
Evaluation of multiloop multiscale Feynman integrals for precision physics

Ievgen Dubovyk,
1
Ayres Freitas,

2
Janusz Gluza ,

1
Krzysztof Grzanka ,

1
Martijn Hidding ,

3
and Johann Usovitsch

4

1
Institute of Physics, University of Silesia, Katowice, Poland

2
Pittsburgh Particle physics, Astrophysics and Cosmology Center (PITT PACC),

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
3
Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden

4
Theoretical Physics Department, CERN, 1211 Geneva, Switzerland

(Received 23 December 2021; accepted 10 October 2022; published 26 December 2022)

Modern particle physics is increasingly becoming a precision science that relies on advanced theoretical

predictions for the analysis and interpretation of experimental results. The planned physics program at the

LHC and future colliders will require three-loop electroweak and mixed electroweak-QCD corrections to

single-particle production and decay processes and two-loop electroweak corrections to pair-production

processes. This article presents a new seminumerical approach to multiloop multiscale Feynman integrals

calculations which will be able to fill the gap between rigid experimental demands and theory. The

approach is based on differential equations with boundary terms specified at Euclidean kinematic points.

These Euclidean boundary terms can be computed numerically with high accuracy using sector

decomposition or other numerical methods. They are then mapped to the physical kinematic configuration

by repeatedly solving the differential equation system in terms of series solutions. An automatic and

general method is proposed for constructing a basis of master integrals such that the differential equations

are finite. The approach also provides a prescription for the analytic continuation across physical

thresholds. Our implementation is able to deliver 8 or more digits of precision, and has a built-in

mechanism for checking the accuracy of the obtained results. Its efficacy is illustrated with state-of-the-art

examples for three-loop self-energy and vertex integrals and two-loop box integrals.

DOI: 10.1103/PhysRevD.106.L111301

I. INTRODUCTION

With the discovery of the Higgs boson at the Large

Hadron Collider (LHC), all building blocks of the Standard

Model (SM) have been experimentally confirmed, with

the only exception of the Higgs self-coupling, which still

awaits direct measurement. However, the SM does not

account for important phenomena such as dark matter and

the matter-antimatter asymmetry, so that physics beyond

the SM is needed. It is reasonable to expect that this new

physics couples to the electroweak and/or Higgs sector of

the SM, since there are important model-building con-

straints for couplings to the strong force [1].

Therefore, possible evidence for such new physics can

be explored in precision studies of electroweak and Higgs

physics at the high-luminosity run of the LHC (HL-LHC)

or one of several proposed future eþe− colliders: FCC-ee

[2], CEPC [3], ILC [4,5], CLIC [6,7]. Through their high

integrated luminosities of several ab−1, these machines will

be sensitive to very small deviations between the measured

value and the SM expectation for a given observable. Thus

they can probe extremely feebly coupled new particles or

very large new physics scales of tens of TeV.

The SM predictions for these precision analyses are

obtained by computing higher-order quantum corrections.

At the HL-LHC, some of the most interesting precision

studies are Higgs boson production and lepton pair

(Drell-Yan) production. For the former, one of the largest

sources of theoretical uncertainty stems from mixed QCD-

electroweak corrections [8,9]. While some partial results at

this order have been computed [10–14], contributions from

electroweak diagrams with internal top quarks, both for

3-loop Higgs production and 2-loop Higgsþ jet produc-

tion, are still needed to complete this missing piece. For

Drell-Yan production, 2-loop electroweak corrections for

the full process pp → l
þ
l
−, not just on the Z-boson

resonance, are important since LHC measurements cover a

broad range of invariant mass [15,16].

Similarly, electroweak 2-loop corrections for several differ-

ent pair-production processes will be essential for the physics

goals of future eþe− colliders [17]: eþe− → WþW−,

eþe− → ZH, and eþe− → ff̄. Measurements of these cross
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sections will allow us to determine the W-boson mass

with high precision, constrain anomalous couplings

between gauge bosons and/or the Higgs boson, and

probe heavy neutral vector bosons (Z0 bosons).

Currently, some results for mixed QCD-electroweak

2-loop corrections are available [18–21], but so far no

complete electroweak 2-loop calculation for any pair-

production process has been carried out. Even higher-

order corrections will be needed for studies of Z-boson
production and decay at these future eþe− colliders, as

well as the indirect prediction of the W-boson mass from

the Fermi constant. To match the expected experimental

precision, 3-loop and partial 4-loop self-energy and

vertex corrections will be required [17,22], which is

one order of perturbation theory beyond the current state

of the art [23].

It should be emphasized that these are loop corrections

in the full SM, involving many massive particles inside

the loops. The currently most advanced techniques

for analytically computing such multiloop Feynman

integrals first reduce them to a small set of master

integrals, which then are solved by constructing suitable

differential equations (DEs); see Ref. [24] for a recent

review. Both of these steps require integration-by-parts

(IBP) equation systems [25,26] that become computa-

tionally difficult for multiloop integrals with many

masses. Instead, one must resort to numerical integration

techniques.

The recent calculation of full 2-loop corrections to Z-

boson production and decay [23,27,28] made use of

numerical evaluations based on sector decomposition

(SD) [29–33] and Mellin-Barnes (MB) representations

[27,34–38]. However, these methods require large

amounts of computing resources and do not always

converge to the required level of accuracy, so that a

straightforward extension to more loops and/or legs is not

possible. Based on previous experience [28], we expect up

to 5 digits precision loss due to numerical cancellations

between individual loop integrals, so that at least 8 digits

of precision are required in many cases for practical

applications.

This article introduces an efficient but still very general

approach that can be applied to many challenging 2- and

3-loop problems with multiple mass and momentum scales

[39]. The key elements are a system of DEs, with boundary

terms evaluated at one or more Euclidean (spacelike)

kinematic points (which can be reliably determined to

high precision with numerical methods). The DEs are then

solved, using series expansions, to obtain the final result at

the physical Minkowski (timelike) kinematic point. This

approach, which is already fully automated in its main

parts, will be described in more detail in the next section.

In Sec. III we will apply this technique to examples of

SM self-energy and vertex Feynman integrals that occur in

three-loop Z-decay corrections. The chosen examples are

very difficult to evaluate with other analytical or numerical

methods. A summary and outlook are given in the final

section. Additional examples and implementation details

can be found in the Supplemental Material [40].

II. DESCRIPTION OF THE METHOD

Solving Feynman integrals from DEs is an approach

initiated in the last decade of the last century [41–44].

Many families of Feynman integrals admit a choice of

master integrals for which the system of DEs has a

particularly simple “canonical” form [45], which in many

cases can be straightforwardly solved in terms of multiple

polylogarithms.

More generally, not all Feynman integrals are of poly-

logarithmic type, and it can become increasingly difficult to

find a closed set of analytic functions in terms of which the

DEs can be solved. In such cases, one interesting approach,

which allows to tackle a wider class of problems, evaluates

a set of master integrals by numerically solving a DE

system, either in terms of kinematic parameters [46–48] or

in terms of an auxiliary mass flow variable [49–51]. In this

work, we use the approach of iterated series expansions

[52,53], and extend it to make it fully automated. For this

purpose, we use the program DiffExp [54], which needs

as an input a basis of master integrals resulting in a finite

system of differential equations. While in several cases a

basis was found where the strategy works [55–59], in the

present work we construct such a basis in an automatic way.

The implementation details of this strategy are presented in

the Supplemental Material [40]. When crossing a physical

threshold with DiffExp, we have to be consistent with

the Feynman iδ prescription. In practice, we consider all

unitarity cuts across a diagram topology [60], and for each

cut we obtain a linear polynomial of the form s −M2,

where s is the square of the momentum flowing across the

cut, andM2 is the square of the sum of the masses of the cut

propagators. Each polynomial is assigned a þiδ prescrip-

tion and given to DiffExp, which allows for the auto-

mated crossing of the unitarity cut. We do not search for

anomalous thresholds [61,62], which cannot be found by

unitarity cuts. This was sufficient for our applications as we

did not observe such thresholds during the transport from

the Euclidean to the physical region. In general, DiffExp

will give an error if a singularity is encountered for which

a delta prescription is not provided. This way, we manage

to fully automate the question of crossing thresholds. In

previous studies, it was not discussed how to perform the

basis choice and threshold crossing in an automated

fashion.

Let us give a brief overview of the method. Consider

a basis of master integrals (MIs), F⃗ðx; ϵÞ, depending on a

single scale x. We work in dimensional regularization, with

D ¼ 4 − 2ϵ space-time dimensions. We may then derive

DEs of the form
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d

dx
F⃗ðx; ϵÞ ¼ M̂ðx; ϵÞF⃗ðx; ϵÞ; ð1Þ

where M̂ðx; ϵÞ is a block-triangular matrix. Each block is

associated with a sector of integrals. If we denote such a

sector by f⃗iðx; ϵÞ, we can decompose the DEs in the form

d

dx
f⃗iðx; ϵÞ ¼ Miðx; ϵÞf⃗iðx; ϵÞ þ Biðx; ϵÞg⃗iðx; ϵÞ; ð2Þ

where Miðx; ϵÞ denotes the diagonal block of M̂ðx; ϵÞ
corresponding to the sector i, and Biðx; ϵÞg⃗iðx; ϵÞ captures
the off-diagonal terms. One can then expand the integrals

and matrices in ϵ:

f⃗iðx; ϵÞ ¼
X

∞

j¼−k

f⃗
ðjÞ
i ðx; ϵÞϵj;

Miðx; ϵÞ ¼
X

∞

j¼0

M
ðjÞ
i ðx; ϵÞϵj; ð3Þ

and solve the system order by order in ϵ. For a given basis,

the condition that Miðx; ϵÞ is finite in ϵ is not always

manifest. It is not trivial to find such a finite form, but an

algorithmic procedure is provided in the Supplemental

Material [40]. For further ideas and software to help

facilitate the choice of MIs, see Refs. [63–70].

The DEs system in Eq. (2) fixes the master integrals up to

some boundary conditions. It turns out that in the case of

our automated DEs approach, a convenient choice for the

boundary terms are MIs which are finite in the dimensional

regulator ϵ. We use the package Reduze [71–74] to

identify these MIs. They can be evaluated efficiently for

Euclidean kinematics using the method of SD, since only a

small number of sectors is needed for finite integrals and no

contour deformation is required to avoid Minkowskian

thresholds. We employ the package pySecDec [30,31] for

this purpose. The derivation of a DEs system is done with

the help of the IBP reduction program Kira [75–78]. With

the boundary terms fixed numerically and the DEs system

derived analytically, we transport the Euclidean point to the

Minkowski point with the aid of the method of series

expansions of the DEs system [46,52,53,79] as imple-

mented in DiffExp [54].

As demonstrated in the Supplemental Material [40], see

therein e.g. in Fig. 4, we may choose different Euclidean

points to fix the boundary terms numerically. This allows

us to obtain a numerical error estimate of our automated

method by taking the difference of two generated results for

the same final Minkowski point. A more detailed discus-

sion of the error estimate is provided in the Supplemental

Material [40].

Typically, the transport from the Euclidean boundary

point to the physical Minkowski kinematics requires several

steps since the convergence radius of the series expansion at

the boundary point is not large enough to reach the target

point. The program DiffExp automatically determines

the convergence radius and the number of required transport

steps.

In general, the complexity of the multiloop computation

increases with the number of loops and independent scales

and the number of MIs involved. In our automated approach,

the largest investment of computing resources is required for

the IBP reduction with Kira and the numerical evaluation

of the boundary terms with pySecDec. However, the

former needs to be done only once for a given Feynman

integral family, and the latter only once for a given choice of

mass-parameter values. Our strategy for the transport to the

Minkowski region with DiffExp automatically deals with

thresholds, and it is very fast, so that one can easily evaluate

results for multiple different kinematic points, as needed e.g.

for phase-space integrations. Quantitative information on the

run time for our approach is given in the Supplemental

Material [40]. There the reader can also find a description for

how our method can be extended to problems with multiple

timelike momentum scales.

III. RESULTS AND DISCUSSION

To demonstrate the power and broad applicability of our

method, in the following and in the Supplemental Material

[40], we present examples for 3-loop self-energy and vertex

integrals and 2-loop box integrals. As discussed in the

Introduction, these are all examples of key theory ingre-

dients for the physics program of future eþe− colliders

and/or the HL-LHC. The 3-loop integrals are needed for

currently unknown third-order corrections to electroweak

precision observables connected with Z-boson production

and decay, whereas two-loop box integrals are important to

improve the precision of several 2 → 2 processes, such as

WþW−, ZH or ff̄ production [82].

The technique described in this article allows one to

compute the desired integrals to, in principle, arbitrary order

in the dimension regularization parameter ϵ ¼ ð4 −DÞ=2
with multidigit precision. To achieve a certain order ϵk, some

boundary terms need to be evaluated to higher orders k0 > k
in ϵ. The required order k0 is determined automatically from

the IBP relations. For the examples shown below, some

simple boundary-term integrals have to be computed to

Oðϵ7Þ, whereas no more than Oðϵ3Þ is needed for more

complicated boundary terms. When evaluating the boundary

terms with SD as implemented in pySecDec, the comput-

ing time grows approximately linear with the order in ϵ.

All of the following numerical examples are based on the

input parameters given in the Supplemental Material [40].

A. Example 1

As part of the 3-loopOðα2αsÞ corrections to electroweak
precision observables, one encounters the following scalar

nonplanar self-energy integral with eight propagators and
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only one massive W- or Z-boson internal line [85] (see

Fig. 1, left):

IlhNp1½D; faig; p2;M2
a�

¼
Z

Dq1Dq2Dq3

½ðq1 − q2Þ2�a1 ½q22�a2

×
1

½ðq1 − q3Þ2�a3 ½ðq2 − q3Þ2 −M2
a�a4 ½q23�a5

×
½q2

1
�−a9

½ðq1 þ pÞ2�a6 ½ðq1 − q2 þ pÞ2�a7 ½ðq3 þ pÞ2�a8 ; ð4Þ

where Dqn ≡
dDqn
iπD=2 and a ¼ W, Z. This example, for the

parameter point p2 ¼ M2

Z andMa ¼ MZ belongs to a group

of integrals which are difficult to evaluate with SD due to

threshold effects. Using pySecDec with 107 integration

points we obtain a result with less than two digits precision:

IpySecDeclhNp1 ½4 − 2ϵ; 1; 1; 1; 1; 1; 1; 1; 1; 0;M2

Z;M
2

Z�
¼ 0.460 − 19.164i� ð0.298þ 0.281iÞ: ð5Þ

Increasing the number of integration points does not improve

the accuracy substantially. On the other hand, pySecDec

can deliver accurate results for Euclidean parameter points,

p2 < 0, which are used as boundary terms for our automated

DEs transport. We thus obtain stable and precise results at

the physical point:

IlhNp1½4 − 2ϵ; 1; 1; 1; 1; 1; 1; 1; 1; 0;M2
Z;M

2
Z�

¼ −0.000000000 − 19.1262302i

þ ð151.51529 − 150.40641iÞϵþOðϵ2Þ; ð6Þ

IlhNp1½4 − 2ϵ; 1; 1; 1; 1; 1; 1; 1; 1; 0;M2
Z;M

2
W�

¼ ð5.1112260 − 18.5692007iÞ
þ ð194.660753 − 78.842016iÞϵþOðϵ2Þ: ð7Þ

Here and in all the following results, we show all significant

digits, i.e. the numerical error only affects digits beyond the

ones shown in the equations. The error estimation will be

described in more detail in the Supplemental Material [40].

The integral family IlhNp1 (4) involves 30 master integrals

and is considered simple in the context of our method.

B. Example 2

The next example is a family of 3-loop vertex integrals

with one massive top quark and two massive W-boson

propagators [see Fig. 1 (right)], defined as

IvtwPl½D; faig; p2;M2

W; m
2
t �

¼
Z

Dq1Dq2Dq3

½q2
3
−M2

W�a1 ½q22�a2

×
1

½q2
1
�a3 ½ðq1 − pÞ2�a4 ½ðq2 − pÞ2�a5 ½ðq3 − pÞ2 −M2

W�a6

×
½ðq1 − q3Þ2�−a10 ½ðq1 − p2Þ2�−a11 ½ðq2 − p2Þ2�−a12
½ðq3 − p1Þ2�a7 ½ðq2 − q3Þ2 −m2

t �a8 ½ðq1 − q2Þ2�a9
; ð8Þ

where p ¼ p1 þ p2 and p
2

1
¼ p2

2
¼ 0. These integrals also

appear in so far unknown Oðα2αsÞ corrections to Z-pole
electroweak precision observables, constituting their most

difficult parts.

With pySecDec we are unable to obtain a numerical

result for the Minkowski point p2 ¼ M2

Z. The problem

already starts with the contour deformation which is

necessary for SD with Minkowski kinematics and which

fails to complete in a reasonable time. Similar to the SD

method, the MB technique fails to deliver high-accuracy

results for the considered integrals for p2 ¼ M2

Z.

Using our automated DEs transport method, the calcu-

lation requires the numerical evaluation of 77 master

integrals with Euclidean kinematics, p2 < 0, for the boun-

dary terms. For the purpose of the present example, they

have been evaluated with pySecDec to 10-digit accuracy.

After the transport to the physical point p2 ¼ M2

Z, we get at

least 8 significant digits for integrals of the family (8) up to

tensor rank-3 (i.e : − 3 ≤ a10 þ a11 þ a12 ≤ 0). We here

give numerical result for one rank-3 case:

IvtwPl½1; 1; 1; 1; 1; 1; 1; 1; 1;−1;−1;−1;M2

Z;M
2

W;M
2
t �

¼ 0.0833333333=ϵ3 þ 0.636273147=ϵ2

þ ð0.63462699þ 0.77044487iÞ=ϵ
þ ð5.5847828þ 6.1606031iÞ þOðϵÞ: ð9Þ

Additional examples, a 3-loop self-energy diagram with

many massive propagators, and a two-loop box diagram

with four scales, are discussed in the Supplemental

Material [40].

FIG. 1. Three-loop self-energy nonplanar and planar vertex

diagrams which correspond to integrals in (4) and (8), respec-

tively. W, Z and t stand for the W boson, Z boson and top quark,

respectively.
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IV. SUMMARY AND OUTLOOK

In this work, we have proposed an efficient and versatile
approach for the evaluation of a wide class of massive
multiloop, multiscale Feynman integrals numerically, with
typically 8 or more digits precision. It is based on the
method of DEs with boundary terms specified for
Euclidean kinematics, which are transported to the physical
Minkowski kinematics using series solutions of the DEs.
The Euclidean boundary-term integrals avoid all threshold
singularities and thus can be straightforwardly evaluated
numerically. Our implementation combines the public
programs Kira, Reduze, pySecDec and DiffExp

in a way that allows us to automatically construct the
required integral families and the transport from the
Euclidean boundary point to the physical kinematic point,
including the analytical continuation across thresholds.
In principle, the technique can be extended to higher

numerical accuracy and to wider classes of integrals with
more loops and more external legs. A major bottleneck are
the IBP reductions that are needed to construct the DEs
system. A significant speed-up of this step is achieved
when using numerical values for the relevant mass and
kinematic parameters. In addition, the evaluation of the
boundary terms for Euclidean kinematics can be time-
consuming if a high level of precision is required.
Fortunately, there are ongoing improvements to the SD

and MB methods; see e.g. Refs. [31,86,87]. In this respect,

also new public packages based exclusively on DEs can be

directly applied [88,89].

It is worth mentioning that the 3-loop examples

presented in this article are very difficult to solve with

existing analytical techniques (e.g. using IBP and DEs)

and general numerical methods (such as SD or MB

methods). The proposed new technique is sufficiently

general to provide the foundation for the computation of

the required 3-loop corrections needed for electroweak

and Higgs precision studies at the HL-LHC and future

eþe− colliders, which are key elements of the physics

program of these machines [9,22]. Other applications

include flavor physics at Belle-II and low-energy preci-

sion tests of the Standard Model.

ACKNOWLEDGMENTS

This work has been supported in part by the Polish

National Science Center (NCN) under Grant No. 2017/25/

B/ST2/01987, the Research Excellence Initiative of the

University of Silesia in Katowice, the U.S. National

Science Foundation under Grants No. PHY-1820760 and

No. PHY-2112829. M. H. is supported by the European

Research Council under Grant No. ERC-STG-804286

UNISCAMP.

[1] A new physics particle with renormalizable QCD couplings

but no weak or Higgs interactions would be stable and thus

cosmologically excluded.

[2] A. Abada et al., FCC-ee: The lepton collider: Future circular

collider conceptual design report volume 2, Eur. Phys. J.

Special Topics 228, 261 (2019).

[3] J. Guimarães da Costa, Y. Gao, S. Jin, J. Qian, C. Tully,

C. Young, L. Wang, M. Ruan, H. Zhu, Q. Ouyang et al.

(CEPC Study Group), CEPC conceptual design report:

Volume 2—physics & detector, arXiv:1811.10545.

[4] H. Baer, T. Barklow, K. Fujii, Y. Gao, A. Hoang, S.

Kanemura, J. List, H. E. Logan, A. Nomerotski, M.

Perelstein et al., The international linear collider technical

design report—volume 2: Physics, arXiv:1306.6352.

[5] P. Bambade et al., The international linear collider: A global

project, arXiv:1903.01629.

[6] L. Linssen, A. Miyamoto, M. Stanitzki, and H. Weerts,

Physics and detectors at CLIC: CLIC conceptual design

report, 2012, 10.5170/CERN-2012-003.

[7] T. Charles et al., The compact linear collider (CLIC)—2018

summary report 2=2018, Report No. CERN-2018-005-M,

2018, 10.23731/CYRM-2018-002.

[8] C. Anastasiou, R. Boughezal, and F. Petriello, Mixed QCD-

electroweak corrections to Higgs boson production in gluon

fusion, J. High Energy Phys. 04 (2009) 003.

[9] C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann,

F. Herzog, A. Lazopoulos, and B. Mistlberger, High

precision determination of the gluon fusion Higgs boson

cross-section at the LHC, J. High Energy Phys. 05 (2016)

058.

[10] M. Bonetti, K. Melnikov, and L. Tancredi, Three-

loop mixed QCD-electroweak corrections to

Higgs boson gluon fusion, Phys. Rev. D 97, 034004

(2018).

[11] C. Anastasiou, V. del Duca, E. Furlan, B. Mistlberger, F.

Moriello, A. Schweitzer, and C. Specchia, Mixed QCD-

electroweak corrections to Higgs production via gluon

fusion in the small mass approximation, J. High Energy

Phys. 03 (2019) 162.

[12] M. Bonetti, E. Panzer, V. A. Smirnov, and L. Tancredi, Two-

loop mixed QCD-EW corrections to gg → Hg, J. High

Energy Phys. 11 (2020) 045.

[13] M. Becchetti, R. Bonciani, V. Del Duca, V. Hirschi, F.

Moriello, and A. Schweitzer, Next-to-leading order cor-

rections to light-quark mixed QCD-EW contributions to

Higgs boson production, Phys. Rev. D 103, 054037

(2021).

[14] M. Becchetti, F. Moriello, and A. Schweitzer, Two-loop

amplitude for mixed QCD-EW corrections to gg → Hg,

J. High Energy Phys. 04 (2022) 139.

EVALUATION OF MULTILOOP MULTISCALE FEYNMAN … PHYS. REV. D 106, L111301 (2022)

L111301-5



[15] ATLAS Collaboration, Measurement of the effective

leptonic weak mixing angle using electron and muon pairs

from Z-boson decay in the ATLAS experiment at
ffiffiffi

s
p ¼ 8 TeV, ATLAS-CONF-2018-037, 2018, http://cds

.cern.ch/record/2630340.

[16] A.M. Sirunyan et al., Measurement of the weak mixing angle

using the forward-backward asymmetry of Drell-Yan events

in pp collisions at 8 TeV, Eur. Phys. J. C 78, 701 (2018).

[17] A. Freitas et al., Theoretical uncertainties for electroweak

and Higgs-boson precision measurements at FCC-ee,

arXiv:1906.05379.

[18] Y. Gong, Z. Li, X. Xu, L. L. Yang, and X. Zhao, Mixed

QCD-EW corrections for Higgs boson production at eþe−

colliders, Phys. Rev. D 95, 093003 (2017).

[19] Q.-F. Sun, F. Feng, Y. Jia, and W.-L. Sang, Mixed

electroweak-QCD corrections to eþ e− → HZ at Higgs

factories, Phys. Rev. D 96, 051301 (2017).

[20] M. Heller, A. von Manteuffel, R. M. Schabinger, and H.

Spiesberger, Mixed EW-QCD two-loop amplitudes for

qq̄ → l
þ
l
− and γ5 scheme independence of multi-loop

corrections, J. High Energy Phys. 05 (2021) 213.

[21] R. Bonciani, L. Buonocore, M. Grazzini, S. Kallweit,

N. Rana, F. Tramontano, and A. Vicini, Mixed Strong-

Electroweak Corrections to the Drell-Yan Process, Phys.

Rev. Lett. 128, 012002 (2022).

[22] A. Blondel et al., Standard model theory for the FCC-ee

Tera-Z stage, Vol. 3/2019 of CERN Yellow Reports:

Monographs, CERN, Geneva, Report Nos. CERN-2019-

003, BU-HEPP-18-04, CERN-TH-2018-145, IFJ-PAN-IV-

2018-09, KW 18-003, MITP/18-052, MPP-2018-143, SI-

HEP-2018-21, 2018, 10.23731/CYRM-2019-003.

[23] I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, and J.

Usovitsch, Electroweak pseudo-observables and Z-boson

form factors at two-loop accuracy, J. High Energy Phys. 08

(2019) 113.

[24] A. V. Kotikov, Differential equations and Feynman inte-

grals, in Antidifferentiation and the Calculation of Feynman

Amplitudes (Springer, 2021), 10.1007/978-3-030-80219-

6_10.

[25] K. Chetyrkin and F. Tkachov, Integration by parts: The

algorithm to calculate β functions in 4 loops, Nucl. Phys.

B192, 159 (1981).

[26] S. Laporta, High precision calculation of multiloop Feyn-

man integrals by difference equations, Int. J. Mod. Phys. A

15, 5087 (2000).

[27] I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, and J.

Usovitsch, The two-loop electroweak bosonic corrections

to sin2 θbeff , Phys. Lett. B 762, 184 (2016).

[28] I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, and J.

Usovitsch, Complete electroweak two-loop corrections to

Z boson production and decay, Phys. Lett. B 783, 86 (2018).

[29] T. Binoth and G. Heinrich, An automatized algorithm to

compute infrared divergent multi-loop integrals, Nucl. Phys.

B585, 741 (2000).

[30] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J.

Schlenk, and T. Zirke, pySecDec: A toolbox for the

numerical evaluation of multi-scale integrals, Comput.

Phys. Commun. 222, 313 (2018).

[31] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner,

and J. Schlenk, A GPU compatible quasi-Monte Carlo

integrator interfaced to pySecDec, Comput. Phys. Commun.

240, 120 (2019).

[32] A. V. Smirnov and M. N. Tentyukov, Feynman Integral

Evaluation by a Sector decomposiTion Approach (FIESTA),

Comput. Phys. Commun. 180, 735 (2009).

[33] A. V. Smirnov, FIESTA 4: Optimized Feynman integral

calculations with GPU support, Comput. Phys. Commun.

204, 189 (2016).

[34] J. Gluza, K. Kajda, and T. Riemann, AMBRE: A Mathe-

matica package for the construction of Mellin-Barnes

representations for Feynman integrals, Comput. Phys.

Commun. 177, 879 (2007).

[35] M. Czakon, Automatized analytic continuation of Mellin-

Barnes integrals, Comput. Phys. Commun. 175, 559

(2006).

[36] J. Usovitsch, Numerical evaluation of Mellin-Barnes inte-

grals in Minkowskian regions and their application to two-

loop bosonic electroweak contributions to the weak mixing

angle of the Zb̄b-vertex, Ph.D. thesis, Humboldt-Universität

zu Berlin, Inst. Math., 2018.

[37] I. Dubovyk, J. Gluza, T. Riemann, and J. Usovitsch,

Numerical integration of massive two-loop Mellin-Barnes

integrals in Minkowskian regions, Proc. Sci., LL2016

(2016) 034 [arXiv:1607.07538].

[38] J. Usovitsch, I. Dubovyk, and T. Riemann, MBnumerics:

Numerical integration of Mellin-Barnes integrals in physical

regions, Proc. Sci., LL2018 (2018) 046 [arXiv:1810.04580].

[39] In principle, it is also applicable at higher loop orders, but

we have not studied any examples beyond three loops.

[40] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevD.106.L111301 for input parameters, addi-

tional examples, e.g. a 2-loop four-scale box diagram, and

miscellaneous implementational details and remarks for a

more detailed discussion of the method.

[41] A. Kotikov, Differential equations method: New technique

for massive Feynman diagrams calculation, Phys. Lett. B

254, 158 (1991).

[42] A. Kotikov, Differential equations method: The calculation

of vertex type Feynman diagrams, Phys. Lett. B 259, 314

(1991).

[43] A. V. Kotikov, Differential equation method: The calcula-

tion of N point Feynman diagrams, Phys. Lett. B 267, 123

(1991).

[44] E. Remiddi, Differential equations for Feynman graph

amplitudes, Nuovo Cimento A 110, 1435 (1997).

[45] J. M. Henn, Multiloop Integrals in Dimensional Regulari-

zation Made Simple, Phys. Rev. Lett. 110, 251601

(2013).

[46] S. Pozzorini and E. Remiddi, Precise numerical evaluation

of the two loop sunrise graph master integrals in the equal

mass case, Comput. Phys. Commun. 175, 381 (2006).

[47] M. K. Mandal and X. Zhao, Evaluating multi-loop Feynman

integrals numerically through differential equations, J. High

Energy Phys. 03 (2019) 190.

[48] M. L. Czakon and M. Niggetiedt, Exact quark-mass depend-

ence of the Higgs-gluon form factor at three loops in QCD,

J. High Energy Phys. 05 (2020) 149.

[49] X. Liu, Y.-Q. Ma, and C.-Y. Wang, A systematic and

efficient method to compute multi-loop master integrals,

Phys. Lett. B 779, 353 (2018).

IEVGEN DUBOVYK et al. PHYS. REV. D 106, L111301 (2022)

L111301-6



[50] X. Liu and Y.-Q. Ma, Determining arbitrary Feynman

integrals by vacuum integrals, Phys. Rev. D 99, 071501

(2019).

[51] C. Brønnum-Hansen and C.-Y. Wang, Contribution of third

generation quarks to two-loop helicity amplitudes for W

boson pair production in gluon fusion, J. High Energy Phys.

01 (2021) 170.

[52] F. Moriello, Generalised power series expansions for the

elliptic planar families of Higgsþ jet production at two

loops, J. High Energy Phys. 01 (2020) 150.

[53] R. Bonciani, V. Del Duca, H. Frellesvig, J. M. Henn, M.

Hidding, L. Maestri, F. Moriello, G. Salvatori, and V. A.

Smirnov, Evaluating a family of two-loop non-planar master

integrals for Higgsþ jet production with full heavy-quark

mass dependence, J. High Energy Phys. 01 (2020) 132.

[54] M. Hidding, DiffExp, a Mathematica package for comput-

ing Feynman integrals in terms of one-dimensional series

expansions, Comput. Phys. Commun. 269, 108125 (2021).

[55] S. Badger, H. B. Hartanto, J. Kryś, and S. Zoia, Two-loop

leading colour helicity amplitudes for W�γ þ j production
at the LHC, J. High Energy Phys. 05 (2022) 035.

[56] T. Armadillo, R. Bonciani, S. Devoto, N. Rana, and A.

Vicini, Two-loop mixed QCD-EW corrections to neutral

current Drell-Yan, J. High Energy Phys. 05 (2022) 072.

[57] D. Chicherin, V. Sotnikov, and S. Zoia, Pentagon functions

for one-mass planar scattering amplitudes, J. High Energy

Phys. 01 (2022) 096.

[58] S. Badger, H. B. Hartanto, J. Kryś, and S. Zoia, Two-loop

leading-colour QCD helicity amplitudes for Higgs boson

production in association with a bottom-quark pair at the

LHC, J. High Energy Phys. 11 (2021) 012.

[59] S. Abreu, H. Ita, B. Page, and W. Tschernow, Two-loop

hexa-box integrals for non-planar five-point one-mass

processes, J. High Energy Phys. 03 (2022) 182.

[60] R. E. Cutkosky, Singularities and discontinuities of Feyn-

man amplitudes, J. Math. Phys. (N.Y.) 1, 429 (1960).

[61] L. D. Landau, On analytic properties of vertex parts in

quantum field theory, Nucl. Phys. 13, 181 (1959).

[62] N. Nakanishi, Ordinary and anomalous thresholds in per-

turbation theory, Prog. Theor. Phys. 22, 128 (1959).

[63] M. Prausa, epsilon: A tool to find a canonical basis of master

integrals, Comput. Phys. Commun. 219, 361 (2017).

[64] O. Gituliar and V. Magerya, Fuchsia: A tool for reducing

differential equations for Feynman master integrals to

epsilon form, Comput. Phys. Commun. 219, 329 (2017).

[65] A. von Manteuffel and L. Tancredi, A non-planar two-loop

three-point function beyond multiple polylogarithms, J. High

Energy Phys. 06 (2017) 127.

[66] L. Adams, E. Chaubey, and S. Weinzierl, Simplifying Differ-

ential Equations for Multiscale Feynman Integrals beyond

Multiple Polylogarithms, Phys. Rev. Lett. 118, 141602 (2017).

[67] J. Henn, B. Mistlberger, V. A. Smirnov, and P. Wasser,

Constructing d-log integrands and computing master inte-

grals for three-loop four-particle scattering, J. High Energy

Phys. 04 (2020) 167.

[68] C. Dlapa, J. Henn, and K. Yan, Deriving canonical differ-

ential equations for Feynman integrals from a single uni-

form weight integral, J. High Energy Phys. 05 (2020) 025.

[69] J. Usovitsch, Factorization of denominators in integration-

by-parts reductions, arXiv:2002.08173.

[70] A. V. Smirnov and V. A. Smirnov, How to choose master

integrals, Nucl. Phys. B960, 115213 (2020).

[71] E. Panzer, Feynman integrals and hyperlogarithms, Ph.D.

thesis, Humboldt University, 2015, https://edoc.hu-berlin

.de/handle/18452/17809.

[72] A. von Manteuffel, E. Panzer, and R. M. Schabinger, A

quasi-finite basis for multi-loop feynman integrals, J. High

Energy Phys. 02 (2015) 120.

[73] A. von Manteuffel, E. Panzer, and R. M. Schabinger,

Computation of form factors in massless QCD with finite

master integrals, Phys. Rev. D 93, 125014 (2016).

[74] A. von Manteuffel and C. Studerus, Reduze 2—Distributed

Feynman integral reduction, arXiv:1201.4330.

[75] P. Maierhöfer, J. Usovitsch, and P. Uwer, Kira—a Feynman

integral reduction program, Comput. Phys. Commun. 230,

99 (2018).

[76] J. Klappert, F. Lange, P. Maierhöfer, and J. Usovitsch,

Integral reduction with Kira 2.0 and finite field methods,

Comput. Phys. Commun. 266, 108024 (2021).

[77] J. Klappert and F. Lange, Reconstructing rational

functions with FireFly, Comput. Phys. Commun. 247, 106951

(2020).

[78] J. Klappert, S. Y. Klein, and F. Lange, Interpolation of

dense and sparse rational functions and other improve-

ments in FireFly, Comput. Phys. Commun. 264, 107968

(2021).

[79] See also Ref. [80,81] for a similar approach for single-scale

problems.

[80] R. N. Lee, A. V. Smirnov, and V. A. Smirnov, Evaluating

‘elliptic’ master integrals at special kinematic values:

Using differential equations and their solutions via ex-

pansions near singular points, J. High Energy Phys. 07

(2018) 102.

[81] M. Fael, F. Lange, K. Schönwald, and M. Steinhauser, A

semi-analytic method to compute Feynman integrals applied

to four-loop corrections to the MS-pole quark mass relation,

J. High Energy Phys. 09 (2021) 152.

[82] See Refs. [83,84] for recent independent efforts on electro-

weak two-loop box integrals.

[83] Q. Song and A. Freitas, On the evaluation of two-loop

electroweak box diagrams for eþe− → HZ production,

J. High Energy Phys. 04 (2021) 179.

[84] X. Liu and Y.-Q. Ma, Multiloop corrections for collider

processes using auxiliary mass flow, Phys. Rev. D 105,

L051503 (2022).

[85] In this and the following examples, the large number of

massless propagators occurs because all SM fermions

except the top quark are taken to be massless.

[86] M. Borinsky, Tropical Monte Carlo quadrature for Feynman

integrals, arXiv:2008.12310.

[87] B. Ananthanarayan, S. Banik, S. Friot, and S. Ghosh,

Multiple Series Representations of N-fold Mellin-Barnes

Integrals, Phys. Rev. Lett. 127, 151601 (2021).

[88] X. Liu and Y.-Q. Ma, AMFlow: AMathematica package for

Feynman integrals computation via Auxiliary Mass Flow,

arXiv:2201.11669.

[89] T. Armadillo, R. Bonciani, S. Devoto, N. Rana, and

A. Vicini, Evaluation of Feynman integrals with arbitrary

complex masses via series expansions, Comput. Phys.

Commun. 282, 108545 (2023).

EVALUATION OF MULTILOOP MULTISCALE FEYNMAN … PHYS. REV. D 106, L111301 (2022)

L111301-7


