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1 Introduction

Parity-violating electron scattering is a powerful tool to test the Standard Model (SM)

and probe for physics beyond the SM. Polarized Møller scattering, viz. the scattering of

a polarized electron beam on electrons in a fixed target, offers the opportunity for high-

precision measurements of the left-right asymmetry,

ALR =
dσL − dσR

dσL + dσR
, (1.1)

where the subscript L (R) refers to the left- (right)-handed polarization of the incident

electron beam. The MOLLER experiment [1] currently under development at Jefferson

Lab aims to determine ALR with a relative precision of 2.4%, which is an improvement by

a factor of about five compared to the SLAC E158 result [2].

This level of precision necessitates the inclusion of radiative corrections in the analysis.

The theoretical prediction for ALR can be written as [3]

ALR =
GµQ2

√
2πα

1 − y

1 + y4 + (1 − y)4
(1 − 4 sin2 θW + ∆Qe

W ), (1.2)

where Gµ is the Fermi constant, y = Q2/s, and s and Q2 are the (squares of the) center-

of-mass energy and the momentum transfer between the two electrons, respectively. The

quantity ∆Qe
W denotes the radiative corrections to the so-called weak charge of the electron

Qe
W , i.e., the expression in parentheses in eq. (1.2).

The next-to-leading order (NLO) corrections were found to be sizeable, reducing the

tree-level prediction for ALR by approximately1 40% [4]. This implies that higher-order

1This unusually large relative correction does not signal the breakdown of perturbation theory, but it is

due to the fact that the leading-order (LO) contribution is accidentally small since 1 − 4 sin2 θW ≪ 1.
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corrections need to be considered to match the anticipated precision of the MOLLER ex-

periment. Recently, the electroweak next-to-next-to-leading order (NNLO) from diagrams

with closed fermion loops were obtained [5], and they were found to have a moderate impact

of 1.3% relative to the LO asymmetry.

At the one-loop level [4, 6], the numerically dominant contribution stems from the γZ

mixing self-energy, which contains logarithmically enhanced terms ∝ ln(m2
f /m2

Z), where

f is any electrically charged fermion in the SM. An additional complication arises from

the fact that the light quark contribution to the γZ self-energy is not well-defined, since

Q2 < Λ2
QCD and thus non-perturbative hadronization effects become important.

It is well known that these large logarithms (and therefore also the leading hadronic un-

certainty) can be absorbed by expressing the one-loop result in terms of the MS weak mix-

ing angle2 at the scale zero, ŝ2(0), rather than at the weak scale [7–9]. This approach also

offers the opportunity to resum higher-order QCD corrections by using renormalization-

group (RG) techniques for the computation of the running of ŝ2(Q2) in the perturbative

Q2-regime [8, 9]. It is desirable to apply this strategy also at higher orders by recasting the

recent electroweak NNLO result in terms of ŝ2(0). To accomplish this, one must expand the

shift from RG running, ∆ŝ2 ≡ ŝ2(0) − ŝ2(mZ), in fixed orders of perturbation theory and

adjust the explicit one- and two-loop contributions to ∆ŝ2 in the NNLO result of ref. [5].

In this way, one arrives at the most accurate description of Møller scattering in the limit

Q2 → 0. It should be noted, however, that there can be corrections for realistic Q2 6= 0. For

diagrams with only massive W and Z bosons, the Q2 dependence is suppressed by powers

of Q2/m2
W,Z and thus completely negligible. However, this hierarchy of scales does not

apply to the γγ and γZ self-energies and thus the Q2 dependence cannot be ignored here.

Ref. [4] observed that at NLO there are large cancellations among the residual Q2 6= 0 loop

corrections, and the remainder was estimated to be numerically small. Since it is not clear

whether similar cancellations occur at NNLO, a more detailed investigation is needed.

This paper addresses both of the issues mentioned above: (a) the use of the low-scale

MS weak mixing angle ŝ2(0) within the electroweak NNLO correction to Møller scattering,

and (b) the investigation of non-zero Q2 effects. Section 2 describes the two-loop expansion

of the RG running of ŝ2. In particular, the extraction of the fixed-order shift ∆ŝ2 from the

RG study of ref. [9] will be discussed in detail. In section 3, we show how this replacement

works for the one-loop result of ref. [4]. Section 4 provides a detailed discussion of the

NNLO contributions from ∆ŝ2, as well as the QCD corrections to the ρ parameter, which

are not captured by the running of the weak mixing angle. Numerical results are presented

for two different renormalization schemes, where higher orders are parametrized in terms

of powers of the fine structure constant α and the Fermi constant Gµ, respectively. The

impact of hadronic uncertainties is discussed by using the framework of threshold quark

masses introduced in refs. [8, 9].

Section 5 is devoted to the analysis of residual Q2 6= 0 contributions in the self-

energies. For this purpose a full calculation of the two-loop γγ and γZ self-energies has

been performed. Similar to the previous section, threshold quark mass are being used to

2We use carets to denote quantities in the MS scheme.
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parametrize hadronic effects. Numerical results are presented for different values of the

kinematic variables. Our conclusions are presented in section 6.

2 NNLO corrections from the low-scale weak mixing angle

The running of the weak mixing angle in the MS scheme from the Z scale to very low ener-

gies was computed in ref. [8]. Since the RG equations (RGEs) of the vector couplings of the

Z boson and the electromagnetic coupling α̂ have a similar form, the authors could express

the running of the weak mixing angle in terms of the running of α̂. To be specific, the low en-

ergy scheme (i.e of the weak mixing angle ŝ(0)) was defined to resum the logarithms related

to γZ mixing. To do so, it was noted that such logs arise from the vector coupling of the Z

boson. Hence, an analogous procedure as for the running and decoupling of α to the vector

coupling was followed, allowing to properly resum such logarithms. This does not corre-

spond to an effective field theory approach (as in the Fermi theory) below the electroweak

scale, but rather we use a convenient prescription to absorb the logarithms in the parameter

ŝ(0). The solution of the RGE for regions between particle thresholds can be written as

ŝ2(µ) = ŝ2(µ0)
α̂(µ)

α̂(µ0)
+ λ1

[

1 − α̂(µ)

α̂(µ0)

]

+
α̂(µ)

π

[

λ2

3
ln

µ2

µ2
0

+
3λ3

4
ln

α̂(µ)

α̂(µ0)
+ σ̃(µ0) − σ̃(µ)

]

, (2.1)

where the coefficients λi are constants [8] that depend on the number of particles in the

theory [8]. The term σ̃ appears first at order α̂3
s, and arises from OZI violating (QCD

annihilation) diagrams. In a similar way the matching conditions of ŝ2 can also be written

in terms of α̂,

ŝ2(mi)
− =

α̂(mi)
−

α̂(mi)+
ŝ2(mi)

+ +
QiTi

2Q2
i

[

1 − α̂(mi)
−

α̂(mi)+

]

, (2.2)

where Qi is the electric charge of the corresponding particle, Ti its weak isospin, and mi its

mass. If the RGE for α̂ is solved including QCD contributions, one can obtain the running

of the weak mixing angle from eq. (2.1) and the matching conditions. This resummation

from µ = mZ to µ = 0 is the main result of refs. [8, 9]. On the other hand, in ref. [5]

NNLO diagrams with closed fermion loops were computed, but without the inclusion of

QCD corrections. The goal is now to merge the resummed QCD corrections from ref. [9]

and the fixed-order calculation of ref. [5].

To do this, we need to keep track of terms of O
(

α2
)

included in ref. [9]. This means we

have to expand the solution to the running of the weak mixing angle up to order O(α2) with

QCD effects turned off and compare with the O(α2) result for the asymmetry computed

in ref. [5]. First we obtain the expanded solution to the RGE of α̂,

α̂(µ) = α̂(µ0) − α̂2(µ0)

π
β0 ln

µ2

µ2
0

+
α̂3(µ0)

π2

[

β2
0 ln2 µ2

µ2
0

− β1 ln
µ2

µ2
0

]

, (2.3)

with matching condition,

1

α̂+(mf )
=

1

α̂−(mf )
− 15

16
N c

f Q4
f

α̂(mf )

π2
, (2.4)

– 3 –



J
H
E
P
0
8
(
2
0
2
2
)
1
8
3

where N c
f is the color factor, and where for a single fermion with charge Qf one has

β0 = −
Q2

f

3
, β1 = −

Q4
f

4
. (2.5)

This solution can be substituted into eq. (2.1) and one obtains the analogous expanded

RGE solution for the weak mixing angle truncated at O(α̂2),

ŝ2(µ) = ŝ2(µ0)+
α̂(µ0)

π

(

β0λ1 +
λ2

3
−β0ŝ2(µ0)

)

ln
µ2

µ2
0

(2.6)

+
α̂2(µ0)

π2

[

(

β1λ1 − 3

4
β0λ3 −β1ŝ2(µ0)

)

ln
µ2

µ2
0

−
(

β0λ1 +
λ2

3
−β0ŝ2(µ0)

)

β0 ln2 µ2

µ2
0

]

.

If one wants to compute the weak mixing angle at µ = 0 in terms of ŝ2(mZ), this equation

should be used between particle thresholds. For example, for mW < µ < mZ the QED β

function and the λi constants include the W boson. At µ = mW the matching conditions

for α̂ and ŝ are used. Then eq. (2.6) is used again for mb < µ < mW but without W boson

loop contributions.3 This procedure is repeated until µ = me is reached.

With the expanded expressions for ŝ2(mZ) in terms of ŝ2(0) up to O(α2) at hand, one

can rewrite the semi-analytical result for ALR from ref. [5] also in terms of ŝ(0). The idea

is to replace all occurrences of ŝ(mZ) by ŝ(0) − [ŝ(0) − ŝ(mZ)], where [ŝ(mz) − ŝ(0)] is

the shift computed in this section, expanded to the required order in perturbation theory,

and ŝ(0) is the new input parameter, for which one can substitute the value obtained

in ref. [9]. This value includes both perturbative QCD (pQCD) corrections and non-

perturbative contributions that enter into the RGE of the weak mixing angle, and we now

briefly summarize how it was computed.

In the perturbative regime (µ > 2 GeV), solving the RGE of ŝ is straightforward.

Moreover, since there is no explicit α̂s dependence, we can also use eq. (2.1) for hadronic

scales, and in this way the hadronic contribution to the weak angle is obtained from the

hadronic contribution to α̂. For the latter, one has to rely on experimental data and

dispersion relations [10–12]. However, different weights λi enter eq. (2.1), because they

depend on the number of active particles in the effective theory. Thus, not only the total

contribution of the three quarks to α̂ is needed, but also an estimate of the effective mass

scales individually for the three light quarks. This flavor separation was addressed in ref. [8]

by considering two limits, namely when the strange quark is much more massive than the

up and down quarks, and when SU(3) flavor symmetry is restored. This issue introduced

the largest source of uncertainty in the calculation. Later, in ref. [9] the method was refined

by identifying (wherever possible) which channels of the e+e− → hadrons cross section can

be associated with the strange quark current. To reduce the remaining ambiguity, lattice

results [13] of the strange quark contribution to the anomalous magnetic moment of the

muon were adapted to the case at hand and included. The combination of flavor, data and

pQCD errors gave a total uncertainty of ±2 × 10−5 in the running of ŝ from µ = mZ to

µ = 0, which translates into an error of ±8 × 10−5 in the weak charge of the electron.

3This just changes the values of the λi.
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3 Revisiting the one-loop result (NLO) for the asymmetry

For illustration we first revisit the one-loop result [4] for ALR,

A1−loop
LR =

ρGµQ2

√
2πα

1 − y

1 + y4 + (1 − y)4

[

1 − 4κ(0)ŝ2
Z

+
α

4πŝ2
Z

− 3α

32πŝ2
Z ĉ2

Z

(1 − 4ŝ2
Z)

(

1 + (1 − 4ŝ2
Z)2

)

− α

4π
(1 − 4ŝ2

Z)

{

22

3
ln

ym2
Z

Q2
+

85

9
+ f(y)

}

+ F2(y, Q2)

]

, (3.1)

where ŝ2
Z = ŝ2(mZ) and ĉ2

Z = 1 − ŝ2
Z . The ρ parameter takes into account that the Fermi

constant Gµ is obtained from a charged current process while polarized electron scattering

is a neutral current process. κ(0) includes corrections from γZ vacuum polarization and

anapole diagrams. The terms in the second line are from the WW and ZZ box contri-

butions, respectively. The last line arises from the γZ box and from photonic corrections,

where the finite Q2 effects are included in the quantity F2(y, Q2). Notice that eq. (3.1) is

written in terms of the fine structure constant α throughout, while the original reference [4]

employed α̂(mZ) in the WW and ZZ box diagrams. We do this because the explicit two-

loop calculation uses α in the Thomson limit as the expansion parameter. The analytical

expression for κ(0) reads,

κ(0)ŝ2
Z = ŝ2

Z − α

π





1

6

∑

f

(

T3f Qf − 2ŝ2
ZQ2

f

)

ln
m2

f

m2
Z

−
(

7

4
ĉ2

Z +
1

24

)

ln
m2

W

m2
Z

+
7

18
− ŝ2

Z

6



 ,

(3.2)

while the expanded one-loop solution [8] to the RGE of the weak mixing angle is

ŝ2
Z − ŝ2

0 =
α

π





1

6

∑

f

(

T3f Qf − 2ŝ2
ZQ2

f

)

ln
m2

f

m2
Z

−
(

7

4
ĉ2

Z +
1

24

)

ln
m2

W

m2
Z

+
1

6
− ŝ2

Z

6



 , (3.3)

where ŝ2
0 = ŝ2(0). Hence one can see that if we insert the value ŝ2

Z = ŝ2
0 + [ŝ2

Z − ŝ2
0] from

eq. (3.3) into the tree level contribution (namely 1−4ŝ2
Z) of the asymmetry (3.1) then there

is a complete cancellation between the logarithms in κ(0) and ŝ2(mZ)−ŝ2(0) at order O(α).

Effectively one can just replace

κ(0)ŝ2
Z = ŝ2

0 − 2α

9π
+ O(α2), (3.4)

which corresponds to the fact that the RGE solution absorbs all logarithms originating from

γZ two-point diagrams. Since the replacement ŝZ → ŝ0 induces changes of order O(α),

such replacement applied to the terms of order O(α) will induce effects of O(α2). Before

studying these effects in more detail, we note that given the small number of diagrams

at one-loop and the simplicity of the result, it is not difficult to infer which scale should

be used in certain subsets of the diagrams in order to absorb the leading higher-order

contributions. For example, for the γZ mixing bubble diagrams the weak mixing angle

– 5 –
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at µ = 0 should be used, while for the WW or ZZ box diagrams the choice µ = mZ

provides a better approximation. On the other hand, for γZ box diagrams this issue is

more complicated since the loop integration encompasses all scales from 0 to mZ . If one

wants to extend this kind of scale setting to two-loop order, one needs to identify gauge

invariant subsets. This is a challenging task which we leave for future work.

We conclude this section by studying the numerical impact of changing ŝZ to ŝ0 in

the O(α) result. It is important to note that the largest relative change will come from

diagrams that are multiplied by a term of the form 1 − 4ŝ2, because the numerical value of

ŝZ is accidentally close to 1/4. The WW box contribution is not of this form, and there is

a modest change when the replacement ŝZ → ŝ0 is applied (∆Qe
W ≈ 0.08 × 10−3). The ZZ

box contribution to the weak charge is small to begin with, and even though the replacement

produces a large relative change, it results in only a small change of ≈ 0.04 × 10−3 in Qe
W .

The largest numerical impact of the replacement is due to γZ box diagrams. This was first

discussed in ref. [4], and due to the ambiguity in scale setting mentioned in the previous

paragraph, the authors assigned half of the difference between using ŝ0 and ŝZ in the γZ

box as a perturbative uncertainty, amounting to about 10−3 in Qe
W .

4 Two-loop results (NNLO)

In this section, numerical results are presented in two renormalization schemes, which differ

in the way the electroweak coupling is renormalized,

α scheme : ∆Qe
W = α ∆Qe,α

W (1) + α2 ∆Qe,α
W (2), (4.1)

Gµ scheme : ∆Qe
W = Gµ ∆Qe,G

W (1) + G2
µ ∆Qe,G

W (2). (4.2)

In eq. (4.1) the electromagnetic coupling is renormalized in the Thomson limit, which

introduces a dependence of the final result on the shift ∆α that accounts for the effective

running of the fine structure constant between the scale µ = 0 and µ = mZ . The weak

coupling in this scheme is defined as g = e/ŝ.

The translation to the Gµ scheme is accomplished by using the relation

Gµ√
2

=
πα

2ŝ2
Z ĉ2

Zm2
Z

(1 + ∆r), (4.3)

where ∆r accounts for radiative corrections. The electroweak two-loop corrections to ∆r

have been taken from refs. [14, 15] (see also ref. [16]).

In the following, we use the notation ∆Qe,X
W (L,nf ) with X = α, Gµ to further distinguish

the L-loop corrections by the number nf of closed fermion loops,

∆Qe,X
W (1) = ∆Qe,X

W (1,1) + ∆Qe,X
W (1,0) , ∆Qe,X

W (2) = ∆Qe,X
W (2,2) + ∆Qe,X

W (2,1) . (4.4)

The two-loop corrections without closed fermion loops, ∆Qe,X
W (2,0), are not known at this

time, but they have been estimated to be of O(10−4) [5].

The NNLO result of ref. [5] is given in terms of ŝ(mZ). There the MS counterterm

δŝ2
Z at µ = mZ is calculated in the full six-flavor SM. To rewrite our expressions in terms

of ŝ2
0 we define δŝ2

0 ≡ δŝ2
Z − ∆ŝ2 where ∆ŝ2 = ŝ2

0 − ŝ2
Z .

– 6 –
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For our numerical results we use the values,

mZ = 91.1876 GeV, mH = 125.1 GeV,

mτ = 1.777 GeV, mt = 173.0 GeV, mb = 3.99 GeV,

mµ = 105.7 MeV, mc = 1.185 GeV, ms = 342 MeV,

me = 0.511 MeV, mu,d = 246 MeV,

α−1 = 137.036, ∆α = 0.02761had + 0.0314976lep,

ŝ2(mZ) = 0.2314, ŝ2(0) = 0.23861,

Gµ = 1.1663787 × 10−5 GeV−2. (4.5)

The values and uncertainties for ŝ(0), the light quark masses mq, q 6= t, and the hadronic

contribution to ∆α, are taken from the RG analysis of ref. [9]. The leptonic contribution

to ∆α has been computed perturbatively to 4-loop accuracy in ref. [17]. Furthermore,

considering the MOLLER experiment with an electron beam energy of Ebeam = 11 GeV,

the center-of-mass energy is given by s = 2meEbeam = 0.011 GeV2. With these inputs, we

obtain the numerical results in table 1.

The result in the ŝ(mZ)–α scheme corresponds to column 2 in table 1. The numbers

shown there are identical to the ones reported in ref. [5] where the weak-scale mixing angle

ŝ(mZ) was used without the inclusion of pQCD. As for the non-perturbative (hadronic)

effects, some of these are included in the threshold masses, but others are missing as we

explain in what follows.

The parametrization [9] to incorporate the non-perturbative light quark contributions

to ∆α̂ includes — in addition to the light quark threshold masses — a second parameter

Kq, in terms of which the contribution of a light quark has the form

∆α̂ ∼ α

π
Q2

qKq ln
µ2

m2
q

. (4.6)

At first sight, the parameter Kq may seem redundant, as it is the combination (4.6) as a

whole that is constrained by e+e− → hadrons data. However, there is a monotony con-

straint on the Kq since K1 > K2 for two quarks with masses m1 < m2 (for asymptotically

large quark masses Kq → 1), and in addition Kc and Kb can be computed in pQCD. This

additional information reduces the uncertainty but introduces a large correlation between

mq and Kq. The second column in table 1 does not contain the Kq effects since Kq = 1

was assumed.

The third and fourth columns contain the results when using the low-scale mixing

angle ŝ(0) as input in the two renormalization schemes defined in eqs. (4.1) and (4.2). We

now discuss the table row by row.

• 1 − 4ŝ2: this is the tree level contribution. We can see a large difference between

column two and the low energy schemes (columns three and four). This is because

the weak mixing angle at zero absorbs all large logarithms ∼ ln(m2
f /m2

Z). The error

associated to this contribution comes from the error in the weak mixing angle at zero

momentum [9], and translates to an error of ±0.08 × 10−3 in the weak charge.

– 7 –
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ŝ(mZ)–α scheme∗ [5] ŝ(0)–α scheme ŝ(0)–Gµ scheme

(X=α) (X=α) (X=Gµ)

1 − 4ŝ2 74.40 45.56 45.56

X ∆Qe,X
W (1,1) −29.04 + 0.39 + 0.43

X ∆Qe,X
W (1,0) + 3.06 + 0.77 + 0.84

X2 ∆Qe,X
W (2,2) − 0.18 + 0.07 + 0.05

X2 ∆Qe,X
W (2,1) + 1.18 − 1.15 − 1.30

X ∆Qe,X
W,∆ρ — − 0.05 − 0.06

Sum 49.42 45.60 45.52

∗no QCD corrections.

Table 1. Corrections (in units of 10−3) at different orders contributing to the electron’s weak

charge in polarized Møller scattering in three different input schemes for the SM input parameters

in eq. (4.5) and the kinematic parameters s = 0.011 GeV2 and y = 0.4. In our notation, ∆QW (L,nf )

is the contribution at L-loop order from diagrams with nf closed fermion loops.

• X ∆Q
e,X

W (1,1): by comparing column two of table 1, with the low energy schemes, one

can immediately see that the size of the NLO corrections is reduced by more than an

order of magnitude in the low energy schemes, which is mostly due to the absence

of large logarithms ∼ ln(m2
f /m2

Z), i.e., these logarithms are already absorbed in the

tree-level result. The error induced in the weak charge by the error on the input

parameter ŝ2(0) is negligible for these type of diagrams.

• X ∆Q
e,X

W (1,0): the difference relative to column two comes mainly from the γZ box.

There is also a reduction due to the fact that ŝ2(0) contains the W-boson contribution

to the γZ bubble. The error induced in the weak charge by the error on the input

parameter ŝ2(0) is negligible for these type of diagrams.

• ∆Q
e,X

W (2,2): a reduction also emerges for the contributions with two closed fermion

loops. Part of this is due to the resummation of the fermionic logarithms in ŝ(0).

In the ŝ(0)–α scheme, the logarithmic dependence on the fermion masses is not

completely cancelled since the weak mixing angle counterterm also appears in subloop

renormalization contributions, without any connection to the t-/u-channel γZ self-

energy. It turns out that these additional appearances of the weak mixing angle

counterterm are cancelled in the ŝ(0)–Gµ scheme, so that ∆Qe,X
W (2,2) does not have any

dependence on the light fermion masses in this scheme, i.e., all the logarithms drop

out. This is a consequence of the similarity of the charged-current Fermi interaction

and the neutral-current parity-violating contribution to Møller scattering, which are

both weak four-fermion processes.4 Hence, we have the picture that in the ŝ2(0)–Gµ

4Moreover, the result for ∆Qe,X

W (2,2)
in the ŝ(0)–Gµ scheme is not only independent of the quark mass

logarithms stemming from the γZ self-energy, but in addition is independent of the shift in the fine structure

constant, ∆α.
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scheme the dependence on the light quark masses is completely removed, while in

the ŝ2(0)–α scheme a small dependence on the quark masses remains. To estimate

the remaining hadronic uncertainty (that is not already taken into account in ŝ2(0))

we vary these masses within the ranges given in ref. [9], translating into a negligible

error in the weak charge in the ŝ2(0)–α scheme.

• ∆Q
e,X

W (2,1): for the contributions with only one closed fermion loop, we did not find

any significant reductions in the corrections or the dependence on the fermion masses

(cancellation of logarithms). While this may seem surprising at first glance, one must

keep in mind that the ∆Qe,X
W (2,1) corrections have a much more complicated structure

than the contributions with two closed fermion loops. For instance, they contain two-

loop vertex and box diagrams, exemplified in figure 1, that depend on the fermion

masses in a non-trivial way. These diagrams have been computed numerically in

ref. [5] using a dispersion relation for the fermionic subloops. The integration region

spans all values of |k2| from 0 to ∞, where k is the momentum flowing through the

fermion subloops, while ŝ(0) only absorbs the fermion mass dependence at k2 = 0.

Therefore one should not expect any significant cancellations in the ŝ(0) schemes.

Indeed, the threshold masses obtained in refs. [8, 9] were constructed to quantify the

total hadronic contribution to the running of the weak mixing angle between mc and

zero. On the other hand, within the hadronic region this parametrization may lose its

justification. To account for this additional theoretical uncertainty, we take a conser-

vative approach and assign a factor of two error in the masses,5 mq
+1.0mq

−0.5mq
, translating

into an hadronic error in ∆Qe,X
W (2,1) of less than ±0.06 × 10−3. A more refined pos-

sibility is to use the vacuum polarization functions obtained from e+e− data using

dispersive techniques or lattice results [18], as described for example in ref. [19]. In

this approach it is possible, with certain theory assumptions about flavor separation,

to obtain Πγγ(s) and ΠγZ(s) in the hadronic region. These can then be inserted in the

two-loop diagrams and numerically integrated. There are recent developments in the

calculation of such integrals in the context of µe scattering in both the timelike [20]

and the spacelike regions [21]. One should then understand our uncertainty as a

conservative estimate of the size of the hadronic effects for these type of diagrams.6

• QCD corrections: the bulk of the higher-order QCD corrections are captured by

the RG running of ŝ(µ), which sums up powers of large fermionic logarithms to all

orders. The evaluation of ŝ(0) in ref. [9] includes RG effects up to O(α̂4
s ). A sep-

arate source of QCD corrections enters through the ρ parameter, which describes

5If one took the nominal values from ref. [5] instead, this uncertainty would be ±0.03 × 10−3.
6The reader might be worried that perhaps the full vacuum polarisation function is also needed in

the ∆Qe,X

W (1,1)
and ∆Qe,X

W (2,2)
contributions discussed previously, given the finite q2 of MOLLER. That is,

corrections which go as q2/m2
q, or more properly q2/m2

π. Nevertheless, as we explain in the next section,

given the kinematic values at MOLLER we estimated such finite q2 terms to be rather small, so the detailed

form of the vacuum polarisation function in such diagrams is a subleading effect and well under control,

and the use of χPT, threshold masses or a full integral expression of Π(q2) do not significantly change the

result. This is in contrast with the process calculated in ref. [20] (µe scattering) where the momentum

transfer is in the range −0.143 GeV2 < t < 0.
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the higher-order electroweak uncertainty is to take the difference between the ŝ(mZ)

scheme and any of the ŝ(0) schemes. But in order to do this one has to include the

same QCD contributions in both schemes. Therefore, we first re-computed column

two of table 1 including the non-perturbative effects7 contained in Kq. This would in-

clude all non-perturbative effects, but would miss the resummation of the logarithms

and the dependence on pQCD so that it can be compared with a re-computed column

three (ŝ(0) scheme) with pQCD turned off. The difference between these re-computed

weak charges in the two schemes (ŝ2(0)–α and ŝ2(mZ)–α) should then be due to elec-

troweak effects. We found that this difference is 4.5 × 10−4, which is much smaller

than the difference between columns two and three in table 1, demonstrating that the

latter is mainly due to the missing QCD effects in column two.8 The remaining differ-

ence may be attributed to the scheme choice. Bearing in mind that this difference is

obtained in a similar way to how ref. [4] estimated the error from the γZ box, we may

take the interval spanned by the results in the two schemes as a conservative estimate

of the higher-order perturbative error on the weak charge. Adding back the pQCD

contributions, this implies that we have the error interval [45.60, 45.60 + 0.45] × 10−3

or (45.83±0.23)×10−3, where the lower bound corresponds to the ŝ2(0)–α result. An

alternative error estimation is obtained by studying the shifts induced by the change

of the weak mixing angle from ŝ(mZ) to ŝ(0) in the ∆QW (2,1) terms, leaving every-

thing else fixed, which results in a shift of similar size (2 × 10−4) for the weak charge.

In summary, we find for the weak charge of the electron,

Qe
W = (45.83 ± 0.08 ŝ(0) ± 0.06

∆Q
e,X

W (2,1)
( had)

± 0.13
∆Q

e,X

W (2,0)
( missing)

± 0.23 scheme) × 10−3

= (45.83 ± 0.28 theory) × 10−3, (4.11)

where in the last line we added all errors in quadrature. Comparing with the experimental

precision expected at MOLLER, δQe
W = 1.1 × 10−3, we see that the theoretical error is

under control. In this result, the correlations between the light quark masses are properly

included in the error of ŝ2
0 computed in ref. [9]. For the calculation of the box and vertex

diagrams, the errors on mu,d and ms are assumed to be fully anticorrelated, which is

a simplifying but conservative assumption. We emphasize that the numerical difference

between our result and ref. [5] is due to the inclusion of QCD effects, both perturbative

and non-perturbative contributions parametrized by the Kq in ref. [9]. To understand the

impact of the scheme choice, the QCD corrections must be treated on equal footing in

both schemes. This comparison has been carried out in this paper, and the difference

between both schemes is taken to define the scheme error in eq. (4.11). Furthermore, it is

important to remark that taking half the difference between the ŝ2(0) and ŝ2(mZ) schemes

likely overestimates the perturbative error since we expect the exact (all orders) result to

be closer to the low-scale schemes. On top of that, we believe that the estimation of the

electroweak perturbative error can be better understood and further reduced through a

7We did this by absorbing these effects into the phenomenological masses which lowers their values.
8This also served as a double-check of the implementation of our schemes.
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more careful resummation of dominant diagrams. Such an analysis requires the study of

gauge invariant diagram subsets which is a complicated task and left for future work.

5 Finite momentum transfer effects

In the calculation of ref. [5], the momentum transfer through the t- and u-channel propaga-

tors was approximated to be zero, Q2 → 0. At the one-loop level, it was found that the shift

in the transverse self-energies, Πγγ
T (−Q2) − Πγγ

T (0) and ΠγZ
T (−Q2) − ΠγZ

T (0), is very small

for the kinematic parameters of the E158 and MOLLER experiments [4]. However, it is

worth verifying that this also holds at two loops. This is clearly the case for diagrams where

all particles in the loop have large masses, m2
i ≫ Q2, since any momentum-dependent term

scales like Q2/m2
i in these contributions. But for diagrams with light fermions (e, µ, u, d, s)

in the loop it is less obvious that Q2 → 0 is a good approximation.

To investigate this question, we have computed the relevant γγ and γZ one- and two-

loop self-energies for Q2 6= 0. The one-loop self-energies allow us to reproduce and verify

the results of ref. [4], while the two-loop self-energies will be used to study the quality of

the Q2 → 0 approximation used in ref. [5]. At two-loop order, or NNLO, one also needs to

include one-particle reducible diagrams with a one-loop self-energy and a one-loop vertex

correction, as well as the interference of two one-loop amplitudes. We restrict ourselves

to NNLO contributions with at least one closed fermion loop, since this is the order of

corrections considered in ref. [5]. Moreover, the self-energy diagrams without fermions do

not contain any particles with masses comparable to or below Q2.

The package FeynArts 3 [28] has been used for generating the amplitudes for the

one- and two-loop self-energies. The Lorentz and Dirac algebra has been performend with

an in-house code, implemented in Mathematica. This code also performs a reduction

to a set of master integrals, based on the technique of ref. [29]. The master integrals

can be evaluated numerically with TVID 2 [30], which uses the one-dimensional integral

representations developed in refs. [31, 32].

As in the previous section, the hadronic self-energy contributions are described by

computing quark loops and using the threshold quark masses from ref. [9] that have been

derived from a renormalization-group analysis. As shown in eq. (3.1), the impact of the

Q2-dependence of the self-energies on the asymmetry ALR can be written as [4]

ALR =
GµQ2

√
2πα

1 − y

1 + y4 + (1 − y)4
[1 − 4 sin2 θW + F2(Q2, y) + . . .], (5.1)

where y = Q2/s and the dots denote all other higher-order corrections. By construction,

F2(0, y) = 0.

With the input parameters in eq. (4.5), as well as s = 0.011 GeV2, the numerical results

listed in table 2 are obtained. The 1-loop contribution for y = 0.5 agrees well with the

analysis of ref. [4], which found F2(y = 0.5) ≈ 2 × 10−5. For all experimentally relevant

values of y, the NLO contributions to F2 stay well below 10−4 and thus are irrelevant for

practical purposes. The NNLO contributions can be divided into terms with two and one

closed fermion loop. Both of these, as well as the sum of the NNLO effects, are about one
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y F
(1,1)
2 [10−5] F

(2,2)
2 [10−5] F

(2,1)
2 [10−5]

0.25 (0.75) 5.01 −0.54 0.00

0.30 (0.70) 4.11 −0.25 −0.18

0.35 (0.65) 3.39 −0.02 −0.29

0.40 (0.60) 2.86 0.15 −0.36

0.45 (0.55) 2.55 0.25 −0.40

0.50 2.44 0.29 −0.41

Table 2. Numerical results for F2(Q2, y), which captures the Q2-dependence of the photon and

photon-Z self-energies. F
(L,nf )
2 denotes corrections with L loops and nf closed fermion loops. Re-

sults are shown as a function of y = Q2/s, for s = 0.011 GeV2 and SM input parameters in eq. (4.5).

order of magnitude smaller than the NLO contributions. This confirms that the Q2 → 0

approximation used in ref. [5] is accurate and robust at NLO and NNLO.

6 Conclusions

The left-right polarization asymmetry in Møller scattering is a sensitive probe of parity

violation in the SM and from new physics. Recently, the SM electroweak two-loop cor-

rections from contributions with closed fermion loops to this observable were computed in

ref. [5]. For phenomenlogical applications, this result needs to be combined with resummed

QCD and hadronic effects, which can be incorporated through the renormalization group

analysis of the MS weak mixing angle ŝ(µ) at low scales µ ≈ 0 [8, 9]. Two new schemes

are introduced, labeled ŝ(0)–α and ŝ(0)–Gµ, respectively. Both use the low-energy MS

weak mixing angle as input, but the former scheme uses α for the power counting of the

electroweak perturbative expansion, whereas the latter uses Gµ.

In addition to the perturbative and non-perturbative QCD effects from the running of

ŝ(µ), we also include perturbative QCD corrections to the ρ parameter. Finally, we carry

out a careful analysis of the dependence of the scattering rate on the momentum transfer

squared Q2, which we find to be numerically negligible. The SM prediction for the left-right

asymmetry, including higher-order effects, can be expressed in terms of the weak charge

Qe
W of the electron. In the ŝ(0)–α scheme we obtain Qe

W = (45.83 ± 0.28) × 10−3, where

the dominant error of ±0.23 × 10−3 stems from the purely electroweak difference between

the ŝ(mZ)-α and ŝ(0)-α schemes. The result is consistent with the one-loop calculation

of ref. [4] and implies a reduction of the uncertainty by almost an order of magnitude.

Additional relevant sources of uncertainty stem from the currently unknown bosonic two-

loop corrections (estimated as δQe
W = ±0.13 × 10−3 [5]) and from the running of ŝ(µ)

including non-perturbative effects (estimated to amount to δQe
W = ±0.08 × 10−3 [9]).

When compared to the expected precision δQe
W = 1.1 × 10−3 of the planned MOLLER

experiment [1], the overall uncertainty of the SM prediction turns out to be insignificant.

Furthermore, this theoretical error is rather conservative, since the low-energy scale of

the process suggests that the ŝ(0) scheme is the more adequate one to use in the tree-level
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expression, so that considering half the scheme difference may overestimate the uncertainty.

Future work on enhanced three-loop effects and the purely bosonic two-loop corrections

can be expected to reduce the theory error further.
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