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In global QCD fits of parton distribution functions (PDFs), a large part of the estimated uncertainty on
the PDFs originates from the choices of parametric functional forms and fitting methodology. We argue that
these types of uncertainties can be underestimated with common PDF ensembles in high-stake
measurements at the Large Hadron Collider and Tevatron. A fruitful approach to quantify these
uncertainties is to view them as arising from sampling of allowed PDF solutions in a multidimensional
parametric space. This approach applies powerful insights gained in recent statistical studies of large-scale
population surveys and quasi-Monte Carlo integration methods. In particular, PDF fits may be affected by
the big data paradox, which stipulates that more experimental data do not automatically raise the accuracy
of PDFs—close attention to the data quality and sampling of possible PDF solutions is as essential. To test
if the sampling of the PDF uncertainty of an experimental observable is truly representative of all
acceptable solutions, we introduce a technique (“a hopscotch scan”) based on a combination of parameter
scans and stochastic sampling. With this technique, we examine the PDF uncertainty on key LHC cross
sections at 13 TeV obtained with the public NNPDF4.0 fitting code, while accounting for the likelihood
distribution. We show that the uncertainties on the charm distribution at a large momentum fraction x and
gluon PDF at small x are enlarged. In PDF ensembles obtained in the analytic minimization (Hessian)
formalism, the tolerance on the PDF uncertainty must be based on sufficiently complete sampling of PDF

functional forms and choices of the experiments.
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I. INTRODUCTION

Precision phenomenology at hadron colliders relies
upon accurate predictions in the Standard Model (SM).
An overwhelming number of such theoretical predictions
require parton distribution functions (PDFs) in a proton,
the nonperturbative functions f,(x, Q) quantifying prob-
abilities for finding quarks and gluons in a proton at an
energy scale Q above 1 GeV. Multiple groups [1-9]
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provide increasingly sophisticated parametrizations of
PDFs by fitting a growing collection of precise exper-
imental datasets to advanced multiloop calculations.
High-luminosity (HL) measurements at the Large
Hadron Collider (LHC) and planned DIS experiments
(Electron-Ion Collider [10], Large Hadron Electron
Collider [11], Muon-Ion Collider [12] ...), combined
with the progress in perturbative QCD calculations, open
opportunities both to learn about the PDFs and to find
their new applications. The global QCD analysis to
determine the PDFs can be now attempted by a broad
circle of users thanks to the publicly available XFITTER
[13] and NNPDF [8] fitting codes. A recent whitepaper [14]
contributed to the Snowmass’2021 Summer Study
reviews ongoing progress in the PDF analysis.

In this article, we summarize a study of a rarely
discussed source of some observed differences between
the published parton distributions. A lot of attention has
been dedicated to various factors that determine the
accuracy of PDFs, usually associated with a combination
of experimental, theoretical, PDF parametrization, and
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NNLO theoretical predictions for 95% CL PDF uncertainties for total cross sections of Z and SM Higgs boson production at

the LHC 14 TeV (left) and Z and W= boson production at the Tevatron 1.96 TeV (right). The Higgs cross sections are obtained at NNLO
multiplied by an N3LO/NNLO K factor of 1.097 and by an EW K factor of 1.0514. Predictions are shown for PDF4LHC21 [15],
PDF4LHC15 [29], NNPDF4.0 [8], CT18 [5], MSHT20 [7], ABMP16 [3], and ATLASpdf21 [9] NNLO PDFs with a,(M,) = 0.118.

methodological sources. Estimates of PDF uncertainties are
needed for inference from QCD experiments at the LHC
and other facilities [15-17]. However, in addition to the
accuracy of individual PDF fits, or “fitting accuracy,”
another factor in the total uncertainty may be as conse-
quential, reflecting the accuracy of exploration, or sam-
pling, of the space of acceptable PDF solutions. This space
is truly vast when large data samples are fitted using many
parameters. In fact, its exploration can be notoriously
difficult, as the sampling of multidimensional spaces is
exponentially inefficient [18,19].

In this context, sampled solutions can be obtained by
varying the fitted data (e.g., by resampling random fluc-
tuations in the measured values as in the NNPDF analyses
[8]), models of theory and experiment (e.g., the PDF
parametrization forms [5] or model parameters [20,21]
as in the CT and MSHT studies), and in other ways. The
pivotal role of adequate sampling in large-scale data
analyses has been emphasized in statistics applications
across diverse fields, notably in connection with large-scale
population surveys [22,23], multidimensional quasi-
Monte Carlo (QMC) integration [24], medical research
[25], variance-bias separation in machine learning [19,26],
and studies of predictivity of complex models [27].
Sampling issues are also pertinent to the multivariate
PDF fits. One key observation from the above studies is
that large samples do not guarantee convergence to the
correct solution, contrary to the common expectation based
on the law of large numbers. The reason is that nominally
small biases in sampling of possible solutions, such as in
the selection of best-fit models of PDFs obtained using
various choices of experiments or functional forms of
PDFs, may grow as the volume of fitted data and complex-
ity of the analysis increase. The growth reflects common
difficulties with sampling of parameter spaces of high
dimensionality. In an (unfortunately nonrare) situation

when the sampling is unrepresentative of the population
of allowed solutions, one may end up with a wrong
conclusion described by Xiao-Li Meng [22] as the big-
data paradox, namely, “the bigger the data, the surer we
fool ourselves.” Sampling accuracy must be controlled in
high-stake phenomenological measurements, such as the
recent measurement of W boson mass by the CDF
collaboration [28], together with other uncertainties.

Incomplete sampling of PDF solutions may result in
unstated sources of the differences among central PDFs or
the PDF uncertainties. The possible existence of such
differences is suggested by an observation that, while
several recent global analyses constrain the PDFs with
comparably strong sets of fitted experimental data, in some
phenomenologically important cases these analyses arrive
at noticeably different estimates of PDF uncertainties. In
the CTEQ-TEA analyses, some of the sampling uncertainty
1s included, as discussed below. On the other hand, when
the “experimental” 16 PDF uncertainty is defined accord-
ing to the A)(z — 1 criterion, as in ABM and HERAPDF
studies, this uncertainty does not account for sampling over
a sufficient class of PDF parametrizations and other factors,
which must be done separately.

As another example, the estimates for the correlated
uncertainties on key LHC and Tevatron total cross sections
presented in [14,15] vary between the recent PDF fits. In
Fig. 1, the 95% confidence level (CL) uncertainty regions
on the Z, Higgs, and W total production cross sections at
the LHC 14 TeV and Tevatron 1.96 TeV vary in size in a
large range. It has been demonstrated that the uncertainties
may reflect as much the fitting methodology as the strength
of experimental constraints. Indeed, while the differences
with the nonglobal (ABMP’16 and ATLAS) and combined
(PDFALHC21) ensembles are reasonably understood, the
differences between three global fits—CT18, MSHT’20,
and NNPDF3.1—require additional attention. When CT18
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[5] and NNPDF3.1.1 [4] NNLO PDFs were compared in
Sec. II of the 2021 benchmarking study by the PDFALHC
group [15], the former systematically predicted a larger
uncertainty in the moderate x region than the latter. The
magnitudes of the MSHT20 NNLO uncertainties [7] in
these comparisons tended to lie between the CT18 and
NNPDF3.1 ones. More intriguingly, in the course of the
PDF4LHC21 exercise, the three global PDF groups con-
ducted fits to a set of common data, using common settings,
so as to establish comparisons/benchmarks. The common
dataset (termed the “reduced set”) was diverse enough to
provide constraints on all PDF flavors, but limited enough
so that all groups were expected to find similar estimates
of PDF uncertainties. In the fits to the same reduced
dataset [[15], Sec. III, especially Figs. 3.4 and 3.5], the
NNPDEF3.1 (reduced) uncertainties came out to be system-
atically smaller than the CT18 (reduced) and MSHT20
(reduced) uncertainties.

The discrepancies in estimated uncertainties have a
variety of implications. For example, they can explain
different conclusions about the strength of evidence for the
nonperturbative (intrinsic) charm component of the proton
obtained by the NNPDF [30] and CTEQ-TEA [31] groups.
They also affect projections for sensitivity of planned new
experiments, just like related mathematical issues affect
planning and policies in other fields [27]. Such differences
are often attributed to the tolerance conventions chosen by
the global analysis groups. [“Tolerance” refers to the
prescription for estimating the PDF uncertainty, see the
discussion in Ref. [16].] Are the tolerance conventions
mostly subjective, or can some conventions perform better
than the others? The question is sharpened by formulating it
as a problem about sampling of a specific PDF-dependent
observable that PDFs themselves.

Our article presents an introduction to the sampling of
PDF solutions, followed by a presentation of a technique to
improve sampling of PDF uncertainty for user-selected
QCD observables. Section II reviews mathematical essen-
tials for this discussion. Among these, we first introduce the
trio identity, useful for quantifying the convergence of
sampling estimates. The trio identity for the sample
deviation (Sec. II C) and cornerstone properties of multi-
dimensional (quasi) Monte Carlo integration (Sec. II D)
demonstrate that complex, large-scale analyses are at an
elevated risk of an unaccounted sampling bias. Global
QCD analyses must strive for representative sampling of all
acceptable solutions, which may increase the resulting PDF
uncertainties or effective tolerance.

Section II also points out fundamental difficulties in
performing an all-inclusive test for representative sampling
in a multiparametric global fit. Such sweeping test is likely
impractical. On the other hand, a practical question “What
is the sampling uncertainty on a given observable X?”
can be highly tractable using the already available
technology for PDF fits. We point out the general

rationale in Sec. IID. We then continue to Sec. III,
where we show that the question about PDF uncertainties
on specific QCD observables can be explored using the
general framework for large-scale surveys and QMC
integration presented in Sec. II. Section III A reviews
major types of sampling arising in PDF fits, from
experimental data to models for systematics. As a
specific application, Sec. IIIB investigates the PDF
uncertainty on the LHC benchmark cross sections using
the LHAPDF grids of NNPDF4.0 error sets and publicly
available MCGEN [21,32,33] and NNPDF [34,35] fitting
codes to compute the y> of the included datasets. The
hopscotch sampling technique introduced there suggests
that the PDF uncertainty on key LHC cross sections at
13 TeV is larger than the nominal uncertainty obtained
with the published NNPDF4.0 error sets. Section III C
explains the algorithm of the hopscotch scans.
Section IIID offers a possible interpretation of our
findings. The PDF uncertainties must be also enlarged
in the case of the strangeness-antistrangeness asymmetry
and fitted charm PDF at large momentum fractions,
as demonstrated in Sec. IIIE. Section IV contains
conclusions.

II. QCD SAMPLING PROBLEM AND THE TRIO
IDENTITY

A. Setup of the problem; the R mechanism

We start by discussing multidimensional sampling in a
simplified context, by considering the probability for a
QCD observable G dependent on the PDFs, such a collider
cross section ¢ or perhaps the QCD coupling strength
a, determined from hadron scattering measurements.
Predictions for observables are the ultimate targets for
the propagation of the PDF uncertainties. The goal of the
physics endeavor is to estimate the truth value Gy, of G
that is objectively realized in Nature. Historically, at most

we can hope to determine the expectation value E ,(G) =

1 N, :
N_,,Zizl G, on the population of many measurements or

other determinations G; of G, where N, is a very large
number of determinations.

We assume that the determinations G; are properly
designed, so that E,(G) agrees with Gy, (ie., E,(G) —
Gyun 1s arbitrarily small) for N, that is sufficiently
large. For example, for G = ay, the population expect-
ation E,(a,) could be computed on a future sample of
many measurements obtained after several more decades
of well-funded research. If G is a cross section o
computed with a multiparameter PDF ensemble, E, (o)
can be the expectation value with the PDF ensemble that
densely and representatively samples the whole param-
eter space.

The conundrum for many studies is that achieving such
large N, may not be feasible. Often one selects a sample of
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N replicas from the population, with Ng < N, or even
Ny < N, and estimates the sample expectation value as

EG) = - G = E,(RG)/E,(R). (1)

S =1

to.
Ri:
Os

The sample expectation deviation Agp=E (G)—
E,(G) ® E;(G) = Gy, is controlled by the accuracy of
each determination, or a replica in the case of PDFs, Gy, as
well as by the accuracy of sampling of N replicas from the
population. The fitting accuracy/sampling accuracy dis-
tinction and the representation using the R indicators (“the
R mechanism”) are borrowed from the study [22] of large-
scale surveys, in which “fits” or “replicas” are equivalent to
“responses to the survey.” Namely, the accuracy of a single
replica G; can be raised by reducing experimental, theo-
retical, and computational errors. From here, we will
assume that the individual G; are sufficiently accurate.
In contrast, the sampling accuracy reflects how adequately
we sample the population of N, acceptable replicas. If such
sampling is biased, the magnitude of the sample deviation
can be estimated using the R mechanism, see Eq. (3).

Small biases due to insufficiently representative sam-
pling of large populations may produce large deviations.
Surveys of the COVID-19 vaccination rate with very large
samples of responses and small statistical uncertainties
(e.g., Delphi-Facebook) greatly overestimated the actual
vaccination rate published by the Center for Disease
Control (CDC) after some time delay [23]. The deviation
has been traced to the sampling process. In contrast to the
random error, which decreases as 1/+/N,, the sample
expectation deviation can grow with both N, and N.

Concurrently with the formalism for the large population
surveys, a related statistical formalism has been developed
to understand convergence of quasi-Monte Carlo (QMC)
methods for multidimensional integration [24]. Insights
from these formalisms help us to elucidate our problem in
the context of the PDF analysis, in which it can be posed as
follows:

Problem 1. Estimate an expectation value E,(G) of an
observable G on a [possibly unknown] population of N,
replicas, given a sample of N values G;, where Ny < N,

To get such estimate, it suffices to adopt an R mechanism
that renders Ay = E((G) — E,(G) = 0 within a prescribed
error. In this section, we discuss convergence of such
sampling estimates.

B. A toy example

As a toy example, consider a population of NNLO Higgs
boson cross sections G = o,y at the LHC c.m. energy

if it is not in the sample,

In the last step, we expressed the sample expectation E(G)
as a ratio of population expectations E,(RG) and E,(R),
where R; is an array of N, “sampling indicators” such that
for each element G; of the population

if the ith element is in the sample,

fori=1,...,N,. (2)

|

14 TeV. The cross sections are computed with N, = 900
error sets of the baseline PDF4LHC21 PDF ensemble [15]
consisting of 300 MSHT20, 300 NNPDF3.1.1, and 300
CT18' replicas, illustrated on the left panel of Fig. 2. [The
replicas are ordered as in the actual 900-replica baseline
ensemble. The mean cross section of the CTI18
(NNPDF3.1.1) subset is slightly lower (higher) than the
population mean.] We have E,(G) = 47.492 pb and wish
to obtain a close estimate by sampling only N, = 300
replicas out of 900.

If we randomly select N, = 300 replicas from the whole
population, we obtain Ap =04 0.033 pb, where the
68% CL uncertainty is computed by repeating the random
selection 1000 times. In this case, E and E, are statistically
indistinguishable (see the middle panel of Fig. 2). It is
known on general grounds that, with the random sampling
from the whole distribution, Ap decreases as 1//Nj,
independently of N, [22].

As an instance of a different sampling, let us select 100
replicas from each of the MSHT, NNPDF, and CT18
subsamples, for a total of Ny =300 replicas. In this
case, we still get Ay =0+ 0.03 pb, i.e., no deviation.
Since the PDFALHC21 baseline set of 900 replicas is
constructed by randomly selecting 300 replicas from
each of the MSHT20, NNPDF3.1.1, and CT18" 1000-
replica samples, we conclude that this PDF4LHC21
nonrandom combination prescription introduces no
appreciable deviation.

We can generate various sample combinations selecting
100 replicas from one of the three groups, 200 replicas of
second group, and none of the third. Two of those are
shown on the right panel of Fig. 2, with deviations of Ap =
—0.206 £ 0.036 pb and Ar = 0.138 £ 0.031 pb. In this
instance, the bias was introduced by hand, but in realistic
situations the bias can arise from apparently small depar-
tures from the random (probabilistic) sampling at various
stages of the analysis.

C. The trio identity

The trio identity [22,24] for the sample expectation
deviation Aj is a representation introduced to examine
convergence of the sampling algorithm. For our problem,
the trio identity takes the form
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FIG.2. The R mechanism illustrated on a toy example. The left panel shows a histogram of predictions for NNLO Higgs cross sections
at the LHC based on 900 error PDFs of the PDFALHC21 PDF ensemble (‘“‘the population™). The PDFALHC21 ensemble is composed of
three groups with 300 predictions; the resulting histograms are superimposed. The middle panel shows 300 predictions that are
randomly sampled from the 900-member population, producing a sample average ji that is indistinguishable from the population average
u (i.e., Agp = 0). The right panel depicts two biased samples. Each contains 100 predictions from one group, 200 from a second group,
and none from the third. The biased samplings result in nonzero Ay values.

Cov,[R, G] The trio identity establishes dependence of the sample
‘ E,(R) deviation Ay on the sampling algorithm [22].
(1) Under simple random sampling (SRS), when repli-
N cas are independently selected with identical prob-
_ . _pr_ .
= Com,[R.G] N, 1 Var, [G] ability, the sample deviation converges to the truth as

confounding correlation e ==’ population variation 1/4/N, in compliance with the law of large numbers:
measure discrepancy

(3) SRS: Ay -0 asN;—> N,

The three factors on the right-hand side are population with
expectations with different dependencies on N and N ,. In

Eq. (3). Cov,[A. B] = E, (A — E,(A))(B - E, (B)) is the MSEsgs(Ar) = Vers = k53,/N,.

population covariance. Variation Var,|G] = /Cov ,[G, GJ where k = (N, = N,)/N, ~ 1. (5)
reflects the complexity of the population distribution. .

Measure discrepancy \/N /N — 1 is due to the mismatch (E:;);z?ézifnmf)é]z];:i. 1 /(EL])V aild1 ).(5) shows that
between the sizes of the population (N,) and the sample (2) For an arf)itrary sampling palgorithm, the sample
(Ny). The confounding correlation Corr,[R,G| lies deviation satisfies

between —1 and 1. It quantifies efficiency of the sampling

algorithm in comparison to simple random sampling. The Ag = Corrp[R,G|\/N, = 11/ Vsgs,
confounding correlation reflects methodology of the analy- MSEg(Ag) = Eg(Corr,[R, G]2)(N, — 1)Vgs. (6)
sis. Methodological correlations play a central role in b b

precise PDF analyses [36], together with data-driven For the sampling deviation to vanish as N, increases,
[37] and theory-driven [38-41] correlations. Corr,[R,G]| should decrease at least as fast as

If the sampling exercise is repeated Ny times while
keeping the same N, each time choosing a different R
array, one can estimate a mean-square error (MSE) of the
sample deviation for a given R mechanism:

o(l/\/N,—1). Absent this behavior, unrepresentative
sampling may lead to a situation when the sample deviation
remains large in spite of misleadingly small standard error
estimates. Meng dubbed this situation as ‘“the big-data

MSEg(Ag) = Ex(A%) = Eg(Corr,[R, GJ?) paradox,” which is clearly undesirable and unfortunately
N can go unnoticed if sampling accuracy is not controlled to a
|\ =L-1])-Var,(G)? (4)  sufficient degree.
N, P '
D. Quasi-Monte Carlo integration
'Variation Var,[G] and standard deviation G are related as The trio identity elucidates why quasi-Monte-Carlo
65 =N,/(N,—1)Var,[G]>. (QMC) methods for multidimensional integration may
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converge at a faster or slower rate compared to the
Monte Carlo integration based on SRS [24]. When inte-
gration is performed over a unit hypercube in Ny,
dimensions, the sample deviation Ap coincides with the
(hyper)cubature error and can be decomposed into three
factors that play the same roles as in Eq. (3).

Of particular interest to us is the convergence of QMC
integration when N, is large. In this limit, the minimal
number of MC replicas that guarantees a convergent
integral for an arbitrary integrand grows as 2Ver [42],
reflecting the curse of dimensionality that was pointed out
long ago [18,19]. Not only dense sampling of a high-
dimensional volume requires an exponentially growing
number N, of replicas, such as 2V ~10% for
Npor = 100; suppression of the confounding correlation
to the adequate degree is likely as a daunting feat.

The sample expectation of a QCD observable G(a) in
PDF fits is merely an integral of the weighted probability
function P(a) over N,,, PDF parameters a:

E,(G) = / G(a)P(d)da. (7)

We immediately conclude that convergence of E(G) to the
truth for an arbitrary G(a) is not at all guaranteed in a PDF
fit that depends on too many parameters and does not
control for representative sampling.

In such a complex fit, one practically cannot know if the
sample PDF uncertainty covers the truth values for all
G(a). On the positive side, it follows from Eq. (7) that, if
G(a) is known to substantially depend only on a few
components of d, estimation of E (G) becomes highly
tractable. The reason is that the convergence rate of QMC
integration is controlled by the effective number of com-
ponents, i.e. directions in the parameter space, along which
the variance of the integrand is significant [43]. If the
number of such components is small, integration can be
arranged so as to give more weight to the sampling of the
manifold spanning the corresponding “large dimensions.”
For example, the coordinates in the subspace with highest
variances of G(d) can be sampled most densely. The
coordinates in the complementary subspace with low
variances can be either fixed or sampled with a low density.
Techniques exist for ranking the N, coordinates according
to the variance of the integrand using the analysis of
variance (ANOVA) [44], principal component analysis
(PCA), or another dimensionality reduction method.
Accuracy of integration can be iteratively improved by
adding contributions from the coordinates with lower
variances [45]. See discussion in Sec. 8 of Ref. [24].

The role of effective dimensions in accounting for large
uncertainties from complex models, beyond Monte-Carlo
integration, was recently highlighted for the broader con-
text of applied science. Reference [27] stresses the role of
uncertainties in the decision making of new policies in the

real world, “where reliance on excessively complex and
overconfident models may have deleterious social-
environmental consequences.”

Experience with high-dimensional integration thus raises
a warning for the analyses that fit a large number of flexible
functions using a modest number of fitted replicas. While
these analyses excel at finding acceptable sets of functions
describing the data, they are nevertheless prone to the risk of
a sampling bias that grows with the dimensionality of the
problem. Apparent reduction of the variance does not
eliminate this risk because of the big-data paradox quantified
by the trio identity. It has been known for a while that precise
sampling of y? in the vicinity of the global minimum
becomes inefficient with traditional MC replicas: the
majority of such replicas have too large Ay?> because of
high dimensionality of the parameter space [ [21], Sec. 3. B].
All-inclusive testing for representative sampling thus is
difficult with a lot of free parameters. Fortunately, typical
QCD cross sections depend on specific combinations of
PDFs that can be established using dataset diagonalization
[46] (for example, implemented as optimization of Hessian
sets for specific experiments in the e Pump package [47]) or
a related method. Sampling of a known PDF combination
can be tested with a greatly reduced cost based on the
dimensionality-of-integration argument presented above.
Hopscotch scans described in the next section realize such
test in practice.

III. SAMPLING TESTS AND HOPSCOTCH SCANS

A. PDF uncertainties on QCD observables as a
sampling problem

Section II summarized recent mathematical approaches to
statistical surveys of large datasets and QMC integration of
functions dependent on many parameters. In this section, we
advance a viewpoint that the same approaches can guide
estimation of PDF dependence of specific QCD cross
sections. In this case, we consider a population of predictions
{G;} for an observable G based on a large collection of PDF
sets that will be obtained in the future. Without the loss of
generality, we assume that the PDF sets are indexed by
independent countable parameters and are acceptable
according to the goodness-of-fit criteria explained below.

A prediction based on one such PDF set plays the role of
an individual response to the survey, given by the numerical
value G;. Predictions based on one published PDF ensem-
ble can then be viewed as a sample with the size N that is
smaller than the population size N ,. Again without the loss
of generality, we can assume that the expectation values can
be computed using the unweighted average as in Eq. (1), or,
if so necessary, using the weighted average as in Ref. [22].
The formalism from survey studies [22,23] then tells us
that, given the complexity of PDF models, confounding
correlations may dominate the sampling bias Az even when
the sample SRS deviation, proportional to 1/1/Ny, is small.
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Validation of representative sampling is thus as essential
as the tests of quality of individual fits, such as strong
goodness-of-fit tests on resulting PDFs [16] and the closure
test [48] of the agreement of a trial fit with a predetermined
truth value within the uncertainty. However, for an all-out
sampling test, the computation of the confounding corre-
lation in the trio identity, Eq. (3), requires to know the
population distribution as an input, which is not known
while the fits are performed. The confounding correlation
can be predicted to a degree by using a model population
distribution based on simulated pseudodata in the same
spirit as done in the closure test. On the other hand, tests of
representative sampling are simpler for QCD observables
with low effective dimensionality.

But what exactly is sampled in the PDF fits? Several
types of PDF sampling are performed based either on a
known or unknown probability distribution. The uncertain-
ties from each sampling type may or may not be included as
a part of the final uncertainty. To illustrate how the groups
handle various types of sampling, we will compare two
recent NNLO PDF analyses, CT18 [5] based on the
analytic y> minimization and NNPDF4.0 based on the
MC sampling of neural network parametrizations of PDFs
[8]. We outline some common categories of sampling,
leaving out technical details of specific realizations.

a. Sampling of experimental datasets occurs when these
datasets are selected for the fit. As a variation, only a part of
the dataset can be included. Some datasets may be included
with y? weights that are different from unity, as has been
done in PDF fits circa year 2000. If there are inconsisten-
cies among the datasets, inclusion of a dataset from the
global fit may result in a larger-than-nominal shift of
the expectation value. The associated variation is latent
in the PDF fits with significant tensions among the experi-
ments, including the recent global PDF analyses. The
strengths of tensions among the fitted PDF sets are
comparable in CT18, MSHT’20, and NNPDF3.1 fits, as
reflected by y?/ Ny values of experimental datasets in
Tables 2.1-2.3 of [15]. Such tensions can be identified with
techniques described in [16,49]. Standard techniques for
estimation of the corresponding PDF uncertainty, like
jackknife cross-validation (computing the expectation
value on an ensemble of fits with one experiment left
out at a time), are hardly practical in the global fits. Instead,
global PDF fits may resort to a remedy of increasing the y?
tolerance associated with one standard deviation from
Ay? =1 to a larger value. More complex tolerance pre-
scriptions can be alternatively used [16]. In the CTI18
family of PDFs, a special CT18Z ensemble is provided to
obviate the change in the PDFs upon the inclusion of the
ATLAS 7 TeV W/Z production [50] that runs into tension

’In addition to the categories discussed here, Monte-Carlo
integration uncertainty of theoretical calculations may be im-
portant in some cases.

with dimuon SIDIS experiments. The difference between
the CT18 and CT18Z central values can exceed the sum of
90% intervals of two ensembles. The MSHT’20 and
NNPDF4.0 analyses publish only the PDF ensembles for
the default selection of experiments. Mutual consistency
of the datasets is thus a part of the data-quality requirement
for the reduction of uncertainties.

b. Sampling of experimental data fluctuations is the most
familiar type of sampling. The NNPDF and other (pre-)MC
approaches generate PDF sets by resampling and cross-
validation of the experimental data. In this paradigm,
multiple replicas of the fitted data are constructed by
randomly fluctuating the data’s central values according
to the experimental uncertainties. For each replica of data,
the PDFs are found by fitting to the training part of the
replica and simultaneously cross-validating against the
complementary, control part. The final PDFs optimally
agree with both training and control parts based on a
criterion that depends on the log-likelihood function y?
computed with respect to the fluctuated data. Expectation
values are then computed using an unweighted average of
predictions on an ensemble of such replicas. The NNPDF
group [51] calls this approach “importance sampling.” It is
called “resampling” or “bootstrap” by other groups.

The CT approach, on the other hand, finds the best-fit
PDFs by minimization of the log-likelihood y? computed
with respect to unfluctuated data, i.e. the published data
with specified statistical and systematic errors (see below).
Expectation values in this approach are computed using the
best-fit PDF, confidence intervals are estimated using
Hessian eigenvector (EV) sets. The CT fit can also produce
MC error sets, usually done by the conversion of the final
Hessian PDF sets [21]. Reciprocally, the NNPDF4.0 MC
replica sets have been also converted into an ensemble of
50 Hessian PDFs, which reproduces the expectations,
standard deviations, and correlations of the NNPDF4.0
MC replicas. Resampling of experimental uncertainties and
conversions between Hessian and Monte Carlo PDFs are
well understood and numerically accurate.

¢. Sampling of PDF functional forms and fitting/training
methodologies is another common source of an explicit or
latent uncertainty. It is independent from the data resam-
pling uncertainty. In the discussion of data fluctuations, we
assumed that the MC replicas are generated with the same
training methodology, including the same choices for the
sizes and contents of training and control partitions, as well
as the same condition to finish replica training. We also
assumed that the parametrization forms of the PDFs,
whether given by an analytic function or by a neural
network of a certain architecture, do not change in the
course of an individual fit or training cycle. Such settings of
the fit of course can also be varied.

In contrast to the experimental uncertainty, these choices
are associated with the prior probability. One aspect of this
kind is that the final PDFs, whether produced by analytical
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minimization or an AI/ML method, aim to describe the data
without underfitting or overfitting parts of data. As a
consequence of the fundamental variance-bias dilemma
[19,26], overfitting is not sharply defined. Namely, a fit or
ML training with an arbitrary functional form can produce
multiple solutions that balance between agreeing with the
(un)fluctuated data, having the fitted function with high
variation, and allowing for random noise. One therefore
expects some differences between the overfitting tests
adopted by various groups.

Smoothness, such as the absence of sharp features in
acceptable PDFs, is a related condition that does not
necessarily imply data overfitting. Both CTI18 and
NNPDF4.0 analyses require the PDFs to satisfy conditions
of smoothness, positivity, and integrability, again according
to varied prescriptions.

In the CT18 analysis, the candidate fits were repeated
with more than 250 alternative functional forms and
produced substantial spread of PDF solutions. The toler-
ance of the published CT18 ensembles, such as those
shown in the next subsections, was increased so that their
Hessian PDF uncertainty covers the solutions obtained with
the alternative parametrizations. CT18 parametrizations
utilize Bernstein polynomials, which allow examination
of a variety of flexible, yet usually smooth, functional
forms.

The NNPDF4.0 analysis adopts a specific optimized
algorithm to select the architecture, train neural networks,
and impose smoothness and other prior conditions. As a
part of the algorithm, the final 100 or 1000 NNPDF4.0
replicas are selected from a larger pool of replicas, many of
which exhibit nonsmooth, short-length features. The algo-
rithm is checked for self-consistency in a closure test by
fitting idealized pseudodata and verifying quantitative
estimators such as the bias-variance ratio and quantiles
of Ay? for groups of experiments. The closure test
demonstrates that the NNPDF4.0 optimized algorithm is
sufficient for generating well-behaving PDFs that agree
with the known “truth” PDFs.> Closure tests, however, do
not prove that the use of the NNPDF4.0 settings is a
necessary condition for obtaining well-behaving solutions
under acceptable variations in methodology. This espe-
cially applies to the case of fitting inconsistent datasets.
Other algorithms, which vary in terms of hyperparameters,
priors, and similar setting choices, may exist and produce
PDF solutions that enlarge the nominal NNPDF ensemble.

The availability of public NNPDF4.0 MC and Hessian
PDFs, together with the public NNPDF4.0 code, opens a
possibility for a test to evaluate performance of the
NNPDF4.0 algorithm in finding the PDF solutions.
Consider the Bayesian likelihood-ratio test in the context
of PDF comparisons [16,52]. Suppose two PDF solutions,

3Success of the closure test depends on the targeted precision
and accuracy of the truth-fit comparisons.

A and B, have the same likelihood, but solution A is
deemed unlikely compared to B based on the ratio of
posterior Bayesian probabilities. From this, we conclude
that solution A is disfavored because of its lower prior
probability, not because of its likelihood. Generalizing for a
collection of QCD observables, we can identify the regions
populated by new predictions that have the same or higher
likelihood as the nominal NNPDF4.0 regions. Differences
between these regions arise from the prior conditions
imposed on the new and nominal solutions. The ML
universal approximation theorem [53-55] implies that both
groups of solutions can be approximated by neural net-
works. The proposed test therefore examines sampling over
classes of eligible functions or, in the ML language, eligible
neural networks. If, in addition to having low y? values, the
new solutions pass all other goodness-of-fit criteria, they
must be accounted in the final PDF uncertainty e.g. in the
form of an enlarged tolerance. The design and implemen-
tation of the test are explained in Sec. III C.

d. Sampling of likelihood functions. There is another
ambiguity to consider, associated with the approximation
of the likelihood in the PDF fits. Since the experiments
rarely provide the full likelihood, it is usually expressed as
P(D|T) = const - exp (—y*(D, T)/2), where x*> is con-
structed from experimental data values D;, theoretical
predictions T;, and associated uncertainties. The log-like-
lihood y* enters the figure-of-merit function in the fit,
where it can be combined with prior conditions or com-
puted with respect to fluctuated D;, as done during the
training of MC replicas. The log-likelihood y? is also used,
not necessarily in the same form as during the fit, for
external comparisons of PDFs like the ones done in our
study. Non-Gaussianities of the errors are frequently
neglected, and various approximations are made to the
correlated systematic errors, which still lack full under-
standing [Sec. 5 in [14]]. These choices produce non-
identical forms of y? used by ATLAS [9], HERA [1], CT
[5], MSHT [7], and NNPDF [8].

In regard to the correlated errors, the PDF analyses
address a common ambiguity when converting percentage
uncertainties into absolute ones. For an experiment with
Ny, data points and N, systematic errors, the x? functions
used by the three global groups can be reduced to

Ny
x = Z(Ti = D;)(cov™!);(T; = Dy), (8)

i,j

where
N;
(cov);; = 576, + Zﬂi,(xﬂju )
a=1

depends on uncorrelated uncertainties s;, and correlated
ones f3; ,. In turn,

ﬁi,a = Gi,aXi (10)
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are derived from the tables of published o; , using unspeci-
fied normalization cross sections X;. It has been observed
that plausible choices of X; nontrivially affect the resulting
PDFs. Search for the “least biasing” choices prompted
scrupulous investigations [56-59]. The Appendix in [56]
reviews the rationales for these choices, which depend on
the type of the systematic error, while Refs. [1,5,7-9] detail
implementations of f; , in the latest PDF fits.

The groups generally avoid fitting the PDFs with the
choice of X; = D; for multiplicative errors (so called
“experimental” scheme, or “exp”), on the count that it
was shown to bias the best-fit results with respect to
the truth in relatively simple examples examined by
D’Agostini [60,61] and NNPDF [58]. Partly for this reason,
CTEQ-TEA analyses normalize all ;, by X; =T, (the
current theory) [59]. The NNPDF group uses a “f, scheme,”
which has been available in two versions: the pre-
NNPDF3.0 analyses multiplied only the normalization

uncertainties by an iteratively updated theory value, X; =
Tl(-o) [56,58], and the NNPDF3.0 and later analyses normal-

ize all 8; , with TEO) in several groups of experiments [ [48],
Sec. 2.4.2], while the rest of the errors are normalized
by X; = D,-.4

These are not the only y> forms in use, however, and in
fact the NNPDF4.0 publication quantifies the quality of the
fit and agreement with the experiments with y? values in the
“exp” scheme [Sec. 5.1 in [8]]. It can be understood that
neither of these conventions is safe from biases by
recognizing that X; are values of an initially unknown
function X that is fitted or learned together with the PDFs.
As such, X is subject to the already mentioned tradeoff
between variance, bias, and noise [19,26], with none of the
current implementations systematically controlling for this
tradeoff. The exp and 7, schemes correspond to the zero-
bias (with respect to D;) and low-variance options, respec-
tively, and a sequence of other possible schemes lies
in-between. [In the exp scheme, the function X goes
through the fluctuating data points D;. Other schemes
use a smoother function.] The well-known demonstrations
of D’Agostini’s bias assumed at most a few multiplicative
errors. The PDF fits deal with many multiplicative errors,
whose pulls on the PDFs may have opposite signs or be
nonlinear, adding up to an unpredictable effect. For high-
statistics data samples, it is even possible that random
fluctuations in D; are smaller than uncertainties in choosing

X, = T<O>; and, finally, the truth X; for some S, , in the

i
experimental publication may not exactly coincide with 7;
©in the PDF fit at hand.

or its user-selected analog T;

*In particular, the gluon at x > 0.1 varies depending on the
additive or multiplicative treatment of the errors in inclusive jet
production. For illustrations, see Fig. 18 in [59] and Figs. 60 and
61 in [48].

The sampling test proposed above can also explore
dependence on the form of the likelihood, given that the
NNPDF4.0 fitting code can return y? values in the exp and
to schemes. As stated in a note of the NNPDF4.0 code
manual, “the #, method is not used* by default *by
[applications of the validphys code other than replica
training], and instead the default is to compute the
experimental 27 [62]. Our sampling test is agnostic about
the generation of PDFs and just compares available PDF
solutions without actually fitting them.

B. NNPDF4.0 probability regions for the LHC
benchmark cross sections

The main findings of the test are summarized in Fig. 3,
which shows the PDF uncertainties on LHC cross sections
at /s = 13 TeV computed at NNLO in the QCD coupling
strength according to the settings listed in the Appendix.
For experimental collaborations, it is important to know
which theoretical predictions are acceptable given the latest
experimental and theoretical constraints. In the exercise to
be presented, all results are obtained using either error
PDFs available in the LHAPDF library [63], or linear
combinations thereof.

The elliptical regions seen in Fig. 3 are projections of N e~
dimensional volumes populated by PDFs with low y for the
indicated Hessian PDF ensembles, where N, is the number
of EV directions in the Hessian ensemble. For each Hessian
PDF ensemble and y° scheme, there is one such approx-
imately ellipsoidal volume. The ellipses of the same style in
the six panels of Fig. 3 are the volume’s projections onto the
two-dimensional planes specified by the pairs of indicated
total cross sections. Here and in the following, the y* is
computed with respect to the published (unfluctuated)
central data values, except when we explicitly say otherwise.

Let us now go over the shown probability regions one-
by-one.

In the NNPDF4.0 approach, the Monte-Carlo error PDFs
are constructed by optimized training of neural networks on
replicas of randomly fluctuated experimental data. Each
replica fit achieves a good y? with respect to its fluctuated
dataset, while practically all MC replicas have a very high
x> (by hundreds of units) with respect to the unfluctuated
data. The individual MC PDFs are thus poor fits to the
published (unfluctuated) dataset—but their average (called
the “central replica®, or “replica 0”) agrees with the
unfluctuated data much better [21]. The standard deviation
on the ensemble of 1000 NNPDF replicas thus essentially
provides a 68% experimental error with fixed methodo-
logical settings, estimated around the central replica as the
spread of best fits to randomly fluctuated data points for the
chosen methodology, including selection (sampling) of
experiments, training and cross validation algorithm, and
treatment of systematic effects.

To examine the dependence of y? from the NNPDF4.0
code on PDF parameters, as discussed in Sec. III A, we will
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FIG. 3. Red solid ellipses: the nominal 68% probability regions from the NNPDF4.0 NNLO analysis [8]. Green ellipses with a solid
contour: approximate regions with acceptable NNPDF4.0 solutions that have the same ;(,2“ as the central PDF replica in the NNPDF4.0
publication. The reconstruction of the approximate ellipses is described in Sec. III C.
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employ the NNPDF4.0 Hessian EV set—>50 error PDFs, with
1 error PDF pereach of Nj, = S0 EV directions, obtained by
post-fit conversion of NNPDF4.0 MC replicas. In the
NNPDF implementation, the Hessian set is centered on
the NNPDF4.0 replica 0 and reproduces 1¢ symmetric PDF
uncertainties of the MC set, i.e., the regions containing 68%
of the MC replicas. Section III D illustrates that, indeed, the
NNPDF4.0 Hessian ensemble reproduces well these regions.

In the standard interpretation, however, Hessian eigen-
vectors form a basis in linear space populated by vectors of
PDF solutions in the vicinity of the global minimum of .
The position of the global minimum obviously depends
on the y? scheme, chosen to be the #, scheme in the figures.
The approach that provides 1 EV set per EV direction is
usually based on the expectation that the global minimum is
very close to replica 0, and hence the y? is more or less
symmetric with respect to replica 0. We will compare
locations of replica 0 and global minima, and then examine
the y*> dependence in this space.

In Fig. 3, red solid ellipses delineate the 68% probability
regions computed with the published NNPDF4.0 error
PDFs and centered on the predictions from the
NNPDF4.0 central replica.

Overlayed on the nominal uncertainties, the green
ellipses indicate approximate regions containing PDF
solutions that have better y?, according to the NNPDF
fitting code, than the NNPDF4.0 central replica O.
Section III A pointed out that comparisons in NNPDF
publications use two forms of y> as the figure-of-merit,
called “#y” and exp and computed with respect to the
unfluctuated data, which differ in their implementation of
experimental systematic uncertainties. The green ellipses
delineate regions for each pair of cross sections in which
our analysis have found regularly behaving PDF solutions
that have Ay? = »? — 3 <0 according to the “7,” defi-
nition, where y3 is computed for replica 0. Inside the
ellipses, y> shows quasi-Gaussian dependence on the PDF
parameters with both definitions. The found low-y*> PDF
solutions are linear superpositions of the NNPDF4.0
Hessian replicas. Among them, we find a few with Ay?
as low as —37 with the #, definition. Their y* values are
computed using the published NNPDF4.0 code [34,35].

We construct the alternative NNPDF4.0 solutions using
an algorithm that we call a hopscotch scan, which performs
focused sampling of PDF combinations giving the dom-
inant contribution to the PDF uncertainty of the shown
cross sections. Section III C explains this algorithm and
construction of the approximate ellipses. The technique
combines Lagrange multiplier (LM) scans of PDF param-
eters [64] along the Hessian EV directions with stochastic
sampling of the few “large” dimensions associated with the
largest variance of the LHC cross sections under consid-
eration, in accord with the general discussion in Sec. 11 D.

It is obvious from Fig. 3 that the ellipses containing the
PDFs that have Ay> <0 are larger than the nominal

68% CL NNPDF4.0 uncertainties. These PDFs have been
examined for possible nonsmooth features and other
pathologies. We did not observe obvious flaws and found
them to be acceptable, according to the CT18 procedure
[5], in light that they achieve the same or better y> as the
nominal fit, are smooth, and fall within the nominal
NNPDF4.0 errors nearly everywhere.

The t, definition of the y? reflects a certain implementation
of the experimental correlated systematic errors. We pointed
out that other definitions exist, reflecting incomplete knowl-
edge of systematic uncertainties provided to the global fits
[ [14], Sec. 5, and references therein]. Dependence on the x>
definition must be scrutinized as a part of a more complete
exercise. Even within this limited scope, it is clear that there
can be acceptable solutions with Ay? <0 outside the
nominal NNPDF4.0 uncertainty. Section IIID offers a
plausible interpretation of such alternative solutions.

C. A hopscotch scan, technical implementation

In this section we describe the construction of the
alternative PDF solutions that led to the ellipses of
Fig. 3. The procedure realizes the general considerations
in Sec. I[I D, namely:

(1) The NNPDF4.0 Hessian ensemble establishes natu-

ral basis coordinates a in space of MC replicas.

(2) For a typical QCD observable G(a), the largest

variances are associated with 4-8 “large dimensions”
in @ space.

(3) The PDF uncertainty on G(a) can be estimated with

a moderate number of MC PDF replicas that vary
along the large directions.

We generate LHAPDF6 tables for the sample PDF
replicas using the MCGEN program [21,32,33] and the

.
.
.
.
.
.
.
s
.
.

NN40Onnlo EV 9

-4 2 0 2
Displacement

FIG. 4. Magnification of the y? scan for EV direction 9. The
green points and blue curve are the actual Ay? values and their
interpolation from the scan. The dot-dashed red curve represents
a symmetric parabola that would be obtained given only the
central replica 0 and the EV set 9 (two red diamonds), and
assuming that the third point necessary to build the parabola is the
mirror of (1o, Ay*(10)).
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FIG. 5.

Scans of the total y? in the experimental definition along 50 eigenvector directions of the NNPDF4.0 Hessian NNLO PDF

ensemble. The red point corresponding to a displacement of +1 in the x axis is not shown in the case of EV 1, as it is out of scale. Its

value is Ay> = 32. See text.
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LHAPDF tables of the NNPDF4.0 NNLO Hessian ensem-
ble as the input. The total > of the NNPDF4.0 analysis was
evaluated using the public code released by NNPDF
[34,35], without refitting. Specifically, the y? is computed
by the perreplica chi2 table function of program
validphys included in the NNPDF code. We activate
the 7, definition by setting option “use_t0: True” in the
NNPDF code and using the theory reference values for the
210713-n3fit-001 PDF set provided with the NNPDF
code. The kinematics cuts were fixed to be the same as in
the NNPDF4.0 global analysis [8]. The minimum values of
Q? and W? for DIS measurements were hence chosen to be
3.49 GeV? and 12.5 GeV?, respectively.

The Hessian representation of the NNPDF4.0 ensemble
provides the central replica (f() and N, = 50 error PDF
sets f; corresponding to displacements by a +1c value
(fo+ Af;) along each independent eigenvector (EV)
direction. The total A)(? of each EV set, computed with
respect to replica 0, varies among the individual EV sets,
with some Ay? being as large as +32 (for EV 1) or low as
—15 (for EV 2), and with the majority no more than 2-5
units in magnitude. As only one error set is provided per
EV direction, this creates an expectation of an approx-
imately symmetric quadratic behavior of Ay” centered on
fo- This expectation is illustrated in Fig. 4 for EV set 9 as a
red parabola, in which the red points correspond to replica 0
and EV set 9. The horizontal axis is labeled in units of
the 1o displacement for EV set 9, and the vertical axis
shows Ay?.

As an alternative to the red parabola, the actual Ay?
behavior might have been very irregular, which may
happen if NN fits show large deviations from
Gaussianity. To test which of the two hypotheses is correct,
we explicitly computed the Ay? at green points, for which
the LHAPDF tables are constructed as f, + w;Af;, where
the real parameter w; quantifies the displacement on the
respective horizontal axis. Figure 5 shows these Ay? scans
forall N, EV directions. In each EV direction, we evaluate
x> at 16 green points for a total of 800 points, with Fig. 5
showing only the points with Ay? below a few tens. We
observe that Ay? follows regular dependence consistent
with a quadratic one along all EV directions. However, the
minima of the y? are displaced from the central replica
along many EV directions. Blue curves interpolating the
green points are consistent with symmetric parabolas
whose minima, f; ., # fo, are displaced from replica 0
in many EV directions and render negative A)(%min for some
EV directions that can be as low as ~ —15 (for EV 2). The
widths of the reconstructed parabolas vary noticeably.
These observations strongly suggest the regular, quasiqua-
dratic behavior of y? in the vicinity of the central
NNPDF4.0 replica and the existence of a displaced global
minimum in parameter space for which the y? is smaller
than the value provided by the central replica. EV sets and

replicas with negative Ay? were also pointed out in a thesis
by the NNPDF collaboration [65]. Yet that study did not
provide further details, such as regular, approximately
Gaussian dependence of x> revealed by the hopscotch
scans.

The hopscotch scan technique explores such low-y?
region by focusing on specific QCD cross sections.
[Finding the displaced global minimum in the whole 50-
dimensional space is more computationally expensive and
beyond our study’s scope, as complexity of combinatorial
and geometrical factors increases quickly.] We draw a low-
dimensional “court” based on the y* behavior gleaned from
the EV direction scans and then repeatedly “throw a
marker” according to one of the strategies to generate
the PDF replicas at points inside the court.

Initially, to find a region with replicas satisfying Ay? <
T2 in the plane of two cross sections, such as ¢,; and 6, we
use the interpolated parabolas in Fig. 5 to find up to two
“pole” PDF sets corresponding to Ay? = T? for each of 50
EV directions. We plot the {c;;,05,} pair for each pole set,
as is done for T2 = 0 in the upper left panel of Fig. 6. In the
N, dimensional space, the pole sets correspond to
the corners of a rectangular block whose projection on
the {o;,0,} plane is a polygon with the corners corre-
sponding to the EV directions with the largest displace-
ments of cross sections from the central predictions. In the
upper left Fig. 6, these are EV directions 5, 2, 7, 1, 30, 11,
3, and 12. The other EV directions (examined, but not
shown in the figure) generate smaller displacements. For
this cross section pair, we initially generated 2 x 300
replicas in the court consisting of two rectangular blocks
spanning complementary groups of EV directions. A
replica is generated in an n-dimensional block as f = f, +
>, w;Af;, where each w; is a random real number that is
uniformly distributed along the ith EV direction between
the two corresponding pole sets with Ay? = T2, We also
generated the replicas for three more pairs of cross sections:
Z vs W* (summed over the W boson charges); W+ vs W~;
1t vs H.

In the lower row of Figs. 6, we show the dominant EV
directions and replica samples for the 6, vs. o pair, which
was not included in the generation of replicas. However,
since this pair shares the dominant directions with
the sampled cross section pairs, we can predict the PDF
uncertainties for this pair as well.

Our cumulative set from all scans contains 2329 PDF
ensembles.” In the right column of Fig. 6, we use varied

>While we refer to the hopscotch ensembles as “replicas,” they
are not MC replicas in the sense adopted in the NNPDF
formalism. The hopscotch replicas simultaneously have very
good y?> with respect to the central data values and large
displacements for the selected cross sections. The traditional
MC replicas are obtained by randomly fluctuating the data or
PDF parameters instead of directed search, like the hopscotch
scans: the majority of them have a positive Ay? in the range of
hundreds of units [21].
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ellipses are approximate regions fitted to the Ay?> < 0 boundary points. Red ellipses correspond to the 68% probability regions from the

published NNPDF4.0 Hessian set.

colors to plot subsamples of replicas that have Ay? 4 3
around the Ay? values specified in the figure. The dis-
tribution of these replicas is consistent with that of an
apparently displaced global minimum, near which some
replicas have Ay? as low as —37 units. The lowest Ay?
corresponds to the regions populated by brown markers.

The hopscotch scan is mainly a search algorithm and, in
the current realization, does not include any convergence
criteria nor the certainty to find the true global minimum.

[These aspects can be further developed along the lines
discussed in Sec. IID.] The role of the hopscotch is to
reduce the dimensionality of the search for solutions with a
lower y? and to identify regions in the cross section space
corresponding to such solutions.

While our set of solutions is not exhaustive, it can be
used to estimate the size of the projected area for a given
value of Ay?, say Ay?> < 0. The sample’s convex hull gives
a crude boundary of this region. On the other hand, since
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replica NNPDF4.0 ensemble, whose Ay? values are typically at a few positive hundreds of units. See text and footnote 5 for more details.

Right: The distribution of 2329 hopscotch replicas.

the EV scans in Fig. 5 are strongly indicative of the
approximately Gaussian behavior of y?, it seems reasonable
to assume that the populated regions in the cross section
planes are approximately elliptical. With this information, a
highly effective approach to estimate the boundary is to fit
an ellipse to the outermost points of the replica subsample
in the cross section plot. The quadratic form describing
each ellipse can be computed algebraically using a public
Mathematica program from [66] for reconstruction of
multidimensional ellipsoids from such projections. A 2-
dimensional ellipse can be reconstructed by having as few
as 6 points on the convex hull of the sample. In our case, we
select no less than 15 outermost points per ellipse, so they
can be fitted with good certainty.

These approximate elliptical regions for Ay?> < 0 are
shown in Figs. 3 and 6 in light green. These approximate
areas covered by all hopscotch replicas with Ay?> < 0 have
been chosen to be centered on the center-of-mass of the
hulls drawn on the left-hand side (lhs) of Fig. 6, instead of
the minimum ¥ value found through our scans. Their
absolute position is hence indicative of the initial hopscotch
“court.” To each of the hopscotch replicas with Ay* < 0,
represented by triangles in the right-hand side (rhs) of
Fig. 6, one could also associate the experimental uncer-
tainty due to data resampling in the same way as the
nominal uncertainties (red ellipses) are computed.

D. The hopscotch scans find the missing good solutions

The hopscotch exercise demonstrates the degree to
which predictions for LHC cross sections depend on the

sampling procedures and priors adopted by the groups. To
the question: “Which of our generated replicas are accept-
able for predicting the LHC cross sections?,” the answer
accounting only for the likelihoods is “Apparently, all of
them that have good y~,” echoing the likelihood-ratio test
described in Sec. III A.

If we also want to explore the priors, seeking acceptable
PDF solutions becomes a notorious “needle in a high-
dimensional haystack” issue recognized in studies of
quasi-MC integration [24,42.45]. To see this, let us take a
step back and recall that each NNPDF MCreplica is specified
by a vector of a large size (of order 800 elements) containing
NN latent parameters. The closure test demonstrates that of
order 1000 MC replicas reproduce, within some accuracy,
expected uncertainties in the PDFs and predictions due to
the fluctuations of the pseudodata when training the replicas
with a fixed methodology. When predicting a vector of N
observables, predictions based on the MC replicas are
distributed relatively isotropically. This is illustrated in
Fig. 7(left) and Fig. 8, where 2-dimensional projections of
the vectors of N LHC cross sections, computed for the 100
nominal replicas (red points) and 1000 replicas (green
points), can be converted into approximately spherical
distributions by coordinate rotations and rescalings.

Hessian PDFs provide a convenient eigenvector basis
that captures PDF variations in “only” 50 dominant
dimensions around the NNPDF replica 0. Examinations
of y? along the 50 EV directions in Fig. 5 suggest that the
global y?> minimum is displaced with respect to replica 0 in
a direction that does not coincide with any EV direction.
And, if we identify a few EV directions that dominate a
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ensembles. The ellipses indicate 1o probability regions computed with each ensemble.

given cross section, we can sample these directions more
densely than allowed by the isotropic sampling based on
1000 replicas.

Figure 7 illustrates how the hopscotch scans perform
targeted sampling of the parameter space based on the
guidance from the quasi-parabolic x> distributions in
Fig. 5. For each selected pair of cross sections, the hopscotch
replicas densely populate a low-dimensional region in the
parameter space where y? decreases, while the cross sections
show high variability. In Fig. 7(left), we show predictions
with the hopscotch replicas that have —35 < Ay? < 0 with
respect to the y2 of the NNPDF4.0 central replica. The low-y?
replicas are selected out of 2329 replicas that populate lower-
dimensional hyperplanes in which y? decreases or increases
slowly as a function of the selected cross sections. These
hyperplanes and directions of the scans are identified based
on Fig. 5. In Fig. 7(right), we see the projection of the
distribution of 2329 replicas (with any y?) on the 6, vs o
plane. The replicas are denser in the regions where the
hyperplanes cross the projection plane. We remind the reader
that this set of solutions is not exhaustive.

We already noted that both the NNPDF 100-replica
ensemble and the NNPDF Hessian ensemble reproduce
well the underlying distribution of replicas in their 1000-
replica ensemble. An illustration is provided in Fig. 8,

where the LHC cross sections are predicted using the three
ensembles. Here the clouds of 100 replicas are consistent
with the density distributions of 1000 replicas. The 68%
probability regions given by the ellipses are also consistent
among the three ensembles.

The NNPDF4.0 Hessian ensemble employed for y?
scans in Fig. 5 captures overall properties of the underlying
replica distribution. Yet, the low density and distribution of
MC replicas does not capture the features of y” revealed by
the Hessian scans in Fig. 5 or predict the parametric
dependence of the replicas with the negative Ay that have
been noticed before [65].

Upon a closer examination of the hopscotch scan, its
generated alternative PDFs for Ay? < 0 appear to pass the
standard validation adopted in the CT fits. They are linear
combinations of well-behaving Hessian sets that are suffi-
ciently smooth and positive in the x region with the data
constraints. At O = 2 GeV, only a few of them are negative
in the extrapolation regions, where their behavior can be
easily adjusted without changing the agreement with the
data. We haven’t scrutinized systematically the integrability
of T3 and Ty, as done in the NNPDF4.0 fit, yet we observed
no compelling reason to discard these alternative solutions.

If the hopscotch solutions are acceptable, a natural
question to raise is why they are not covered by the
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nominal NNPDF4.0 ensemble. Since these solutions have a
good y?, the conclusion from our test is that they are
disqualified by the NNPDF prior probability. Indeed, the
preliminary studies by NNPDF indicate that some of these
replicas (possibly a few dozen out of 2329) fail NNPDF4.0
requirements for smoothness of PDF solutions [67]. If so,
the dependence on the priors would be best investigated in
collaborative, comprehensive benchmarking exercises
among the PDF-fitting groups, using agreed-upon criteria
and computational tools.

We also observe that any hopscotch solution can be
represented by a neural network in accord with the
universal approximation theorem [53-55]. The challenge
of representative sampling in a high-dimensional space
must therefore be also present in the NN approach. We
argued in Sec. III A that the use of data resampling (called
“importance sampling” by NNPDF), combined with a fixed
methodology that makes specific choices for the NN
architecture, the cost function, stopping and smoothness
conditions [34,68], does not address samplings over meth-
odology-related settings at the various levels of the global
analysis. In the NNPDF4.0 analysis and closure test, the
hyperparameters of the methodology were optimized
according to a convention, not sampled in the optimum’s
vicinity. Variations in training methodology are a part of the
full uncertainty, together with the theoretical uncertainty
and another insufficiently understood source of uncertainty
due to the prescription for experimental systematic errors.
We have emphasized that the distribution of replicas with
good x> depends on the y? definition. This dependence
cannot be neglected at the contemporary accuracy level.

E. A case study: Quark sea flavor composition
and small-x gluon

Implications of the hopscotch PDF solutions for uncer-
tainties on various QCD observables are of significant
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practical interest. The y? scans along the NNPDF4.0
Hessian EV directions in Fig. 5 indicate that, for each
EV direction, there is a displaced PDF set that has exactly
the same y? as the NNPDF central replica 0. Just account-
ing for these alternative sets can enlarge the nominal PDF
uncertainty. On the companion website [69], we provide
the LHAPDF grids for two 50-member ensembles of the
alternative sets with Ay?> = 0 for the two y? definitions, as
well as figures comparing these PDFs with the nominal
NNPDF4.0 NNLO uncertainty bands.

For example, variations along Hessian EV directions
25 and 33 influence strongly the flavor composition of
sea quarks and antiquarks at x > 0.2, where the relevant
experimental constraints remain very weak. Figure 9
presents two illustrations. The left panel shows the
nominal NNPDF4.0 uncertainty at the 68% probability
for the strange-antistrange asymmetry, Ay (x,Q)=
(s(x, Q) =5(x,Q))/(s(x, Q) +5(x,0Q)) at Q = 1.7 GeV.
In the recent NNLO fits that allow strange quark and
antiquark PDFs to differ, the CT18As [70,71], MSHT’20,
and NNPDF4.0 analyses all prefer a very large positive
Age(x, Q) at x > 0.3, which can even exceed 100% by
allowing the 5 PDF to go negative [Sec. 4.5 in [15] ]. Such
behavior may reflect some tensions between the experi-
ments. Among these fits, the positive Ay (x,Q) in
NNPDF4.0 may be taken to be most significant at
x=0.2, given the smallest nominal uncertainty.
However, the alternative EV set 33 for A)(,ZO =0 in the
left panel is consistent with a negative A, (x, Q). From the
plot of parabolas for EV direction 33 in Fig. 5, we see that
even deeper negative variations of Ay, (x, Q) are allowed if
;(gxp is used, or if simultaneous variations along EV
direction 33 and other EV directions are considered.
[Note that the EV directions specified by the NNPDF4.0
Hessian set do not change among the y? definitions.]

xc (x,Q) at Q=1.7 GeV (sym. err)

NNPDF4.0 NNLO 68% (solid), alt. (Ax?)©=0 (dashed)
0020————
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00091 L

FIG. 9. Solid bands indicate the nominal 68% NNPDF4.0 uncertainties for strangeness asymmetry (left) and charm PDF (right) at
Q = 1.7 GeV. The alternative EV sets with A;(,ZO = 0 are plotted as dashed lines.
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The right panel of Fig. 9 shows the counterpart plot for
charm PDF c¢(x, Q) at Q = 1.7 GeV. The nominal error
band may suggest a significant nominal enhancement of the
charm PDF at x = 0.2-0.3, approximately in the same x
range where a large Ay, (x, Q) appears in the left panel. The
hopscotch analysis shows that the uncertainty on charm
PDF is increased by considering the y? variations along the
EV directions revealed in Fig. 5. Most notably, the second
A)(%O = 0 set for EV direction 25 results in the very small
charm at x > 0.3 at Q = 1.7 GeV. When evolved down to
0 < m. = 1.51 GeV, this EV set will result in a vanishing
fitted charm at a low scale. After this set is included in the
PDF uncertainty, the NNPDF fit does not statistically prefer
a nonzero fitted charm at the initial scale, as would be
concluded based on the nominal le uncertainty [30].
Including variations along the other EV directions, e.g.,
33 that favors a smaller (larger) charm PDF at x = 0.05-0.1
(x> 0.4), as well as uncertainties in the model for
systematic errors, further washes out the preference for
the nonzero fitted charm at large x and low Q. Indeed, the
recent CT18 FC analysis conveys that there is no evidence
for intrinsic charm so far [31].

Similar examinations for other PDF flavors and flavor
combinations (collected on the companion website [69])
indicate that the alternative Ay> = 0 solutions expand the
uncertainty on the gluon PDF at low x and on the 7’5 and Tg
combinations of quark and antiquark flavors. One of the
unexpected findings of the NNPDF4.0 future test was that
the fit without including the HERA DIS data preferred the
general growth of the gluon PDF at O = 1.65 GeV and
x < 1073, where no constraints were available. See Fig. 29
for xg(x, Q) at Q = 1.65 GeV in [8], where the solid green
band for NNPDF4.0 without the HERA data does not cover
the blue and red bands that include these data. A similar,
also less pronounced trend is also seen with the NNPDF3.1
methodology in their Fig. 28. Historically, the solutions
with the growing, flat, or even decreasing gluon at x <
1072 were allowed in the CTEQ fits in the early 1990s,
before the advent of the HERA data. Indeed, no exper-
imental constraints existed in the pre-HERA data in this
region, similarly to the current situation with the nuclear
PDFs that have an essentially unconstrained gluon at x <
1072 and may be affected by strong nuclear shadowing.
See, for example, Fig. 6 in the 1995 ZEUS publication [72],
in which the pre-HERA data at W? < 500 GeV? and Q° >
4.5 GeV? do not favor any particular trend of the y*p total
cross section at W? > 500 GeV?, and hence they do not
constrain the gluon PDF at x = 0?/(W? + Q?) £ 0.01 via
scaling violations. Therefore, it is surprising that the
NNPDF4.0 pre-HERA future test disfavors the post-
HERA small-x gluon behavior.

The Ay? = 0 variations with the alternative EV sets 1, 2,
and 4 expand the nominal uncertainty in xg(x, Q) of the full
NNPDF4.0 set, especially in the downward direction at

x < 1072. They modify the NNPDF pre-HERA future tests,
too. In the same vein, considering the hopscotch solutions
indicates larger uncertainties on the flavor combinations
Ty=u+i—d—d and Tg=u+ia+d+d—2s—25
than seen in Fig. 49 of Ref. [8]. We note that the hopscotch
replicas agree with the sum rules and integrability, espe-
cially as the PDF behaviors at x — 0 (outside of the data
region) can always be adjusted to obtain convergent first
moments.

IV. CONCLUSIONS

PDF uncertainties in high-stake measurements (Higgs
cross sections, W boson mass...) should be examined for
robustness of results to sampling of available experimental
datasets and PDF parametrizations. Likewise, tests of
manifestations of nonperturbative QCD, such as the
asymptotic large-x behavior of intrinsic charm, depend
on interpretations of PDF uncertainties [30,31,73].
Sampling biases may arise in PDF fits operating with
large populations of possible solutions. Increasing the
volumes of the fitted data and parametric space may
increase, not reduce, the sample expectation deviation.
An undetected deviation may result in a wrong prediction
with a low nominal uncertainty. Sampling biases may limit
reduction of the PDF uncertainties and explain some
differences between the PDF sets.

For these reasons, global fits are potentially vulnerable to
unrepresentative sampling when their overall scope
(including the number of PDF parameters, size of datasets,
range of possible assumptions) grows. As a way to mitigate
the risk of underestimation in specific applications, stat-
istical literature suggests to swap democratic sampling in
all dimensions for preferential sampling in fewer dimen-
sions that are most relevant to the task at hand.

In the Monte-Carlo (MC) replica method, constructing
the Hessian eigenvector (EV) sets from the MC PDF set
introduces a convenient coordinate system for such dimen-
sionality reduction. Taking the W boson mass measure-
ments as an example, we could identify the few Hessian
sets that give the largest contribution to the My, PDF error.
It is then more effective to sample these EV directions with
a higher density of replicas to look for acceptable PDFs that
may be outside of the nominal MC uncertainty. We
presented a technique of hopscotch scans to perform such
estimation.

With this technique that does not require PDF refitting,
we have demonstrated that the NNPDF4.0 fitting code
allows alternative solutions of their global fit that predict
the LHC cross sections outside of the nominal NNPDF4.0
uncertainties, while having the same total y?> as the
NNPDF4.0 central replica and satisfying typical validation
criteria adopted in the CT fit. Literature on ML and
analyses of high dimensionality suggests that those sol-
utions may exist and are not necessarily ruled out on the
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basis of a low prior probability. Instead, for those solutions
that display an acceptable value of the likelihood, repre-
sentative sampling over methodological settings will
contribute to the confounding correlation. A related obser-
vation is that the dependence of the distribution of
acceptable predictions on the prescription for implementa-
tion of experimental systematic errors cannot be neglected
at the targeted level of accuracy [Sec. 5.1 in [14]].

In the other two examples presented in Fig. 9, we show
that including the low-y? solutions from the hopscotch
scans relaxes the NNPDF4.0 uncertainty on the flavor
composition of sea quarks and antiquarks at x > 0.2
and Q <2 GeV. As a result, both a negative strange-
antistrange asymmetry and a zero fitted (intrinsic) charm
PDF are statistically allowed at the Q scale of order
1.5 GeV.

In either the MC or Hessian methods, a comprehensive
range of fits must be explored to understand variations due
to the functional forms and other choices. This viewpoint
is taken in the CTEQ-TEA family of analyses, in which
the tolerance on the fixed PDF functional form of the
published set is selected so as to cover candidate best-fit
PDFs found with the alternative choices. In other words,
one must pay attention both to the quality of accepted fits
and their representative sampling. For example, when
some experiments disagree, it should be either understood
that fitting all experiments at once will either fail the
strong goodness-of-fit test [16] or, if such a fit is
nevertheless accepted, the tolerance may need to be
increased, as the experimental tensions suggest a larger
uncertainty on the full population.

Instead of considering a large population of N, accept-
able solutions, for specific predictions, the trio identity
equation (3) can help to design a procedure that produces
unbiased and reliable estimates using a sample of a smaller
size Ny < N,,. The overall spirit of this approach is similar
to dataset diagonalization [46] and replica unweighting
[51,74]. The R mechanism realises a generalization of such
techniques and can select fits based on the value of y? or
other figures of merits.

We make LHAPDFG6 grids of the alternative PDF
replicas available for the future analyses [69].
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APPENDIX: COMPUTATION OF HADRONIC
CROSS SECTIONS

In this section, we summarize settings of the computa-
tions of LHC cross sections shown in the main part of the
article. The cross sections are computed at NNLO in the
QCD coupling strength without cuts, unless specified
otherwise.

Drell-Yan W=/ Z production. For W* /Z boson produc-
tion at the Tevatron 1.96 TeV, we impose the CDF fiducial
cuts [28],

W*: 30 < p5* < 55 GeV, el < 1,
ur <15 GeV, 60 < my < 100 GeV; (A1)
Z: 30 < p% < 55 GeV, Ins| < 1,
ur <15 GeV, 66 <m,, < 116 GeV, (A2)
where
- —u(? v - =47
up =Py + 5770 mp = \/2(17?1% - Pr-Pr)-
(A3)

For W/Z boson production at the LHC, we adopt the
ATLAS 13 TeV fiducial cuts [75],

Wt pz;,v > 25 GeV, Ins| < 2.5, my > 50 GeV;
(A4)

Z: pr>25GeV, || <25,
66 < m,z; < 116 GeV. (AS5)

The theoretical calculation is performed with a fast compu-
tation table APPLgrid [76] at NLO, combined with NNLO/
NLO point-by-point K-factors calculated with MCFM
[77,78]. The renormalization and factorization scales are
set equal to the invariant mass of the lepton pair, m, or m,,.

Top-quark pair production. Top-quark pair production is
measured by both ATLAS and CMS groups at 13 TeV
[79,80] and presented in the form of total cross sections.
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Here we take the public code top++ [81] to compute these
cross sections at NNLO, with the threshold logarithms of
soft gluons resummed up to the NNLL level. The factori-
zation and renormalization scales are set to the top-quark
mass m,.

Higgs production. The calculation is done with GGHIGGS
[82] using the factorization and renormalization scales
equal to my.

Associated production of Higgs bosons and top-quark
pairs. Recently a part of the NNLO calculation for H
production came out [83], while no public code has been
released yet. Instead, we make predictions using
MADGRAPH_AMC@NLO [84] interfaced with PINEAPPL
[85] at NLO, and using NNLO PDFs. The renormalization
and factorization scales are set to be equal to the partonic

collision energy /3.
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