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ABSTRACT: A primary goal of the National Oceanic and Atmospheric Administration Warn-on-Forecast (WoF) project
is to provide rapidly updating probabilistic guidance to human forecasters for short-term (e.g., 0-3 h) severe weather
forecasts. Postprocessing is required to maximize the usefulness of probabilistic guidance from an ensemble of convection-
allowing model forecasts. Machine learning (ML) models have become popular methods for postprocessing severe weather
guidance since they can leverage numerous variables to discover useful patterns in complex datasets. In this study, we
develop and evaluate a series of ML models to produce calibrated, probabilistic severe weather guidance from WoF System
(WOoFS) output. Our dataset includes WoFS ensemble forecasts available every 5 min out to 150 min of lead time from
the 2017-19 NOAA Hazardous Weather Testbed Spring Forecasting Experiments (81 dates). Using a novel ensemble
storm-track identification method, we extracted three sets of predictors from the WoFS forecasts: intrastorm state variables,
near-storm environment variables, and morphological attributes of the ensemble storm tracks. We then trained random
forests, gradient-boosted trees, and logistic regression algorithms to predict which WoFS 30-min ensemble storm tracks will
overlap a tornado, severe hail, and/or severe wind report. To provide rigorous baselines against which to evaluate the skill of
the ML models, we extracted the ensemble probabilities of hazard-relevant WoFS variables exceeding tuned thresholds
from each ensemble storm track. The three ML algorithms discriminated well for all three hazards and produced more
reliable probabilities than the baseline predictions. Overall, the results suggest that ML-based postprocessing of dynamical
ensemble output can improve short-term, storm-scale severe weather probabilistic guidance.
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1. Introduction prediction of hail size (Adams-Selin and Ziegler 2016; Snook
et al. 2012; Labriola et al. 2017, 2019), and low-level wind gusts
(Jirak et al. 2014; Hepper et al. 2016). UH is a model surrogate
for supercell thunderstorms, which are prolific producers of
severe weather hazards (Duda and Gallus 2010; Smith et al.
2012). Severe weather forecast algorithms based on UH have
shown skill at both next-day (e.g., Sobash et al. 2011, 2016) and
O(1h) lead times (Snook et al. 2012; Yussouf et al. 2013a,b;
Wheatley et al. 2015; Yussouf et al. 2015; Jones et al. 2016;
Skinner et al. 2016, 2018; Jones et al. 2019; Flora et al. 2019;
Yussouf et al. 2020). Parameterized predictions of hail size
have performed well in test bed experiments, producing skill
comparable to UH-based algorithms for predicting hail reports
(Adams-Selin et al. 2019). Although CAM severe weather sur-
rogates have demonstrated success at predicting severe weather
hazards, there are a number of limitations. For example, UH is a

The National Oceanic and Atmospheric Administration
(NOAA) Warn-on-Forecast program [WoF; Stensrud et al.
2009, 2013] is tasked with providing forecasters with reliable,
probabilistic severe weather hazard guidance at very short lead
times' (e.g., 0-3h). Though operational convection-allowing
models (CAMs) cannot fully resolve convective processes
(Bryan et al. 2003), CAMs with =3-km horizontal grid spacing
can partially resolve important storm-scale features (Potvin
and Flora 2015), distinguish between severe convective modes
(e.g., supercell versus mesoscale convective systems; Done
et al. 2004; Weisman et al. 2008), and provide severe weather
surrogates such as updraft helicity (UH) or parameterized

! Although forecast lead time is defined by the American
Meteorological Society Glossary as the length of time between the
issuance of a forecast and the occurrence of the phenomena that
were predicted (see https:/glossary.ametsoc.org/wiki/Forecast_
lead_time), in the numerical weather prediction community it
commonly refers to the interval between the forecast initialization
and valid times.
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poor predictor of severe, nonrotating thunderstorms (which are
significant producers of severe wind gusts; Smith et al. 2012,
2013); the current resolutions of operational CAMs prevent
explicit prediction of surface-based severe wind gusts (Bryan
et al. 2003); and current parameterized hail predictions rely on
poorly understood microphysical processes.

A growing alternative to using CAM severe weather surro-
gates are machine learning (ML) models capable of producing
calibrated guidance from many input predictors (e.g., Gagne
et al. 2017; Lagerquist et al. 2017; McGovern et al. 2017;

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright

Policy (www.ametsoc.org/PUBSReuseLicenses).
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Cintineo et al. 2014, 2018; Burke et al. 2020; McGovern et al.
2019b; Hill et al. 2020; Lagerquist et al. 2020; Cintineo et al. 2020;
Loken et al. 2020; Sobash et al. 2020; Steinkruger et al. 2020).
Studies adopting ML-based approaches range from nowcasting
lead times (e.g., =1 h; Lagerquist et al. 2017; Cintineo et al. 2014,
2018; Lagerquist et al. 2020; Cintineo et al. 2020; Steinkruger et al.
2020) that leverage available observational and numerical
weather prediction (NWP) data to next-day forecasts (e.g.,
lead times of 24-36 h) that use state-of-the-art CAM ensemble
forecasts (e.g., Gagne et al. 2017; Burke et al. 2020; Hill et al.
2020; Loken et al. 2020; Sobash et al. 2020). In Lagerquist et al.
(2017), ML models produced skillful probabilistic severe
wind predictions for radar-observed storms. The operational
NOAA/Cooperative Institute for Meteorological Satellite Studies
(CIMSS) ProbSevere model (Cintineo et al. 2014, 2018) is a naive
Bayesian classifier that reliably predicts severe weather likelihood
up to a lead time of 90 min. In a newer version, ProbSevere
v2.0, the system can now produce probabilistic guidance for
separate severe weather hazards (Cintineo et al. 2020). Using
a convolutional neural network (CNN; LeCun et al. 1990), a
deep learning technique, Lagerquist et al. (2020) produced a
next-hour tornado prediction system with skill comparable to
the ProbSevere system. In an idealized framework, Steinkruger
et al. (2020) explored using ML methods to produce automated
tornado warning guidance and found promising results. Random
forests (Breiman 2001) have produced competitive next-day hail
predictions (Gagne et al. 2017; Burke et al. 2020), reliable next-
day severe weather hazard guidance (Loken et al. 2020), and even
outperformed the Storm Prediction Center (SPC) Day 2 and 3
outlooks (Hill et al. 2020). Neural networks have also exhibited
success in predicting next-day severe weather and were shown to
be more skillful than a UH baseline in Sobash et al. (2020). A key
advantage of ML models is their ability to leverage multiple input
predictors and learn complex relationships to produce skillful,
calibrated probabilistic guidance. An additional advantage for
real-time operational settings is that once an ML model has
been trained, making predictions on new data is computa-
tionally quick («1s per example). One drawback is that the
ML model will require refitting when the CAM configuration
changes.

The goal of this study is to evaluate the skill and reliability
of ML-generated severe weather probabilistic guidance using
WOoF System (WoFS) ensemble forecasts as inputs. To ac-
complish this goal, we trained gradient-boosted classification
trees (Friedman 2002; Chen and Guestrin 2016), random for-
ests, and logistic regression models on WoFS forecasts from the
2017-19 Hazardous Weather Testbed Spring Forecasting
Experiments (HWT-SFE; Gallo et al. 2017) to determine
which storms predicted by the WoFS will produce a tornado,
severe hail, and/or severe wind report. These three ML algo-
rithms are fairly common and have recently shown success in a
variety of meteorological applications (e.g., Mecikalski et al.
2015; Erickson et al. 2016; Gagne et al. 2017; Lagerquist et al.
2017; Herman and Schumacher 2018a,b; Burke et al. 2020;
Loken et al. 2019; McGovern et al. 2019a,b; Hill et al. 2020;
Jergensen et al. 2020; Steinkruger et al. 2020).

Recent ML studies using real CAM ensemble output for
severe weather prediction have been restricted to the next-day
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(24-36 h) paradigm and producing grid-based guidance (e.g.,
Gagne et al. 2017; Burke et al. 2020; Loken et al. 2019; Hill
et al. 2020; Sobash et al. 2020). Next-day forecasting methods,
however, operate on a larger spatial scale because of the lim-
ited intrinsic predictability of storms at those lead times
(Lorenz 1969). In an early version of this work, we found that
using a strictly grid-based approach produced overly smooth
guidance for WoF-style forecasts, which are intended to provide
probabilistic guidance for individual thunderstorms (Stensrud
et al. 2009, 2013). That finding motivated the creation of the
event-based framework developed in Flora et al. (2019), which
is further adapted for this study. In this framework, we can
develop ML-calibrated probabilistic guidance for individu-
al thunderstorms that produces ‘“‘event probabilities” or the
likelihood of a storm producing an event within a neighbor-
hood determined by the ensemble forecast envelope (i.e., the
set of all possible storm locations predicted by the ensemble)
rather than ‘“‘spatial probabilities” or the probability of an
event occurring within a prescribed radius of each model grid
point (see Flora et al. 2019 for more on the distinction between
event and spatial probabilities). We are also using the event-
based approach since forecasters that use WoFS output focus
on coherent regions of interest rather than strictly analyz-
ing forecasts on a point-by-point basis (Wilson et al. 2019).
However, as noted in Flora et al. (2019), a grid-based approach
is the preferred method for non-thunderstorm-specific guid-
ance, which is also being pursued using ML and WoFS forecast
data (Clark et al. 2020).

We train the ML models to generate probabilistic forecasts
for each severe hazard—tornado, hail, and wind—for each
storm predicted by the WoFS. In evaluating the ML models, we
use hazard-specific baselines generated from the WoFS fore-
casts of 2-5km (midlevel) above ground level (AGL) UH,
HAILCAST-based maximum hail diameter (Adams-Selin and
Ziegler 2016), and 80-m AGL wind speed. For each of the
three baselines, we compute the probability of exceeding a
threshold (tuned per severe weather hazard) and extract the
maximum probability from each ensemble storm track similar
to Flora et al. (2019). The extracted probabilities were then
calibrated using isotonic regression (Niculescu-Mizil and Caruana
2005; see section 4a) to improve their reliability. We hypothesize
that the ML-generated probabilistic guidance should outperform
the baseline predictions since the ML models can leverage
more information from the CAM ensemble forecast output
and provide flow-dependent corrections as opposed to using a
fixed, single-threshold method.

The structure of the paper is as follows. Sections 2 and 3
describe the WoOFS forecast datasets and the data processing
procedures, respectively. Section 4 describes the ML models
and methods used in this study. We present the results in
section 5 with conclusions and limitations of the study dis-
cussed in section 6.

2. Description of the forecast data

The WOoFS is an experimental multiphysics ensemble capa-
ble of producing rapidly updating severe weather guidance
by frequently assimilating ongoing convection. The WoFS
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F1G. 1. Map of the number of times a 0.5° X 0.5° region was in a WoFS domain during the
2017-19 HWT-SFEs.

ensemble comprises 36 members at a 3-km horizontal grid
spacing with the Advanced Research version of the Weather
and Research Forecast Model (WRF-ARW; Skamarock et al.
2008) as the dynamic core. The physical parameterization
configuration for the different ensemble members is provided
in Skinner et al. (2018; their Table 1). The initial and lateral
boundary conditions for the WoFS are provided by the ex-
perimental 3-km High-Resolution Rapid Refresh Ensemble
(HRRRE; Dowell et al. 2016). The location of the WoFS do-
main changes daily and is centered over the region of the
greatest severe weather potential. For the 2017 HWT-SFE the
size of the domain was 750 km X 750 km, but for subsequent
HWT-SFEs is 900km X 900 km. Radial velocity, radar re-
flectivity, Geostationary Operational Environmental Satellite
(GOES-16) cloud water path, and Oklahoma mesonet obser-
vations (when available) are assimilated every 15 min, with
conventional observations assimilated hourly. During the
2017-18 HWT-SFEs, the ensemble adjustment Kalman filter
included in the Data Assimilation Research Test bed (DART)
software was used. During the 2019 HWT-SFE, data as-
similation was performed using the Community Gridpoint
Statistical Interpolation based ensemble Kalman square root filter
(GSI-EnKF; Developmental Testbed Center (2017a,b). After
five initial 15-min assimilation cycles, 18-member forecasts (a
subset of the 36 analysis members) are issued every 30 min and
provide forecast output every S min for up to 6 h of lead time. The
reader can find additional details of the WoFS in Wheatley et al.
(2015) and Jones et al. (2016, 2020).

This study uses 81 cases generated during the 2017-19 HWT-
SFEs. During these experiments, WoFS domains were fre-
quently centered over the Great Plains and mid-Atlantic with
secondary focus on the Southeast and Midwest (Fig. 1). This is
not surprising, because severe weather is most common over
the Great Plains during the spring (severe weather has a less
pronounced springtime maximum over the mid-Atlantic) and
becomes more common elsewhere during the summer or cool
season (Storm Prediction Center 2020). Overall, the dataset

sufficiently samples environments relevant for springtime se-
vere weather forecasting, but the trained ML algorithms may
not be appropriate for year-round use.

To be consistent with recent WoFS verification studies (e.g.,
Skinner et al. 2018) and typical National Weather Service
(NWS) warning lead times (Brooks and Correia 2018), the
WOFS forecast data were aggregated into 30-min periods up
to a lead time? of 150 min (e.g., 0-30, 5-35, ..., 120-150 min).
Given the rapid model error growth on spatiotemporal scales
represented in WoFS forecasts, the whole dataset was split in
two based on the forecast lead time, whereby 30-min forecast
intervals beginning in the first hour (i.e., 0-30, 5-35, ..., 60—
90min) are in one dataset (referred to as FIRST HOUR
hereinafter) and forecast intervals beginning in the second
hour are in a second dataset (i.e., 65-95, 70-100, ..., 120-
150 min; referred to as SECOND HOUR hereinafter). The
different lead times within FIRST HOUR and SECOND
HOUR are uniformly distributed (not shown). Splitting the
dataset in this way allows the ML models to learn from the
different forecast error characteristics in the two datasets (e.g.,
larger ensemble spread in SECOND HOUR than in FIRST
HOUR), which should improve the models’ skill. The pre-
dictability of individual storm-scale features greatly diminishes
beyond 150-min lead times (Flora et al. 2018), and therefore
forecasts at those lead times are not considered in this study.

3. Data preprocessing procedures

a. Ensemble storm-track identification and labeling

Object-based methods isolate important regions in a fore-
cast space and are an effective method for reducing a large data

21t takes approximately 20-25 min to produce and disseminate
the first two forecast hours of WoFS guidance to real-time users, so
the effective lead time is shorter than the period since forecast
initialization.
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FIG. 2. Flowchart of the ensemble storm-track identification algorithm.

volume into manageable components. In past ML studies using
CAM ensemble output, object-based methods have been used
to extract data from individual ensemble members rather than
from the ensemble as a whole (e.g., Gagne et al. 2017; Burke
et al. 2020). However, there are limitations to extracting data
from the individual ensemble members. First, applying an ML
model to calibrate the individual member forecasts requires an
additional procedure for combining the separate predictions
into a single ensemble forecast (and potentially another round
of calibration). Second, training ML models on the individual
member forecasts neglects important ensemble attributes like
the ensemble mean, which on average is a better prediction
than any single deterministic forecast, and the ensemble spread
(e.g., standard deviation), which can be a useful measure of
forecast uncertainty. Past ML studies using CAM ensemble
output have used ensemble statistics, but only in a grid-based
framework (e.g., Loken et al. 2020). Therefore, we combined
these past approaches by extracting ensemble information
but within the event-based framework developed in Flora
et al. (2019).

An ensemble storm track, conceptually, is a region bounded
by ensemble forecast uncertainty in storm location. An en-
semble storm track can be composed of a single ensemble
member’s storm track or some combination of up to all 18
ensemble members. Figures 2 and 3 show the ensemble storm-
track identification algorithm and accompanying illustrations
of the different steps of the procedure, respectively. First, per
ensemble member, we identify storm tracks by taking peak
column-maximum vertical velocity values composited over
30-min periods and thresholding them at 10ms™! (Fig. 3a).
Storm tracks not meeting a 108-km? (12 grid cells) minimum
area threshold are removed since such storms tend to be too

small and/or short-lived to be likely to produce severe weather
and were found to degrade the ensemble storm-track identifi-
cation by producing too many objects. The ensemble proba-
bility of storm location (EP; Fig. 3b) at grid point i (based on N
ensemble members) is calculated from the updraft tracks with
the following equation:

1N
EP. =— ) BP. 1

=N LB M
where BP;; (the binary probability at the ith grid point and jth
ensemble member) is defined as

1 if ies,
BP; = 0 if ies’

@)
where §; is the set of grid points within the updraft tracks for
the jth ensemble member. The ensemble storm-track objects
(Fig. 3c) are then identified from the EP field with the following
procedure (Fig. 2):

1) Identify large-scale objects by applying the enhanced wa-
tershed algorithm (Lakshmanan et al. 2009; Gagne et al.
2016) with a large area threshold (3600 km? in this study)
and no minimum threshold.

2) Identify smaller-scale objects by applying the enhanced
watershed algorithm with a smaller area threshold (2700 km?
in this study) and some minimum threshold. We choose a
threshold of 5.5% (1 of 18 ensemble members) as setting the
threshold higher than this causes excessive object break-up.

3) For each larger-scale object, if a larger-scale object con-
tains multiple smaller-scale objects then replace it with the
smaller-scale objects.
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FIG. 3. Illustration of transforming individual ensemble member updraft tracks into ensemble storm tracks.
(a) Paintball plot of updraft tracks identified from 30-min-maximum column-maximum vertical velocity and then
quality controlled as described in section 3a. (b) Gridscale ensemble probability of storm location computed from
the objects in (a). (c) Ensemble storm-track objects identified using the algorithm outlined in section 3a. (d)
Ensemble storm-track objects containing a tornado (red dot) or severe hail (green dot) are shown in red (not
matched are shown in blue). The technique is demonstrated using a 0-30-min forecast initialized at 2330 UTC
1 May 2018. For context, the 35-dBZ contour of the WoFS probability matched mean (blue) and Multi-Radar
Multi-System (MRMS; black) composite reflectivity at forecast initialization time, respectively, are overlaid in

each panel.

4) Assign any remaining nonzero probabilities not associated along the edge of an object can be erroneously assigned to
with an object to the closest object. neighboring objects.

5) Apply a5 X 5 gridpoint median filter to each grid point with ~ 6) For objects with a solidity [ratio of object area to convex
nonzero probability (assigns it the object label that occurs area (area of the smallest convex polygon that encloses the
most frequently within a two-gridpoint radius). This is region)] greater than a given threshold (1.5 in this study),
necessary to quality control the previous step where points reset the label of those grid points within that object to the
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FIG. 4. Flowchart of the data preprocessing and predictor engineering used in this study. The three components
are the ensemble storm-track object identification (shown in gray), the amplitude statistics (shown in red), and the
spatial statistics [shown in purple (a combination of red and blue)]. Environmental variable input is shown in blue.

label they had originally (see Fig. 2). This quality control
will “reset”” an object if the previous steps produced an
object with poor solidity.

7) Repeat steps 4-6 until no further changes occur.

The basis of the ensemble storm-track method is the enhanced
watershed algorithm, which grows objects pixel-by-pixel from a
set of local maxima until they reach a specified area or intensity
criterion (Lakshmanan et al. 2009). Objects are restricted from
growing into regions where intensity falls below the prescribed
minimum threshold. Once an object is identified, it restricts
additional objects from growing into the region surrounding
pre-existing objects to maintain object separation (Lakshmanan
et al. 2009). This two-pass procedure coupled with the nearest
neighborhood assignment (step 4) addresses an issue raised
in Flora et al. (2019): setting the enhanced watershed area
threshold sufficiently low to prevent the merging of too many
objects excessively reduced ensemble object size (see Fig. 3c in
Flora et al. 2019). With this improved method, the enhanced
watershed may grow objects to a greater size while maintaining
object separation.

After we identify the ensemble storm tracks, we classify each
according to whether it contains a tornado, severe hail, and/or
severe windstorm report (Fig. 3d). To account for potential
reporting time errors, we considered reports within =15 min of
either side of the 30-min forecast period (a 60-min window).
Successfully predicting a severe weather hazard not only relies
on correctly predicting the phenomena, but predicting the
preceding convection itself. Sometimes, an observed storm
may produce severe weather, but there is no corresponding
forecast storm in the WoFS guidance. Since this issue is not
controlled by the ML model, it does not undermine the goal of
the ML prediction system, which is to predict which WoFS
storms will become severe. However, the inability to account
for missed storm reports where the WoFS does not predict the

occurrence of a storm in a particular area highlights an im-
portant trade-off between the event-based prediction frame-
work we use and the more traditional grid-based framework
(which allows such misses to be included in the verification, but
produces overly smooth forecasts). Moreover, restricting the
ML model predictions to storms predicted by the WoFS miti-
gates the conflation of errors arising from the WoFS and from
the ML models themselves, thereby facilitating verification
and refinement of the ML models. Last, we recognize that local
storm reports are error-prone (e.g., Brooks et al. 2003; Doswell
et al. 2005; Trapp et al. 2006; Verbout et al. 2006; Cintineo et al.
2012; Potvin et al. 2019), but they are one of the best available
verification databases for individual severe weather haz-
ards, have been frequently used in past ML studies (e.g.,
Cintineo et al. 2014, 2018; Gagne et al. 2017; McGovern
et al. 2017; Burke et al. 2020; Hill et al. 2020; Lagerquist
et al. 2020; Sobash et al. 2020; Steinkruger et al. 2020), and
are used in official evaluations of NWS warnings and SPC
watches and outlooks.

b. Predictor engineering

Figure 4 depicts the data preprocessing and predictor engi-
neering procedure. First, per ensemble member, the 30-min
maximum (minimum) was calculated for the positively ori-
ented (negatively oriented; denoted by asterisks in Table 1)
intrastorm variables, and the environment variables were
computed at the beginning of the valid forecast period to better
sample the prestorm environment (see Table 1 for the input
variables). Predictors subsequently generated from these fields
are of two modes: spatial statistics (shown as the purple path in
Fig. 4) or amplitude statistics (shown as the red path in Fig. 4).
For the spatial statistics, we compute the ensemble mean and
standard deviation at each grid point within the ensemble
storm track, then spatially average them over the storm track.
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TABLE 1. Input variables from the WoFS. The asterisk refers to negatively oriented variables. CAPE is convective available potential
energy, CIN is convective inhibition, and LCL is the lifting condensation level. The midlevel lapse rate is computed over the 500-700-hPa
layer, and the low-level lapse rate is computed over the 0-3-km layer. HAILCAST refers to maximum hail diameter from WRF-

HAILCAST (Adams-Selin and Ziegler 2016; Adams-Selin et al. 2019). The buoyancy B is defined as B = g(6

/6, .-0), where g is the

/
e,z=0

acceleration due to gravity, 6, .— is the lowest-model-level average equivalent potential temperature, and 0;,2:0 (=0.,-0 — 0c.-0) is the
perturbation equivalent potential temperature of the lowest model level. Values in parentheses indicate that those variables are extracted

from different vertical levels or layers.

Intrastorm Environment Object properties
Updraft helicity (0-2 km; 2-5 km) Storm-relative helicity (0-1 km,; 0-3 km) Area
Cloud-top temperature* 75-hPa mixed-layer CAPE Eccentricity
0-2-km avg vertical vorticity 75-hPa mixed-layer CIN Orientation

Composite reflectivity

1-3-km max reflectivity
3-5-km max reflectivity

80-m wind speed

10-500-m bulk wind shear
10-m divergence*
Column-max updraft
Column-min downdraft*
Low-level updraft (1 km AGL)
HAILCAST max hail diameter
Buoyancy*

10-m U
10-m V
Midlevel lapse rate

75-hPa mixed-layer LCL
75-hPa mixed-layer equivalent potential temperature
U shear (0-6 km; 0-1 km)
V shear (0-6 km; 0-1 km)

Minor axis length
Major axis length
Extent

Initialization time

Low-level lapse rate

Temperature (850, 700, and 500 hPa)
Dewpoint temperature (850, 700, and 500 hPa)
Geopotential height (850, 700, and 500 hPa)

We are only computing the spatial average (and not, e.g., the
standard deviation within the storm track) to limit the number
of predictors in favor of model interpretability over model
complexity. We only compute amplitude statistics for the time-
composite intrastorm variables. For the positively oriented
(negatively oriented) intrastorm state variables, the spatial
90th (10th) percentile value (from grid points within an en-
semble storm track) is computed from each ensemble member
to produce an ensemble distribution of ““peak’ values. The
90th (10th) percentile is used as the “peak value” rather than
maximum (minimum) since the maximum (minimum) value
may be valid at only a single grid point, and therefore po-
tentially unrepresentative. The ensemble mean and standard
deviation are subsequently computed from each set of peak
values to capture the expected amplitudes of storm features
and the uncertainty therein. Reversing this procedure (i.e.,
computing the ensemble mean and standard deviation at
each grid point and then finding the peak value) would have
caused useful fine-scale details in the WoFS forecasts to be
lost because of storm phase differences among ensemble
members.

Last, we calculated a handful of properties describing the
ensemble storm-track object morphology. These include area,
eccentricity, major and minor axis length, and orientation.
Altogether, there are 30 amplitude statistics, 76 spatial statistics,
and 7 object properties for a total of 113 predictors.

4. Machine learning methods

a. Machine learning models

A linear regression model is a linear combination of learned
weights B;, predictors x;, and a single bias term By:

N
=B, + gﬁix,-, A3)

where N is the number of predictors. For logistic regression, a
logit transformation is applied to the output of the linear re-
gression model:

1

1+ exp(—z)’ @)

p
where p is the model predictions [values between (0, 1)]. The
weights are learned by minimizing the binary cross-entropy
(also known as the log-loss) between the true binary labels y
and model predictions with two additional terms for regulari-
zation (known together as the elastic net penalty):

1—a K 5 K
2 BitaX B,
k=0 k=0
)

where K is the number of training examples, C {=1/A, where
A € [0, ©)} is the inverse of the regularization parameter
(adjusts the strength of the regularization terms relative to
the log-loss), and « € [0, 1] is a mixing parameter that adjusts
the relative strength of the two regularization terms. The sec-
ond term is known as the ‘“‘ridge” penalty or L, error and it
penalizes the model from heavily favoring predictors by en-
couraging the model to keep weights small. The last term is
known as the “lasso” (least absolute shrinkage and selection
operator) penalty or L; error and it allows weights to be zeroed
out thereby removing predictors from the model. Since logistic
regression explicitly combines predictors [see Eq. (3)] and the
scale of the predictors can vary considerably, we normalize
each training and testing set predictor by the training dataset
mean and standard deviation. We did not normalize the pre-
dictors for the tree-based methods.

Tree-based methods are among the most common ML
algorithms. A single classification tree recursively partitions
a predictor space into a set of subregions using a series of

K
Ckgz) [yk logz(Pk) + (1 _yk) logz(pk)]

Unauthenticated | Downloaded 06/15/23 09:02 PM UTC



1542

decision nodes where the splitting criterion favors increasing
the “purity”’ (consisting of only one class) of these regions
(Hastie et al. 2001). To prevent overfitting (restricting the
subregions from becoming too narrowly defined) decision trees
can be “pruned,” for example, by imposing a maximum depth
or removing final nodes (known as leaf nodes) below a mini-
mum sample size. A classification random forest builds multi-
ple, weakly correlated classification trees and merges their
predictions to improve accuracy and stability over any indi-
vidual decision tree (Breiman 2001). Random forests achieve
the increased performance over a single decision tree by
training each tree with a bootstrap resampling of the training
examples and a small, random subset of predictors per split.
The random forest prediction is the ensemble average of the
event frequencies (from those examples in the leaf node)
predicted by each individual classification tree (all trees are
weighed equally). In contrast, an ensemble of decision trees
can be combined using the statistical method known as gradi-
ent boosting where predictions are not made independently,
but sequentially (Friedman 2002). The first tree is trained on
the true targets, and then each additional tree is trained on the
error residual of the previous tree. Conceptually, trees are
added one at a time with each successive tree structure ad-
justed based on the results of the previous iteration. The final
prediction of a gradient-boosted forest is the weighted sum of
the predictions from the separate classification trees.

ML models may correctly rank predictions (i.e., predict the
most probable class), yet produce uncalibrated probabilistic
output. Isotonic regression is a nonparametric method for
finding a nondecreasing (monotonic) approximation of a
function and is commonly used for calibrating ML predictions
(Niculescu-Mizil and Caruana 2005). Past studies in weather-
based studies have found success using isotonic regression-
based calibrations (Lagerquist et al. 2017; McGovern et al.
2019a; Burke et al. 2020). To compute calibrated probability
estimates, isotonic regression seeks the best fit of the data that
are consistent with the classifier’s ranking. First, pairs of (p;, y;)
are sorted based on p; where p is the base classifier’s uncali-
brated predictions and y is the true binary labels. Starting with
v1, the algorithm moves to the right until it encounters a
ranking violation (y; > y;+1; 0 > 1). Pairs (y;, y;+1) with ranking
violations are replaced by their average and potentially aver-
aged with previous points to maintain the monotonicity con-
straint. This process is repeated until all pairs are evaluated.
The outcome is a model that relates a base classifier’s predic-
tion to a calibrated conditional event frequency (through the
averaging of the rank violations).

In this study, we are using the random forest and logistic
regression models available in the sci-kit learn package (Pedregosa
et al. 2011). The gradient-boosted classification trees (XGBoost
hereinafter) model comes from the open-source eXtreme Gradient
Boosted (XGBoost) package (Chen and Guestrin 2016). The
calibration model used is the isotonic regression model avail-
able in the sci-kit learn package (Pedregosa et al. 2011).

b. Developing baseline predictions from the WoFS

To provide baselines against which to test the ML model
performance, we used WoFS forecasts of midlevel UH,
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HAILCAST-based maximum hail diameter, and 80-m AGL
wind speed to predict which WoFS storms will produce a tor-
nado, severe hail, and/or severe wind report, respectively.
Midlevel UH has been frequently used as a baseline in other
severe-weather-based ML studies (e.g., Gagne et al. 2017; Loken
et al. 2020; Sobash et al. 2020) and has been used to predict tor-
nadoes for WoFS-style forecasts (Wheatley et al. 2015; Jones et al.
2016; Yussouf et al. 2013b,a, 2016). The WRF-based HAILCAST
has produced competitive next-hail day predictions (Adams-Selin
et al. 2019) and 80-m AGL wind speed is a typical CAM product
used by forecasters for severe wind prediction.

The baseline predictions are based on the ensemble prob-
ability of the hazard-specific variable exceeding a threshold
where the ensemble probabilities are computed using Eq. (1),
but the binary probability for the jth ensemble member at the
ith grid point is defined as

Lif f,=q
BP, = 0 if f,<q’ ©)

where ¢ is the threshold and f; is the variable at the ith grid
point for the jth ensemble member (Schwartz and Sobash
2017). We then set the event probability for a storm to the
maximum ensemble probability within the ensemble storm
track, similar to the method used in Flora et al. (2019). To tune
the threshold for each severe weather hazard, we tested the
baseline probabilities using fivefold cross validation on the
training dataset (performance was evaluated on the five vali-
dation folds) and computed the cross-validation average per-
formance for multiple metrics (Fig. 5). Changing the threshold
for all three hazards reveals there is a trade-off between
the ranking-based and calibration-based metrics (defined in
section 5). Increasing the threshold improves reliability, but
decreases the ability of the probabilities to discriminate between
events and nonevents. For FIRST HOUR tornado prediction,
we selected a threshold of midlevel UH >180m?s ™2 since a
higher threshold degrades the ranking-based metrics, although
reliability continues to improve (Fig. 5a). A similar argument
can be made for the 1 in. (1 in. = 2.54cm) and 40kt (1kt =~
0.51ms™ ") thresholds for severe hail and wind, respectively
(Figs. 5c,e). A threshold near 1 in. is not unexpected for WRF-
HAILCAST as it performed well against severe hail reports in
past studies (Adams-Selin and Ziegler 2016; Adams-Selin et al.
2019). Given the inability to reliably produce near-surface wind
speed > 50kt on a 3-km grid, it is also not surprising that the
best threshold for severe wind is biased low. The results are
similar in the SECOND HOUR dataset, and therefore we kept
the optimal threshold the same for simplicity (Figs. 5b,d,f). Last,
we found that the raw ensemble probabilities tended to be highly
uncalibrated, producing substantial overforecasting biases for all
three hazards (not shown). To calibrate the baseline probabilities,
we trained an isotonic regression model per hazard on the prob-
abilities produced from the training dataset.

¢. Model tuning and evaluation

To assess expected model performance, both the FIRST
HOUR and SECOND HOUR datasets were split into 64 dates
for training and 17 dates for testing, respectively. Rather than
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FIG. 5. Cross-validation average (within the training dataset) performance of the baseline probabilities as a function of a varying
threshold for predicting (a),(b) tornadoes; (c),(d) severe hail; and (e),(f) severe wind, valid for (left) FIRST HOUR and (right) SECOND
HOUR. Tornado, severe wind, and severe hail predictions are based on 2-5-km updraft helicity, 80-m wind speed, and WRF-HAILCAST
maximum hail diameter from the WoFS forecast output, respectively. Metrics include AUC (orange), normalized AUPDC (NAUPDC;
purple), Brier skill score (BSS; light blue), and the reliability component of the BSS (RELIABILITY; dark blue). The vertical dashed line
labeled “selected threshold” indicates the threshold that optimizes certain metrics or limits trade-offs between the various metrics (see the

text for details).

randomly separating the dates, we ensured that the ratio of
dates with at least one event to the total number of dates was
maintained for both the training and testing partitions. For
example, if 40 of the 81 dates had a tornado (50%), then this
ratio was approximately maintained in both the training and
testing dataset. This simple approach helps ensure that the
testing dataset is more representative of the training dataset,
which limits bias in the assessment of model performance. We
provide the number of examples in each training and testing
dataset per hazard in Table 2.

Bayesian hyperparameter optimization (hyperopt; Bergstra
et al. 2013) was used to identify the optimal hyperparameters
for each model using fivefold cross validation over the training
dataset. The hyperopt python package is based on a random
search method but implements a Bayesian approach where
performance on previous iterations helps determine the opti-
mal hyperparameters. For this study, we are using the area
under the performance diagram curve (defined in section 5¢) as
our optimization metric. The default stopping criterion in hy-
peropt is a user-set maximum number of evaluation rounds, so
we implemented an early stopping criterion where a 1% im-
provement in performance must occur within a set number of
rounds or else optimizing stops, which improves computational
efficiency (we found that requiring said improvement at least
every 10 rounds was sufficient). The hyperparameters and
values used for each model are presented in Table 3. For those
hyperparameters not listed, we used the default values in
version 0.22 of the scikit-learn software (Pedregosa et al. 2011)
and version 0.82 of the XGBoost software (Chen and Guestrin

2016). The optimal hyperparameter values for each model and
severe weather hazard for the FIRST HOUR and SECOND
HOUR dataset are provided in Tables 4 and 5, respectively.
Although the original model predictions were not signifi-
cantly uncalibrated, we found that including isotonic regres-
sion improved the reliability of the ML probabilities (not
shown). To prevent introducing bias, the isotonic regression is
typically trained on the predictions and labels of the base
model on a validation dataset. Rather than training on an in-
dependent validation dataset, we use the cross-validation ap-
proach from Platt (1999) where the base model is fit on each
training fold and used to make predictions on the corresponding
validation fold. The calibration model (e.g., isotonic regression)
is then trained on the concatenation of the predictions from the
different cross-validation folds. The base model can then be

TABLE 2. Numbers of examples in the training and testing datasets
for the different severe weather hazards and lead time intervals.

Training Testing
FIRST HOUR
Tornado 346 341 82750
Severe hail 349508 79583
Severe wind 330840 98251
SECOND HOUR

Tornado 262 878 82483
Severe hail 258270 87091
Severe wind 258991 86370
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TABLE 3. Hyperparameter values attempted for each model in
the hyperparameter optimization.
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TABLE 4. Optimal hyperparameter values for each model and se-
vere weather hazard for the FIRST HOUR dataset.

Hyperparameter Values
Random forest
No. of trees 100, 250, 300, 500, 750, 1000, 1250,
and 1500
Max depth 5,10, 15, 20, 30, 40, and none
Min leaf node sample size 1, 5, 10, 15, 25, and 50
XGBoost
No. of trees 100, 250, 300, 500, 750, 1000, 1250,
and 1500
Min loss reduction y 0, 0.001, 0.01,0.3,0.5, and 1
Max depth 2,47, and 10
Learning rate 7 107110721073, and 107*
Min child weight 1, 5,10, 15, and 25

Ratio of predictors randomly 0.7, 0.8, and 1.0
selected per tree

Subsample ratio of the 0.5,0.6,0.7, and 1.0

examples
L, weight 0,0.5,1, 10, and 15
L, weight 0.0001, 0.0005, 0.001, 0.005, 0.01,

0.1,and 1.0

Logistic regression
C 0.0001, 0.001, 0.01, 0.1, 1.0
p (11_ratio) 0.0001, 0.001, 0.01, 0.5, 1.0

refitted to the whole training dataset (with the optimal hyper-
parameters), while the calibration model is effectively fit on the
whole training dataset without biasing the predictions.

For the final assessment, we evaluated the ML models and
their respective baselines on the testing datasets. All metrics
are bootstrapped (N = 1000) to produce confidence intervals
for significance testing. For an unbiased measure of variance,
the bootstrapping method requires independent samples, but
our testing samples come from overlapping forecast ranges
(0-30, 5-35, 10-40, etc.) and therefore are not independent
from one another. We do not track the ensemble object in
time, and therefore we cannot compute serial correlations on
the full dataset. Based on a manual analysis of a small subset,
however, we found that serial correlations for some predic-
tors were not negligible (e.g., r = 0.2), but small enough that
the confidence intervals should not markedly underestimate
the true uncertainty of the various verification scores. The
following verification results are aggregated over each data-
set, FIRST HOUR and SECOND HOUR, respectively, but
we found that performance for individual forecast lead times
is fairly consistent (with some variance) within each dataset
(not shown).

d. Sensitivity to class imbalance

The full dataset (combined FIRST HOUR and SECOND
HOUR) used in this study is heavily imbalanced toward non-
events; 1.2%, 2.5%, and 4% of ensemble storm-track objects
are matched to a tornado, severe hail, or severe wind report,
respectively. ML algorithms often struggle to learn patterns
and relationships from imbalanced datasets (Batista et al. 2004;
Sun et al. 2009). A common method to reduce the effect of

Severe  Severe
Hyperparameter Tornadoes hail Wind
Random forest
No. of trees 100 1500 250
Max depth 40 40 20
Min leaf node sample size 10 1 1
XGBoost
No. of trees 300 250 300
Min loss reduction () 0.5 0 0
Max depth 10 10 7
Learning rate (n) 0.1 0.1 0.1
Min child weight 1 1 15
Ratio of predictors randomly 0.7 0.8 0.8
selected per tree
Subsample ratio of the 1.0 0.6 1.0
examples
L, weight 0.5 1 1
L, weight 0.001 0.0005 0.1
Logistic regression

C 0.1 0.01 0.01
p (11_ratio) 0.0001 0.01 0.001

class imbalance is to randomly undersample the majority class
(i.e., nonevents) to produce a balance of events and nonevents.
However, for all three ML algorithms, we found that the model
performance for each hazard was negligibly impacted by re-
sampling the training dataset. Therefore, we did not resample
to produce balanced classes prior to fitting the ML models in
this study. The above result is not surprising if the class sepa-
ration is sufficient to counteract the class imbalance. There
are a significant number of ensemble storm tracks that are

TABLE 5. As in Table 4, but the SECOND HOUR dataset.

Severe Severe
Hyperparameter Tornadoes hail Wind
Random forest
No. of trees 1250 1250 250
Max depth 20 20 40
Min leaf node sample size 50 5 5
XGBoost
No. of trees 250 500 300
Min loss reduction (y) 0 0 1.0
Max depth 10 10 10
Learning rate (7) 0.1 0.1 0.1
Min child weight 10 5 25
Ratio of predictors randomly 0.7 1.0 0.8
selected per tree
Subsample ratio of the examples 0.7 1.0 0.7
L, weight («) 1 0.5 10
L, weight (A) 0.01 0.1 1.0
Logistic regression

C 0.01 0.01 0.01
p (11_ratio) 0.001 1.0 1.0
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small (e.g., only composed of a single ensemble member’s
updraft track) and these are rarely matched to storm reports,
making them easily distinguishable as nonevents. The ML al-
gorithms are learning this distinction and are therefore better
able to learn skillful relationships despite the training dataset
having significant class imbalance (Flora 2020).

5. Results

The verification methods for this study include the receiver
operating characteristic (ROC) curve (Metz 1978), perfor-
mance diagram (Roebber 2009), and the attribute diagram
(Hsu and Murphy 1986). The ROC curve and performance
diagram are derived from converting forecast probabilities to a
set of yes/no forecasts based on different probability thresholds
and computing contingency table metrics. The four compo-
nents of the contingency table are as follows:

1) “Hits”: forecast ““yes” for a given hazard and the ensemble
storm track is matched to a corresponding LSR.

2) “Misses”: forecast “no” for a given hazard, but the ensem-
ble storm track is matched to a corresponding LSR.

3) “False alarms””: forecast “‘yes” for a given hazard, but the
ensemble storm track is not matched to a correspond-
ing LSR.

4) “Correct negatives””: forecast “no” for a given hazard and
the ensemble storm track is not matched to a correspond-
ing LSR.

The most common contingency metrics include probability
of detection [POD; a/(a + c¢)], probability of false detection
[POFD; b/(b + d)], success ratio [SR; a/(a + b)], false alarm
ratio [FAR,; b/(a + b)], critical success index [CSI; a/(a + b + ¢)],
and frequency bias [(a + b)/(a + ¢)], where a, b, ¢, and d are the
number of hits, false alarms, misses, and correct negatives,
respectively.

a. Example forecasts

Figure 6 shows characteristic examples of good and poor
forecasts from the random forest model; these represent the
other models as well (not shown). These examples include
high-confidence (probabilities closest to 1) forecasts matched
and not matched to an event and low-confidence (probabilities
closest to 0) forecasts matched to an event. The skill of the ML
forecasts is largely driven by the ability of the WoFS to accu-
rately analyze ongoing convection through data assimilation.
The classification, as we will see, is sensitive to slight changes in
object location/separation. There may be minimal subjective
differences between a confident match and confident false
alarm (high-confidence forecast not matched to the event),
which is a limitation of the current method. For example, for
high-confidence (higher probabilities) forecasts matched to an
event, the convection is fairly organized, and the WoFS matches
well with the observed reflectivity (Figs. 6a,d,g). Unfortunately,
high-confidence forecasts not matched to an event can exhibit
similar behavior (Figs. 6b,e,h). In Figs. 6a and 6b, storms in
the Texas Panhandle have similar tornado probabilities de-
spite only one of them producing tornado LSRs. It is possible
that in this case the useful information for tornado forecasting
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in the WoFS was confined to larger spatial scales preventing
discrimination of tornadic and nontornadic storms occurring
in proximity to one another. Complicating the interpretation,
some of these apparent forecast busts may in fact be associ-
ated with an unreported event. For example, Potvin et al.
(2019) found that over 50% of tornadoes went unreported
in the central United States from 1975 to 2016. For severe wind
(Fig. 6h), the timing of the higher confidence forecast was
premature as severe wind reports were eventually observed on
the border of southern Ohio and northwest Kentucky (though
the observed storms were outside the WoFS domain).

As we can see in Fig. 6, the ensemble storm tracks can be
organized on a variety of spatial scales and properly identifying
those features can be difficult for current object identification
methods. One limitation of the current ensemble storm-track
identification method is that in some cases it may not be able
to isolate threats within convection organized on larger scales
(see the linear convective modes in Figs. 6a,b,d,e). In future
work, we will refine the ensemble track identification method
to better identify storm tracks embedded within larger-scale
storm tracks. This issue can also stem from the inability of the
WOFS to reliably resolve isolated threats within larger-scale
convection.

For low-confidence forecasts of severe hail and severe wind
matched to an event, the convection is discrete and poorly
organized (Fig. 6f) or disorganized and complex (Fig. 6i). For
the first case, discrete, poorly organized convection suggests a
weakly forced environment that has lower predictability and
in which it is more difficult to produce an accurate ensemble
analysis. For the second case the WoFS reflectivity generally
agrees with the observed reflectivity, but the severe wind
reports are associated with the weaker, isolated convection,
which can have limited predictability as well (similar for
tornadoes; Fig. 6¢).

LSRs sometimes occur just outside of the boundaries of
the ensemble storm tracks; see, for example, the severe hail
report associated with the northernmost storm in Oklahoma in
Fig. 6e. These missed reports may be unduly penalizing the ML
model performance as they are likely associated with storm
motion biases in the WoFS forecasts (Skinner et al. 2018; Flora
et al. 2019), which is not controlled by the ML model. On the
other hand, the ensemble storm-track areas are larger than a
typical warning polygon and represent the WoFS’s full range of
storm location, and so our matching criterion is already relatively
lenient. Given the impact of misses arising from small spatial er-
rors in forecast storm tracks and spurious false alarms arising from
missing reports, however, we argue that the following verification
results likely underestimate the true skill of the ML models.

b. ROC diagrams

The ROC curve plots POD against POFD for a series of
probability thresholds and, coupled with the area under the
ROC curve (AUC), assesses the ability of the forecast system
to discriminate between events and nonevents. An AUC = 0.5
indicates a no-skill prediction while a perfect discriminator will
score an AUC = 1. All three ML models produced, on average,
an AUC greater than 0.9 for all three severe weather hazards
for both lead time sets (Fig. 7). While the ML model AUC
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FIG. 6. Examples forecast from the random forest model predicting (a)—(c) tornadoes, (d)—(f) severe hail, and (g)—(i) severe wind. These
forecasts are representative instances of (left) a high-confidence forecast matched to an event, (center) a high-confidence forecast not
matched to an event, and (right) a low-confidence forecast matched to an event. For context, the 35-dBZ contour of the WoFS probability
matched mean (blue) and MRMS (black) composite reflectivity at forecast initialization time, respectively, are overlaid in each panel. The
forecast initialization and valid forecast period are provided in the top-left hand corner of each panel. Tornado, severe hail, and severe
wind reports are shown as red, green, and blues circles, respectively. The tornado forecasts in (a) and (b) have been zoomed in to focus on
the isolated supercell and the southern end of the MCS over the Texas Panhandle. The annotation highlights the two different ensemble
storm tracks associated with two different observed storms.

scores were substantially better than those for the baseline
predictions, the latter were near or above 0.9, suggesting that
the WoFS guidance is already a fairly good discriminator for
the three severe weather hazards. While the AUC is high, it is
important to consider that this score is invariant to class im-
balance and weighs event and nonevent examples equally.
Thus, the AUC provides an overly optimistic assessment of
discrimination in applications where less importance is placed
on correctly predicting nonevents. For severe weather pre-
diction, correct negatives are conditionally important in that

it is only desirable to accurately predict nonevents in envi-
ronments that favor severe weather (to reduce false alarms).
However, a large number of ensemble storm tracks are easily
distinguishable as nonevents (as mentioned in section 4d),
which suggests that caution be exercised when interpreting the
high AUC values in this study. This effect also explains why
AUC increases for severe weather hazards with lower clima-
tological event frequencies; for rarer events, the aforemen-
tioned ensemble storm tracks become even easier to identify as
nonevents.
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regression (LR; green), and UH baseline (BL; black) predicting whether an ensemble storm track will contain a (left) tornado, (center)
severe hail, or (right) severe wind report. Results are combined over 30-min predictions starting within the lead times (a)—(c) in the first
hour (i.e., 0-30, 5-35, ..., 60-90 min) and (d)—(f) in the second hour (i.e., 65-95, 70-100, ..., 120-150 min). Each line (shaded area) is the
mean (95% confidence interval), determined by bootstrapping the testing examples (N = 1000). Curves were calculated every 0.5%, with
dots plotted every 5%. The diagonal dashed line indicates a random classifier (no skill). The mean AUC for each model is provided in the
table on the right-hand side of each panel. The filled contours are the Pierce skill score (PSS; also known as the true skill score), which is
defined as POD — POFD. The maximum PSS is indicated on each curve with an X.

(Hitchens et al. 2013) and the maximum CSI tends to be as-
sociated with a frequency bias >1 (Baldwin and Kain 2006).

Similar to the ROC diagram, one can compute the area
under the performance diagram curve (AUPDC?*). Rather
than computing the area through integration, which can be too
optimistic, it is more robust to compute AUPDC from the
weighted average of SR’ (Boyd et al. 2013):

¢. Performance diagrams

The performance diagram® plots the SR against the POD
for a series of probability thresholds and assesses the ability of
the model to correctly predict an event while ignoring correct
negatives (Roebber 2009). The performance diagram is com-
plementary to the ROC curve, especially for imbalanced pre-
diction problems (like severe weather forecasting) where it is
more important to correctly predict events than nonevents
(Davis and Goadrich 2006). CSI and frequency bias are func-
tionally related to POD and SR and are also displayed on the
performance diagram. A probabilistic forecast is considered to
have perfect performance when the CSI and frequency bias are
equal to 1 (corresponding to the upper right corner) for some
probability threshold. However, for probabilistic forecasts of
rare events, a maximum CSI of 1 is practically unachievable

K
AUPDC = Y, (POD, —POD,_ )SR,, (7
k=1

where K is the number of probability thresholds used to
calculate POD and SR. For this study, POD and SR were
computed every 0.5% (K = 200). Unlike AUC, AUPDC s a
function of class imbalance as changing the ratio of events to

* Also known as the area under the precision-recall curve, which

* Commonly known as the precision-recall diagram (Manning
and Schiitze 1999) in the ML community where recall is POD and
precision is SR.

is often acronymized as AUPRC or AUCPR.
3 Known better by the term “average precision” where precision
is synonymous with success ratio.
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FIG. 8. As in Fig. 7, but for the performance diagram. The filled contours indicate the CSI, and the dashed diagonal lines are the
frequency bias. The dashed gray line indicates a no-skill classifier defined by Eq. (8). The mean NAUPDC and NCSI for each model are
provided in the table in the top-right corner of each panel. Points associated with the following probability thresholds are highlighted: 5%,
20%, 40%, 60%, and 80%. The maximum CSI is indicated on each curve with an X.

nonevents will alter the minimum possible SR, defined in
Boyd et al. (2012) as

cPOD

SRuin = 1=+ cPOD’

min ®)
where c is the climatological event frequency of the dataset
(number of events divided by the total number of examples).
If a curve lies along SR s, the prediction system is considered
to have no skill. Therefore, one can normalize AUDPC by the
minimum possible AUPDC (Boyd et al. 2012), which facili-
tates comparing the model skill on datasets with different cli-
matological event frequencies for a given hazard or comparing
model performance for different hazards with different cli-
matological event frequencies. The minimum AUPDC is

1 Pos

AUPDC, = ©)

pos&i+neg’

where pos and neg are the number of event and nonevent ex-
amples in the testing dataset, respectively (Boyd et al. 2012).
The normalized AUPDC (NAUPDC) is defined as

AUPDC — AUPDC,,
1- AUPDC,

NAUPDC = (10)

Regardless of climatological event frequency, the best
possible classifier willhave an NAUPDC of 1 and the worst
possible classifier will have an NAUPDC of 0. We can
also normalize the maximum CSI by the maximum CSI of
a no-skill system [equal to the climatological event fre-
quency (c); derivation provided in the appendix] using
a computation similar to Eq. (10) (hereinafter referred
to as NCSI):

CSI —c

NCSI = —2&
—c

: an

The performance diagrams are shown in Fig. 8. For the
FIRST HOUR dataset (e.g., examples with a lead time of
0-30,5-35, ..., 60-90 min; Figs. 8a—c), the three ML models
produced higher NAUPDC and maximum NCSI for severe
hail and wind (Figs. 8b,c) than for tornadoes (Fig. 8a).
Severe wind and hail events are more frequent than torna-
does, which gives the ML models more opportunities to
learn from those examples. In addition, the processes gov-
erning hail growth and generation of strong near-surface
winds are better resolved on a 3-km grid than the processes
governing tornadogenesis, which is strongly influenced by
small-scale processes in at least some cases (Coffer et al.
2017; Flournoy et al. 2020). For tornadoes and severe hail,
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the NAUPDC and maximum NCSI of the three ML models
were fairly indistinguishable from one another (Figs. 8a,b),
but for severe wind (Fig. 8c), the random forest and logistic
regression models produced substantially higher maximum
NCSI than XGBoost. Other than for the severe wind random
forest and logistic regression model, the frequency bias as-
sociated with maximum NCSI is greater than 1 (Figs. 8a,b),
which matches expectations for rare events (Baldwin and
Kain 2006).

All three ML models substantially outperformed their re-
spective baselines, but the magnitude of improvement varied
with severe weather hazard with the most substantial im-
provement for severe wind-based ML models. These results
suggest that WoFS forecasts of 80-m AGL wind speed struggle
to predict the strength of near-surface winds. WoFS has
demonstrated success in capturing high wind events (e.g.,
2020 Iowa Derecho), but it may be less successful in more
marginal events where the predictability is lower. A defini-
tive explanation for severe wind-based ML models having
the largest improvement over the baseline prediction is be-
yond the scope of this paper, but warrants further explora-
tion. Ultimately, these results highlight the ability of the ML
models to leverage multiple predictors to produce the skillful
guidance.

The performance curves were degraded for the SECOND
HOUR dataset (e.g., examples with a lead time of 65-95,
70-100, ..., 120-150 min; Figs. 8d—f). For probabilities =5%,
the FAR remained relatively unchanged for tornadoes and
the POD decreased, but for probabilities >5%, the FAR
substantially increased, which decreased the NAUPDC and
maximum NCSI. The increase in FAR also led to the maximum
CSI occurring with an increased overforecasting frequency
bias (especially for logistic regression). The predictability of
storm-scale features relevant to tornado prediction (e.g., mid-
and low-level mesocyclones) is greatly diminished at longer
lead times (Flora et al. 2018) and therefore this degradation in
skill is not surprising. For severe hail and wind (Figs. 8e,f), the
changes in POD and FAR relative to FIRST HOUR com-
pensated each other such that the maximum-CSI frequency
bias increased to slightly above 1 (except the XGBoost
model, which has a maximum-CSI frequency bias near 2.0).
The major exception is the XGBoost severe wind model,
which suffered from overforecasting bias in the FIRST
HOUR dataset but in the SECOND HOUR dataset has a
maximum-CSI frequency bias near 1 (1.08). The difference in
performance between the baseline predictions and the three
ML models is more pronounced in SECOND HOUR than
FIRST HOUR suggesting that ML-based calibration of
ensemble forecasts is more useful at longer lead times. This
result suggests that the ML models are learning enough
useful information from the ensemble statistics at these later
lead times to partly compensate for the inevitable reduction in
CAM forecast skill because of intrinsically limited storm-scale
predictability.

For the FIRST HOUR dataset, the logistic regression models
produced slightly higher mean NAUPDC values compared
to the other ML models, which is associated with logistic
regression producing higher SR (lower FAR) for all three
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severe hazards for probabilities =20%. To explain why the
tree-based methods are producing more false alarms for
higher confidence forecasts (i.e., >20%) than logistic re-
gression, Fig. 9 illustrates how predictions from a random
forest and logistic regression model compare for a simple
noisy, imbalanced 2D dataset. A classic problem in ML is the
trade-off between the bias and variance of a model. With a
high-variance model, we risk overfitting to noisy or unrepre-
sentative training data. In contrast, a high-bias model is typi-
cally simpler and tends to underfit the training data, failing
to capture important regularities. By partitioning the pre-
dictor space into subregions, tree-based methods tend to
produce highly complex decision surfaces (Fig. 9b). Tree-
based methods derive their predictions from the local event
frequencies in these subregions and if there is misclassifi-
cation (e.g., ensemble storm tracks mislabeled as nonevents
because of missing storm reports) or if the subregions have too
few samples, then the local event frequencies can be biased.
As a result, tree-based methods can struggle near decision
boundaries or in poorly sampled regions of the predictor space.
For example, near point (X1, X3) = (—1, 1), the random forest
probabilities do not reflect the uncertainty of the true labels
and for points X, > 2, the predictions have high confidence, but
instances of unrepresentative uncertainty [e.g., the probability
of point (X1, X3) = (2, 2.5) is 50%, but should be 100%]. It is
well-documented that all three severe storms hazards suffer
from significant reporting biases (Trapp et al. 2006; Allen and
Tippett 2015; Potvin et al. 2019). The resulting misclassified
storms coupled with poorly sampled phase spaces in our
training dataset plausibly explain why the tree-based methods
produce fewer higher-confidence forecasts than do the logistic
regression models.

The logistic regression models, though, produced similar
maximum NCSI as the other models and for the SECOND
HOUR dataset, the overall difference in performance curves
between the tree-based methods and logistic regression is
fairly insignificant. Ultimately, logistic regression is a high
bias model (which does not sufficiently generalize the data)
and we suspect that with additional training data and an im-
proved severe weather database that tree-based methods
would outperform logistic regression.

d. Attribute diagrams

The attribute diagram plots forecast probabilities against
their conditional event frequencies (Wilks 2011). Thus, the plot
for a perfectly reliable forecast system will lie along the one-to-
one line. Traditionally, the forecast probabilities are separated
into equally spaced bins from which we compute the mean
forecast probabilities and conditional event frequencies. The
conditional event frequencies, however, can be sensitive to the
bin interval, especially for smaller datasets. To address un-
certainty in the conditional event frequencies, we computed
the “consistency bars” from Brocker and Smith (2007), which
allows for an immediate interpretation of the confidence of the
reliability of a prediction system. We can then assess reliability
as the extent to which the conditional event frequencies fall
within the consistency bars rather than strictly based on their
distance from the diagonal. A common metric associated with
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FIG. 9. Illustration of predictions for (a) a simple noisy imbalanced 2D dataset from (b) a random forest and (c) a logistic
regression model. The filled contours show the predictions of the two models as decision surfaces.

the attribute diagram is the Brier skill score (BSS; Hsu and
Murphy 1986) where regions of positive and negative BSS can
be delimited on the attribute diagram based on the climato-
logical event frequency. The Brier skill score is defined as

1 o] 1< o
|:E 2 nk(yk _y) :|_ |:N z nk(Pk - yk)
BSS = k=1 _ Vil 7
ya-y)

where p is the forecast probabilities, y is the binary target
variable, K is the number of bins, N is the number of examples,
ny is the number of examples in the kth bin, yi is the condi-
tional event frequency in the kth bin, and y is the climatological
event frequency. The two terms in the numerator (from left to
right) are known as resolution and reliability, respectively,
while the denominator is the uncertainty term. Reliability
measures how well the forecast probabilities correspond with
the conditional event frequencies while resolution measures
how the conditional event frequencies differ from the clima-
tological event frequency. The uncertainty term refers to un-
certainty in the observations and is independent of forecast
quality. A positive BSS (resolution > reliability) means that
the model is better than the baseline prediction (climatological
event frequency). BSS is sensitive to class imbalance, but the
authors are unaware of any methods that attempt to normalize
BSS by the climatological event frequency.

The attribute diagram results are shown in Fig. 10. For both
lead time ranges, the severe hail- and severe wind-based ML
models produced higher probabilities than the tornado-based
models (cf Fig. 10b,c,e,f and Figs. 10a,d). The smaller forecast
probabilities for tornadoes are not surprising for at least three

(12)

reasons. First, as noted in the previous section, there are more
severe hail and wind events than tornado events in the training
dataset, which likely contributes to increased reliability by
improving the local event frequencies for the tree-based
methods and the coefficients of the linear model in logistic
regression. Second, the processes governing tornadogenesis
are not well represented on a 3-km grid and can include
chaotic intrastorm processes such that weak tornadoes can
form in environment otherwise characterized as nontornadic
(Coffer et al. 2017, 2019; Flournoy et al. 2020), which lessens
the signal-to-noise ratio and lowers ML model confidence.
Third, storm-scale predictability limits (Flora et al. 2018)
prevent greater confidence in tornado likelihood, especially
at longer lead times.

For the FIRST HOUR dataset, all three ML models pro-
duced reliable severe wind probabilities up to 40%-50%
with a modest underforecasting bias for higher probabilities
(Fig. 10c). Severe hail probabilities for all three models were
reliable up to 40% with a slight underforecasting bias for
probabilities greater than 60% with probabilities up to 90%
being produced (Fig. 10b). For severe hail and wind (Figs. 10b,c),
the underforecasting bias was highest for logistic regression,
which corresponds to the lower FAR at higher probabilities
noted in the previous section.

For all severe weather hazards, reliability and resolution
were degraded for the SECOND HOUR dataset. The tree-
based tornado probabilities are arguably reliable, but all three
ML models have a maximum probability between 30% and
40%, though these are fairly confident forecasts of such a
rare event. For severe hail, the forecast probabilities below
60% were relatively reliable (an under forecasting bias for
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FIG. 10. As in Fig. 7, but for attribute diagrams. The bin increment of forecast probabilities is 10%. The inset figure is the forecast
histogram for each model. The dashed line represents perfect reliability, and the gray region separates positive and negative Brier skill
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for each model in each bin based on the method in Brocker and Smith (2007). To limit figure crowding, error bars associated with an
uncertainty of >50% for a given conditional observed frequency were omitted. The mean BSS for each model is provided in the table in

the top-right corner of each panel.

higher probabilities) and the maximum forecast probability
was modestly reduced compared to the FIRST HOUR dataset,
which lowered the BSS (cf. Fig. 10b and Fig. 10e). The severe
wind forecast probabilities for all three models became
overconfident for probabilities = 40% at longer lead times
(cf. Fig. 10c and Fig. 10f).

For both lead time ranges and all three hazards, the baseline
predictions were fairly reliable, but the ML models produced
higher BSSs across the board. The severe hail- and severe
wind-based ML models were capable of producing higher
confidence forecasts than the baseline predictions, especially
for severe wind-based models (Figs. 10c,f). The inability of
the severe wind baseline to produce probabilities greater
than 30%-40% highlights the ability of the ML models to
incorporate complex forecast output to produce skillful se-
vere wind forecasts even at higher probabilities. These re-
sults highlight that simple threshold methods are likely to
overfit the training dataset and are suboptimal for capturing
forecast uncertainty, which is consistent with the finding in
Sobash et al. (2020). Surrogates methods also fail to leverage

all available information from CAM ensemble forecast output,
which will limit their potential accuracy.

6. Conclusions

The primary goal of Warn-on-Forecast is to provide human
forecasters with short-term, storm-scale probabilistic severe
weather guidance. Current CAM guidance can provide useful
severe weather surrogates (e.g., updraft helicity), but it must
be calibrated for individual severe weather hazards. An
emerging approach to solving this problem are ML models,
which can easily incorporate many predictors, are well suited
for complex, noisy datasets, and have been shown to pro-
duce calibrated, skillful probabilistic guidance for a variety
of meteorological phenomena.

In this study, gradient-boosted classification trees, random
forests, and logistic regression models were trained on WoFS
forecasts from the 2017-19 HWT-SFEs to predict which 30-
min forecast storm tracks in the WoFS domain will produce a
tornado, severe hail, and/or severe wind report up to lead times
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of 150 min. A novel ensemble storm-track identification method
inspired by Flora et al. (2019) was used to extract ensemble
statistics of intrastorm and environmental parameters. We
compared the ML predictions for tornadoes, severe hail,
and severe wind against the probability of midlevel UH,
WRF-HAILCAST maximum hail diameter, and 80-m AGL
wind speed exceeding a threshold, respectively, with each
threshold tuned to optimize performance. The primary con-
clusions are the following:

e The ML models produced substantially higher maximum
Normalized Critical Success Indices [NCSIs; defined in
Eq. (11)] and normalized area under the performance dia-
gram than their respective baselines, especially at longer
lead times. This latter result is especially encouraging since
observation-based severe weather prediction methods rap-
idly degrade beyond nowcasting lead times.

e The ML models produced higher BSSs than their respective
baselines. The most noticeable differences were for severe
wind where the ML models produced BSSs nearly 2 times
those of the predictions based on 80-m AGL wind speed.

e The ML models discriminated well (AUCs > 0.9) for all
three severe weather hazards up to a lead time of 150 min.

e For a given severe weather hazard, the contingency table
metrics for the three ML algorithms were fairly similar.
The severe hail predictions had the highest NCSI while
tornado predictions had the lowest NCSI, especially at
longer lead times.

e Depending on the hazard, the ML probabilities were fairly
reliable up to 40%—-60%. The severe wind and hail models
produced higher probabilities than tornado-based models,
but with an underconfidence bias. At longer lead times, se-
vere hail forecast probabilities were reliable up to 50%-60%
(depending on the model) while severe wind forecast prob-
abilities became overconfident.

While these results are promising, there are some limitations
to this study that should be considered. First, since we are
operating in an event-based framework, we are not correcting
for instances when the WoFS fails to accurately analyze on-
going convection or exhibits biases in storm location. In future
studies, we plan to adopt a hybrid gridpoint-based/event-based
framework that, in those circumstances, produces a comple-
mentary forecast that is largely based on WoFS environmental
predictors. Second, the labeling of ensemble storm tracks was
based on whether they contain a local storm report. We showed
that because of small spatial errors in forecast storm tracks,
reports may fall just outside the boundary of an ensemble
storm track. Given these near misses, and the spurious false
alarms arising from missing storm reports, the verification re-
sults likely underestimate the ML model skill. In an earlier
version of this work, we attempted to use a buffer distance to
account for storm motion biases in the WoFS forecasts, but this
reduced the ML model skill. The skill reduction may have
resulted from storm reports being matched to the wrong en-
semble storm track in cases of multiple proximate storms. To
properly label the forecast storms would require matching
storm reports to observed storms and then matching those
observed storms to the forecast storms. Such a sophisticated
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method was beyond the scope of this paper, but should be
explored in future work. A third limitation of this study is that
we did not evaluate the ML models for different geographic
regions (e.g., Gagne et al. 2014; Herman and Schumacher
2018Db; Sobash et al. 2020), diurnal times, or initialization times.
The data in this study were largely sampled from the Great
Plains (Fig. 1) so it will be important to assess the ML model
performance in other regions. In future work, we plan to ex-
pand upon the verification of the ML predictions to highlight
any potential failure modes.

There are additional potential extensions of this work. First,
although the ML predictions outperformed competitive base-
lines, we did not compare with operational methods for
predicting severe weather hazards (e.g., ProbSevere; Cintineo
et al. 2014, 2018). To further assess the potential operational
value of our prediction algorithms, and to increase forecaster
trust in the algorithms, it will be necessary to evaluate the ML
models against existing methods. Second, the labels used in this
study are based on error-prone local storm reports. It will be
crucial as a community to address these deficiencies in severe
weather reporting. An alternative to storm reports would be to
use radar-observed azimuthal shear (Smith and Elmore 2004;
Miller et al. 2013; Smith et al. 2016; Mahalik et al. 2019) as a
proxy for severe weather, but this approach has its own limi-
tations. Third, the different ML algorithms were similarly
skillful, but tended to over and underpredict in different situ-
ations. The best forecast may therefore be a weighted average
of the different ML predictions, just as ensembles outper-
form deterministic forecasts in numerical weather prediction.
Ensemble approaches can also provide estimates of forecast
uncertainty, which can improve the trustworthiness of ML
methods. Future work should therefore explore the use of
ML model ensembles for severe weather prediction. Last,
we only adopted a binary classification approach to predicting
severe weather hazards (e.g., will a forecast storm produce a
tornado?), but in future work, it is worth exploring multi-
class approaches (e.g., will a forecast storm produce hail or a
tornado or both?).

In addition to the more traditional ML algorithms used in
this study, we also plan to apply CNNs (LeCun et al. 1990) to
WOoFS forecasts to predict severe weather. The primary ad-
vantage of CNNs is that they can learn from spatial data and
do not require manual predictor engineering. CNNs have also
showed success for a variety of meteorological applications
(e.g., Gagne et al. 2019; Lagerquist et al. 2019; Wimmers et al.
2019; Lagerquist et al. 2020) and CNN interpretation tech-
niques create metrics in the same space as the input spatial
grids, making them easier to digest (McGovern et al. 2019b).
Given that CNN can encode spatial information, CNN tech-
niques may also prove useful in the aforementioned hybrid
gridpoint-based/event-based framework, especially in the sit-
uations where the WoFS fails to predict an observed storm.

A thorough verification of a complex, end-to-end automated
ML system is nearly impossible as one cannot possibly account
for a complete list of failure modes (Doshi-Velez and Kim
2017). Therefore, automated guidance will require human
forecaster input (known as the human in the loop paradigm).
Recently, it has been shown that the combination of automated
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guidance with human forecaster input has outperformed solely
automated guidance for severe weather forecasting (Karstens
et al. 2018). Thus, to build human forecasters’ trust in ML
predictions and maximize the use of automated guidance re-
quires explaining the “why” of an ML model’s prediction in
understandable terms and creating real-time visualizations of
these methods (Hoffman et al. 2017; Karstens et al. 2018). In
ongoing research, we are using several ML interpretation
methods to examine whether the algorithms are learning
physical relationships and developing real-time visuals that
explain ML model predictions using methods such as Shapley
Additive Explanations (SHAP; Lundberg and Lee 2017).
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APPENDIX

Derivation of Maximum Critical Success Index of a
No-Skill System

From Roebber (2009), the critical success index can be
defined as a function of success ratio s and probability of
detection p:

1

CSl=

(A1)

Substituting the minimum success ratio for a no-skill system
into Eq. (A1), we get

7c+cp+

CSI:1/<1 l—1>.
cp p

We then multiply the numerator and denominator by cp (c is
climatological event frequency):

(A2)

°p

cSl=———————,
l—c+cep+c—cp

(A3)
and then cancel the terms in the denominator to get the CSI
of a no-skill system:

CSI=cp. (A4)

From Eq. (A4), the maximum CSI of a no-skill system occurs
for p = 1 and is equal to climatological event frequency c.
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