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ABSTRACT: Many studies have aimed to identify novel storm characteristics that are indicative of
current or future severe weather potential using a combination of ground-based radar observations
and severe reports. However, this is often done on a small scale using limited case studies on
the order of tens to hundreds of storms due to how time-intensive this process is. Herein, we
introduce the GridRad-Severe dataset, a database including ~100 severe weather days per year
and upwards of 1.3 million objectively tracked storms from 2010-2019. Composite radar volumes
spanning objectively determined, report-centered domains are created for each selected day using
the GridRad compositing technique, with dates objectively determined using report thresholds
defined to capture the highest-end severe weather days from each year, evenly distributed across all
severe report types (tornadoes, severe hail, and severe wind). Spatiotemporal domain bounds for
each event are objectively determined to encompass both the majority of reports as well as the time
of convection initiation. Severe weather reports are matched to storms that are objectively tracked
using the radar data, so the evolution of the storm cells and their severe weather production can be
evaluated. Herein, we apply storm mode (single cell, multicell, or mesoscale convective system)
and right-moving supercell classification techniques to the dataset, and revisit various questions
about severe storms and their bulk characteristics posed and evaluated in past work. Additional

applications of this dataset are reviewed for possible future studies.
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1. Introduction

Severe weather, including tornadoes, severe hail, and severe wind, has substantial impacts across
the U.S. each year. NCEI (2023) reported that severe weather accounted for approximately 8.5
billion dollars (inflation adjusted) in annual losses and nearly 2,000 deaths from 1980-2022.
Additionally, there have been 163 severe weather events each totaling 1 billion dollars (inflation
adjusted) in losses or more, including derechos, hail storms, and tornado outbreaks, and 38 events
with 10 or more casualties over that same period. It remains important to analyze these, and other
such high-end severe weather events, to further improve our resilience to them.

Examining a severe weather event is inherently multifaceted, and the data used depend primarily
on the type of analysis. These data often include synoptic-scale and mesoscale data starting in
the days to hours preceding an event (e.g., Rockwood and Maddox 1988; Coniglio et al. 2011;
Hurlbut and Cohen 2014; Vaughan et al. 2017), radar and satellite data to examine storm-scale
features and evolution during the event, and storm reports in the aftermath to evaluate impacts.
Radar data can be incredibly useful to understand the physical and kinematic structure of severe vs.
non-severe storms. In particular, such data have provided insight into the intensity of precipitation,
horizontal and vertical extents, wind speeds, flow patterns, rotational velocities, and precipitation
distributions associated with a storm (e.g., Byers and Braham 1949; Browning 1964; Brown et al.
1978; Lemon and Doswell 1979; Wurman et al. 1996; Parker and Johnson 2000). Radars have
been used for several decades to understand tornadic storms and tornadogenesis (e.g., Lemon
and Doswell 1979; Ryzhkov et al. 2002, 2005; Kumjian and Ryzhkov 2008; Kurdzo et al. 2017;
Homeyer et al. 2020), estimate hail size in a storm (e.g., Witt et al. 1998; Murillo and Homeyer
2019), and better understand severe straight-line wind events (e.g., Fujita and Byers 1977; Fujita
1990; Wakimoto 2001; Klimowski et al. 2003). With the advent of dual-polarization radar and
integration of such radars into the operational network of S-band radars in the U.S. (NEXRAD
network) in 2013, a wealth of additional information can be inferred from these data including
improved hydrometeor classification, detecting the presence and size of hail, convective updraft
and vertical wind shear identification, and detection of tornadic debris (Kumjian 2013). Radar
datasets therefore remain powerful tools to further understand the structure of severe storms and

any unique identifying characteristics that can be used in real-time for warning decisions.
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One such radar analysis technique that has been performed both manually and objectively is
storm mode classification. Accurate identification of storm mode allows for further insight into
the potential for various types of severe weather. Common storm classifications include single cell
storms, multicellular storms, and mesoscale convective systems (MCSs). For smaller-scale studies,
subjective (manual) identification is often performed, as it is not prohibitively time intensive for
so few samples. However, for studies using larger databases of storms, objective methods are a
practical and often necessary solution for classification. Various studies use observed or simulated
column-maximum reflectivity and a 30-40 dBZ threshold (e.g., Trapp et al. 2005; Snively and
Gallus 2014; Thielen and Gallus 2019) to define contours encapsulating convective elements.
Using radar data analyzed on the order of minutes to hours, these techniques often incorporate
constraints for aspect ratio (i.e., the length to width ratio; e.g., Bluestein and Jain 1985; Fowle
and Roebber 2003; Gallus et al. 2008; Smith et al. 2012; Snively and Gallus 2014; Thielen and
Gallus 2019), maximum contour dimension (e.g., Bluestein and Jain 1985; Parker and Johnson
2000; Trapp et al. 2005; Gallus et al. 2008; Smith et al. 2012; Snively and Gallus 2014; Thielen
and Gallus 2019), enclosed area (e.g., Fowle and Roebber 2003), and storm persistence/duration
(e.g., Geerts 1998; Pinto et al. 2015; Feng et al. 2018, 2019).

Beyond determining a storm’s mode, one common approach to analyzing their severe weather
potential is through case studies, especially using radar observations and severe reports. Case
studies of severe weather events and their radar presentations abound in the literature, providing
valuable fine-scale insight into the inner workings of severe thunderstorms. For example, a case
study examination of a tornadic supercell in Oklahoma on 3 May 1999 led to the discovery
of the polarimetric radar tornadic debris signature (TDS) by Ryzhkov et al. (2002), prompting
analyses of other supercells for potential analogous signatures in Ryzhkov et al. (2005) and the
eventual inclusion of the polarimetric TDS in modern guides on polarimetric radar utility (e.g.,
Kumjian 2013). Additionally, Fujita and Byers (1977) examined the meteorological conditions
surrounding an airplane crash and detected thunderstorm winds that were much stronger than
anything previously observed, coining these winds a “downburst.” This observation prompted
numerous field campaigns targeting downburst-producing storms (e.g., Fujita and Wakimoto 1982;
McCarthy et al. 1982; Wilson et al. 1988), leading to a more comprehensive understanding of the

phenomenon today and likely saving many lives (Wilson and Wakimoto 2001). Working with case
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studies allows for very detailed analyses of severe storms, but the conclusions from such studies
are limited in generalizability given their relatively small sample sizes.

Large-scale studies of severe weather in the literature date as far back as the 1940s with the
Thunderstorm Project (Byers and Braham 1949), and climatological studies have driven many of
the scientific community’s advances in severe weather knowledge. Tornadoes in the U.S. are most
common in early summer (Brooks et al. 2003) and in the late afternoon to early evening (Ashley
et al. 2008), mostly in the Great Plains and into the Southeast (Coleman and Dixon 2014; Gensini
and Brooks 2018; Krocak and Brooks 2018). The majority of reported tornadoes are weak (EF-0
to EF-1; e.g., Brooks and Doswell 2001; Trapp et al. 2005) although the less frequent significant
tornadoes (EF 2+) are responsible for nearly 90% of fatalities (e.g., Anderson-Frey and Brooks
2019). Climatologies of severe hail like those by Cintineo et al. (2012), Murillo et al. (2021),
and Wendt and Jirak (2021) are also typically built using reports, despite well-known reporting
limitations (see Allen and Tippett 2015, and references therein). Allen and Tippett (2015) examined
a 60-year record of over 260,000 hail reports and found that the majority of all hail reports occurred
in the late afternoon to early evening primarily during the late spring, with a maximum in the Great
Plains that is slowly shifting northward. Studies of severe winds often focus attention on MCSs,
which can produce uniquely widespread and damaging severe winds, including and especially
from derechos (Johns and Hirt 1987; Corfidi et al. 2016). Coniglio and Stensrud (2004) found
that higher-end derecho events in their 16-year climatology favor the southern plains and Midwest.
Derechos in the eastern two-thirds of the CONUS tend to occur more in the summer months
(Coniglio and Stensrud 2004) in the late evening to overnight (Bentley and Mote 1998). Recent
work using machine learning to classify and track MCSs and quasi-linear convective systems
(QLCSs) by Ashley et al. (2019) showed, using their developed MCS climatology, that nearly a
third of all MCSs in their 22-year dataset were also QLCSs, and QLCS storms were linked with
28% of all severe wind reports in the central and eastern U.S. Climatological studies allow for
a large-scale view of severe weather to develop mental models for how, when, and where severe
hazards are likely to occur.

Several studies have investigated compelling scientific questions about severe storms beyond just
their climatological distributions using a large record of observations. For example, studies such as

Homeyer et al. (2020), Loefller et al. (2020), and Van Den Broeke (2020) use radar data from tens
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to hundreds of tornadic and nontornadic supercells to examine tornadogenesis predictability; Blair
etal. (2011) and Gutierrez and Kumjian (2021) examined radar signatures within tens to hundreds
of giant and gargantuan hail-producing storms; and Bluestein and Jain (1985) and Schiesser et al.
(1995) looked at mesoscale structures within radar data from dozens of severe MCSs. Past studies
such as these, despite using larger datasets than the more numerous case study analyses, rarely
contain more than a few hundred storms and are commonly limited in both their spatiotemporal
extent and temporal resolution of observations. Furthermore, any larger-scale studies done before
2013 have limited to no access to polarimetric radar data, which further limits understanding of
storm microphysics that may be relevant to severe events. Therefore, there exists a need to expand
these studies using a longer temporal record and analyze a much larger population of storms that
are more spatiotemporally diverse, have higher temporal resolution data, and that occurred within
the observational range of one or more polarimetric radars.

Recognizing the contributions of the aforementioned prior work to our understanding of severe
storms, and with the increasing record of observations and emergence of a national polarimetric
radar network, a clear incentive exists to create a modern database of radar data and severe weather
reports to evaluate the characteristics of storms that produce severe weather. This paper aims to fill
the knowledge gaps outlined herein using the newly developed GridRad-Severe database (hereafter
abbreviated GR-S): a database including gridded multi-radar data covering the majority of the
CONUS, objective storm tracks, and storm reports. Herein, we outline the creation and utility of
GR-S as well as how well it reflects the spatiotemporal distribution of all storm reports in the U.S.
Additionally, we introduce objective storm mode and supercell classification techniques to aid in
data analysis, and examine initial findings of the GR-S dataset that complement and expand upon
past studies. Finally, we directly compare GR-S findings with results from select seminal papers

to demonstrate its ability to replicate and extend prior key findings.

2. The GR-S dataset

a. Radar data

Radar data sourced from the nationwide NEXRAD network (NOAA/NWS/ROC 1991; Crum and
Alberty 1993) were used to create GridRad data using version 4.2 of the public algorithm (Homeyer

and Bowman 2022). GridRad data are merged volumes of individual radar observations across
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the CONUS, binned on a regular longitude-latitude grid. This includes single-polarization radar
moments such as radar reflectivity at horizontal polarization (Zy) and radial velocity spectrum width
(ov) before 2013, and additional dual-polarization variables such as differential radar reflectivity
(Zpr), co-polar correlation coeflicient (o, ), and specific differential phase (Kpp) following the
polarimetric upgrade of the radar network. Derived kinematic variables were also calculated on
the native grid of each radar and binned into GridRad volumes and include radial divergence
and azimuthal shear of the radial velocity. The spatial resolution of GridRad data is ~0.02 X
~0.02 degrees longitude-latitude (48 grid points per degree), and 0.5-km vertical resolution up
to 7 km above mean sea level (AMSL), after which the vertical resolution coarsens to 1-km up
to 22 km AMSL. Temporal resolution of the data is 5 minutes. More technical details about the
creation of GridRad data can be found in Homeyer and Bowman (2022). GridRad is one of a few
commonly used merged CONUS radar products (notable alternatives include NOAA’s Multi-Radar
Multi-Sensor [MRMS] and Multi-Year Reanalysis of Remotely Sensed Storms [MYRORSS]) and
is unique in its breadth of merged radar variables and merging methods that aim to provide high-
fidelity echo top heights and internal storm structure. Herein, we only create GridRad data for
severe events within the CONUS (specifically, domains spanning 24 to 50° N and 125 to 66° W).

The GR-S database includes radar data from 2010-2019 inclusive, with future years expected to
be added over time. This dataset starts in 2010 due to both good NEXRAD coverage and being
after the NEXRAD transition to super resolution (Torres and Curtis 2007). Since the tornado rating
scale changed from F to EF in 2007 (Doswell et al. 2009; Edwards et al. 2013) and the severe hail
size threshold changed from 0.75” to 1.0” in early 2010 (before the first date in this dataset; Allen
and Tippett 2015), all reports classified as severe herein are based on a uniform threshold for hail
(= 1.0”) and wind (gusts > 50 kts) and a uniform damage rating scale for tornadoes (the Enhanced
Fujita or EF scale). Significant severe reports are those meeting or exceeding EF-2 for tornadoes,

2.0” for hail, and 65 kt gusts for wind (Hales Jr. 1988).

b. Storm report data

Storm report data are sourced from NOAA’s Storm Events Database (SED) hosted at the National
Centers for Environmental Information (NCEI/NOAA 2022) from 2010 through 2019 inclusive,

including tornado, hail, and wind report data. Each SED report includes a unique event ID, start
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and end date and time, initial and final event coordinates (longitudes and latitudes), and magnitude
(EF rating for tornadoes, maximum diameter for hail, and maximum wind speed for severe wind).

Tornado reports also include tornado path length and width.

c. Event definition

Defining a GR-S event occurs in a few distinct steps. First, high-end severe days are identified
using the tornado, hail, and wind reports from the SED. To be consistent with SPC severe days
and most prior work, GR-S events begin at 12 UTC on the event day and end at 12 UTC on
the following day. We identify days as high-end severe days if the number of tornado, hail, or
wind reports exceeds 8, 45, or 120, respectively. These primary thresholds were chosen because
they result in a nearly balanced dataset of high-end tornado, hail, and wind days each year, with
approximately 100 days per year being labeled as high-end severe days (i.e., GR-S events). The
thresholds also approximately correspond to the 85th percentile of daily report counts for each
hazard. Once a day is included in the GR-S database (via the aforementioned primary threshold),
secondary thresholds are used to determine what severe types will be used for domain definition
on that day, roughly corresponding to the upper quartile of daily report counts. This is done to
maximize the diversity and breadth of severe weather that is analyzed on the selected GR-S event
days; if a day is already included in the dataset, it makes sense to analyze not only the severe hazard
that happened enough times to warrant the day’s inclusion in the dataset, but also any other severe
hazards that, while not prolific enough to pass that high primary threshold, still frequently occurred
on that day. The secondary thresholds are roughly one-half of the primary thresholds: greater than
4 tornado reports, 22 hail reports, or 60 wind reports. Isolating data in these ways results in a large
dataset focused solely on high-end severe weather events with a high level of spatiotemporal detail.

After high-end severe days are identified, the locations and times of the SED reports are used to
constrain the spatiotemporal domains of each day’s GridRad data. Domain bounds are objectively
determined using the latitudes, longitudes, and times of reports for each day’s selected report types
(i.e., tornado, hail, and/or wind). These space and time bounds are independently created for each
report type and the final domain results from retaining the extrema of each objective report domain.
First, the mean latitude and longitude to the nearest half degree of a given report type is found.

An initial box encompassing this point is created with bounds + 5 degrees longitude and latitude
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Fic. 1. Contour plots of the number of times a point was encompassed within a GR-S domain, gridded to an
approximate 80 x 80 km grid. Plots include (a) all GR-S days; (b) days in March, April, and May (spring); (c)
days in June, July, and August (summer); (d) days in September, October, and November (fall); and (e) days in
December, January, and February (winter). Colorbar limits are individual to each panel, and listed below the

colorbar at the bottom. State borders are highlighted in orange.
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from the mean report location. This 10° x 10° box then recursively expands by 0.5 degrees in all
directions until > 90% of reports for that report type are encompassed. Using only those reports
enclosed in the objectively identified box, time boundaries are created in a similar manner, starting
with = 2 hours centered on the mean report time rounded to the nearest half-hour. The time
boundaries expand recursively by half-hour increments in each direction until > 90% of the reports
within the spatial boundaries are captured (i.e., > 81% of the total number of reports). Note that the
time bounds of a GR-S event (1200-1200 UTC) differ slightly from the SPC definition of a single
day (1200-1159 UTC). Once these time boundaries are determined, they are trimmed such that the
start time is no more than 30 minutes before the first report and the end time is no more than 30
minutes after the last report. This ensures that the GridRad data created are focused on the times
when severe weather was occurring. Figure 1 shows how often a location was encompassed within
a GR-S domain. Overall, the GR-S domains were generally focused on the region from 100°-80°
W and 30°-45° N, offset slightly southeast of the center of the CONUS. As the year cycles from
spring through winter, the GR-S domains on average shift in a clockwise manner, consistent with
seasonality in the SED report data (not shown).

As stated previously, this creation of space and time bounds is done independently and objectively
for each report type that exceeds its secondary threshold. For days where more than one report type
exceeds its secondary threshold, both a composite spatial domain and a composite temporal domain
are created using the individual spatial and temporal domains for each report type, retaining the
overall maximum and minimum latitudes, longitudes, and times to create a composite domain that
encompasses all individual domains. Once these spatiotemporal bounds are determined, the time
bounds are limited to begin no earlier than 15 UTC on the event day and end no later than 12 UTC
the following day, to limit analyses to the 12 UTC-12 UTC period used for SED reports. We use
15 UTC instead of 12 UTC as the start time limit because all GR-S day temporal domains are then
extended backward by 3 hours to attempt to capture convection initiation (CI). This is motivated
by prior work such as Bluestein and Parker (1993), which found in their dryline study in Oklahoma
that the time between CI and the first tornado report for a storm was approximately 2-3 hours (see
their Table 2). A flowchart describing these methods is shown in Fig. 2, and an additional schematic
showing an example GR-S case and spatiotemporal domain selection is available as supplemental

material.
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FiG. 2. Flowchart explaining the creation of GR-S data for a given year.

d. GR-S storm tracks

Each GR-S event includes the 5-min GridRad volumes outlined in section 2a and a comma-
delimited storm track file that includes official storm reports matched with each storm. The storm
tracks for each event are identified using an echo-top altitude-based tracking method from Homeyer
et al. (2017), with modification to resolve premature termination of tracks during storm splits and
mergers as outlined in Lagerquist et al. (2020). In summary, the GridRad storm tracking algorithm
identifies point locations of Zy = 30-dBZ echo-top altitude maxima and links them in time (5-min
intervals for GR-S). Echo-top maxima are required to reach at least 4 km AMSL and be embedded
within echoes classified as convection by the Storm Labeling in 3 Dimensions algorithm (SL3D;
Starzec et al. 2017) to be tracked. Cells in subsequent time steps are linked in time if they are
located within 15 km of each other (for neighboring 5-min volumes only). In cases where more
than one echo-top maximum is located within 15 km of a previously defined storm, the closest one
is matched during tracking. Finally, the tracking algorithm only retains tracks that are at least 15
minutes in duration—or, equivalently, are identified in at least three consecutive 5-minute GridRad
volumes. To resolve storm splits and storm mergers, colinear storm tracks with closely located or

overlapping initial and final locations and times are combined into one track. This combination
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ensures that cyclic updraft cycles, as seen commonly in supercells, are not split into multiple
short-duration storm tracks. Two passes are made in this attempt to combine broken storm tracks:
1) joining tracks with end and start times separated by one 5-min GridRad analysis (gap storms) so
long as their end and start locations differ by < 15 km, and ii) joining storms with start and end
times that fall within one 5-min GridRad analysis of each other, so long as the minimum distance
between track locations during the overlapping period is < 15 km. In the former, the location during
the gap is determined using linear interpolation between the end and start locations of the combined
tracks. In the latter, tracks are combined at the closest point of coincidence during overlap such
that the point of the second (later) track through its remaining path is appended to the first (earlier)
track. An illustration of the various track combination cases is included as supplemental material.

After the initial storm tracking and track combination algorithms are applied to each GR-S
event, the resulting 5-minute storm tracks are linearly interpolated to 1-minute resolution for
spatiotemporal collocation with SED reports. To match the SED reports to the storm tracks, the
closest tracked storm to a report at the report time is matched, so long as it lies within 30 km of the
report location. While a maximal 30-km radius for report matching may be considered generous, it
is noted that nearly all matched reports fall within 10-15 km of the objectively tracked storm centers
and manual validation efforts in the past have demonstrated broad reliability of this approach (e.g.,
Homeyer et al. 2020). Figure 3 shows how storm reports are matched to storm tracks for the
14 April 2011 GR-S event. Matching reports with storm tracks in this way allows for individual
storms to be classified as sub-severe or severe, and their individual characteristics examined in a
bulk sense. An important limitation to accurate report matching is the spatiotemporal accuracy of
the reports themselves; many studies (e.g., Trapp et al. 2006; Allen and Tippett 2015, for severe
wind and hail reports, respectively) have reported on the imperfect nature of human-reported severe
weather. These limitations are an important consideration in any work using storm reports as a
method of validation.

The final archived 1-minute, comma-delimited storm track files contain information on storm
location, motion, radar characteristics, and storm-matched severe reports (summarized in Table 1).
In the case of severe hail or wind reports, the event information is linked to the midpoint time of
the report so that no report gets counted more than once. For tornado reports, most of the report

information is linked to the initial report time (i.e., tornadogenesis).
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Storm Tracks for 14 April 2011 GridRad-Severe Event
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Fic. 3. GR-S storm tracks for the 14 April 2011 event, with severe reports superimposed as dark circles and
storm tracks matched with reports in a lighter shade of the same color for (a) tornadoes, (b) hail, and (c) wind.

Storm tracks not matched with a report are shown in gray.

While enabling unique analyses of the GR-S data, limitations to the objective storm tracking
methods do exist. Common drawbacks include unresolved storm splits and mergers and poorly
tracked initiation phases of some storms (before Zy = 30 dBZ exists and/or before the 30-dBZ echo

top exceeds 4 km AMSL, which is typically <15 minutes in severe storms).
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Information in GR-S Event Storm Track Files

Storm Information Report Information*
Storm Number Binary Report Flag
Storm Date & Time Report Number
Storm Longitude Report Longitude
Storm Latitude Report Latitude
Eastward Storm Motion Report Magnitude
Northward Storm Motion Instantaneous Tornado Count
Echo Top Altitudes Max Instantaneous Tornado Rating
Column-Maximum Zy Tornado End Date & Time
Tornado Width
Tornado Length

TaBLE 1. Storm attributes included in GR-S event track files, separated for radar-based storm information
(left column) and matched SED report information (right column). *Report flag (0 or 1), number, longitude,
latitude, and magnitude are given for all report types (tornado, hail, and wind), where for tornadoes the report
information is listed only at the time of tornadogenesis. The additional SED report information for tornado end
time, width, and length are also only given at the time of tornadogenesis, while the instantaneous tornado count

and maximum rating are based on all reports valid at each 1-min storm track time.

3. Analysis methods

a. Storm mode classification

Given that many past studies have classified storm mode subjectively, such efforts have often
focused on small spatiotemporal domains. An objective method for storm mode classification is
presented herein for use with the GR-S dataset. This storm mode classification relies on closed
radar echo contours above a given Zy threshold encompassing objectively tracked storms to be
able to classify each track within a contour as a part of a single cell storm, multicell storm, or
an MCS. By classifying the mode of each objectively tracked storm, characteristics of each storm
can be analyzed in concert with storm-matched SED reports to potentially link storm mode and
storm-scale characteristics with the presence of (or lack thereof) severe weather.

To classify storm mode, 30-dBZ contours are identified using column-maximum reflectivity
(Zumax) from each 5-min GridRad data file. For each closed contour, the area and maximum
dimension are calculated, and the number of tracked storms within each contour is counted.
Tracked storms are then identified as single (i.e., discrete) cell if either 1) only a single tracked

storm exists within a contour, or 2) a relatively small contour (< 3000 km?) encompasses no more
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than two tracked storms. Two tracked storms within a small contour are both classified as single cell
to account for storms with cyclic updraft generation (e.g., supercells) that can have more than one
updraft at a single time, but do not persist as such. Homeyer et al. (2020) found in their composite
analyses of supercells that the average supercell size for Zymax = 30 dBZ is approximately 3000
km? (their Fig. 3). The 3000 km? contour area threshold is therefore chosen to encompass the size
of some of the largest single cell storms expected. For larger contours (> 3000 km?) containing
2 tracked storms or any contour containing 3 or more tracked storms, those storms are classified
as either multicell or MCS. The delineation between the two is made using the contour maximum
dimension; if the maximum dimension is > 100 km, it is classified as an MCS (Houze Jr. 2004).
Since the storm mode classification algorithm is independently run on each time step, a tracked
storm may have a complex, time-varying storm mode classification. We do not employ a minimum
time that a tracked storm has to be identified as a consistent storm mode to retain such a classification.
This is done because, instead of classifying a storm based on its mean storm mode, we want to
enable investigation into how each storm evolves in time and, if possible, how changes in its severity
accompany changes in storm mode. Figure 4 shows select times during the evolution of the 14
April 2011 GR-S event in the southern plains. Over time, many single cell storms that initiated
early in the event merge into what eventually becomes a large MCS. In concert with matched storm
reports (e.g., Fig. 3), storm mode can be linked with a storm’s severity for bulk analyses of the two

characteristics.
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Fic. 4. Select images of (left) column-max reflectivity and (right) storm mode classification from a limited
spatial domain within the 14-15 April 2011 GR-S case. For storm mode classification images, the interior
of identified 30-dBZ contours are shaded in green, pink, or purple to denote single cell, multicell, or MCS
classification, respectively. Tracked storms within such contours are indicated by black asterisks. Identified

30-dBZ contours that do not encompass any storm tracks are shaded in light gray.
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b. Mesocyclonic updraft classification

Another important severe storm characteristic is whether or not a storm’s updraft was rotating
when the storm produced a severe report. Updrafts that have sufficient persistent rotation are defined
herein as mesocyclonic, and otherwise as non-mesocyclonic. Mesocyclonic updrafts are classified
using the methods for right-moving supercell identification outlined in Homeyer et al. (2020),
originally based on work by Sandmel (2017). Namely, five criteria are used to objectively identify
updrafts as mesocyclonic: 1) maximum midlevel (4-7 km AMSL) azimuthal shear exceeds 4 1073
s~! for at least 40 minutes; 2) maximum midlevel azimuthal shear meets or exceeds 5% 1073 s71; 3)
maximum column-max azimuthal shear meets or exceeds 7% 1073 s71; 4) maximum column-max
radial divergence meets or exceeds 11072 s~!; and 5) maximum column-max velocity spectrum
width meets or exceeds 13 m s~!. The sixth criterion used in Homeyer et al. (2020)-max 40-dBZ
echo top altitude meets or exceeds 11 km—was not applied in this study. This was done to enable
reliable classification of wintertime convection, which often has lower echo tops.

It is important to note that the mesocyclonic updraft classification criteria were based on right-
moving supercell identification criteria, so left-moving (mesoanticyclonic) storms are not indepen-
dently examined herein. Both anecdotal evidence and prior research show a dearth of left-moving
supercells compared to right-movers. Bunkers et al. (2006) examined long-lived supercells and
found that, of 184 long-lived supercells in their dataset, only 4 were left-movers. An approxi-
mate ratio of left- to right-moving supercells is, to our knowledge, unknown. Future work may
focus on classification of left-moving supercells using GR-S or an alternative dataset and further
investigation of their characteristics compared to right-movers.

The result of these classification techniques is that each individual tracked storm has a time-
varying storm mode classification and a binary mesocyclonic updraft classification. This can,
and does, result in classifications such as multicell or MCS storms with mesocyclonic updrafts.
Examples of these types of storms may include supercells that share the same 30-dBZ precipitation
shield, mergers of a discrete supercell with a QLCS, supercells present in the early organizing
stages of a QLCS (e.g., Weisman and Trapp 2003) or generation of vortices that meet mesocylonic
rotation criteria (e.g., DeWald and Funk 2002). The identification of multicells and storms within
MCSs that meet mesocyclonic updraft criteria in GR-S data allow for filtering of these storms if

desired. Herein, these storms and their attendant severe weather are retained and examined in

17
Accepted for publication in Monthly Wegtfhheernﬁéi}}éav.aﬁg)olvi@.@loﬁ‘ﬁ/ﬁﬂmwﬁf'fg%oo‘f f%fzg peise pruTe



Section 4, but are removed in Section 5 where GR-S MCS storms that produced severe weather are

compared to objectively identified severe MCSs and QLCSs.

4. Results

In order for conclusions in this study to be representative of the total climatology of severe
weather and therefore broadly applicable, the distribution of GR-S storm matched reports must be
representative of the complete SED database. Representativeness herein includes capturing not
only the majority of SED reports, but also the correct spatiotemporal distribution. Looking at only
the number of total SED reports vs. GR-S storm-matched reports, Table 2 summarizes the percent
of severe and significant severe reports captured by GR-S for 2010-2019. Of all SED reports during
those ten years, the GR-S data retains ~63—77% of total reports and ~68-91% of significant severe
reports, with percent matched highest for tornado reports and lowest for wind reports. Focusing
only on SED reports that existed within the spatiotemporal bounds of the GR-S domains, the
range of retained reports increases to ~88—94% for all reports and ~91-98% for significant severe
reports, again with percent matched highest for tornado reports and lowest for wind reports. This
means that for all SED reports within the spatiotemporal bounds of the GR-S domains, the GR-S
storm tracking and report matching procedure matches approximately 9 out of every 10 reports to
a storm. Examining the total number of reports captured, the GR-S database retains 164748 out of
the total 249600 SED reports during the 10-year period (~66%). This is expected since the GR-S
database only includes ~100 days per year, with data only within limited spatiotemporal domains.
However, it is encouraging that, if a report exists within a GR-S domain, it is highly likely that
it will be matched with a GR-S tracked storm. Therefore, the domain selection criteria coupled
with the matching algorithm are both capturing a majority of SED reports and effectively matching
reports within GR-S bounds to objectively tracked storms.

Capturing the majority of severe reports is only one facet of examining the representativeness of
the GR-S data. Equally important is the distribution of the reports—spatial and temporal, for both
severe and significantly severe events—and whether those distributions match the full SED report
climatology. Figure 5 shows the breakdown of total reports by month for both GR-S matched
reports and SED reports, with lines showing the percent contribution of tornado/hail/wind reports

to the total reports in each month. Tornado data in this figure and for all future analyses are focused

18
Accepted for publication in Monthly Wegtfhheernﬁéi}}éav.aﬁg)olvi@.@loﬁ‘ﬁ/ﬁﬂmwﬁf'fg%oo‘f f%fzg peise pruTe



Comparison of SED and GR-S Storm-Matched Reports

Report Type (1) % of SED Total (2) % of SED within GR-S Bounds (3) Total GR-S Reports
Tornado Initiations 76.83% 94.16% 10542

Hail Reports 70.60% 94.33% 56025

Wind Reports 62.72% 87.81% 98181

Sig. Tornado Initiations 90.85% 97.69% 1608

Sig. Hail Reports 79.85% 94.68% 5842

Sig. Wind Reports 67.80% 90.56% 7179

TaBLE 2. Comparison of SED and GR-S matched reports from 2010-2019. For each tornado/hail/wind, data
include (1) percent of GR-S matched reports compared to all SED reports of that type and over that period; (2)
percent of GR-S matched reports compared to SED reports of that type and over that period, confined within the
corresponding day’s GR-S spatiotemporal bounds; and (3) the total GR-S matched reports in the dataset. Data

are also shown isolating significant severe reports.

on the time of tornado initiation. The difference in total data points represented on each plot
is captured by the y-axes, which show the mean 34% decrease in reports when comparing SED
to GR-S data. The monthly distribution of reports is similar between the GR-S and SED data,
although month-to-month variations in percent of SED reports captured within GR-S are visible.
Percent differences between GR-S and SED reports per month range from 11-56%, with some
of the lowest percent differences in the late spring and early summer (below 19% from April to
June, inclusive). This is potentially due to a preference for higher-end severe days to occur in the
spring to early summer, so a higher percentage of all severe weather days in that period would be
captured by the GR-S domain selection criteria. Notably, April through June alone make up 51.8%
of all GR-S days in this dataset. If only SED reports within the GR-S bounds are considered (not
shown), those percent differences range from 8-28%, and are lowest in the spring and summer
(8-11%) and highest in fall and winter (11-28%). Therefore, the storm tracking technique is most
effective at tracking severe convection and matching reports to those storms during the maximum
of the annual cycle in severe weather (the early-mid warm season) and least effective during the
the cool season. Despite these differences, the GR-S bar graph still closely resembles the SED bar
graph, showing that GR-S is capturing the overall distribution of severe reports quite well. The
percent contribution of tornadoes, hail, and wind to each month’s overall report count also show

very similar values between the GR-S and SED data, demonstrating a monthly GR-S report type
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balance that is representative of the underlying SED report data. Overall, this analysis shows that

the GR-S database captures the annual cycle of all SED reports well.
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Fic. 5. Comparison of (a) GR-S and (b) SED average annual storm reports, broken down by month for
2010-2019. Lines indicate the percent contribution of various severe report types (tornado, hail, and wind) to
the total number of reports in a given month. Pearson correlation coefficients comparing GR-S and SED lines

for each severe hazard exceed 0.95.
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In addition to the annual cycle of reports, capturing the spatial distribution of reports is also very
important. Figure 6 shows the gridded number of all SED reports from 2010-2019 for each severe
report type juxtaposed with the gridded number of reports retained in the GR-S storm tracks. More
reports are expected on the SED maps, again since GR-S events only include ~100 days per year
of severe weather. Qualitatively, maps of GR-S matched reports and SED reports have similar
spatial distributions, confirming that the distribution of reported severe weather is well captured in
the GR-S database. In combination with Table 2, Fig. 6 gives confidence that GR-S is capturing
the majority of reports in a consistent way across most of the CONUS. This can be more directly
examined in Fig. 7, which shows both the total report difference between the GR-S database and
the SED record and the percent difference between the two. These plots further demonstrate
that reports are well matched across the eastern two-thirds of the country where reports are more
frequent (Fig. 6). The areas with high percent differences are commonly found in locations with
low report counts for both GR-S and SED (e.g., compare total number of reports in Fig. 6f to percent
difference in Fig. 7f for severe wind in the western CONUS), meaning that while the percent of
reports missed in these regions may be quite high, the total number of reports missed is quite low.
Therefore, based on the results shown in Figs. 5-7, we can confidently say that the storm-matched
reports within the GR-S database are a representative sample of the total climatology within the

SED dataset.
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FiG. 6. Contour plots of average annual number of (a-c) GR-S and (d-f) SED reports for (a,d) tornado, (b,e)
severe hail, and (c,f) severe wind reports from 2010-2019, inclusive. Data are gridded on an approximately 80

x 80 km grid. Areas not shaded indicate no (a-c) GR-S or (d-f) SED reports.
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and SED reports, for (a,d) tornado, (b,e) severe hail, and (c,f) severe wind reports from 2010-2019, inclusive.
Data are gridded on an approximately 80 X 80 km grid. Areas not shaded indicate either no reports (both SED

and GR-S) or an equal number of SED and GR-S reports.
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Confident that the GR-S database is representative of the seasonality and geographic distribution
of SED reports, we can use GR-S data to examine other bulk aspects of storm severity. Identifying
both the storm mode and updraft type (mesocyclonic or non-mesocyclonic) associated with each
tracked storm and its matched reports can provide valuable insight into the types of storms that
produce various severe phenomena. Figure 8 shows the average annual number of tornado, hail,
and wind reports per month for 2010-2019, broken into sub-significant and significant severe
reports. Overlaid are lines showing the percent of reports per month that were matched with
storms classified as single cell, multicell, or MCS storms, and whether or not the storm had a
mesocyclonic updraft. Perhaps the most surprising result from this analysis is how often tornadoes
are associated with MCS-classified cells throughout the year (Fig. 8a). However, the mesocyclonic
classfication reveals that many of the cells classified as MCS-type are dynamically consistent
with supercell storms rather than the typical non-mesocyclonic cells often found in an MCS. We
speculate that this may be driven by the reliance on a relatively low Zy threshold to define storm
contours during storm mode classification (Zy = 30 dBZ), which may encompass the precipitation
shield of neighboring—and otherwise mostly discrete—storms (supercell or otherwise) and classify
those storms as part of an MCS. The contribution of non-mesocyclonic (i.e., more traditional)
MCS cells to tornado reports reaches a minimum in the spring and summer, when both the number
of tornadoes peaks and the classical U.S. tornado season occurs. In contrast, the contribution of
mesocyclonic storms to tornado reports, regardless of storm mode classification, peaks during this
time.

Examining hail events (Fig. 8b), for much of the spring through fall, single cell storms account
for the largest fraction of reports by storm mode. However, while tornado and wind reports are
fairly dominated by one storm mode (MCSs are associated with a majority of reports in 11 of
12 months for each tornadoes and wind), no one storm mode stands out as a consistent majority
contributor to all hail reports. Single cell storms account for slightly more than 50% of reports
in July and August; multicellular storms are never associated with the majority (or even a relative
majority) of reports per month; and MCS storms make up a majority (50-64%) of reports only in
the winter months, where total matched reports are lowest. However, examining mesocyclonic vs.
non-mesocyclonic storms, mesocyclonic storms account for a majority of hail reports year-round.

MCS storms contribute the most to wind reports year-round when compared to other storm modes
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(Fig. 8c), with a peak in single cell and multicell contribution in the late summer. This is when

“severe weakly forced thunderstorms” (Miller and Mote 2017) are most common in the CONUS,

which can cause downdraft-driven severe wind gusts (e.g., microbursts).
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Fic. 8. Average annual number of GR-S matched (a) tornado, (b) severe hail, and (c) severe wind reports by
month for 2010-2019. Lines show the percent of total reports that were matched to a storm of a given storm
mode (single cell, multicell, or MCS; in green, pink, and purple, respectively) and with a given updraft type
(non-mesocyclonic or mesocyclonic; in solid and dashed lines, respectively). Bar charts are split into lighter and
darker gray, which show sub-significant severe and significant severe reports, respectively. The vertical extent of

these two bars combined is the total number of all reports, and the sum of all lines in a given month is 100%.
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Similar to the annual cycle analysis, Fig. 9 reveals the average diurnal cycle of each hazard,
relative to the reports’ local solar noon. Solar noon is the time the sun aligns with a location’s
meridian, and using time relative to solar noon (as opposed to UTC time) eliminates the effect
of time zones, providing a uniform representation of local time. Each severe report type has a
pronounced diurnal cycle, with a peak in report frequency between approximately 2 and 8 hours
after solar noon. During local nighttime, severe weather is associated most with MCS storm cells.
As tornado reports increase in frequency after solar noon, the overall fraction of reports associated
with MCSs drops (Fig. 9a). From 2 to 12 hours after solar noon, the majority of tornado reports
for each of the three storm modes are produced from mesocyclonic storms. The hail data (Fig.
9b) show a more pronounced diurnal cycle when compared to tornadic and wind reports, with
hail reports highly concentrated around their daily peak at 4-5 hours after solar noon. Single
cell storms are the main contributor to hail reports in the first 7 hours after solar noon, with the
contributions of multicellular and MCS storms nearly equal during those hours (~25%). Overall,
mesocyclonic storms account for the majority of hail reports during 23 of the 24 total hours. As
was true for the annual cycle, diurnal data show wind reports overwhelmingly associated with
MCS storms throughout the majority of the day (Fig. 9c). MCSs are known to be prolific producers
of damaging straight-line winds, so it is no surprise that these storms produce the most wind
reports (a minimum of 48% of all wind reports each hour). Non-mesocyclonic single cell and
multicell severe wind-producing storms have a pronounced peak in the hours after solar noon,
which, as previously mentioned, is likely attributable to downdraft-driven wind gusts from severe
weakly forced thunderstorms that are common in the late summer and early afternoon. Notably,
mesocyclonic storms never account for a majority of severe wind reports throughout the day (<
39% of reports per hour), in contrast to how often they contribute to severe hail and tornado reports
during the peak tornado- and hail-producing hours. For all analyses of the diurnal cycle of reports,
note that the total number of reports may be lower during the overnight hours given that most

people are asleep (e.g., Wendt and Jirak 2021).
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FiG. 9. Average annual number of GR-S matched (a) tornado, (b) severe hail, and (c) severe wind reports by

hour relative to local solar noon for 2010-2019. Lines show the percent of total reports matched to a storm of
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into lighter and darker gray, which show sub-significant severe and significant severe reports, respectively. The

vertical extent of these two bars combined is the total
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Finally, we can examine how storms of various modes and mesocyclonic/non-mesocyclonic
classifications contribute to reports of varying magnitude. Figure 10 shows histograms of the
magnitude of each report type and the fractional contribution of storms of a given storm mode
and mesocyclonic/non-mesocyclonic classification. The data show that the vast majority of reports
(> 90%) are sub-significant severe (i.e., below EF-2, 2”, or 65 kts for tornado, hail, and wind
reports, respectively). As EF rating increases, the relative contribution of mesocyclonic storms
also increases, to the point where they are responsible for 90.5% and 100% of all EF-4 (84 total) and
EF-5 (12 total) tornado reports in the database, respectively. In fact, for any EF rating, mesocyclonic
storms account for the majority of tornadoes. GR-S data also show that EF-0, EF-1, and EF-2
tornadoes all predominantly come from cells embedded within MCSs (53.7, 73.4, and 65.6% of
tornadoes, respectively). Focusing on significant tornadoes, the percent of tornadoes linked to
MCS-classified storms decreases from 65.6% to 33.3% as the percent linked to single cell storms
increases to a maximum of 58.3% for EF-5 tornadoes. Mesocyclonic storms are also the main
contributor to hail reports, and hailstones are more likely to be associated with mesocyclonic storms
as hail size increases. As was evident in Figs. 8 and 9, no one storm mode clearly dominates hail
production. Interestingly, single cell storms account for a majority of hailstones in the lowest 3 bins,
but contributions to 4+ hailstones are relatively equal across storm modes. This comes with the
caveat that the largest hailstone bin contains 0.7% of the total reports in the smallest hailstone bin.
Wind reports become increasingly associated with mesocyclonic storms as wind speed increases,
with the exception of the strongest winds in the dataset. These winds (95+ kts) are predominately
from non-mesocyclonic storms (52.7%), in stark contrast with the strongest tornadoes and largest
hail, which are overwhelmingly associated with mesocyclonic storms. Wind reports are largely
dominated by storms embedded within MCSs, with 62.9-81.3% of reports in each bin attributed to
MCSs. As touched on in the discussion of hail-producing storms, it is important to recognize that
as EF rating, hail size, and wind speed increase, the sample size of reports decreases. Therefore,
interpretation of mode and mesocyclonic/non-mesocyclonic breakdown must be done carefully,

especially where sample sizes drop below a few hundred reports.
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FiG. 10. Breakdown of (left; a-c) total frequency of reports by (a) EF rating, (b) hail size, and (c) wind speed,
as well as (right; d-f) the percent of reports associated with a given combination of storm mode and supercell
classification by (d) EF rating, (e) hail size, and (f) wind speed. On (a-c), the total number of reports in each bin

are listed on top of the individual bars.
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5. Comparison to past studies

Given that GR-S storm-matched reports were demonstrated to be a representative sample of
SED reports from 2010-2019, we can also use GR-S data to revisit analyses and conclusions from
prior papers to assess reproducibility. Herein, we focus on two studies, Trapp et al. (2005) and
Ashley et al. (2019), which examined the prevalence of various storm modes and their propensity to
produce severe weather. Table 3 lists basic information about data sources and methods employed

in the papers, as well as a summary of those used in the present study.

|

Storm Mode Classification Techniques

Zy Data

Cell Classification:

MCS Classification:

QLCS Classification:

Composite column-maximum
images from NCDC (NCEI),
other sources

Relatively isolated, circular or
elliptical in shape, with Zpmax
> ~50dBZ

Quasi-linear, Zymax > 40 dBZ
region with maximum dimen-

NOWrad composite reflectivity
data (Grassotti et al. 2003)

Region of Zymax > 40 dBZ per-
sisting for at least 3 hours, with
contiguous to semi-contiguous
40-dBZ contour maximum di-
mension > 100 km

MCS with convective region as-
pect ratio > 3

Field Trapp et al. (2005) Ashley et al. (2019) This Study
Years of Data: 1998-2000 1996-2017 2010-2019
Classification Technique: Hand Analysis Machine Learning Objective Analysis

GR-S column-maximum data

1 track in 30-dBZ Zymax con-
tour, or 2 tracks within 30-dBZ
Zimax contour < 3000 km?

2 tracks within 30-dBZ Zymax
contour > 3000 km? or 3+
tracks within 30-dBZ Zymax
contour. Maximum dimension
> 100 km

sion > 100 km

TaBLE 3. Comparison of techniques used to classify storm mode in past literature.

For comparisons between GR-S data and prior results focusing on MCS or QLCS storms, we will
compare the papers’ findings to only our non-mesocyclonic MCS cells. Comparing strictly our
non-mesocyclonic MCS data to other studies’ full MCS datasets resulted in greater consistency,
potentially pointing to mesocyclonic MCS cells being more dynamically consistent with single cell
mesocyclonic storms than with non-mesocyclonic MCS storms. This result is relevant to any future
work using GR-S MCS data with the storm mode classification employed here. Also important to
note is the delineation between an MCS and a QLCS. As discussed in Schumacher and Rasmussen
(2020), a QLCS is a subset of the MCS archetype. While MCSs are typically defined as convective
complexes with a maximum dimension >100 km, a QLCS is an MCS further characterized by an
aspect ratio around 3:1, meaning that the system has one long and one short dimension. Given

that the terms MCS and QLCS are often conflated, it is important to keep in mind the true nature
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of MCS-classified cells herein and how they may or may not be a part of a QLCS-type convective
complex.

GR-S data are first compared to select conclusions from Trapp et al. (2005). The study’s main
goal was to “estimate the percentage of U.S. tornadoes that are spawned annually by squall lines
and bow echoes, or quasi-linear convective systems (QLCSs)” using subjectively classified radar
echoes over a three-year period (1998-2000, inclusive). Classification was done for QLCS and
individual cells near the time of tornadogenesis per Table 3. They delineated between QLCS
and cell type echoes based on “dynamics unique to these phenomena” and mentioned that, while
tornadoes can form by mesocyclonic and non-mesocyclonic means, any distinction between cells
producing tornadoes via these two different mechanisms was not investigated therein. Their final
dataset included 3828 tornadoes.

Figure 11 shows reproductions of Trapp et al. (2005) Figs. 3b (Fig. 11a), 6 (Fig. 11b), and 8a
(Fig. 11c) using GR-S data. Figure 11a shows the breakdown of the number of tornado reports
by EF rating on a logarithmic scale for both single cell and MCS storms. Crucially, both MCS
mesocyclonic and non-mesocyclonic lines are shifted such that they have an equal number of
EF-2 reports per storm type; Fig. 11a therefore emphasizes the relative distributions of tornado
intensity by storm type rather than absolute values. Trapp et al. (2005) found that there “appear
to be disproportionately more F1 tornadoes from QLCSs, and more F3-F4 tornadoes from cells.”
Figure 11a shows this as well, where the non-mesocyclonic MCS cell line is above the single cell
line for EF-1 tornadoes and below the cell line for EF 3-4 tornadoes. Here the mesocyclonic MCS
curve more closely matches the single cell curve, pointing again to their dynamical similarities.
On the other end of the spectrum, data from Trapp et al. (2005) (GR-S) show no F5 QLCS (EF-5
non-mesocyclonic MCS) tornadoes given they are quite rare, and also note that F5 (EF-5) tornadoes
only comprise 0.2% (0.11%) of the total dataset. Trapp et al. (2005) also noted that their QLCS
curve was fairly log-linear except for FO tornadoes, potentially attributable to underreporting of
the weakest tornadoes. This same linear shape, along with relatively low EF-0 tornado counts, is
visible in the GR-S non-mesocyclonic MCS curve.

Figure 11b shows the cumulative distribution of all tornado reports broken down by month and
storm type. Trapp et al. (2005) found that 32% of all QLCS tornado reports occurred within the

first three months of the year, compared to just 14% of single cell reports. The lower relative
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fraction of cell reports compared to QLCS reports is mirrored with the GR-S data, with tornadoes
in January-March making up 20% of non-mesocyclonic MCS tornadoes and just 8% of single cell
tornadoes. Therefore, with both datasets, a higher proportion of annual MCS tornadoes occurred
in the first three months of the year compared to the proportion of annual single cell tornadoes.
Finally, Fig. 11c shows the diurnal cycle of tornado reports, using time relative to local solar
noon. Trapp et al. (2005) found that cell reports peaked close to 18 local standard time (LST),
with a similar albeit smaller peak in QLCS data near 18 LST. GR-S data show similar trends, with
peaks in single cell and non-mesocyclonic MCS data between 3-5 hours after solar noon, and a
higher peak for single cell than non-mesocyclonic MCS data (i.e., a more amplified diurnal cycle).
Mesocyclonic MCS cells are again more consistent with single cell storms, with a ~2 hour offset

in their diurnal cycle compared to the single cell data.
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(a) Fig. 3b: Single Cell vs. MCS Tornadoes

MCS Shifted such that EF-2 Totals are Equal (b) Fig. 6: CDF of Reports, Annual
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Fic. 11. Plots reproducing (a) Fig. 3b, (b) Fig. 6, and (c) Fig. 8a in Trapp et al. (2005) using GR-S data. Lines
are broken into single cell storms, non-mesocyclonic MCS storms, and mesocyclonic MCS storms. On panel

(c), data within each one-hour bin are plotted at the 30 minute mark of that hour.
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GR-S data are additionally compared to the findings of Ashley et al. (2019), who used machine
learning methods to classify storm mode using a 22-year radar dataset. For training the model,
QLCS storms were labeled by hand, and the model was trained on labeled QLCS and non-QLCS
events. They defined an MCS per Table 3, with that definition motivated primarily by the work of
Parker and Johnson (2000). A QLCS is defined as “an MCS that has instantaneous convective (>40
dBZ) regions that are longer than 100 km and must be at least 3 times as long as they are wide.”
The major differences between their definition of an MCS and the definition used herein is the 30-
vs. 40-dBZ threshold for defining radar echoes for classification, and no temporal threshold vs. a 3
hour temporal threshold for GR-S and Ashley et al. (2019), respectively. Their paper focuses on
the spatiotemporal distribution of both QLCSs and QLCS-matched tornado reports, and only the
latter will be analyzed herein.

Table 4 shows the percent contribution of severe reports attributable to QLCSs in Ashley et al.
(2019) juxtaposed with storm-matched GR-S reports attributable to non-mesocyclonic MCS cells.
In each category, the percent of reports attributed to MCSs is fairly similar when comparing GR-S
data to the results in Ashley et al. (2019). The greatest difference is with attribution of significant
severe wind reports (28% of storms in Ashley et al. (2019) vs. ~42% in GR-S). Although trends
in these data are similar, differences are no doubt the result of a myriad of differences in methods
throughout the data analysis process. Both datasets show a high percentage of wind reports and
a low percentage of hail reports attributed to QLCS/non-mesocyclonic MCS storms. Beyond
examining total reports attributed to QLCSs, their Fig. 11 shows a breakdown of all severe reports
by month and hour, with percent attributed to QLCSs overlaid. Similar to Fig. 8 herein, they
found tornado and hail reports peak in the late spring and wind reports peak in the early summer.
They also found that QLCS contribution to total reports was maximized during the winter months
and minimized in late summer/early fall, which was similar to the summer/early fall minima and
wintertime maxima seen in the non-mesocyclonic MCS GR-S data. Examining their hourly data,
they found a minimum in QLCS contribution during times of peak reporting (~18-03 UTC), which,
when examining GR-S data binned by local time (in UTC, not shown), non-mesocyclonic MCS
contributions are minimized from 20-04 UTC for tornadoes and from 17-03 UTC for hail and wind
reports. The average percent contribution of QLCSs to hail reports in their study was lower than

that for wind and tornado reports, which is also reflected in the GR-S data. Overall, the similarities
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Comparison of Percent of Severe and Sig. Severe Reports Attributed to MCSs/QLCSs

Report Type and Severity GridRad-Severe MCS Ashley et al. (2019) QLCS
Tornado, Severe: 27.54% 21%

Tornado, Sig. Severe: 18.72% 26%

Hail, Severe: 11.43% 10%

Hail, Sig. Severe: 4.74% 7%

Wind, Severe: 42.31% 28%

Wind, Sig. Severe: 36.61% 34%

TaBLE 4. Comparison of percent of reports attributable to MCSs for different report types and severity. Data

shown are from Ashley et al. (2019) and GR-S data.

between GR-S conclusions and those of Trapp et al. (2005) and Ashley et al. (2019) point to the
efficacy of the GR-S techniques as a whole and the storm mode classification algorithms used

herein.

6. Conclusions

In this study, the GR-S dataset was introduced, a dataset centered on CONUS-wide radar data
for ~100 of the most severe days per year from 2010-2019, inclusive. After determining which
days to include in the database, spatiotemporal domains for radar data are selected objectively,
and all storms within the domain are tracked throughout their lifetimes. Storms are matched with
severe reports and both storm mode classification (single cell, multicell, or MCS) and supercell
classification (mesocyclonic or non-mesocyclonic, for all three storm modes) are performed. Based
on the analysis presented, the following conclusions can be drawn:

1) The GR-S dataset captures a majority of SED reports from 2010-2019 inclusive, and captures
~90% of reports that exist within the spatiotemporal bounds of GR-S (Table 2). The reports
captured are analogous in spatial and temporal distribution to the SED reports, and the relative
contribution of tornado, hail, and wind reports to all reports per month also mirror that of the SED
database quite well (Figs. 5-7). Therefore, the storm-matched reports within the GR-S database
are a representative sample of the complete SED dataset.

2) Pronounced annual and diurnal variability was evident for tornado, hail, and wind reports: (i)
MCS-classified cells produced the most tornadoes throughout the entire year when compared to
other storm modes, and mesocyclonic storms were found to be the primary tornado contributors

during peak tornado frequency in spring and summer (Fig. 8a). During the overnight and early
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morning when total number of reports is low, MCS contribution is maximized, and during the time
of peak reports, mesocyclonic storms produce the majority of tornado reports (Fig. 9a). (ii) Single
cell storms account for the largest fraction of hail reports by storm mode for spring through fall,
and mesocyclonic storms account for a majority of all hail reports both year-round (Fig. 8b) and
throughout the day (Fig. 9b). Hail reports have the most pronounced diurnal cycle of the three
report types, meaning that reports are highly concentrated around their time of peak occurrence
(~4-5 hours after local solar noon). Unlike tornadoes and wind reports, there is no one storm mode
that stands out as the primary producer of severe hail reports over the whole year or whole day. (iii)
MCS-classified cells produce the most severe wind reports throughout the entire year (Fig. 8c) and
day (Fig. 9c) when compared to other storm modes. There is a peak in non-mesocyclonic single
cell and multicell contribution to wind reports in the late summer and early afternoon, likely due
to decay of severe weakly forced thunderstorms.

3) For both tornado and hail reports, as EF-rating and hail size increase, so does the relative
contribution of mesocyclonic storms to total reports (Fig. 10). Wind reports show a similar trend,
but the contribution of mesocyclonic storms does not monotonically increase with increasing wind
speed. However, due to small sample sizes at the highest intensities, such breakdowns should be
interpreted carefully.

4) GR-S was found to broadly reproduce the findings of Trapp et al. (2005) (Fig. 11) and Ashley
etal. (2019) (Table 4), lending credence to the usefulness of the GR-S dataset and quality of storm
mode classification applied herein.

The GR-S database was created to facilitate robust studies of severe weather using radar data
from a large sample of storms. Namely, the objective methods used to build the now-public dataset
(School of Meteorology, University of Oklahoma 2021) provide an opportunity to easily investigate
thousands of severe storms and over 1.3 million total storms with great detail. We believe these
data can be used to examine several challenging and important science questions regarding severe
weather and we encourage others to use GR-S to explore their own scientific questions as the dataset

continues to grow.
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