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Abstract—The growth of the need for quantum computers in
many domains such as machine learning, numerical scientific
simulation, and finance has urged quantum computers to produce
more stable and less error-prone results. However, mitigating
the impact of the noise inside each quantum device remains a
present challenge. This paper utilizes the system calibration data
collected from the existing IBMQ machines, applying reliability
degradation analysis to generate the reliability degradation matrix
(RDM). We define multiple new evaluation metrics based on the
reliability degradation matrix to compare the reliability between
qubits, qubit topologies, and quantum machines. New evaluation
metrics can be used for exploring the most error-robust quantum
machine. This contribution increases the users’ expectation of
result accuracy. It opens the opportunities for studying the insight
of correlation between qubits that may further motivate the
quantum compiler design for the qubit mapping.

Index Terms—Quantum Computing, System, Reliability, Anal-
ysis

I. INTRODUCTION

Noisy Intermediate-Scale Quantum (NISQ) machines are

increasingly used to demonstrate the benefits of quantum com-

puting for the high-performance computing (HPC) domain [5],

[14], [15], [21], [24], [25]. A significant concern for NISQ ma-

chines is that the noise experienced by such machines is tightly

affecting the execution of a quantum algorithm, and future

NISQ machines are anticipated to suffer from this challenge

with the increasing number of the qubits. [3], [11], [14], [21].

With the current availability and increased programmability of

NISQ devices, the quantum computing systems and architecture

community is identifying new problems and solutions in the

space of quantum algorithm execution on erroneous quan-

tum computing architectures. Understanding the error behavior

based on calibration data and the relation between qubits errors,

frequency, and readout errors is the key to minimizing the

unexpected result and making quantum computing more useful.

Previous research focused on intelligently mapping a quantum

algorithm on different parts of a NISQ machine, each with a

different error rate for different kinds of operations, to minimize

the probability of errors occurring during quantum algorithm

execution [2], [9], [13], [16], [17], [23].
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While there is much work studying the performance of

quantum computers, defining metrics and developing bench-

marks for evaluating the performance of quantum computers

is demanding yet significantly challenging. Differences in the

implementation of the quantum hardware make it challenging

to propose performance metrics that may be adopted across

the different technologies of the quantum computers, e.g.

trapped Ion or superconducting. In order to fill the gap, IBM

proposed quantum volume (QV) [8] as a metric to quantify the

performance of the quantum computing while executing the

computation of the quantum circuits. The Quantum Volume

method quantifies the largest random circuit of equal width

and depth that the computer successfully implements. Quan-

tum computing systems with high-reliability operations, high

connectivity, large calibrated gate sets, and circuit rewriting

toolchains are expected to have higher Quantum Volumes [12]

QV is a property of the performance of quantum computer hard-

ware and a service level agreement that a quantum computer

can guarantee.

However, QV can only be used to statically compare the

overall performance of NISQ machines, which is similar to

measuring the peak performance of a high-performance com-

puting system. When users need to choose the best performing

IBM Q machines from the available system list, QV is not a

helpful metric. The study from [28] has shown that there exists

variation in the error rates of different qubits and links, which

can have an impact on the decisions for qubits movement and

qubit allocation. Even though the quantum computer may have

the same QVs, the quantum computers’ error rates at run-time

are dynamically distinct between machines.

Rather than understanding the characteristics of quantum

noise and the immediate influence on quantum applications,

existing work mainly focuses on mitigating the noise [4], [7],

[27], [29] and re-adjusting the results based on the outcome

distribution of the quantum algorithms, and quantum noise

data [19], [20]. However, error mitigation and result readjust-

ment may either require extra qubits for error detection and

correction or heavily depend on the property of the quantum

algorithm. This is not applicable in the current NISQ era

considering the limitation on the number of qubits and possible
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connectivity of qubits from the topology.

This research focuses on analyzing the reliability degradation

in NISQ machines. We utilize the system calibration data from

the existing IBMQ machines, applying reliability degradation

detection to generate the reliability degradation matrix. Based

on the reliability degradation matrix, we define multiple new

evaluation metrics to compare the reliability between the qubit

topology of the quantum machines. These evaluation metrics

can help users search for the most error-robust machine and

qubits to expect the most accurate results. The insight of

correlation between qubits we explored can further motivate

the quantum compiler design for the qubit mapping.

The major contributions of this paper are:

• We enhance the understanding of the quantum error char-

acteristics on NISQ machines by introducing the reliability

degradation detection approach.

• We propose a new set of metrics for analyzing the relia-

bility of NISQ computers.

• We analyze the IBM quantum computers using the evalu-

ation metrics defined to explore the reliability degradation

patterns in different qubit topologies, individual quantum

machines, and individual qubits. The results from the study

can (i) help design an efficient scheduling system for users

to submit the jobs to quantum computers, with the focus

of minimizing the impact of quantum errors; (ii). help the

quantum compilers map logic qubits to physical qubits to

exploit noise-resilience qubits better.

II. OVERVIEW OF THE QUANTUM SYSTEMS AND DATASET

Our study is based on the original data from the IBMQ

quantum computing website. There are dozens of machines

online that can be used for real-world quantum machines. The

raw data we collected are from seven IBM quantum computing

machines. Athens, Bogota, Rome, and Santiago use linear

topology; Vigo and Ourense use tree topology and Melbourne
use mesh topology. For each quantum machine, four main

attributes (T1, T2, Readout Error and CNOT Error) influence

their performances. We observed data of 114 consecutive days

from machine Athens, Rome, Bogota, Melbourne, and Santiago,

61 consecutive days from machine Ourense, and 108 consecu-

tive days from machine Vigo. We collected all four significant

categories attributes of each machine above.

We look into four major categories of calibration data

collected from IBM quantum computers [18]:

1) T1 coherence time: we call it amplitude damping as

well. It is the period for a qubit‘s natural decay from the

excited state to the ground state. Higher T1 value means

the qubit is more reliable to stay at the its own state.

2) T2 coherence time: we call it phase damping as well. It’s

the period for a qubit’s state change due to environmental

interaction. Higher T2 value of a qubit is essential to the

reliability of a qubit, because a more significant number

of operations can be accomplished before the output

becomes erroneous beyond a tolerance limit. Qubits are

error-prone because of high volatility and susceptibility

to environmental perturbations.

3) The readout error: is the probability of incorrect mea-

surement of a qubit state (referred to as 1-qubit readout

operation).

4) The CNOT (gate) error: is the probability of introducing

an error during a gate operation, for example, rotating a

state of a qubit by a slightly erroneous angle.

Although the detail of building superconducting quantum

machines is beyond this paper’s scope, it is noted that each

time the quantum circuit gets executed on a NISQ machine, the

outcome of that execution depends on the frequency of each

qubit as well as the T1 and T2 error rates [10]. If the machine is

under low reliability between qubits or the calibration process

was performed a long time ago, the likelihood of an erroneous

outcome distribution would increase significantly. We consider

such situations the reliability degradation [6].

Performing operations on qubits can also affect their state

due to errors. Quantum operation errors can be categorized into

three groups: a) single-qubit gate errors (also known as U3 gate

errors); b) single-qubit readout errors; c) two-qubit gate errors

(referred to as CX gate errors). Single and two-qubit gate errors

occur when there is noise in the system when applying a gate to

a qubit state. Readout errors are related to the faulty reading of

the final qubit state; in NISQ machines, these errors are related

to readout resonators. For publicly available IBM-Q quantum

computers, the single-qubit instruction error rates are of the

order of 10−3 , whereas for two-qubit instructions, such as

CNOT, it is 10−2. Google Quantum machine [26] is reported

to have about one order of magnitude lower error rates than

the IBM machines. However, detailed characterization data for

this machine is not publicly available.

III. METHODOLOGY: DEGRADATION ANALYSIS

In the NISQ system, we target durable reliability degradation

(DRD) rather than transient reliability degradation (TRD). The

TRDs showing in time serials are mostly sharp peaks and

troughs (e.g., spikes or pulses) and may only last for a short

period, which only impacts the performance of the quantum

computers in a short period. On the contrary, DRDs in a

time-series event stream are gentle peaks and troughs (e.g.,

level change or trends). DRDs usually last much longer than

transient cases and could lead to catastrophic events. NISQ

machines under DRD may be rectified with system calibrations.

However, DRD is not usually detectable. Therefore we propose

the degradation detection algorithm. We use the python package

called ’Anomaly Detection Toolkit’ (ADTK) [1], which detects

anomalies in a given time series. The function we chose in

ADTK is called ‘PersistAD‘, which compares the value of

each time series with its adjacent previous values. The function

is implemented based on Double Rolling Aggregate, which

rolls two sliding windows side-by-side along a time series,

aggregates using a selected operation, and tracks difference

of the aggregated metrics between the two windows. The

algorithm is shown in Alg 1. We choose c = −0.5 to minimize

the degradation detection errors. In this way, we can convert

our raw data (hard to analyze) to be more understandable and

readable (easy to analyze).
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Algorithm 1: The reliability degradation detection al-

gorithm

Input : Current value v from T1, T2, Readout Errors or
CNOT Errors

Input : 25th percentile P25

Input : 75th percentile P75

Input : Control parameter c
Output : 1: anomalous state; 0: normal state

1 if v is from T1 or T2 then
2 if (c+ 1)P25 − cP75 − v < 0 then
3 return 0
4 else
5 return 1
6 end
7 else
8 if (c+ 1)P75 − cP25 − v < 0 then
9 return 1

10 else
11 return 0
12 end
13 end

The output of Alg 1 forms a reliability degradation matrix

(RDM), We denote the RDM as D, for each entry dij , the

value of dij can be 1 or 0, which means there is or is not an

reliability degradation event occurring on the ith sampling time

for the jth attribute respectively.

Then we use multiple ways to conduct the reliability degra-

dation analysis based on RDM:

• We check each machine’s attribute’s degradation rate (de-

fined in Section IV) and compare and analyze those rates

between different topologies.

• We analyze the frequency of degradation occurrence for

each machine. We check the Cumulative Distribution

Function (CDF) of each machine’s qubit for different

attributes, namely T1, T2, and ReadoutError to convert

the matrices into more readable graphs. We calculate the

mean time between reliability degradation events for each

machine’s qubit. In this way, we can capture and analyze

the characteristics and stability of machines by observing

and comparing those CDF graphs.

• we use Spearman correlation coefficients to find the

correlation between different attributes (the columns of

the RDM). To visually analyze the correlation, we uti-

lize heatmaps, which can display the magnitude of the

correlation using different colors in the form of two-

dimension cells, in which there are correlation values. We

set the centre of the colorbar on the right-hand side of the

heatmap as 0.3 [22], which can represent two attributes

that have a moderate positive correlation. We abandoned

those cells with negative values since the number of such

cells is too small to analyze, and focusing on positive

correlation is more meaningful. Thus, we mainly look for

those values bigger than or equal to 0.3 for more details

and insights.

IV. SYSTEM RELIABILITY DEGRADATION ANALYSIS

Instead of using QV, we define multiple new evaluation

metrics for system reliability degradation analysis.

A. Reliability Degradation Rate (RDR)

We define the reliability degradation rate using RDRi =
x/y, where x = the number of entries of a column whose

value is 1, and y = the number of the rows of column i
in RDM. Therefore, the average RDR of a calibration data

attribute is calculated by computing the average value of all

reliability rates for that attributes of T1, T2, readout error

(RO) and CNOT error (CX). The RDR results are shown

in Table I. The row of “Linear Topology“, “Tree Topology“

and “Mesh Topology“ represent the average of the machines

with same type of topologies. We can observe that machines

with mesh topology have a higher average RDR for every

calibration data attribute, while machines with tree topology

have the lowest average RDR. At the machine level, Vigo has

the lowest average RDR, representing that Vigo is generally

more stable than other machines, while machine Ourense has

the highest average RDR among all given machines. We found

that both Vigo and Ourense have tree topology, but their average

RDRs are at quite different levels, implying the diversity of the

noise conditions among tree topology machines.

B. Perfect Day Ratio (PDR)

We define the ’perfect day’ as the day when there is no

reliability degradation on any attributes of a machine on that

day. We compute the ’perfect-day ratio’, by using the number

of perfect days to divide the total observation days. As shown

in Table II, machine Vigo has the highest PDR while Ourense

has the lowest PDR. In comparison, the difference in linear

machines’ PDR is quite small, which implies linear machines

are relative stable.

C. Mean Time Between Reliability Degradation (MTBRD)

We compute the mean time between degradation events

of each machine‘s qubit by analyzing the total number of

degradation events detected on T1, T2, Readout error rate (RO),

and CNOT error rate (CX). For each qubit, we look at all

its corresponding attributes. For example, as for Q1 of Rome,

the corresponding attributes are T1 −Q1, T2 −Q1, RO −Q1,

CX0 − 1, and CX1 − 2. We compute the total number of

degradation events on CNOTs (CX − Q1) by summing all

Q1 related CXs column in RDM. Finally we get four values,

T1−Q1, T2−Q1, RO−Q1 and CX −Q1. We then compute

the MTBRD−Q1 = days/(T1−Q1+T2−Q1+RO−Q1+
CX −Q1) .

The MTBRD of each qubit on all 5-qubits machines is shown

in Table III. Vigo has the longest MTBRD for Q1, Q2, and Q4.

Also, Vigo has the longest MTBRD considering all the qubits,

while Ourense has the shortest MTBRD. These results illustrate

the stability of Vigo and the instability of Ourense even though

they are all 5-qubits machines with the same topology.
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TABLE I
THE AVERAGE RDR FOR EACH MACHINE

��������Machine
Attr

T1 T2 R-O Error CNOT-Error Average

Athens 0.2333 0.2140 0.2018 0.2083 0.2147

Bogota 0.2053 0.2123 0.2053 0.1996 0.2059

Rome 0.1912 0.1877 0.2000 0.1996 0.1944

Santiago 0.2211 0.1895 0.1877 0.1623 0.1916

Linear Topology 0.2114 0.1996 0.1978 0.1924 0.2003

Vigo 0.1759 0.1889 0.1593 0.1713 0.1740

Ourense 0.2197 0.2262 0.2230 0.2254 0.2235

Tree Topology 0.1917 0.2024 0.1822 0.1908 0.1918

Melbourne (Mesh Topology) 0.2187 0.2222 0.2041 0.2193 0.2170

TABLE II
THE PERFECT DAY RATE FOR EACH MACHINE

Machine’s Name Perfect Day Ratio

Athens 0.333

Bogota 0.360

Rome 0.360

Santiago 0.342

Ourense 0.049

Vigo 0.556

Melbourne 0.342

TABLE III
THE MTBRD ACROSS QUBITS OF EACH MACHINE

������Qubit

Machine
Athens Bogota Rome Santiago Ourense Vigo

Q0 4.515 4.606 5.561 4.56 4.604 5.539

Q1 4.851 4.515 4.8 5.124 4.604 6.0

Q2 4.957 4.851 5.124 5.429 4.519 6.085

Q3 4.653 5.494 5.124 6.08 4.281 5.468

Q4 4.851 4.957 5.182 5.365 4.519 5.610

Average 4.765 4.884 5.158 5.311 4.561 5.740

D. Reliability Degradation Depth (RDD)

To better describe the reliability degradation condition, we

define a new concept called reliability degradation depth,

computed by summing the total number of degradation events

of all the machine attributes in a day. As shown in Figure 1,

For linear machines, Santiago has more days of RDD < 6. In

contrast, Athens and Bogota have more days of RDD > 6 . The

density degrees of those RD curves from linear machines are

almost the same. However, the RD curve of Ourence is the most

consecutive among all six machines. Rome’s RD curve is the

sparsest. All five qubits machines have most of the RDD< 8.

E. The Cumulative Distribution Function (CDF)

The CDF of T1, T2 and readout error reliability degradation

occurrences on each qubit are shown in Figure 2, 3, and 4. The

longer time span that the curve can keep flat, the more stable

the system‘s condition is. For T1 shown in Figure 2, Bogota’s

Q3 and Q4 have longer stages of zero slope and is relatively

more stable compared to other qubits and other machines. For

T2 shown in Figure 3, Santiago’s Q2 and Q4 have a long stage

of zero slopes at day 65. Rome’s Q3 has the longest stage

of zero slopes among all qubits and machines. For Readout

Errors shown in Figure 4, Athen, Santiago and Rome’s qubits

TABLE IV
THE RATIO OF HAVING A STRONG CORRELATION BETWEEN ATTRIBUTES OF

T1 AND T2

Topology
Ratio of strong correlation

on special diagonals
Rate of strong correlation

for all pairs

Linear 18/20 (90%) 45/100 (45%)

Tree 8/10 (80%) 18/50 (36%)

Mesh 15/15 (100%) 66/225 (29.3%)

Total 41/45 (91.1%) 129/375 (34.4%)

are showing diverse reliability between qubits while all qubits

of Bogota are sharing similar reliability properties.

F. Reliability Degradation Correlation (RDC)

Based on the reliability degradation matrix, we compute the

correlation between each calibration attribute columns. The

pair-wised correlation coefficients are visualized as a heatmap.

An example is shown in Figure 5. We define two calibration

attributes with a “strong correlation“ if the corresponding

correlation coefficient is larger than 0.3 [22]. If the strongly

correlated attributes are from the same qubit, we call it ‘same-

qubit high correlation‘. We focus on the correlation of T1

and T2 related attributes, as shown in Table IV, we find that

machines of these three topologies all have a high ratio of

same-qubit high correlation, while comparing the ratio of strong

correlations in all attribute pairs. Therefore the coherence time

(T1 and T2) of a qubit is highly correlated in all types of

topologies.

G. Sensitive Qubits (SQ)

Apparently qubits on the same machine are not performing

equally fron our observation. We then define the ‘sensitive

qubits‘. A qubit of a machine is a sensitive qubit if the ratio

of the pairs of attributes of a qubit in RDM having a strong

correlation is bigger than or equal to 0.3. For example, Athens’s

sensitive qubit is Q4, Bogota’s sensitive qubits are Q0 and

Q3, Santiago’s are Q1, Q2, Q3 and Q4, Rome’s are Q0 and

Q1, Ourense’s is Q2, and Vigo’s are Q0, Q2, Q3 and Q4.

Therefore, when the compiler maps the logical circuits to

quantum computers, we should avoid sensitive qubits as much

as possible or assign less important roles to the sensitive qubits,

e.g., ancilla qubits.

649

Authorized licensed use limited to: Kent State University Libraries. Downloaded on June 15,2023 at 20:58:50 UTC from IEEE Xplore.  Restrictions apply. 



(a) Athens (b) Bogota (c) Santiago

(d) Rome (e) Ourense (f) Melbourne

Fig. 1. Reliability degradation occurrence and depth. The left y-axis represents the number of reliability degradation occurrences, the right y-axis represents
reliability degradation depth, and x-axis represents time (days).
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Fig. 2. CDF For Linear Machine’s T1 of each qubit
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Fig. 3. CDF For Linear Machine’s T2 of each qubit
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Fig. 4. CDF For Linear Machine’s Readout Error of each qubit
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(a) Athens (b) Bogota

(c) Santiago (d) Rome

Fig. 5. Heatmaps For Linear Machine’s Correlation Coefficients

H. Distance between Correlated Qubit Pairs(DQP)
When mapping logic qubits to physical qubits, it is essential

to understand the degree of the qubits‘ reliability to avoid

or reduce the use of less reliable qubits in swapping gates.

Therefore, we define the distance between correlated qubit pairs

for evaluating the routing algorithm for circuit transpilation.

The distance between two qubits means the minimum steps

we need to take to go from one qubit to another in the

qubit connection graph. For example, the distance between

Q0 and Q2 in Athens is 2, and the distance between Q4

and Q7 in Melbourne is 4. As shown in table V, all the

pairs having a strong positive correlation (the absolute value

of correlation coefficient > 0.3) have a distance smaller than

or equal to 5. The qubit pairs that have a very weak correlation

with each other (the absolute value of correlation coefficient

< 0.05) distributes sparsely (from 1 to 8 distance). While

considers building swapping gates, compiler should avoid using

the strongly correlated pairs.

V. CONCLUSIONS

We present a novel reliability degradation analysis to study

the reliability degradation in NISQ machines. We design a re-

liability degradation detection approach based on the collected

TABLE V
MELBOURNE’S STRONG CORRELATED QUBIT PAIRS AND WEAK

CORRELATED QUBIT PAIRS

Distance Between Qubit Pair 1 2 3 4 5 6 7 8

Strong Correlation Pairs 3 2 4 3 2 0 0 0

Weak Correlation Pairs 3 6 2 6 2 2 0 1

system calibration data to generate the reliability degradation

matrix that represents the system states regarding quantum

errors. We define new evaluation metrics to help quantify

the reliability of quantum computers, which can facilitate the

design of compiler to minimize the impact from quantum

errors by mapping the logical qubits to the most robust and

independent qubits.
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