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1 Introduction

Parity-violating electron scattering is a powerful tool to test the Standard Model (SM)
and probe for physics beyond the SM. Polarized Mgller scattering, viz. the scattering of
a polarized electron beam on electrons in a fixed target, offers the opportunity for high-
precision measurements of the left-right asymmetry,
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where the subscript L (R) refers to the left- (right)-handed polarization of the incident
electron beam. The MOLLER experiment [1] currently under development at Jefferson
Lab aims to determine Apr with a relative precision of 2.4%, which is an improvement by
a factor of about five compared to the SLAC E158 result [2].

This level of precision necessitates the inclusion of radiative corrections in the analysis.
The theoretical prediction for Apg can be written as [3]
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Arg = (1 —4sin® 6 + AQ§y), (1.2)
where G/, is the Fermi constant, y = Q?/s, and s and Q? are the (squares of the) center-
of-mass energy and the momentum transfer between the two electrons, respectively. The
quantity AQ¥;, denotes the radiative corrections to the so-called weak charge of the electron
Qfy, i-e., the expression in parentheses in eq. (1.2).

The next-to-leading order (NLO) corrections were found to be sizeable, reducing the
tree-level prediction for Apr by approximately! 40% [4]. This implies that higher-order

IThis unusually large relative correction does not signal the breakdown of perturbation theory, but it is
due to the fact that the leading-order (LO) contribution is accidentally small since 1 — 4sin® fy < 1.



corrections need to be considered to match the anticipated precision of the MOLLER, ex-
periment. Recently, the electroweak next-to-next-to-leading order (NNLO) from diagrams
with closed fermion loops were obtained [5], and they were found to have a moderate impact
of 1.3% relative to the LO asymmetry.

At the one-loop level [4, 6], the numerically dominant contribution stems from the vZ
mixing self-energy, which contains logarithmically enhanced terms o ln(m? /m?%), where
f is any electrically charged fermion in the SM. An additional complication arises from
the fact that the light quark contribution to the vZ self-energy is not well-defined, since
Q* < AQQCD and thus non-perturbative hadronization effects become important.

It is well known that these large logarithms (and therefore also the leading hadronic un-
certainty) can be absorbed by expressing the one-loop result in terms of the MS weak mix-
ing angle? at the scale zero, §2(0), rather than at the weak scale [7-9]. This approach also
offers the opportunity to resum higher-order QCD corrections by using renormalization-
group (RG) techniques for the computation of the running of $2(Q?) in the perturbative
Q?-regime [8, 9]. Tt is desirable to apply this strategy also at higher orders by recasting the
recent electroweak NNLO result in terms of $2(0). To accomplish this, one must expand the
shift from RG running, As? = §%(0) — §%(my), in fixed orders of perturbation theory and
adjust the explicit one- and two-loop contributions to A% in the NNLO result of ref. [5].

In this way, one arrives at the most accurate description of Mgller scattering in the limit
Q? — 0. It should be noted, however, that there can be corrections for realistic Q? # 0. For
diagrams with only massive W and Z bosons, the Q? dependence is suppressed by powers
of Q2 /m%v , and thus completely negligible. However, this hierarchy of scales does not
apply to the vy and vZ self-energies and thus the Q? dependence cannot be ignored here.
Ref. [4] observed that at NLO there are large cancellations among the residual @* # 0 loop
corrections, and the remainder was estimated to be numerically small. Since it is not clear
whether similar cancellations occur at NNLO, a more detailed investigation is needed.

This paper addresses both of the issues mentioned above: (a) the use of the low-scale
MS weak mixing angle §2(0) within the electroweak NNLO correction to Mgller scattering,
and (b) the investigation of non-zero Q? effects. Section 2 describes the two-loop expansion
of the RG running of 3. In particular, the extraction of the fixed-order shift As? from the
RG study of ref. [9] will be discussed in detail. In section 3, we show how this replacement
works for the one-loop result of ref. [4]. Section 4 provides a detailed discussion of the
NNLO contributions from A32, as well as the QCD corrections to the p parameter, which
are not captured by the running of the weak mixing angle. Numerical results are presented
for two different renormalization schemes, where higher orders are parametrized in terms
of powers of the fine structure constant o and the Fermi constant G, respectively. The
impact of hadronic uncertainties is discussed by using the framework of threshold quark
masses introduced in refs. [8, 9].

Section 5 is devoted to the analysis of residual Q% # 0 contributions in the self-
energies. For this purpose a full calculation of the two-loop v and vZ self-energies has
been performed. Similar to the previous section, threshold quark mass are being used to

2We use carets to denote quantities in the MS scheme.



parametrize hadronic effects. Numerical results are presented for different values of the
kinematic variables. Our conclusions are presented in section 6.

2 NNLO corrections from the low-scale weak mixing angle

The running of the weak mixing angle in the MS scheme from the Z scale to very low ener-
gies was computed in ref. [8]. Since the RG equations (RGEs) of the vector couplings of the
Z boson and the electromagnetic coupling & have a similar form, the authors could express
the running of the weak mixing angle in terms of the running of &. To be specific, the low en-
ergy scheme (i.e of the weak mixing angle §(0)) was defined to resum the logarithms related
to vZ mixing. To do so, it was noted that such logs arise from the vector coupling of the Z
boson. Hence, an analogous procedure as for the running and decoupling of « to the vector
coupling was followed, allowing to properly resum such logarithms. This does not corre-
spond to an effective field theory approach (as in the Fermi theory) below the electroweak
scale, but rather we use a convenient prescription to absorb the logarithms in the parameter
5(0). The solution of the RGE for regions between particle thresholds can be written as

&(po) A [1 ~ a(uo)

ap) (A2, p?  3X3 . a(p) | . .
-\ [ 3 n 2 L a(0) +o(po) — U(u)] , (2.1)

where the coefficients \; are constants [8] that depend on the number of particles in the

theory [8]. The term & appears first at order &2, and arises from OZI violating (QCD
annihilation) diagrams. In a similar way the matching conditions of 52 can also be written
in terms of &,

§%(my)~ = ZEZ;;+§2(W)+ + gé)? l1 _a(my) ] ’ (2.2)
where @); is the electric charge of the corresponding particle, T; its weak isospin, and m; its
mass. If the RGE for & is solved including QCD contributions, one can obtain the running
of the weak mixing angle from eq. (2.1) and the matching conditions. This resummation
from = myz to p = 0 is the main result of refs. [8, 9]. On the other hand, in ref. [5]
NNLO diagrams with closed fermion loops were computed, but without the inclusion of
QCD corrections. The goal is now to merge the resummed QCD corrections from ref. [9]
and the fixed-order calculation of ref. [5].

To do this, we need to keep track of terms of O (a?) included in ref. [9]. This means we
have to expand the solution to the running of the weak mixing angle up to order O(a?) with
QCD effects turned off and compare with the O(a?) result for the asymmetry computed
in ref. [5]. First we obtain the expanded solution to the RGE of &,
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where N7 is the color factor, and where for a single fermion with charge @ one has

fo=—=3 br=—- (2.5)

This solution can be substituted into eq. (2.1) and one obtains the analogous expanded
RGE solution for the weak mixing angle truncated at O(&2),
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If one wants to compute the weak mixing angle at ;1 = 0 in terms of 82(my), this equation
should be used between particle thresholds. For example, for my < p < mz the QED g
function and the A; constants include the W boson. At yu = mys the matching conditions
for & and § are used. Then eq. (2.6) is used again for my, < p < myy but without W boson
loop contributions.? This procedure is repeated until ;1 = m, is reached.

With the expanded expressions for §2(my) in terms of 42(0) up to O(a?) at hand, one
can rewrite the semi-analytical result for Ay from ref. [5] also in terms of §(0). The idea
is to replace all occurrences of §(my) by §(0) — [3(0) — 8(my)], where [§(m.) — §(0)] is
the shift computed in this section, expanded to the required order in perturbation theory,
and §(0) is the new input parameter, for which one can substitute the value obtained
in ref. [9]. This value includes both perturbative QCD (pQCD) corrections and non-
perturbative contributions that enter into the RGE of the weak mixing angle, and we now
briefly summarize how it was computed.

In the perturbative regime (u > 2GeV), solving the RGE of § is straightforward.
Moreover, since there is no explicit &s dependence, we can also use eq. (2.1) for hadronic
scales, and in this way the hadronic contribution to the weak angle is obtained from the
hadronic contribution to &. For the latter, one has to rely on experimental data and
dispersion relations [10-12]. However, different weights A; enter eq. (2.1), because they
depend on the number of active particles in the effective theory. Thus, not only the total
contribution of the three quarks to & is needed, but also an estimate of the effective mass
scales individually for the three light quarks. This flavor separation was addressed in ref. [8]
by considering two limits, namely when the strange quark is much more massive than the
up and down quarks, and when SU(3) flavor symmetry is restored. This issue introduced
the largest source of uncertainty in the calculation. Later, in ref. [9] the method was refined
by identifying (wherever possible) which channels of the e™e~ — hadrons cross section can
be associated with the strange quark current. To reduce the remaining ambiguity, lattice
results [13] of the strange quark contribution to the anomalous magnetic moment of the
muon were adapted to the case at hand and included. The combination of flavor, data and
pQCD errors gave a total uncertainty of £2 x 1075 in the running of § from p = myz to
p = 0, which translates into an error of 8 x 107> in the weak charge of the electron.

3This just changes the values of the \;.



3 Revisiting the one-loop result (NLO) for the asymmetry

For illustration we first revisit the one-loop result [4] for Apg,
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where 3% = 8%(myz) and ¢% = 1 — 8%. The p parameter takes into account that the Fermi

constant G, is obtained from a charged current process while polarized electron scattering
is a neutral current process. k(0) includes corrections from Z vacuum polarization and
anapole diagrams. The terms in the second line are from the WW and ZZ box contri-
butions, respectively. The last line arises from the vZ box and from photonic corrections,
where the finite Q? effects are included in the quantity F5(y, @?). Notice that eq. (3.1) is
written in terms of the fine structure constant a throughout, while the original reference [4]
employed &(myz) in the WW and ZZ box diagrams. We do this because the explicit two-
loop calculation uses « in the Thomson limit as the expansion parameter. The analytical
expression for x(0) reads,

R(0)8% = 3% — & lz(T Q _2§2Q2)1nm?‘ - (752 +1)1nm%v+7 5
2T |6 UM TR g a T aa) Ty T 18 6 |
(3.2)
while the expanded one-loop solution [8] to the RGE of the weak mixing angle is
2 _2_ |l 2 o2\ 1 To 1 my 1§
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where 55 2

= 52(0). Hence one can see that if we insert the value §% = 83 + [8% — 82] from
eq. (3.3) into the tree level contribution (namely 1—43%) of the asymmetry (3.1) then there
is a complete cancellation between the logarithms in #(0) and §%(myz)—52(0) at order O(«).
Effectively one can just replace

k(0)5% = 82 — ot O(a?), (3.4)

which corresponds to the fact that the RGE solution absorbs all logarithms originating from
~vZ two-point diagrams. Since the replacement §; — §p induces changes of order O(«),
such replacement applied to the terms of order O(a) will induce effects of O(a?). Before
studying these effects in more detail, we note that given the small number of diagrams
at one-loop and the simplicity of the result, it is not difficult to infer which scale should
be used in certain subsets of the diagrams in order to absorb the leading higher-order
contributions. For example, for the vZ mixing bubble diagrams the weak mixing angle



at 4 = 0 should be used, while for the WW or ZZ box diagrams the choice y = myz
provides a better approximation. On the other hand, for vZ box diagrams this issue is
more complicated since the loop integration encompasses all scales from 0 to myz. If one
wants to extend this kind of scale setting to two-loop order, one needs to identify gauge
invariant subsets. This is a challenging task which we leave for future work.

We conclude this section by studying the numerical impact of changing §7 to §p in
the O(a) result. It is important to note that the largest relative change will come from
diagrams that are multiplied by a term of the form 1 — 432, because the numerical value of
§7 is accidentally close to 1/4. The WW box contribution is not of this form, and there is
a modest change when the replacement §7 — 5 is applied (AQ§, ~ 0.08 x 1073). The ZZ
box contribution to the weak charge is small to begin with, and even though the replacement
produces a large relative change, it results in only a small change of ~ 0.04 x 1073 in Q-
The largest numerical impact of the replacement is due to vZ box diagrams. This was first
discussed in ref. [4], and due to the ambiguity in scale setting mentioned in the previous
paragraph, the authors assigned half of the difference between using 59 and §z in the vZ
box as a perturbative uncertainty, amounting to about 1073 in Q-

4 Two-loop results (NNLO)

In this section, numerical results are presented in two renormalization schemes, which differ
in the way the electroweak coupling is renormalized,

a scheme : AQYy = a AQGH yta AQ (4.1)
G, scheme : AQy =G AQW(l) + Gi AQW(Q). (4.2)

In eq. (4.1) the electromagnetic coupling is renormalized in the Thomson limit, which
introduces a dependence of the final result on the shift A« that accounts for the effective
running of the fine structure constant between the scale p = 0 and u = mz. The weak
coupling in this scheme is defined as g = e/3.

The translation to the G, scheme is accomplished by using the relation

G, T

— = ————(1+A 4.3

V2~ 2y AT )
where Ar accounts for radiative corrections. The electroweak two-loop corrections to Ar
have been taken from refs. [14, 15] (see also ref. [16]).
;,XL ) with X = «, G, to further distinguish
the L-loop corrections by the number ny of closed fermion loops,

AQWy = AQW 1) +AQY o AQW = AQW ) T AL,y (44)

In the following, we use the notation AQ

The two-loop corrections without closed fermion loops, AQW(2 0)> are not known at this
time, but they have been estimated to be of O(10~%) [5].

The NNLO result of ref. [5] is given in terms of §(myz). There the MS counterterm
§5% at = my is calculated in the full six-flavor SM. To rewrite our expressions in terms

of 8% we define 033 = 053 — A3? where A%? = 8% — 5%,



For our numerical results we use the values,

mz = 91.1876 GeV, myg = 125.1 GeV,

m, = 1.777 GeV, my = 173.0 GeV, myp = 3.99 GeV,
my, = 105.7 MeV, me = 1.185 GeV, ms = 342 MeV,
me = 0.511 MeV, My,q = 246 MeV,
o~ =137.036, Aa = 0.02761p,q + 0.0314976)y,
8% (my) = 0.2314, 3%(0) = 0.23861,
G, = 1.1663787 x 107> GeV 2. (4.5)

The values and uncertainties for §(0), the light quark masses mg, ¢ # ¢, and the hadronic
contribution to Ac, are taken from the RG analysis of ref. [9]. The leptonic contribution
to Aa has been computed perturbatively to 4-loop accuracy in ref. [17]. Furthermore,
considering the MOLLER. experiment with an electron beam energy of Fpeam = 11 GeV,
the center-of-mass energy is given by s = 2meEpeam = 0.011 GeV2. With these inputs, we
obtain the numerical results in table 1.

The result in the §(myz)—«a scheme corresponds to column 2 in table 1. The numbers
shown there are identical to the ones reported in ref. [5] where the weak-scale mixing angle
§(mgz) was used without the inclusion of pQCD. As for the non-perturbative (hadronic)
effects, some of these are included in the threshold masses, but others are missing as we
explain in what follows.

The parametrization [9] to incorporate the non-perturbative light quark contributions
to A& includes — in addition to the light quark threshold masses — a second parameter
K, in terms of which the contribution of a light quark has the form

2
Ao %2 H

At first sight, the parameter K, may seem redundant, as it is the combination (4.6) as a
whole that is constrained by ee™ — hadrons data. However, there is a monotony con-
straint on the K, since K1 > K3 for two quarks with masses m; < my (for asymptotically
large quark masses K, — 1), and in addition K. and K} can be computed in pQCD. This
additional information reduces the uncertainty but introduces a large correlation between
mg and K,. The second column in table 1 does not contain the K effects since K, = 1
was assumed.

The third and fourth columns contain the results when using the low-scale mixing
angle §(0) as input in the two renormalization schemes defined in egs. (4.1) and (4.2). We

now discuss the table row by row.

e 1 — 452: this is the tree level contribution. We can see a large difference between
column two and the low energy schemes (columns three and four). This is because
the weak mixing angle at zero absorbs all large logarithms ~ ln(m} / mQZ) The error
associated to this contribution comes from the error in the weak mixing angle at zero
momentum [9], and translates to an error of £0.08 x 1073 in the weak charge.



§(mz)-a scheme* [5] | §(0)-c scheme §(0)-G,, scheme

(X=a) (X=a) (X=Gy)

1— 452 74.40 45.56 45.56

X AQW ) ~29.04 + 0.39 + 0.43
X AQ5 ) + 3.06 + 0.77 + 0.84
X2 AQW(22 — 0.18 + 0.07 + 0.05
XQAQW(2 N + 1.18 - 115 — 1.30
XAQWA;) — — 0.05 — 0.06
Sum 49.42 45.60 45.52

*no QCD corrections.

Table 1. Corrections (in units of 1073) at different orders contributing to the electron’s weak
charge in polarized Mgller scattering in three different input schemes for the SM input parameters
in eq. (4.5) and the kinematic parameters s = 0.011 GeV? and y = 0.4. In our notation, AQw (Lny)
is the contribution at L-loop order from diagrams with n; closed fermion loops.

« X AQW (1,1)° by comparing column two of table 1, with the low energy schemes, one
can immediately see that the size of the NLO corrections is reduced by more than an
order of magnitude in the low energy schemes, which is mostly due to the absence
of large logarithms ~ ln(mfc /m?%), i.e., these logarithms are already absorbed in the
tree-level result. The error induced in the weak charge by the error on the input
parameter 52(0) is negligible for these type of diagrams.

« X AQW(l 0)} the difference relative to column two comes mainly from the vZ box.
There is also a reduction due to the fact that 5§2(0) contains the W-boson contribution
to the vZ bubble. The error induced in the weak charge by the error on the input
parameter §2(0) is negligible for these type of diagrams.

. AQ‘E,",)fz’z): a reduction also emerges for the contributions with two closed fermion
loops. Part of this is due to the resummation of the fermionic logarithms in $(0).
In the 5(0)-« scheme, the logarithmic dependence on the fermion masses is not
completely cancelled since the weak mixing angle counterterm also appears in subloop
renormalization contributions, without any connection to the t-/u-channel vZ self-
energy. It turns out that these additional appearances of the weak mixing angle
counterterm are cancelled in the §(0)-G, scheme, so that AQ;E/)((M) does not have any
dependence on the light fermion masses in this scheme, i.e.; all the logarithms drop
out. This is a consequence of the similarity of the charged-current Fermi interaction
and the neutral-current parity-violating contribution to Mgller scattering, which are
both weak four-fermion processes.* Hence, we have the picture that in the §2(0)’Gu

4Moreover, the result for AQ%’,)((Q 2) in the §(0)-G, scheme is not only independent of the quark mass
logarithms stemming from the 7Z self-energy, but in addition is independent of the shift in the fine structure
constant, Aa.



scheme the dependence on the light quark masses is completely removed, while in
the §2(0)-a scheme a small dependence on the quark masses remains. To estimate
the remaining hadronic uncertainty (that is not already taken into account in 42(0))
we vary these masses within the ranges given in ref. [9], translating into a negligible
error in the weak charge in the 3?(0)-a scheme.

. AQ‘e,",)fz’l): for the contributions with only one closed fermion loop, we did not find
any significant reductions in the corrections or the dependence on the fermion masses
(cancellation of logarithms). While this may seem surprising at first glance, one must
keep in mind that the AQ;{/)((M) corrections have a much more complicated structure
than the contributions with two closed fermion loops. For instance, they contain two-
loop vertex and box diagrams, exemplified in figure 1, that depend on the fermion
masses in a non-trivial way. These diagrams have been computed numerically in
ref. [5] using a dispersion relation for the fermionic subloops. The integration region
spans all values of |k?| from 0 to oo, where k is the momentum flowing through the
fermion subloops, while (0) only absorbs the fermion mass dependence at k? = 0.
Therefore one should not expect any significant cancellations in the §(0) schemes.
Indeed, the threshold masses obtained in refs. [8, 9] were constructed to quantify the
total hadronic contribution to the running of the weak mixing angle between m. and
zero. On the other hand, within the hadronic region this parametrization may lose its
justification. To account for this additional theoretical uncertainty, we take a conser-

. . . +1.0m .
vative approach and assign a factor of two error in the masses,® m," 5mZ’ translating

into an hadronic error in AQ%’/)((QJ) of less than £0.06 x 1073. A more refined pos-
sibility is to use the vacuum polarization functions obtained from e*e™ data using
dispersive techniques or lattice results [18], as described for example in ref. [19]. In
this approach it is possible, with certain theory assumptions about flavor separation,
to obtain II,,(s) and I, z(s) in the hadronic region. These can then be inserted in the
two-loop diagrams and numerically integrated. There are recent developments in the
calculation of such integrals in the context of pe scattering in both the timelike [20]
and the spacelike regions [21]. One should then understand our uncertainty as a

conservative estimate of the size of the hadronic effects for these type of diagrams.°

e QCD corrections: the bulk of the higher-order QCD corrections are captured by
the RG running of §(u), which sums up powers of large fermionic logarithms to all
orders. The evaluation of 3(0) in ref. [9] includes RG effects up to O(42). A sep-
arate source of QCD corrections enters through the p parameter, which describes

°If one took the nominal values from ref. [5] instead, this uncertainty would be £0.03 x 1072,
5The reader might be worried that perhaps the full vacuum polarisation function is also needed in

the AQ;’,)El 1y and AQWE2 5y contributions discussed previously, given the finite ¢> of MOLLER. That is,

2
q

given the kinematic values at MOLLER we estimated such finite ¢* terms to be rather small, so the detailed

corrections which go as ¢/m2, or more properly ¢°/m2. Nevertheless, as we explain in the next section,
form of the vacuum polarisation function in such diagrams is a subleading effect and well under control,
and the use of xyPT, threshold masses or a full integral expression of H(q2) do not significantly change the
result. This is in contrast with the process calculated in ref. [20] (ue scattering) where the momentum
transfer is in the range —0.143 GeV? < ¢t < 0.
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Figure 1. Two-loop diagrams contributing to Mgller scattering with a non-trivial dependence on
light fermion masses.

m?-enhanced contributions due to custodial symmetry breaking. It contributes

AQ%y = (1 —4sin? Oy )Ap + - -+, (4.7)
where the dots indicate the remaining radiative corrections. The leading contribution
is given by

A sam; (o scheme), A 3Gumg (G, scheme),  (4.8)
= ——"'— (o scheme), = scheme), .
Pl 167T§2m12/V P(GL) 8\/571’2 H

and is included in the NLO correction AQ%’/)?M). QCD corrections from higher orders
are given by [22-27],

471 7T2 ds é\Zs 2 é\[S ’ A4
Apixan) = Dpgx) [—g (5 + F) —- 14.594(?) - 93.15 (?) + O(as)], (4.9)

where X = «,G,,. We denote these higher-order effects as
X R
X AQGa, = (1—48))Apixar) - (4.10)

With &s(myz) = 0.1182 one obtains the corrections listed in table 1. The propagation
of an error dés(mz) = 0.0016 in these terms translates to 1075 for the weak charge,
which is negligible.

e Missing contributions AQ;E/)((&O): the uncertainty in the weak charge from the
missing purely bosonic NNLO corrections was estimated in ref. [5] to about +1.3 X
1074,

o Higher order electroweak contributions: as can be seen from the last row of the
table, the total prediction for the electron weak charge differs significantly between
the 4(mz) scheme and the two §(0) schemes (49.4 x 1072 vs. 45.6 x 1073). This
difference can be attributed mainly to QCD corrections, which are missing in the
former but included in the latter. The difference between the 5(0)—« and $(0)-G,
schemes could be regarded as an estimate of the theory error from missing higher
orders (NNNLO and beyond). Its magnitude of slightly less than 10~ * is comparable
to the theory error estimate for the AQ%’/)((ZO) contribution. Another way to estimate

,10,



the higher-order electroweak uncertainty is to take the difference between the §(my)
scheme and any of the §(0) schemes. But in order to do this one has to include the
same QCD contributions in both schemes. Therefore, we first re-computed column
two of table 1 including the non-perturbative effects” contained in K. ¢- This would in-
clude all non-perturbative effects, but would miss the resummation of the logarithms
and the dependence on pQCD so that it can be compared with a re-computed column
three (5(0) scheme) with pQCD turned off. The difference between these re-computed
weak charges in the two schemes (52(0)—« and 8%(mz)—a) should then be due to elec-
troweak effects. We found that this difference is 4.5 x 10™%, which is much smaller
than the difference between columns two and three in table 1, demonstrating that the
latter is mainly due to the missing QCD effects in column two.® The remaining differ-
ence may be attributed to the scheme choice. Bearing in mind that this difference is
obtained in a similar way to how ref. [4] estimated the error from the vZ box, we may
take the interval spanned by the results in the two schemes as a conservative estimate
of the higher-order perturbative error on the weak charge. Adding back the pQCD
contributions, this implies that we have the error interval [45.60,45.60 + 0.45] x 1073
or (45.83+0.23) x 1073, where the lower bound corresponds to the §2(0)—a result. An
alternative error estimation is obtained by studying the shifts induced by the change
of the weak mixing angle from 8(mz) to 3(0) in the AQyy(2,) terms, leaving every-
thing else fixed, which results in a shift of similar size (2 x 10~%) for the weak charge.

In summary, we find for the weak charge of the electron,

QW = (45.83 £0.08 5y = 0.06 +0.13 +0.23 scheme) X 1072

e, X
AQG ., (had)

= (45.83 4 0.28 theory) X 1073, (4.11)

AQ‘SA‘/)(;O)( missing)

where in the last line we added all errors in quadrature. Comparing with the experimental
precision expected at MOLLER, 6Qf, = 1.1 x 1073, we see that the theoretical error is
under control. In this result, the correlations between the light quark masses are properly
included in the error of 82 computed in ref. [9]. For the calculation of the box and vertex
diagrams, the errors on m, 4 and m, are assumed to be fully anticorrelated, which is
a simplifying but conservative assumption. We emphasize that the numerical difference
between our result and ref. [5] is due to the inclusion of QCD effects, both perturbative
and non-perturbative contributions parametrized by the K, in ref. [9]. To understand the
impact of the scheme choice, the QCD corrections must be treated on equal footing in
both schemes. This comparison has been carried out in this paper, and the difference
between both schemes is taken to define the scheme error in eq. (4.11). Furthermore, it is
important to remark that taking half the difference between the $2(0) and 3%(my) schemes
likely overestimates the perturbative error since we expect the exact (all orders) result to
be closer to the low-scale schemes. On top of that, we believe that the estimation of the
electroweak perturbative error can be better understood and further reduced through a

"We did this by absorbing these effects into the phenomenological masses which lowers their values.
8This also served as a double-check of the implementation of our schemes.
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more careful resummation of dominant diagrams. Such an analysis requires the study of
gauge invariant diagram subsets which is a complicated task and left for future work.

5 Finite momentum transfer effects

In the calculation of ref. [5], the momentum transfer through the t- and u-channel propaga-
tors was approximated to be zero, Q> — 0. At the one-loop level, it was found that the shift
in the transverse self-energies, II7" (—Q?) — I177(0) and H%Z(—QQ) - H%Z(O), is very small
for the kinematic parameters of the E158 and MOLLER, experiments [4]. However, it is
worth verifying that this also holds at two loops. This is clearly the case for diagrams where
all particles in the loop have large masses, mf > Q?, since any momentum-dependent term
scales like Q?/ mf in these contributions. But for diagrams with light fermions (e, u, u, d, s)
in the loop it is less obvious that Q? — 0 is a good approximation.

To investigate this question, we have computed the relevant 4y and vZ one- and two-
loop self-energies for Q% # 0. The one-loop self-energies allow us to reproduce and verify
the results of ref. [4], while the two-loop self-energies will be used to study the quality of
the Q2 — 0 approximation used in ref. [5]. At two-loop order, or NNLO, one also needs to
include one-particle reducible diagrams with a one-loop self-energy and a one-loop vertex
correction, as well as the interference of two one-loop amplitudes. We restrict ourselves
to NNLO contributions with at least one closed fermion loop, since this is the order of
corrections considered in ref. [5]. Moreover, the self-energy diagrams without fermions do
not contain any particles with masses comparable to or below Q2.

The package FEYNARTS 3 [28] has been used for generating the amplitudes for the
one- and two-loop self-energies. The Lorentz and Dirac algebra has been performend with
an in-house code, implemented in MATHEMATICA. This code also performs a reduction
to a set of master integrals, based on the technique of ref. [29]. The master integrals
can be evaluated numerically with TVID 2 [30], which uses the one-dimensional integral
representations developed in refs. [31, 32].

As in the previous section, the hadronic self-energy contributions are described by
computing quark loops and using the threshold quark masses from ref. [9] that have been
derived from a renormalization-group analysis. As shown in eq. (3.1), the impact of the
Q?-dependence of the self-energies on the asymmetry Apg can be written as [4]

GMQ2 1—y
Vora 1+yt+ (1 —y)?

ArR = [1—4sin? Oy + F2(Q%y) + .. ], (5.1)
where y = Q?/s and the dots denote all other higher-order corrections. By construction,
F5(0,y) = 0.

With the input parameters in eq. (4.5), as well as s = 0.011 GeV?, the numerical results
listed in table 2 are obtained. The 1-loop contribution for y = 0.5 agrees well with the
analysis of ref. [4], which found Fy(y = 0.5) & 2 x 107°. For all experimentally relevant
values of y, the NLO contributions to F stay well below 10~* and thus are irrelevant for
practical purposes. The NNLO contributions can be divided into terms with two and one
closed fermion loop. Both of these, as well as the sum of the NNLO effects, are about one
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y | A o) | FPY o) B o)
0.25 (0.75) 5.01 —0.54 0.00
0.30 (0.70) 4.11 —0.25 —0.18
0.35 (0.65) 3.39 —0.02 —0.29
0.40 (0.60) 2.86 0.15 —0.36
0.45 (0.55) 2.55 0.25 —0.40

0.50 2.44 0.29 —0.41

Table 2. Numerical results for F5(Q?,y), which captures the Q?-dependence of the photon and
photon-Z self-energies. F2(L’nf) denotes corrections with L loops and ny closed fermion loops. Re-
sults are shown as a function of y = Q?/s, for s = 0.011 GeV? and SM input parameters in eq. (4.5).

order of magnitude smaller than the NLO contributions. This confirms that the Q> — 0
approximation used in ref. [5] is accurate and robust at NLO and NNLO.

6 Conclusions

The left-right polarization asymmetry in Mgller scattering is a sensitive probe of parity
violation in the SM and from new physics. Recently, the SM electroweak two-loop cor-
rections from contributions with closed fermion loops to this observable were computed in
ref. [5]. For phenomenlogical applications, this result needs to be combined with resummed
QCD and hadronic effects, which can be incorporated through the renormalization group
analysis of the MS weak mixing angle 3(u) at low scales u ~ 0 [8, 9]. Two new schemes
are introduced, labeled §(0)-« and §(0)-G,,, respectively. Both use the low-energy MS
weak mixing angle as input, but the former scheme uses « for the power counting of the
electroweak perturbative expansion, whereas the latter uses G,,.

In addition to the perturbative and non-perturbative QCD effects from the running of
5(u), we also include perturbative QCD corrections to the p parameter. Finally, we carry
out a careful analysis of the dependence of the scattering rate on the momentum transfer
squared @2, which we find to be numerically negligible. The SM prediction for the left-right
asymmetry, including higher-order effects, can be expressed in terms of the weak charge
Q% of the electron. In the §(0)-a scheme we obtain Qf, = (45.83 £ 0.28) x 1073, where
the dominant error of +0.23 x 1073 stems from the purely electroweak difference between
the §(mz)-a and §(0)-a schemes. The result is consistent with the one-loop calculation
of ref. [4] and implies a reduction of the uncertainty by almost an order of magnitude.
Additional relevant sources of uncertainty stem from the currently unknown bosonic two-
loop corrections (estimated as §Qf, = +0.13 x 1073 [5]) and from the running of $(u)
including non-perturbative effects (estimated to amount to 6Q¢%, = £0.08 x 1073 [9]).
When compared to the expected precision 6Qf, = 1.1 x 1072 of the planned MOLLER
experiment [1], the overall uncertainty of the SM prediction turns out to be insignificant.
Furthermore, this theoretical error is rather conservative, since the low-energy scale of
the process suggests that the §(0) scheme is the more adequate one to use in the tree-level
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expression, so that considering half the scheme difference may overestimate the uncertainty.
Future work on enhanced three-loop effects and the purely bosonic two-loop corrections
can be expected to reduce the theory error further.
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