluon at x <

10−2 were allowed in the CTEQ fits in the early 1990s,

before the advent of the HERA data. Indeed, no exper-

imental constraints existed in the pre-HERA data in this

region, similarly to the current situation with the nuclear

PDFs that have an essentially unconstrained gluon at x <

10−2 and may be affected by strong nuclear shadowing.

See, for example, Fig. 6 in the 1995 ZEUS publication [72],

in which the pre-HERA data at W2 < 500 GeV2 and Q2 ≥

4.5 GeV2 do not favor any particular trend of the γ�p total

cross section at W2 > 500 GeV2, and hence they do not

constrain the gluon PDF at x ¼ Q2=ðW2 þQ2Þ≲ 0.01 via

scaling violations. Therefore, it is surprising that the

NNPDF4.0 pre-HERA future test disfavors the post-

HERA small-x gluon behavior.

The Δχ2 ¼ 0 variations with the alternative EV sets 1, 2,

and 4 expand the nominal uncertainty in xgðx;QÞ of the full
NNPDF4.0 set, especially in the downward direction at

x < 10−2. They modify the NNPDF pre-HERA future tests,

too. In the same vein, considering the hopscotch solutions

indicates larger uncertainties on the flavor combinations

T3 ≡ uþ ū − d − d̄ and T8 ≡ uþ ūþ dþ d̄ − 2s − 2s̄
than seen in Fig. 49 of Ref. [8]. We note that the hopscotch

replicas agree with the sum rules and integrability, espe-

cially as the PDF behaviors at x→ 0 (outside of the data

region) can always be adjusted to obtain convergent first

moments.

IV. CONCLUSIONS

PDF uncertainties in high-stake measurements (Higgs

cross sections, W boson mass…) should be examined for

robustness of results to sampling of available experimental

datasets and PDF parametrizations. Likewise, tests of

manifestations of nonperturbative QCD, such as the

asymptotic large-x behavior of intrinsic charm, depend

on interpretations of PDF uncertainties [30,31,73].

Sampling biases may arise in PDF fits operating with

large populations of possible solutions. Increasing the

volumes of the fitted data and parametric space may

increase, not reduce, the sample expectation deviation.

An undetected deviation may result in a wrong prediction

with a low nominal uncertainty. Sampling biases may limit

reduction of the PDF uncertainties and explain some

differences between the PDF sets.

For these reasons, global fits are potentially vulnerable to

unrepresentative sampling when their overall scope

(including the number of PDF parameters, size of datasets,

range of possible assumptions) grows. As a way to mitigate

the risk of underestimation in specific applications, stat-

istical literature suggests to swap democratic sampling in

all dimensions for preferential sampling in fewer dimen-

sions that are most relevant to the task at hand.

In the Monte-Carlo (MC) replica method, constructing

the Hessian eigenvector (EV) sets from the MC PDF set

introduces a convenient coordinate system for such dimen-

sionality reduction. Taking the W boson mass measure-

ments as an example, we could identify the few Hessian

sets that give the largest contribution to the MW PDF error.

It is then more effective to sample these EV directions with

a higher density of replicas to look for acceptable PDFs that

may be outside of the nominal MC uncertainty. We

presented a technique of hopscotch scans to perform such

estimation.

With this technique that does not require PDF refitting,

we have demonstrated that the NNPDF4.0 fitting code

allows alternative solutions of their global fit that predict

the LHC cross sections outside of the nominal NNPDF4.0

uncertainties, while having the same total χ2 as the

NNPDF4.0 central replica and satisfying typical validation

criteria adopted in the CT fit. Literature on ML and

analyses of high dimensionality suggests that those sol-

utions may exist and are not necessarily ruled out on the
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basis of a low prior probability. Instead, for those solutions

that display an acceptable value of the likelihood, repre-

sentative sampling over methodological settings will

contribute to the confounding correlation. A related obser-

vation is that the dependence of the distribution of

acceptable predictions on the prescription for implementa-

tion of experimental systematic errors cannot be neglected

at the targeted level of accuracy [Sec. 5.1 in [14]].

In the other two examples presented in Fig. 9, we show

that including the low-χ2 solutions from the hopscotch

scans relaxes the NNPDF4.0 uncertainty on the flavor

composition of sea quarks and antiquarks at x > 0.2

and Q < 2 GeV. As a result, both a negative strange-

antistrange asymmetry and a zero fitted (intrinsic) charm

PDF are statistically allowed at the Q scale of order

1.5 GeV.

In either the MC or Hessian methods, a comprehensive

range of fits must be explored to understand variations due

to the functional forms and other choices. This viewpoint

is taken in the CTEQ-TEA family of analyses, in which

the tolerance on the fixed PDF functional form of the

published set is selected so as to cover candidate best-fit

PDFs found with the alternative choices. In other words,

one must pay attention both to the quality of accepted fits

and their representative sampling. For example, when

some experiments disagree, it should be either understood

that fitting all experiments at once will either fail the

strong goodness-of-fit test [16] or, if such a fit is

nevertheless accepted, the tolerance may need to be

increased, as the experimental tensions suggest a larger

uncertainty on the full population.

Instead of considering a large population of Np accept-

able solutions, for specific predictions, the trio identity

equation (3) can help to design a procedure that produces

unbiased and reliable estimates using a sample of a smaller

size Ns ≪ Np. The overall spirit of this approach is similar

to dataset diagonalization [46] and replica unweighting

[51,74]. The R mechanism realises a generalization of such

techniques and can select fits based on the value of χ2 or

other figures of merits.

We make LHAPDF6 grids of the alternative PDF

replicas available for the future analyses [69].
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APPENDIX: COMPUTATION OF HADRONIC

CROSS SECTIONS

In this section, we summarize settings of the computa-

tions of LHC cross sections shown in the main part of the

article. The cross sections are computed at NNLO in the

QCD coupling strength without cuts, unless specified

otherwise.

Drell-Yan W�=Z production. For W�=Z boson produc-

tion at the Tevatron 1.96 TeV, we impose the CDF fiducial

cuts [28],

W�∶ 30 < pl;ν
T < 55 GeV; jηlj < 1;

uT < 15 GeV; 60 < mT < 100 GeV; ðA1Þ

Z∶ 30 < plT < 55 GeV; jηlj < 1;

uT < 15 GeV; 66 < mll̄ < 116 GeV; ðA2Þ

where

uT ¼ jp⃗l

T þ p⃗
νðl̄Þ
T j; mT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðplTpν
T − p⃗l

T · p⃗ν
TÞ

q

:

ðA3Þ

For W=Z boson production at the LHC, we adopt the

ATLAS 13 TeV fiducial cuts [75],

W�∶ pl;νT > 25 GeV; jηlj < 2.5; mT > 50 GeV;

ðA4Þ

Z∶ plT > 25 GeV; jηlj < 2.5;

66 < mll̄ < 116 GeV: ðA5Þ

The theoretical calculation is performed with a fast compu-

tation tableAPPLgrid [76] atNLO, combinedwithNNLO/

NLO point-by-point K-factors calculated with MCFM

[77,78]. The renormalization and factorization scales are

set equal to the invariant mass of the lepton pair,mll̄ ormlν.

Top-quark pair production. Top-quark pair production is

measured by both ATLAS and CMS groups at 13 TeV

[79,80] and presented in the form of total cross sections.
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Here we take the public code top++ [81] to compute these

cross sections at NNLO, with the threshold logarithms of

soft gluons resummed up to the NNLL level. The factori-

zation and renormalization scales are set to the top-quark

mass mt.

Higgs production. The calculation is done with GGHIGGS

[82] using the factorization and renormalization scales

equal to mH.

Associated production of Higgs bosons and top-quark

pairs. Recently a part of the NNLO calculation for tt̄H
production came out [83], while no public code has been
released yet. Instead, we make predictions using
MADGRAPH_AMC@NLO [84] interfaced with PINEAPPL

[85] at NLO, and using NNLO PDFs. The renormalization
and factorization scales are set to be equal to the partonic

collision energy
ffiffiffi

ŝ
p
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