

1 **Microbial rewilling in the gut microbiomes of captive ring-tailed lemurs (*Lemur catta*) in**
2 **Madagascar**

3

4 Sally L. Bornbusch^{1,2*}, Tara A. Clarke³, Sylvia Hobilalaina⁴, Honore Soatata Reseva⁵, Marni
5 LaFleur⁶, Christine M. Drea¹

6 ¹ Evolutionary Anthropology Department, Duke University, Durham N.C., USA

7 ² Center for Conservation Genomics, Smithsonian National Zoological Park and Conservation
8 Biology Institute, Washington, D.C., USA

9 ³ Department of Sociology & Anthropology, North Carolina State University, Raleigh, NC

10 ⁴ Department of Zoology and Animal Biodiversity, University of Antananarivo, Madagascar

11 ⁵ Department of Biological Sciences, University of Toliara, Toliara, Madagascar

12 ⁶ Department of Anthropology, University of San Diego, San Diego C.A.

13

14 *Corresponding author: sally.bornbusch@gmail.com

15

16 **Abstract**

17 Microbial rewilding, whereby exposure to naturalistic environments can modulate or
18 augment gut microbiomes and improve host-microbe symbiosis, is being harnessed as part of
19 innovative approaches to human health, one that has significant value to animal care and
20 conservation. To test for microbial rewilding in animal microbiomes, we used a unique
21 population of wild-born ring-tailed lemurs (*Lemur catta*) that were initially held as illegal pets in
22 unnatural settings and, subsequently, relocated to a rescue center in Madagascar where they live
23 in naturalistic environments. Using amplicon and shotgun metagenomic sequencing of lemur and
24 environmental microbiomes, we found multiple lines of evidence for microbial rewilding in
25 lemurs that were transitioned from unnatural to naturalistic environments: A lemur's duration of
26 exposure to naturalistic settings significantly correlated with (a) increased compositional
27 similarly to the gut communities of wild lemurs, (b) decreased proportions of antibiotic
28 resistance genes that were likely acquired via human contact during pethood, and (c) greater
29 covariation with soil microbiomes from natural habitats. Beyond the inherent psycho-social
30 value of naturalistic environments, we find that actions, such as providing appropriate diets,
31 minimizing contact with humans, and increasing exposure to natural environmental consortia,
32 may assist in maximizing host-microbe symbiosis in animals under human care.

33

34

35

36 **Keywords:** primate, conservation, antibiotic resistance, environmental acquisition,
37 bioaugmentation, animal management

38 **Introduction**

39

40 Gut microbiomes (GMBs), critical to animal health¹, are shaped by various environmental
41 factors, such that altered or unnatural ecosystems (e.g., degraded habitats) have perturbative
42 effects on host-associated communities, with negative health implications for hosts^{2,3}. Exposure
43 to key environmental factors has the potential to augment or restore native host-associated
44 micro-fauna⁴ via an understudied, presumably gradual process known as microbial ‘rewilding.’

45 The Microbiome Rewilding Hypothesis posits that the restoration of ‘green’ habitats and
46 promotion of diverse environmental microbiomes in urban settings can improve human GMBs
47 and health⁵. If the exposure to or introduction of certain microbial inhabitants can improve host-
48 microbe symbiosis and the host’s ability to adapt to new environments, then rewilding could
49 benefit captive animals transitioning between settings or ecosystems, such as during transfers
50 between captivity facilities, translocations, or reintroductions⁶. Here, we expand the hypothesis
51 to nonhuman primates and test for microbial rewilding in wild-born, captive ring-tailed lemurs
52 (*Lemur catta*) transitioning from highly unnatural settings during illegal pethood to a more
53 natural setting after their surrender to the Lemur Rescue Center (LRC) in Madagascar (Table 1).
54 We ask if, with exposure to naturalistic environments, the GMBs of LRC lemurs better resemble
55 those of pet lemurs or their wild counterparts.

56 Belying traditional dichotomization, both wild and captive settings represent a range of
57 variation known to influence animal GMB structure and function⁷. The GMBs of ring-tailed
58 lemurs, for instance, vary within and between captive and wild settings, such that there is not a
59 universal signal of captivity nor is there a specific, core microbiome that is representative of all
60 of the wild animals⁸ (Supplementary Figure S1). Here, we focus on three factors known to

61 impact GMB structure and variation across settings: diet, human contact, and exposure to natural
62 environments (Table 1). Notably, the degree of evolutionary mismatch between the diets of wild
63 and captive counterparts is thought to underlie significant variation in GMB diversity and
64 composition^{9,10}. In addition, contact with humans can facilitate transmission of microbes and
65 antibiotic resistance genes (ARGs) between humans and other animals¹¹. Lastly, exposure to
66 natural environments can mediate the acquisition of environmental microbes and ARGs that can
67 impact host-associated communities and animal health^{8,12}. Transitions between settings with
68 different types or degrees of these factors could precipitate changes in multiple aspects of the
69 microbiome, whether via a detrimental perturbation or a beneficial microbial rewilding.

70 The wild-born lemurs at the LRC have experienced at least two drastic environmental
71 transitions within their lifetime, the first a perturbative transition when removed from the wild to
72 be kept as pets¹³, the second a potentially rewilding transition from pethood to life at the LRC.
73 We use cross-sectional data to first address if time in residency at the LRC correlates with the (a)
74 diversity, (b) phylogenetic composition, and (c) abundance of bacterial taxa in lemur GMBs. We
75 focus on the genera *Bacteroides*, *Prevotella*, and *Ruminococcus*, as these may serve as
76 biomarkers of host diet type and gut health¹⁴. Notably, despite the absence of a diverse core
77 GMB among wild and captive ring-tailed lemurs, these microbes are shared and abundant across
78 populations⁸, are also present in the GMBs of other wild and captive primates, and are linked to
79 distinct enterotypes in human GMBs. Investigating variation in these ubiquitous microbes, in
80 combination with broader attributes of microbial communities (e.g., diversity and composition),
81 affords a holistic view of lemur GMB structure, as well as potential insights into changes in
82 functional potential. Next, we also ask if residency at the LRC influences ARG abundance and
83 covariation between lemur GMBs and soil microbiomes from natural habitats. Microbial

84 rewilding in LRC lemurs predicts (i) greater compositional similarity to the GMBs of wild
85 lemurs, (ii) decreased ARG abundance, and (iii) greater covariation with soil microbiomes.

86

87 **Methods**

88

89 *Subjects and samples*

90 The subjects included ring-tailed lemurs living (a) in the wild (n = 139), (b) as pets in
91 Malagasy households (n = 8), and (c) at the LRC in Mangily, Madagascar (n = 25)⁸. Their diets
92 and exposure to humans and environmental microbiomes are summarized in Table 1. Wild
93 lemurs inhabited protected areas (e.g., national parks, community-managed reserves) that varied
94 in habitat type from dry spiny forest to riverine forest. They relied entirely on naturally foraged
95 diets and were constantly exposed to natural environmental microbiomes. Pet lemurs lived in
96 human dwellings in townships located around Toliara, Madagascar. Two of the pet lemurs had
97 limited access to outdoor areas. Their diets were ‘humanized,’ consisting of commercial grains
98 and produce, and they had limited exposure to natural environmental microbiomes. The LRC
99 lemurs were wild-born and had known dates of surrender to the LRC, where they were socially
100 housed in outdoor enclosures, with access to shelter. They thus could forage freely, obtaining a
101 partial natural diet, supplemented with seasonally available produce, and were exposed to natural
102 environmental microbiomes. Exposure to humans and to ARGs (from combined environmental
103 exposure and/or direct antibiotic administration) was least in the natural populations, maximal in
104 pets, and relatively limited in LRC animals.

105 We opportunistically collected fresh fecal samples upon observing lemur defecation. To
106 avoid soil contamination of the fecal samples, we removed the outer layer of each fecal pellet.

107 We also collected samples of topsoil (n = 22) from the wild lemurs' natural habitats, including
108 spiny, dry, and riverine forests in southern Madagascar. When collecting soil, we avoided high-
109 defecation areas (e.g., under sleeping trees) and areas with significant organic matter (e.g., dead
110 vegetation), focusing instead on areas with bare soil, where the lemurs most commonly spent
111 time on the ground. Within these areas, we demarcated a 2-3 m² area and collected topsoil (the
112 top 2-3 cm of soil) from each of five evenly spaced locations. For each area, we pooled the five
113 aliquots of topsoil in a single tube to create a representative soil sample. All fecal and soil
114 samples were preserved in Omnipore Gut tubes (DNAgentek, Ontario, Canada)¹⁵ and, within 8
115 weeks of collection, were transported to the U.S. and stored at -80 °C until analysis.

116

117 *Microbial DNA extraction and sequencing*

118 Following the manufacturer's protocols for the DNeasy Powersoil kit (QIAGEN, Frederick,
119 MD), we extracted bacterial genomic DNA from fecal and soil samples. We sent aliquots of
120 extracted DNA to Argonne National Laboratory's Environmental Sequencing facility (Lemont,
121 IL) for library preparation and amplicon sequencing of the V4 region of the 16S rRNA gene.
122 Amplicons were sequenced on a 151 x 151 base pair Illumina MiSeq run¹⁶.

123 We sent a subset of the extracted DNA aliquots (wild lemurs, n = 7; pet lemurs, n = 7; LRC
124 lemurs, n = 9) to CosmosID Inc. (Rockville, MD) for shotgun metagenomic sequencing to
125 identify antibiotic resistance genes. DNA libraries were prepared using the Illumina Nextera XT
126 library preparation kit, with a modified protocol¹⁷. Libraries were then sequenced on an Illumina
127 HiSeq platform 2 x 150 bp. On average, the sequencing yielded approximately 17 million total
128 sequence reads per sample, with an average of 18 million and 10 million reads for fecal and soil

129 samples, respectively. Samples with fewer than 5 million reads (n = 2 samples) were omitted
130 from downstream analyses.

131

132 *Bioinformatics and statistical analyses*

133 We processed the 16S rRNA sequence data using a bioinformatics pipeline generated in
134 QIIME2^{18,19}. We used the pipeline to join forward and reverse reads, demultiplex, quality filter
135 joined reads and remove chimeras (DADA2 plugin; PHRED scores indicated no quality
136 trimming was needed)²⁰, omit non-bacterial sequences (Mitochondria, but not chloroplasts as
137 they can serve as a valuable proxy for diet and environmental exposure^{18,21,22}), and generate a
138 phylogenetic tree (mafft program²³ and fasttree2²⁴). To assign taxonomy to our sequence
139 features and generate amplicon sequence variants (ASVs), we *de novo* trained the Naive Bayes
140 classifier using the SILVA database (ver. 138.1) at 99% sequence similarity^{25,26} and tested the
141 classifier using our representative sequences. After quality filtering, all samples had > 10,000
142 reads and were retained for downstream analysis. Using QIIME2, we calculated metrics of alpha
143 diversity (Shannon and Faith's Phylogenetic diversity metric) and beta diversity (weighted and
144 unweighted UniFrac distances) on a rarefied ASV feature table subsampled to 15,000 reads per
145 sample (Supplementary Figure S2). To examine variation in the abundance of specific microbial
146 taxa, we used R Studio (ver. 4.2.0) to perform a center log-ratio (CLR) transformation on the
147 unrarefied ASV feature table (package 'compositions')^{27,28}. CLR abundances reflect log-
148 transformed ratios of the raw sequence counts of each taxon over the geometric mean of all other
149 taxa in the sample²⁹.

150 For shotgun metagenomic data, unassembled sequencing reads were directly analyzed using
151 CosmosID's bioinformatics platform for identifying and profiling ARGs^{17,30,31}. The system uses

152 multiple genome databases and a high-performance, data-mining algorithm that disambiguates
153 metagenomic sequence reads. To identify ARGs, we queried the unassembled sequence reads
154 against the CosmosID curated ARG gene database, which was compiled through assimilation of
155 ARG sequences collected from the published literature, as well as from different open-source
156 databases, including the following: NCBI, CARD, ResFinder, ARDB, ARG-ANNOT, and
157 SEEC. If annotation of a gene conferring resistance was not included in their database, the
158 CosmosID team performed literature searches to determine the class or relevant mechanisms of
159 resistance.

160 Briefly, and without revealing proprietary information, the CosmosID system uses a high-
161 performance, data-mining k-mer algorithm and highly curated dynamic comparator databases
162 (GenBook®) that rapidly disambiguate millions of short reads into the discrete genomes or genes
163 engendering the particular sequences. The pipeline has two separable comparators: the first
164 consists of a pre-computation phase for reference database and a per-sample computation. The
165 input to the pre-computation phase is a reference microbial genome or antibiotic resistance and
166 virulence gene database, and its output is phylogeny trees, together with sets of variable length k-
167 mer fingerprints (biomarkers) that are uniquely identified with distinct nodes, branches and
168 leaves of the tree. The second per-sample, computational phase searches the hundreds of millions
169 of short sequence reads or contigs from draft assembly against the fingerprint sets. The resulting
170 statistics are analyzed to give fine-grain composition and relative abundance estimates. The
171 second comparator uses edit distance-scoring techniques to compare a target genome or gene
172 with a reference set. The algorithm provides similar functionality to BLAST, but sacrifices some
173 recall precision for a one- or two-order-of-magnitude processing gain. Overall classification
174 precision is maintained through aggregation statistics. Enhanced detection specificity is achieved

175 by running the comparators in sequence. The first comparator finds reads in which there is an
 176 exact match with a k-mer uniquely identified with an ARG; the second comparator then
 177 statistically scores the entire read against the reference to verify that the read is indeed uniquely
 178 identified with that reference. For each sample, the reads from a species are assigned to the strain
 179 with the highest aggregation statistics. Outputs include the identity and family, percent gene

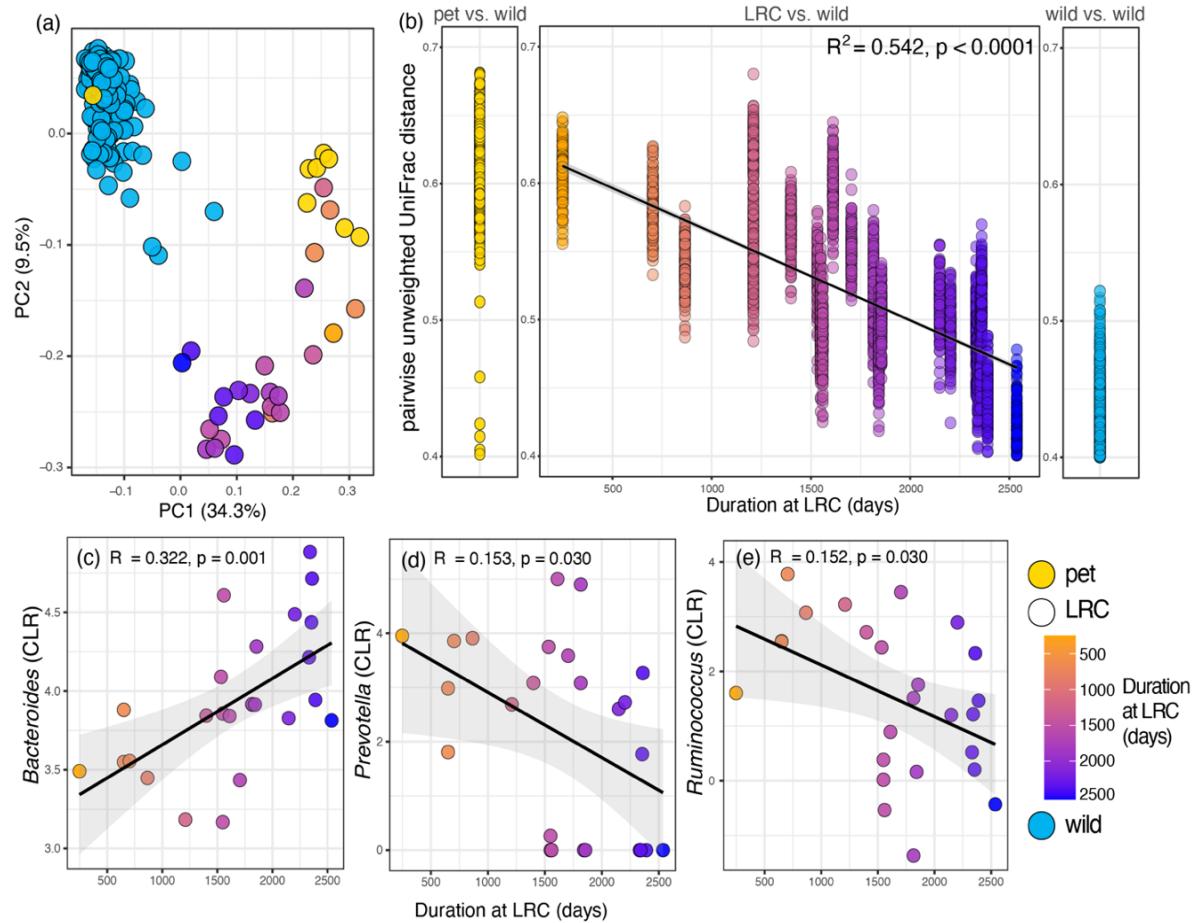


Figure 1. Compositional patterns in the gut microbiomes (GMBs) of three categories of ring-tailed lemurs (*Lemur catta*) in Madagascar. (a) ‘Population signatures’ as revealed by principal coordinate plots of unweighted UniFrac distances for wild lemurs (blue), pet lemurs (yellow), and lemurs in semi-natural conditions at the Lemur Rescue Center (LRC; color-graded in relation to duration in residency). (b) Rewilding, as revealed by pairwise comparisons, using unweighted UniFrac distance, between the GMBs of pet vs. wild lemurs, LRC vs. wild lemurs, and within wild lemurs. (c, d, e) Center log-ratio (CLR) transformed abundances of *Bacteroides*, *Prevotella*, and *Ruminococcus* in the GMBs of LRC lemurs. Shown are linear trend lines and 95% confidence intervals. Statistical results from linear mixed model results; See Table 2 for full results.

180 coverage, and frequency counts of ARGs within each sample. To calculate the proportion of
181 ARGs within a fecal sample, we divided the frequency count of all ARGs or specific gene
182 families by the sample's total read count.

183 To calculate covariation between lemur GMBs and soil microbiomes, we used FEAST³², a
184 tool that uses fast expectation-maximization, multinomial distributions, and machine-learning
185 classification to model microbial source tracking. FEAST provides “source proportions” of the
186 scaled proportion of each LRC lemur’s GMB community that could be attributed to soil
187 communities from natural habitats or to a default ‘unknown source’ that accounts for microbes
188 not relevant to soil microbiota³².

189 For all LRC lemurs, we calculated time in residency at the LRC as the number of days
190 between surrender date and the date of sample collection (range = 248-2,537 days, standard
191 deviation = 617.7, median = 1,736). Using linear models in R Studio (package ‘stats’),
192 we tested for effects of time in residency at the LRC on lemur GMB diversity, composition,
193 membership, ARGs, and covariation with soil microbiomes. The model included the duration of
194 residency at the LRC as a fixed effect.

195

196 **Results**

197 We observed a negative trend in alpha diversity with time in residence at the LRC;
198 nevertheless, the patterns did not reach statistical significance for any metric. In contrast, both
199 compositional measures (or beta diversity) of lemur GMBs significantly correlated with time in
200 residence (Table 2). Specifically, the longer animals resided at the LRC, the more similar their
201 GMB composition was to that of their wild counterparts (Figure 1a,b; Table 2), consistent with
202 rewilding.

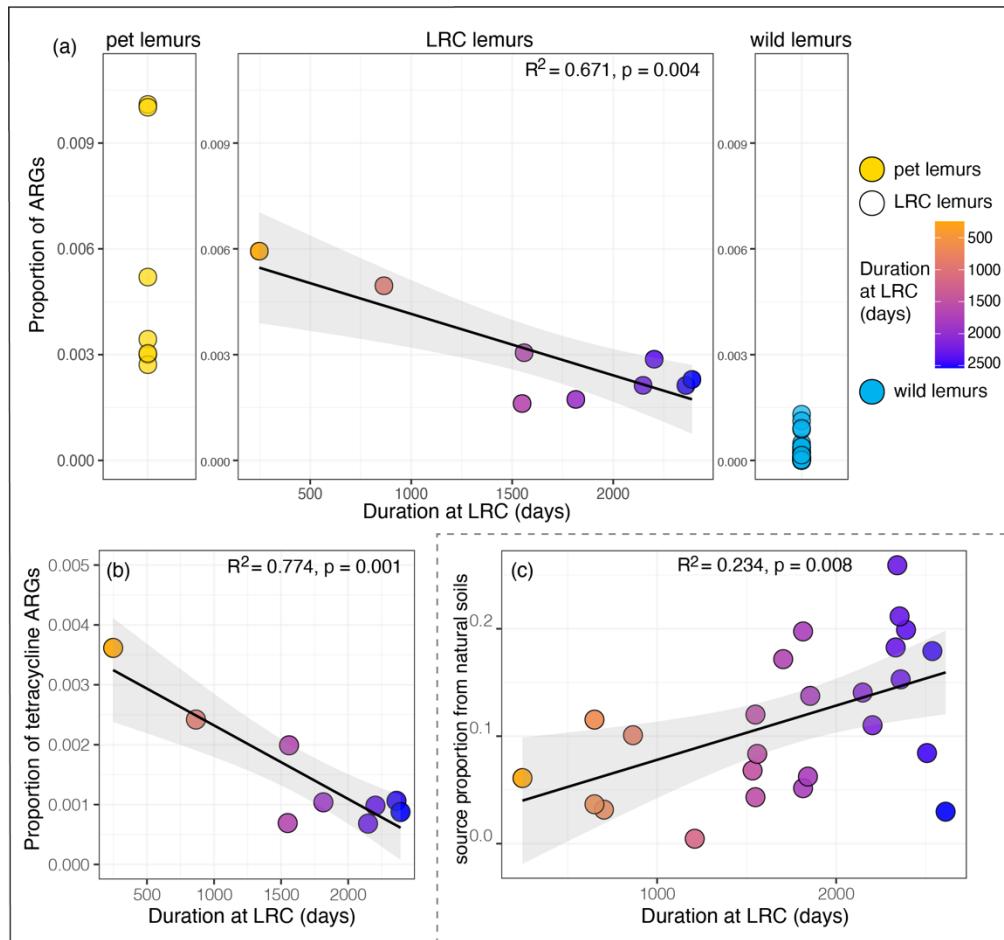


Figure 2. Environmental influences on the gut microbiomes (GMBs) of three categories of ring-tailed lemurs (*Lemur catta*) in Madagascar. Relative abundances of (a) total antibiotic resistance genes (ARGs) in wild lemurs (blue), pet lemurs (yellow), and lemurs in semi-natural conditions at the Lemur Rescue Center (LRC; color-graded in relation to duration in residency) and (b) tetracycline ARGs in the GMBs of LRC lemurs. (c) Total source proportion of soil microbes from natural habitats in the GMBs of LRC lemurs. Shown are linear trend lines and 95% confidence intervals. Statistical results from linear mixed model results; See Table 2 for full results.

203 The center log-ratio (CLR)-transformed abundance of the *Bacteroides* genus increased
 204 significantly with increasing time at the LRC (Figure 1c). In contrast, the CLR abundances of
 205 both the genera *Prevotella* and *Ruminococcus* decreased significantly with increasing time at the
 206 LRC (Figure 1d, e; Table 2).
 207 The total relative abundance of ARGs in the GMBs of LRC lemurs ranged from 0.16%–
 208 0.59% (mean = 0.29% ± 0.14%). As predicted by rewilding, the relative abundance of total

209 ARGs and of tetracycline ARGs (i.e., the most abundant class of ARGs) decreased significantly
210 with time spent at the LRC (Figure 2a,b; Table 2).

211 The source proportion of soil microbes from natural habitats in the GMBs of LRC lemurs – a
212 proxy for covariation between lemur fecal and soil microbiomes – was also significantly and
213 positively correlated with longer residency at the LRC (Figure 2c; Table 2), again consistent with
214 rewilding.

215

216 **Discussion**

217

218 The present study provides multiple lines of evidence that the Microbiome Rewilding
219 Hypothesis applies not only to humans, but also to wildlife, suggesting that rewilding can serve
220 as a tool to promote animal wellbeing in captivity or during transitional periods, including to
221 ease the microbial reintegration of reintroduced or translocated endangered species. Notably, for
222 animals that fell victim to the illegal pet trade, but were then relinquished to the LRC, longer
223 periods of exposure to naturalistic environments were strongly linked to more ‘native’ or ‘wild-
224 type’ GMBs, as revealed by microbial community structure, resistance genes, and their
225 covariation with environmental microbiomes. Despite clear patterns in the composition of lemur
226 GMBs, alpha diversity was not significantly correlated with the host’s time spent in naturalistic
227 environments; however, there was a non-significant trend for all alpha diversity metrics to
228 decrease with residency at the LRC. Alpha diversity, alone, is increasingly proving to be an
229 inconsistent metric for assessing the influences of environmental factors on host-associated
230 microbiomes and relevant health outcomes^{8,33–35}. Although data on animal health would further

231 solidify the relevance of microbial rewilding to animal wellbeing, these results emphasize the
232 importance of incorporating multifaceted microbiome science into animal care and conservation.

233 Metrics of community composition (i.e., beta diversity) well reflected the predicted and
234 nuanced patterns of environmentally mediated microbial variation⁸. Specifically, longer
235 residency at the LRC was associated with a GMB composition that was more similar to the gut
236 communities of wild lemurs than to those of pet lemurs. The increased similarity was evidenced
237 in both the presence-absence and the abundance-weighted metrics of phylogenetic compositions
238 (i.e., unweighted and weighted UniFrac), indicating that both rare and abundant microbes were
239 driving the pattern of rewilding. We thus explored specific patterns in *Bacteroides*, *Prevotella*,
240 and *Ruminococcus* – three dominant members of primate GMBs^{36–39}.

241 *Bacteroides* is a ubiquitous, diverse, and functionally relevant genus in lemur GMBs^{35,40},
242 linked to polysaccharide breakdown and decreased intestinal disease in humans and animal
243 models^{41,42}. It is negatively influenced by the common food additives, monosaccharide fructose
244 and glucose⁴³. Our evidence of increased *Bacteroides* in the GMBs of LRC lemurs, relative to
245 pet lemurs, could reflect the more appropriate diet provided at the LRC and, in turn, entail
246 decreased disease risk relative to the disease-prone, pet lemurs⁴⁴. Although *Prevotella* has
247 saccharolytic function⁴⁵ similar to *Bacteroides*, *Prevotella* was significantly decreased in LRC
248 lemurs that had longer residency at the LRC. Both genera rely on similar nutritional resources in
249 the gut, leading to competitive inhibition and contrasting patterns of abundance between the two
250 genera⁴⁶. This competitive relationship has led many to consider abundances of *Prevotella* and
251 *Bacteroides* to be mutually exclusive (i.e., for these genera to be distinct enterotypes), such that
252 the ratio of the two genera may be a proxy for microbial function, host metabolism, and gut
253 health^{47,48}. In humans, a lower *Prevotella* to *Bacteroides* ratio – as we see with increased

254 residency at the LRC – has been linked to maintaining or gaining weight when consuming a
255 high-fiber diet⁴⁹. This pattern suggests that the ‘terminal’ microbiomes of LRC lemurs may
256 facilitate or reflect a metabolic shift from malnourishment to improving body condition,
257 achieved by allowing the animals to forage on natural vegetation while being supplemented with
258 the produce-rich LRC diet.

259 The genus *Ruminococcus*, which was negatively correlated with longer residency at the LRC,
260 is linked to the degradation of resistant dietary starches⁵⁰, including those found in grains, such
261 as rice⁵¹. Rice is the most widely consumed food in Madagascar and the food most commonly
262 fed to pet lemurs. By contrast, the diets of LRC lemurs do not include rice and are not rich in
263 starch. Importantly, the diets of LRC lemurs include natural forage, which has been shown to
264 dramatically impact GMB diversity and function in folivorous lemurs⁵². Together, the changes in
265 these three dominant taxa – *Bacteroides*, *Prevotella*, and *Ruminococcus* – suggest that the
266 transition from diets associated with pethood to more natural diets at the LRC can facilitate the
267 microbial rewilding process.

268 Regarding antibiotic resistance, recent studies show that ARG enrichment and propagation
269 can occur in wildlife in the absence of direct clinical treatment with antibiotics^{35,53}, namely
270 through the transmission of ARGs between hosts and their social or physical environment⁵³.
271 Although pet lemurs in Madagascar almost never receive antibiotics, they have markedly high
272 proportions of ARGs in their GMBs. LRC lemurs, however, are treated with antibiotics in cases
273 of injury or disease. Despite the increased likelihood of LRC lemurs, relative to pets, receiving
274 antibiotic treatment during veterinary care, we found that residency at the LRC, under
275 diminished human contact, significantly correlated with lower proportions of total and
276 tetracycline ARGs. These results suggest a potent role for human contact (or exposure to

277 domesticated animals and their excreta) in ARG transmission to animals, such that minimizing
278 human contact and anthropogenic disturbance would be an important step in the rewilding
279 process.

280 In terms of the physical environment, beyond acquisition of environmental pathogens⁵⁴,
281 acquisition of commensal or symbiotic microbes is gaining recognition as a component of GMB
282 assembly⁵⁵. The functional relevance of these environmental microbes remains to be seen; yet,
283 there is clear and longstanding evidence that exposure to environmental microbes, or lack
284 thereof, plays a role in shaping animal (including human) immune responses and determining
285 overall health outcomes^{5,56-58}. In support of our previous finding that exposure to natural
286 environments dictates environmental acquisition in lemur GMBs⁸, longer residency at the LRC,
287 which equated to greater exposure to naturalistic environments, correlated with greater
288 covariation between lemur GMBs and soil microbiomes from natural habitats. In addition to the
289 inherent psychological and behavioral value of providing naturalistic environments for wildlife
290 under human care, we find that exposure to rich, natural microbial landscapes has the potential to
291 augment host-associated communities.

292 Together, our results suggest that microbial rewilding is a multi-faceted process that includes
293 host-associated and environmental microbial communities. Moreover, we suggest that providing
294 appropriate diets, minimizing contact with humans, and increasing exposure to natural
295 environmental consortia are actionable steps that can promote microbial rewilding in captive
296 animals. These actions may be particularly valuable for animals slated to undergo environmental
297 transitions or reintroduction^{6,59}. By rewilding host GMBs prior to the transition, we may be able
298 to prime animals for success in their new environments. Going forward, the collection of
299 longitudinal data on the GMBs and overall health of animals undergoing environmental

300 transitions will be essential for understanding the microbial dynamics that drive microbial
301 rewilding and their ultimate relevance to the animal host.

302

303

304 **Acknowledgments**

305 For their assistance in field collection and logistics, we thank Lydia Greene, Marina Blanco,
306 Samantha Calkins, Ryan Rothman, Laurent 'Raleso' Randrianasolo, Remi Rakotovao, Georges
307 René Rakotonirina, Chelsea Southworth, Melina Nolas, Lauren Petronaci, Michelle Sauther, and
308 Patricia Wright. We are also grateful to management and staff members at the LRC. We thank
309 Karlis Graubics and Brian Fanelli at CosmosID and Sarah Owens at Argonne National
310 Laboratory for guidance and sequencing services.

311

312 **Ethics**

313 Sampling in Madagascar occurred with approval from Madagascar National Parks and
314 appropriate governmental agencies (Ministry of Environment, Ecology, and Forests; permit #s
315 147/18/MEEF/SG/DGF/DSAP/SCB.Re, 152/19/MEDD/SG/DGEF/DGRNE,
316 159/16/MEEF/SG/DGF/DSAP/SCB.Re, 154/17/ MEEF/SG/DGF/DSAP/SCB.Re,
317 156/19/MEEF/SG/DGF/DSAP/SCB.Re). At the time of collection, samples did not require CDC,
318 USDA, or CITES permits. All samples were declared, permits presented, and cleared through
319 U.S. Customs and Border Protection.

320

321 **Data availability**

322 The 16S sequencing reads are available in the National Center for Biotechnology
323 Information's Sequence Read Archive (BioProject ID #PRJNA821395). Data on antibiotic
324 resistance genes are deposited in the Open Science Framework repository,
325 link: <https://osf.io/vkr2f/>, DOI: 10.17605/OSF.IO/VKR2F. The full metagenomic library is
326 available upon reasonable request.

327

328 **Competing interests**

329 We attest that no author has competing interests.

330

331 **Author contributions**

332 SLB: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation,
333 Methodology, Project administration, Resources, Visualization, Writing – original draft, Writing
334 – review & editing.

335 TAC: Data curation, Funding acquisition, Resources, Writing – review & editing.

336 SH: Data curation, Methodology, Resources, Writing – review & editing.

337 SHR: Methodology, Resources, Writing – review & editing.

338 ML: Data curation, Funding acquisition, Resources, Writing – review & editing.

339 CMD: Conceptualization, Funding acquisition, Investigation, Methodology, Project
340 administration, Resources, Supervision, Visualization, Writing – original draft, Writing – review
341 & editing.

342

343 **Funding statement**

344 Funding was provided by an NSF Doctoral Dissertation Research Improvement Grant to SLB
345 and CMD (award #1945776), an NSF Behavioral and Cognitive Sciences Grant to CMD (award
346 #1749465), a Triangle Center for Evolutionary Medicine Graduate Student Research Grant to
347 SLB, and a Research fellowship from The Kenan Institute for Ethics (Duke University) to SLB.
348 During collections, TAC and ML were funded by the Margot Marsh Biodiversity Fund and
349 private donations to Lemur Love (San Diego, C.A.).

350

351

352

353

354 **References**

355

356 1 Peixoto RS, Harkins DM, Nelson KE. Advances in Microbiome Research for Animal
357 Health. *Annu Rev Anim Biosci* 2021; **9**: 289–311.

358 2 Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf
359 RM, Yildirim S, Torralba M *et al.* Habitat degradation impacts black howler monkey
360 (*Alouatta pigra*) gastrointestinal microbiomes. *ISME J* 2013; **7**: 1344.

361 3 West AG, Waite DW, Deines P, Bourne DG, Digby A, McKenzie VJ, Taylor MW. The
362 microbiome in threatened species conservation. *Biol Conserv* 2019; **229**: 85–98.

363 4 Robinson JM, Mills JG, Breed MF. Walking ecosystems in microbiome-inspired green
364 infrastructure: an ecological perspective on enhancing personal and planetary health.
365 *Challenges* 2018; **9**: 40.

366 5 Mills JG, Weinstein P, Gellie NJC, Weyrich LS, Lowe AJ, Breed MF. Urban habitat

367 restoration provides a human health benefit through microbiome rewilding: the
368 Microbiome Rewilding Hypothesis. *Restor Ecol* 2017; **25**: 866–872.

369 6 Trevelline BK, Fontaine SS, Hartup BK, Kohl KD. Conservation biology needs a
370 microbial renaissance: a call for the consideration of host-associated microbiota in wildlife
371 management practices. *Proc R Soc B* 2019; **286**: 20182448.

372 7 Dallas JW, Warne RW. Captivity and Animal Microbiomes: Potential Roles of Microbiota
373 for Influencing Animal Conservation. *Microb Ecol* 2022; : 1–19.

374 8 Bornbusch SL, Greene LK, Rahobilalaina S, Calkins S, Rothman RS, Clarke TA, LaFleur
375 M, Drea CM. Gut microbiota of ring-tailed lemurs (*Lemur catta*) vary across natural and
376 captive populations and correlate with environmental microbiota. *Anim Microbiome* 2022;
377 **4**: 1–19.

378 9 Greene LK, Blanco MBM, Rambeloson E, Graubics K, Fanelli B, Colwell RRR, Drea
379 CCM. Gut microbiota of frugo-folivorous sifakas across environments. *Anim Microbiome*
380 2021; **Under revi**.

381 10 McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM, Alexiev A, Amato
382 KR, Metcalf JL, Kowalewski M. The Effects of Captivity on the Mammalian Gut
383 Microbiome. *Integr Comp Biol* 2017; **57**: 690–704.

384 11 Bornbusch SL, Drea CM. Antibiotic resistance genes in lemur gut and soil microbiota
385 along a gradient of anthropogenic disturbance. *Front Ecol Evol* 2021; : 514.

386 12 Hyde ER, Navas-Molina JA, Song SJ, Kueneman JG, Ackermann G, Cardona C,
387 Humphrey G, Boyer D, Weaver T, Mendelson JR. The oral and skin microbiomes of
388 captive komodo dragons are significantly shared with their habitat. *MSystems* 2016; **1**:
389 e00046-16.

390 13 LaFleur M, Clarke TA, Reuter KE, Schaefer MS. Illegal Trade of Wild-Captured Lemur
391 catta within Madagascar. *Folia Primatol* 2019; **90**: 199–214.

392 14 Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR,
393 Tap J, Bruls T, Batto J-M *et al.* Enterotypes of the human gut microbiome. *Nature* 2011;
394 **473**: 174–180.

395 15 Choo JM, Leong LE, Rogers GB. Sample storage conditions significantly influence faecal
396 microbiome profiles. *Sci Rep* 2015; **5**: 16350.

397 16 Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM,
398 Betley J, Fraser L, Bauer M. Ultra-high-throughput microbial community analysis on the
399 Illumina HiSeq and MiSeq platforms. *ISME J* 2012; **6**: 1621–1624.

400 17 Hasan NA, Young BA, Minard-Smith AT, Saeed K, Li H, Heizer EM, McMillan NJ, Isom
401 R, Abdullah AS, Bornman DM. Microbial community profiling of human saliva using
402 shotgun metagenomic sequencing. *PLoS One* 2014; **9**: e97699.

403 18 Bornbusch SL, Grebe NM, Lunn S, Southworth CA, Dimac-Stohl K, Drea C. Stable and
404 transient structural variation in lemur vaginal, labial and axillary microbiomes: patterns by
405 species, body site, ovarian hormones and forest access. *FEMS Microbiol Ecol* 2020; **96**:
406 fiaa090.

407 19 Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, Alexander H,
408 Alm EJ, Arumugam M, Asnicar F. QIIME 2: Reproducible, interactive, scalable, and
409 extensible microbiome data science. *PeerJ Preprints*, 2018.

410 20 Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2:
411 high-resolution sample inference from Illumina amplicon data. *Nat Methods* 2016; **13**:
412 581.

413 21 Trosvik P, Rueness EK, de Muinck EJ, Moges A, Mekonnen A. Ecological plasticity in
414 the gastrointestinal microbiomes of Ethiopian Chlorocebus monkeys. *Sci Rep* 2018; **8**: 1–
415 10.

416 22 Wills MO, Shields-Cutler RR, Brunmeier E, Weissenborn M, Murphy T, Knights D,
417 Johnson TJ, Clayton JB. Host Species and Captivity Distinguish the Microbiome
418 Compositions of a Diverse Zoo-Resident Non-Human Primate Population. *Diversity* 2022;
419 **14**: 715.

420 23 Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple
421 sequence alignment based on fast Fourier transform. *Nucleic Acids Res* 2002; **30**: 3059–
422 3066.

423 24 Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for
424 large alignments. *PLoS One* 2010; **5**: e9490.

425 25 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The
426 SILVA ribosomal RNA gene database project: improved data processing and web-based
427 tools. *Nucleic Acids Res* 2012; **41**: D590–D596.

428 26 Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H, Whitman WB,
429 Euzéby J, Amann R, Rosselló-Móra R. Uniting the classification of cultured and
430 uncultured bacteria and archaea using 16S rRNA gene sequences. *Nat Rev Microbiol*
431 2014; **12**: 635.

432 27 Aitchison J. The statistical analysis of compositional data. *J R Stat Soc Ser B* 1982; **44**:
433 139–160.

434 28 Quinn TP, Erb I, Richardson MF, Crowley TM. Understanding sequencing data as
435 compositions: an outlook and review. *Bioinformatics* 2018; **34**: 2870–2878.

436 29 Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are
437 compositional: and this is not optional. *Front Microbiol* 2017; **8**: 2224.

438 30 Ottesen A, Ramachandran P, Reed E, White JR, Hasan N, Subramanian P, Ryan G, Jarvis
439 K, Grim C, Daquiqan N. Enrichment dynamics of Listeria monocytogenes and the
440 associated microbiome from naturally contaminated ice cream linked to a listeriosis
441 outbreak. *BMC Microbiol* 2016; **16**: 1–11.

442 31 Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, Gibbons SM,
443 Larsen P, Shogan BD, Weiss S. Longitudinal analysis of microbial interaction between
444 humans and the indoor environment. *Science (80-)* 2014; **345**: 1048–1052.

445 32 Shenhav L, Thompson M, Joseph TA, Briscoe L, Furman O, Bogumil D, Mizrahi I, Pe'er
446 I, Halperin E. FEAST: fast expectation-maximization for microbial source tracking. *Nat
447 Methods* 2019; **16**: 627.

448 33 Barelli C, Albanese D, Stumpf RM, Asangba A, Donati C, Rovero F, Hauffe HC. The gut
449 microbiota communities of wild arboreal and ground-feeding tropical primates are
450 affected differently by habitat disturbance. *Msystems* 2020; **5**.

451 34 Frankel JS, Mallott EK, Hopper LM, Ross SR, Amato KR. The effect of captivity on the
452 primate gut microbiome varies with host dietary niche. *Am J Primatol* 2019; **81**: e23061.

453 35 Bornbusch SL, Harris RL, Grebe NM, Roche K, Dimac-Stohl K, Drea CM. Antibiotics
454 and fecal transfaunation differentially affect microbiota recovery, associations, and
455 antibiotic resistance in lemur guts. *Anim Microbiome* 2021; **3**.

456 36 Bornbusch SL, Greene L, Rahobilalaina S, Calkins S, Rothman R, Clarke T, LaFleur M,
457 Drea C. Gut microbiota of ring-tailed lemurs (*Lemur catta*) vary across natural and captive
458 populations and correlate with environmental microbiota. *Anim Microbiome* 2022; **4**: 1–

459 19.

460 37 Amato KR, Sanders JG, Song SJ, Nute M, Metcalf JL, Thompson LR, Morton JT, Amir
461 A, McKenzie VJ, Humphrey G. Evolutionary trends in host physiology outweigh dietary
462 niche in structuring primate gut microbiomes. *ISME J* 2019; **13**: 576–587.

463 38 Bornbusch SL, Greene LK, McKenney EA, Volkoff SJ, Midani FS, Joseph G, Gerhard
464 WA, Iloghalu U, Granek J, Gunsch CK. A comparative study of gut microbiomes in
465 captive nocturnal strepsirrhines. *Am J Primatol* 2019; **81**: e22986.

466 39 Nishida AH, Ochman H. A great-ape view of the gut microbiome. *Nat Rev Genet* 2019;
467 **20**: 195–206.

468 40 Nagpal R, Shively CA, Appt SA, Register TC, Michalson KT, Vitolins MZ, Yadav H. Gut
469 microbiome composition in non-human primates consuming a Western or Mediterranean
470 diet. *Front Nutr* 2018; **5**: 28.

471 41 Deng H, Yang S, Zhang Y, Qian K, Zhang Z, Liu Y, Wang Y, Bai Y, Fan H, Zhao X.
472 *Bacteroides fragilis* prevents *Clostridium difficile* infection in a mouse model by restoring
473 gut barrier and microbiome regulation. *Front Microbiol* 2018; **9**: 2976.

474 42 Wang C, Zhao J, Zhang H, Lee Y-K, Zhai Q, Chen W. Roles of intestinal *bacteroides* in
475 human health and diseases. *Crit Rev Food Sci Nutr* 2021; **61**: 3518–3536.

476 43 Townsend GE, Han W, Schwalm ND, Raghavan V, Barry NA, Goodman AL, Groisman
477 EA. Dietary sugar silences a colonization factor in a mammalian gut symbiont. *Proc Natl
478 Acad Sci* 2019; **116**: 233–238.

479 44 LaFleur M, Reuter KE, Hall MB, Rasoanaivo HH, McKernan S, Ranaivomanana P,
480 Michel A, Rabodoarivelo MS, Iqbal Z, Rakotosamimanana N. Drug-Resistant
481 Tuberculosis in Pet Ring-Tailed Lemur, Madagascar. *Emerg Infect Dis* 2021; **27**: 977.

482 45 Gálvez EJC, Iljazovic A, Amend L, Lesker TR, Renault T, Thiemann S, Hao L, Roy U,
483 Gronow A, Charpentier E. Distinct polysaccharide utilization determines interspecies
484 competition between intestinal *Prevotella* spp. *Cell Host Microbe* 2020; **28**: 838–852.

485 46 Costea PI, Hildebrand F, Arumugam M, Bäckhed F, Blaser MJ, Bushman FD, De Vos
486 WM, Ehrlich SD, Fraser CM, Hattori M. Enterotypes in the landscape of gut microbial
487 community composition. *Nat Microbiol* 2018; **3**: 8–16.

488 47 Roager HM, Licht TR, Poulsen SK, Larsen TM, Bahl MI. Microbial enterotypes, inferred
489 by the *prevotella*-to-*bacteroides* ratio, remained stable during a 6-month randomized
490 controlled diet intervention with the new nordic diet. *Appl Environ Microbiol* 2014; **80**:
491 1142–1149.

492 48 Hjorth MF, Christensen L, Kjølbæk L, Larsen LH, Roager HM, Kiilerich P, Kristiansen
493 K, Astrup A. Pretreatment *Prevotella*-to-*Bacteroides* ratio and markers of glucose
494 metabolism as prognostic markers for dietary weight loss maintenance. *Eur J Clin Nutr*
495 2020; **74**: 338–347.

496 49 Hjorth MF, Roager HM, Larsen TM, Poulsen SK, Licht TR, Bahl MI, Zohar Y, Astrup A.
497 Pre-treatment microbial *Prevotella*-to-*Bacteroides* ratio, determines body fat loss success
498 during a 6-month randomized controlled diet intervention. *Int J Obes* 2018; **42**: 580–583.

499 50 DeMartino P, Cockburn DW. Resistant starch: impact on the gut microbiome and health.
500 *Curr Opin Biotechnol* 2020; **61**: 66–71.

501 51 Wang K, Ren A, Zheng M, Jiao J, Yan Q, Zhou C, Tan Z. Diet with a High Proportion of
502 Rice Alters Profiles and Potential Function of Digesta-Associated Microbiota in the Ileum
503 of Goats. *Animals* 2020; **10**: 1261.

504 52 Greene LK, McKenney EA, O'Connell TM, Drea CM. The critical role of dietary foliage

505 in maintaining the gut microbiome and metabolome of folivorous sifakas. *Sci Rep* 2018; **8**:
506 14482.

507 53 Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the
508 wild: antibiotic resistance genes in natural environments. *Nat Rev Microbiol* 2010; **8**: 251–
509 259.

510 54 Daszak P, Cunningham AA, Hyatt AD. Anthropogenic environmental change and the
511 emergence of infectious diseases in wildlife. *Acta Trop* 2001; **78**: 103–116.

512 55 Shapira M. Gut microbiotas and host evolution: scaling up symbiosis. *Trends Ecol Evol*
513 2016; **31**: 539–549.

514 56 Sbihi H, Boutin RCT, Cutler C, Suen M, Finlay BB, Turvey SE. Thinking bigger: How
515 early-life environmental exposures shape the gut microbiome and influence the
516 development of asthma and allergic disease. *Allergy* 2019; **74**: 2103–2115.

517 57 Bendiks M, Kopp MV. The relationship between advances in understanding the
518 microbiome and the maturing hygiene hypothesis. *Curr Allergy Asthma Rep* 2013; **13**:
519 487–494.

520 58 Alexandre-Silva GM, Brito-Souza PA, Oliveira ACS, Cerni FA, Zottich U, Pucca MB.
521 The hygiene hypothesis at a glance: Early exposures, immune mechanism and novel
522 therapies. *Acta Trop* 2018; **188**: 16–26.

523 59 Yao R, Xu L, Hu T, Chen H, Qi D, Gu X, Yang X, Yang Z, Zhu L. The “wildness” of the
524 giant panda gut microbiome and its relevance to effective translocation. *Glob Ecol
525 Conserv* 2019; **18**: e00644.

526

527

528 **Figure Legends**

529

530 Figure 3. Compositional patterns in the gut microbiomes (GMBs) of three categories of ring-
 531 tailed lemurs (*Lemur catta*) in Madagascar. (a) ‘Population signatures’ as revealed by principal
 532 coordinate plots of unweighted UniFrac distances for wild lemurs (blue), pet lemurs (yellow),
 533 and lemurs in semi-natural conditions at the Lemur Rescue Center (LRC; color-graded in
 534 relation to duration in residency). (b) Rewilding, as revealed by pairwise comparisons, using
 535 unweighted UniFrac distance, between the GMBs of pet vs. wild lemurs, LRC vs. wild lemurs,
 536 and within wild lemurs. (c, d, e) Center log-ratio (CLR) transformed abundances of *Bacteroides*,
 537 *Prevotella*, and *Ruminococcus* in the GMBs of LRC lemurs. Shown are linear trend lines and
 538 95% confidence intervals. Statistical results from linear mixed model results; See Table 2 for full
 539 results.

540

541 Figure 2. Environmental influences on the gut microbiomes (GMBs) of three categories of ring-
 542 tailed lemurs (*Lemur catta*) in Madagascar. Relative abundances of (a) total antibiotic resistance
 543 genes (ARGs) in wild lemurs (blue), pet lemurs (yellow), and lemurs in semi-natural conditions
 544 at the Lemur Rescue Center (LRC; color-graded in relation to duration in residency) and (b)
 545 tetracycline ARGs in the GMBs of LRC lemurs. (c) Total source proportion of soil microbes
 546 from natural habitats in the GMBs of LRC lemurs. Shown are linear trend lines and 95%
 547 confidence intervals. Statistical results from linear mixed model results; See Table 2 for full
 548 results.

549

550 **Tables**

551

552 Table 1. Study subjects, their habitats, and three factors influencing their gut microbiomes.

Relevant variables	Ring-tailed lemur groups (in chronological order of transitions)		
	Wild	Pet	LRC
Habitat/environment	Natural	Unnatural (townships)	Naturalistic
1. Diet	Native (e.g., wild plants, invertebrates).	Commercial, for humans (e.g., rice, bread, cultivated fruits)	Native forage, supplemented with varied, seasonally available, cultivated fruits and vegetables
2. Direct human contact	None	Constant	Minimal (veterinary and care staff)
3. Environmental exposure	Native microbial communities	Indoor, confined areas in human dwellings	Sheltered, outdoor enclosures with access to natural habitat

553

554

555

556

557

558

559

560

561

562
563

564 Table 2. Results of linear mixed modeling for measures of lemur gut microbiome (a-c) diversity,
565 (d,e) composition, (f-h) center log-ratio (CLR) transformed abundance of bacterial taxa, (i,j)
566 antibiotic resistance genes, and (k) covariation between lemur and soil microbiomes. The model
567 included the duration of residency at the Lemur Rescue Center (LRC) as a fixed effect.
568 Significant results are bolded.

	LRC residency		
	t-value	R-squared	p-value
a. Shannon diversity	-1.932	0.102	0.065
b. Faith's phylogenetic diversity	-1.299	0.027	0.207
c. Observed features	-2.018	0.113	0.055
d. Pairwise unweighted Unifrac distances	-64.183	0.542	<0.0001
e. Pairwise weighted Unifrac distances	-6.734	0.012	<0.0001
f. <i>Bacteroides</i> CLR abundance	3.526	0.322	0.001
g. <i>Prevotella</i> CLR abundance	-2.313	0.153	0.030
h. <i>Ruminococcus</i> CLR abundance	-2.309	0.152	0.030
i. Total ARG relative abundance	-4.169	0.671	0.004
j. Tetracycline ARG relative abundance	-5.330	0.774	0.001
k. Source proportion from soil microbiomes	2.893	0.234	0.008

569
570
571
572