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Abstract—The growth of the need for quantum computers in
many domains such as machine learning, numerical scientific
simulation, and finance has urged quantum computers to produce
more stable and less error-prone results. However, mitigating
the impact of the noise inside each quantum device remains a
present challenge. This paper utilizes the system calibration data
collected from the existing IBMQ machines, applying reliability
degradation analysis to generate the reliability degradation matrix
(RDM). We define multiple new evaluation metrics based on the
reliability degradation matrix to compare the reliability between
qubits, qubit topologies, and quantum machines. New evaluation
metrics can be used for exploring the most error-robust quantum
machine. This contribution increases the users’ expectation of
result accuracy. It opens the opportunities for studying the insight
of correlation between qubits that may further motivate the
quantum compiler design for the qubit mapping.

Index Terms—Quantum Computing, System, Reliability, Anal-
ysis

I. INTRODUCTION

Noisy Intermediate-Scale Quantum (NISQ) machines are
increasingly used to demonstrate the benefits of quantum com-
puting for the high-performance computing (HPC) domain [5],
[14], [15], [21], [24], [25]. A significant concern for NISQ ma-
chines is that the noise experienced by such machines is tightly
affecting the execution of a quantum algorithm, and future
NISQ machines are anticipated to suffer from this challenge
with the increasing number of the qubits. [3], [11], [14], [21].
With the current availability and increased programmability of
NISQ devices, the quantum computing systems and architecture
community is identifying new problems and solutions in the
space of quantum algorithm execution on erroneous quan-
tum computing architectures. Understanding the error behavior
based on calibration data and the relation between qubits errors,
frequency, and readout errors is the key to minimizing the
unexpected result and making quantum computing more useful.
Previous research focused on intelligently mapping a quantum
algorithm on different parts of a NISQ machine, each with a
different error rate for different kinds of operations, to minimize
the probability of errors occurring during quantum algorithm
execution [2], [9], [13], [16], [17], [23].
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While there is much work studying the performance of
quantum computers, defining metrics and developing bench-
marks for evaluating the performance of quantum computers
is demanding yet significantly challenging. Differences in the
implementation of the quantum hardware make it challenging
to propose performance metrics that may be adopted across
the different technologies of the quantum computers, e.g.
trapped Ion or superconducting. In order to fill the gap, IBM
proposed quantum volume (QV) [8] as a metric to quantify the
performance of the quantum computing while executing the
computation of the quantum circuits. The Quantum Volume
method quantifies the largest random circuit of equal width
and depth that the computer successfully implements. Quan-
tum computing systems with high-reliability operations, high
connectivity, large calibrated gate sets, and circuit rewriting
toolchains are expected to have higher Quantum Volumes [12]
QV is a property of the performance of quantum computer hard-
ware and a service level agreement that a quantum computer
can guarantee.

However, QV can only be used to statically compare the
overall performance of NISQ machines, which is similar to
measuring the peak performance of a high-performance com-
puting system. When users need to choose the best performing
IBM Q machines from the available system list, QV is not a
helpful metric. The study from [28] has shown that there exists
variation in the error rates of different qubits and links, which
can have an impact on the decisions for qubits movement and
qubit allocation. Even though the quantum computer may have
the same QVs, the quantum computers’ error rates at run-time
are dynamically distinct between machines.

Rather than understanding the characteristics of quantum
noise and the immediate influence on quantum applications,
existing work mainly focuses on mitigating the noise [4], [7],
[27], [29] and re-adjusting the results based on the outcome
distribution of the quantum algorithms, and quantum noise
data [19], [20]. However, error mitigation and result readjust-
ment may either require extra qubits for error detection and
correction or heavily depend on the property of the quantum
algorithm. This is not applicable in the current NISQ era
considering the limitation on the number of qubits and possible
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connectivity of qubits from the topology.

This research focuses on analyzing the reliability degradation
in NISQ machines. We utilize the system calibration data from
the existing IBMQ machines, applying reliability degradation
detection to generate the reliability degradation matrix. Based
on the reliability degradation matrix, we define multiple new
evaluation metrics to compare the reliability between the qubit
topology of the quantum machines. These evaluation metrics
can help users search for the most error-robust machine and
qubits to expect the most accurate results. The insight of
correlation between qubits we explored can further motivate
the quantum compiler design for the qubit mapping.

The major contributions of this paper are:

« We enhance the understanding of the quantum error char-
acteristics on NISQ machines by introducing the reliability
degradation detection approach.

« We propose a new set of metrics for analyzing the relia-
bility of NISQ computers.

o We analyze the IBM quantum computers using the evalu-
ation metrics defined to explore the reliability degradation
patterns in different qubit topologies, individual quantum
machines, and individual qubits. The results from the study
can (i) help design an efficient scheduling system for users
to submit the jobs to quantum computers, with the focus
of minimizing the impact of quantum errors; (ii). help the
quantum compilers map logic qubits to physical qubits to
exploit noise-resilience qubits better.

II. OVERVIEW OF THE QUANTUM SYSTEMS AND DATASET

Our study is based on the original data from the IBMQ
quantum computing website. There are dozens of machines
online that can be used for real-world quantum machines. The
raw data we collected are from seven IBM quantum computing
machines. Athens, Bogota, Rome, and Santiago use linear
topology; Vigo and Ourense use tree topology and Melbourne
use mesh topology. For each quantum machine, four main
attributes (7'1,72, Readout Error and CNOT Error) influence
their performances. We observed data of 114 consecutive days
from machine Athens, Rome, Bogota, Melbourne, and Santiago,
61 consecutive days from machine Ourense, and 108 consecu-
tive days from machine Vigo. We collected all four significant
categories attributes of each machine above.

We look into four major categories of calibration data
collected from IBM quantum computers [18]:

1) T1 coherence time: we call it amplitude damping as
well. It is the period for a qubit‘s natural decay from the
excited state to the ground state. Higher T1 value means
the qubit is more reliable to stay at the its own state.
T2 coherence time: we call it phase damping as well. It’s
the period for a qubit’s state change due to environmental
interaction. Higher T2 value of a qubit is essential to the
reliability of a qubit, because a more significant number
of operations can be accomplished before the output
becomes erroneous beyond a tolerance limit. Qubits are
error-prone because of high volatility and susceptibility
to environmental perturbations.

2)
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3) The readout error: is the probability of incorrect mea-
surement of a qubit state (referred to as 1-qubit readout
operation).

4) The CNOT (gate) error: is the probability of introducing
an error during a gate operation, for example, rotating a
state of a qubit by a slightly erroneous angle.

Although the detail of building superconducting quantum
machines is beyond this paper’s scope, it is noted that each
time the quantum circuit gets executed on a NISQ machine, the
outcome of that execution depends on the frequency of each
qubit as well as the T1 and T2 error rates [10]. If the machine is
under low reliability between qubits or the calibration process
was performed a long time ago, the likelihood of an erroneous
outcome distribution would increase significantly. We consider
such situations the reliability degradation [6].

Performing operations on qubits can also affect their state
due to errors. Quantum operation errors can be categorized into
three groups: a) single-qubit gate errors (also known as U3 gate
errors); b) single-qubit readout errors; ¢) two-qubit gate errors
(referred to as CX gate errors). Single and two-qubit gate errors
occur when there is noise in the system when applying a gate to
a qubit state. Readout errors are related to the faulty reading of
the final qubit state; in NISQ machines, these errors are related
to readout resonators. For publicly available IBM-Q quantum
computers, the single-qubit instruction error rates are of the
order of 10~3 , whereas for two-qubit instructions, such as
CNOT, it is 10~2. Google Quantum machine [26] is reported
to have about one order of magnitude lower error rates than
the IBM machines. However, detailed characterization data for
this machine is not publicly available.

III. METHODOLOGY: DEGRADATION ANALYSIS

In the NISQ system, we target durable reliability degradation
(DRD) rather than transient reliability degradation (TRD). The
TRDs showing in time serials are mostly sharp peaks and
troughs (e.g., spikes or pulses) and may only last for a short
period, which only impacts the performance of the quantum
computers in a short period. On the contrary, DRDs in a
time-series event stream are gentle peaks and troughs (e.g.,
level change or trends). DRDs usually last much longer than
transient cases and could lead to catastrophic events. NISQ
machines under DRD may be rectified with system calibrations.
However, DRD is not usually detectable. Therefore we propose
the degradation detection algorithm. We use the python package
called ’Anomaly Detection Toolkit” (ADTK) [1], which detects
anomalies in a given time series. The function we chose in
ADTK is called ‘PersistAD‘, which compares the value of
each time series with its adjacent previous values. The function
is implemented based on Double Rolling Aggregate, which
rolls two sliding windows side-by-side along a time series,
aggregates using a selected operation, and tracks difference
of the aggregated metrics between the two windows. The
algorithm is shown in Alg 1. We choose ¢ = —0.5 to minimize
the degradation detection errors. In this way, we can convert
our raw data (hard to analyze) to be more understandable and
readable (easy to analyze).
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Algorithm 1: The reliability degradation detection al-
gorithm

Input : Current value v from T1, T2, Readout Errors or
CNOT Errors

Input : 25th percentile Pos

Input : 75th percentile Prs

Input : Control parameter c

Output : 1: anomalous state; 0: normal state

if v is from T'1 or T2 then

if (C + 1)P25 — cPr5 — v < 0 then
| return O

else
| return 1

end

else

if (C + 1)P75 — cPss — v < 0 then
| return 1

else
| return O

end
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The output of Alg 1 forms a reliability degradation matrix
(RDM), We denote the RDM as D, for each entry d;;, the
value of d;; can be 1 or 0, which means there is or is not an
reliability degradation event occurring on the ¢;;, sampling time
for the j;y, attribute respectively.

Then we use multiple ways to conduct the reliability degra-
dation analysis based on RDM:

o We check each machine’s attribute’s degradation rate (de-
fined in Section IV) and compare and analyze those rates
between different topologies.

« We analyze the frequency of degradation occurrence for
each machine. We check the Cumulative Distribution
Function (CDF) of each machine’s qubit for different
attributes, namely 73, 1>, and Readout Error to convert
the matrices into more readable graphs. We calculate the
mean time between reliability degradation events for each
machine’s qubit. In this way, we can capture and analyze
the characteristics and stability of machines by observing
and comparing those CDF graphs.

« we use Spearman correlation coefficients to find the
correlation between different attributes (the columns of
the RDM). To visually analyze the correlation, we uti-
lize heatmaps, which can display the magnitude of the
correlation using different colors in the form of two-
dimension cells, in which there are correlation values. We
set the centre of the colorbar on the right-hand side of the
heatmap as 0.3 [22], which can represent two attributes
that have a moderate positive correlation. We abandoned
those cells with negative values since the number of such
cells is too small to analyze, and focusing on positive
correlation is more meaningful. Thus, we mainly look for
those values bigger than or equal to 0.3 for more details
and insights.
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IV. SYSTEM RELIABILITY DEGRADATION ANALYSIS

Instead of using QV, we define multiple new evaluation
metrics for system reliability degradation analysis.

A. Reliability Degradation Rate (RDR)

We define the reliability degradation rate using RDR,; =
z/y, where z = the number of entries of a column whose
value is 1, and y = the number of the rows of column ¢
in RDM. Therefore, the average RDR of a calibration data
attribute is calculated by computing the average value of all
reliability rates for that attributes of 7'1, 72, readout error
(RO) and CNOT error (CX). The RDR results are shown
in Table I. The row of “Linear Topology“, “Tree Topology*
and “Mesh Topology* represent the average of the machines
with same type of topologies. We can observe that machines
with mesh topology have a higher average RDR for every
calibration data attribute, while machines with tree topology
have the lowest average RDR. At the machine level, Vigo has
the lowest average RDR, representing that Vigo is generally
more stable than other machines, while machine Ourense has
the highest average RDR among all given machines. We found
that both Vigo and Ourense have tree topology, but their average
RDRs are at quite different levels, implying the diversity of the
noise conditions among tree topology machines.

B. Perfect Day Ratio (PDR)

We define the ’perfect day’ as the day when there is no
reliability degradation on any attributes of a machine on that
day. We compute the ’perfect-day ratio’, by using the number
of perfect days to divide the total observation days. As shown
in Table II, machine Vigo has the highest PDR while Ourense
has the lowest PDR. In comparison, the difference in linear
machines’ PDR is quite small, which implies linear machines
are relative stable.

C. Mean Time Between Reliability Degradation (MTBRD)

We compute the mean time between degradation events
of each machine‘s qubit by analyzing the total number of
degradation events detected on 77, T, Readout error rate (RO),
and CNOT error rate (CX). For each qubit, we look at all
its corresponding attributes. For example, as for (); of Rome,
the corresponding attributes are 71 — @1, To — Q1, RO — @1,
CX0 — 1, and CX1 — 2. We compute the total number of
degradation events on CNOTs (CX — ;) by summing all
@1 related C'X's column in RDM. Finally we get four values,
Ty —Q1, To — @1, RO —Qq and CX — Q7. We then compute
the MTBRD — Q) = days/(T1 -1+ T—Q1+RO—-Q1+
CX—-Q1) .

The MTBRD of each qubit on all 5-qubits machines is shown
in Table III. Vigo has the longest MTBRD for 1, @2, and Q4.
Also, Vigo has the longest MTBRD considering all the qubits,
while Ourense has the shortest MTBRD. These results illustrate
the stability of Vigo and the instability of Ourense even though
they are all 5-qubits machines with the same topology.
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THE AVERAGE RDR FOR EACH MACHINE

TABLE I

‘ Attr T1 T2 | R-O Error | CNOT-Error | Average
Machine
Athens 0.2333 | 0.2140 0.2018 0.2083 0.2147
Bogota 0.2053 | 0.2123 0.2053 0.1996 0.2059
Rome 0.1912 | 0.1877 0.2000 0.1996 0.1944
Santiago 0.2211 0.1895 0.1877 0.1623 0.1916
Linear Topology 0.2114 | 0.1996 0.1978 0.1924 0.2003
Vigo 0.1759 | 0.1889 0.1593 0.1713 0.1740
Ourense 0.2197 | 0.2262 0.2230 0.2254 0.2235
Tree Topology 0.1917 | 0.2024 0.1822 0.1908 0.1918
[ Melbourne (Mesh Topology) [ 0.2187 | 0.2222 [ 0.2041 02193 ] 02170 |
TABLE 1I TABLE IV
THE PERFECT DAY RATE FOR EACH MACHINE THE RATIO OF HAVING A STRONG CORRELATION BETWEEN ATTRIBUTES OF
T1 AND T2
Machine’s Name | Perfect Day Ratio - _ _
Athens 0333 Topology Ratio of stfong'correlatlon Rate of strong cgrrelatlon
on special diagonals for all pairs
Bogota 0.360 Linear 18/20 (90%) 45/100 (45%)
Rome 0360 T 8/10 (80% 18/50 (36%
Santiago 0342 ree (80%) (36%)
Ourense 0.049 Mesh 15/15 (100%) 66/225 (29.3%)
Vigo 0.556 Total 41/45 (91.1%) 129/375 (34.4%)
Melbourne 0.342
TABLE Il are showing diverse reliability between qubits while all qubits
THE MTBRD ACROSS QUBITS OF EACH MACHINE of Bogota are sharing similar reliability properties.
Machine Athens Bogota | Rome Santiago | Ourense | Vigo T . .
Qubit F. Reliability Degradation Correlation (RDC)
Qo0 4515 4.606 5.561 4.56 4.604 5.539
Ql 4.851 4515 4.8 5.124 4.604 6.0

4.957
4.653
4.851
4.765

4.851
5.494
4.957
4.884

5.124
5.124
5.182
5.158

Q2
Q3
Q4

Average

5.429
6.08
5.365
5.311

4.519
4.281
4.519
4.561

6.085
5.468
5.610
5.740

D. Reliability Degradation Depth (RDD)

To better describe the reliability degradation condition, we
define a new concept called reliability degradation depth,
computed by summing the total number of degradation events
of all the machine attributes in a day. As shown in Figure 1,
For linear machines, Santiago has more days of RDD < 6. In
contrast, Athens and Bogota have more days of RDD > 6. The
density degrees of those RD curves from linear machines are
almost the same. However, the RD curve of Ourence is the most
consecutive among all six machines. Rome’s RD curve is the
sparsest. All five qubits machines have most of the RDD< 8.

E. The Cumulative Distribution Function (CDF)

The CDF of T1, T2 and readout error reliability degradation
occurrences on each qubit are shown in Figure 2, 3, and 4. The
longer time span that the curve can keep flat, the more stable
the system‘s condition is. For T1 shown in Figure 2, Bogota’s
Q3 and Q4 have longer stages of zero slope and is relatively
more stable compared to other qubits and other machines. For
T2 shown in Figure 3, Santiago’s (2 and ()4 have a long stage
of zero slopes at day 65. Rome’s Q3 has the longest stage
of zero slopes among all qubits and machines. For Readout
Errors shown in Figure 4, Athen, Santiago and Rome’s qubits
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Based on the reliability degradation matrix, we compute the
correlation between each calibration attribute columns. The
pair-wised correlation coefficients are visualized as a heatmap.
An example is shown in Figure 5. We define two calibration
attributes with a “strong correlation” if the corresponding
correlation coefficient is larger than 0.3 [22]. If the strongly
correlated attributes are from the same qubit, we call it ‘same-
qubit high correlation’. We focus on the correlation of T}
and T, related attributes, as shown in Table IV, we find that
machines of these three topologies all have a high ratio of
same-qubit high correlation, while comparing the ratio of strong
correlations in all attribute pairs. Therefore the coherence time
(T'1 and T2) of a qubit is highly correlated in all types of
topologies.

G. Sensitive Qubits (SQ)

Apparently qubits on the same machine are not performing
equally fron our observation. We then define the ‘sensitive
qubits‘. A qubit of a machine is a sensitive qubit if the ratio
of the pairs of attributes of a qubit in RDM having a strong
correlation is bigger than or equal to 0.3. For example, Athens’s
sensitive qubit is ()4, Bogota’s sensitive qubits are (g and
(s, Santiago’s are ()1, 2, @3 and @4, Rome’s are )y and
@1, Ourense’s is ()2, and Vigo’s are @y, @2, Q3 and Qq.
Therefore, when the compiler maps the logical circuits to
quantum computers, we should avoid sensitive qubits as much
as possible or assign less important roles to the sensitive qubits,
e.g., ancilla qubits.
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H. Distance between Correlated Qubit Pairs(DQP)

When mapping logic qubits to physical qubits, it is essential
to understand the degree of the qubits‘ reliability to avoid
or reduce the use of less reliable qubits in swapping gates.
Therefore, we define the distance between correlated qubit pairs
for evaluating the routing algorithm for circuit transpilation.
The distance between two qubits means the minimum steps
we need to take to go from one qubit to another in the
qubit connection graph. For example, the distance between
Qo and Q2 in Athens is 2, and the distance between ()4
and Q7 in Melbourne is 4. As shown in table V, all the
pairs having a strong positive correlation (the absolute value
of correlation coefficient > 0.3) have a distance smaller than
or equal to 5. The qubit pairs that have a very weak correlation
with each other (the absolute value of correlation coefficient
< 0.05) distributes sparsely (from 1 to 8 distance). While
considers building swapping gates, compiler should avoid using
the strongly correlated pairs.

V. CONCLUSIONS

We present a novel reliability degradation analysis to study
the reliability degradation in NISQ machines. We design a re-
liability degradation detection approach based on the collected

Heatmaps For Linear Machine’s
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Correlation Coefficients

TABLE V
MELBOURNE’S STRONG CORRELATED QUBIT PAIRS AND WEAK
CORRELATED QUBIT PAIRS

Distance Between Qubit Pair | 1 | 2 | 3 | 4 | 5] 6| 7 | 8
Strong Correlation Pairs 312141321010
Weak Correlation Pairs 31612162 2]0]1

system calibration data to generate the reliability degradation
matrix that represents the system states regarding quantum
errors. We define new evaluation metrics to help quantify
the reliability of quantum computers, which can facilitate the
design of compiler to minimize the impact from quantum
errors by mapping the logical qubits to the most robust and
independent qubits.
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