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Abstract

Microbial rewilding, whereby exposure to naturalistic environments can modulate or
augment gut microbiomes and improve host-microbe symbiosis, is being harnessed as part of
innovative approaches to human health, one that has significant value to animal care and
conservation. To test for microbial rewilding in animal microbiomes, we used a unique
population of wild-born ring-tailed lemurs (Lemur catta) that were initially held as illegal pets in
unnatural settings and, subsequently, relocated to a rescue center in Madagascar where they live
in naturalistic environments. Using amplicon and shotgun metagenomic sequencing of lemur and
environmental microbiomes, we found multiple lines of evidence for microbial rewilding in
lemurs that were transitioned from unnatural to naturalistic environments: A lemur’s duration of
exposure to naturalistic settings significantly correlated with (a) increased compositional
similarly to the gut communities of wild lemurs, (b) decreased proportions of antibiotic
resistance genes that were likely acquired via human contact during pethood, and (c) greater
covariation with soil microbiomes from natural habitats. Beyond the inherent psycho-social
value of naturalistic environments, we find that actions, such as providing appropriate diets,
minimizing contact with humans, and increasing exposure to natural environmental consortia,

may assist in maximizing host-microbe symbiosis in animals under human care.

Keywords: primate, conservation, antibiotic resistance, environmental acquisition,

bioaugmentation, animal management
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Introduction

Gut microbiomes (GMBs), critical to animal health!, are shaped by various environmental
factors, such that altered or unnatural ecosystems (e.g., degraded habitats) have perturbative
effects on host-associated communities, with negative health implications for hosts>3. Exposure
to key environmental factors has the potential to augment or restore native host-associated
micro-fauna* via an understudied, presumably gradual process known as microbial ‘rewilding.’
The Microbiome Rewilding Hypothesis posits that the restoration of ‘green’ habitats and
promotion of diverse environmental microbiomes in urban settings can improve human GMBs
and health. If the exposure to or introduction of certain microbial inhabitants can improve host-
microbe symbiosis and the host’s ability to adapt to new environments, then rewilding could
benefit captive animals transitioning between settings or ecosystems, such as during transfers
between captivity facilities, translocations, or reintroductions®. Here, we expand the hypothesis
to nonhuman primates and test for microbial rewilding in wild-born, captive ring-tailed lemurs
(Lemur catta) transitioning from highly unnatural settings during illegal pethood to a more
natural setting after their surrender to the Lemur Rescue Center (LRC) in Madagascar (Table 1).
We ask if, with exposure to naturalistic environments, the GMBs of LRC lemurs better resemble
those of pet lemurs or their wild counterparts.

Belying traditional dichotomization, both wild and captive settings represent a range of
variation known to influence animal GMB structure and function’. The GMBs of ring-tailed
lemurs, for instance, vary within and between captive and wild settings, such that there is not a
universal signal of captivity nor is there a specific, core microbiome that is representative of all

of the wild animals® (Supplementary Figure S1). Here, we focus on three factors known to
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impact GMB structure and variation across settings: diet, human contact, and exposure to natural
environments (Table 1). Notably, the degree of evolutionary mismatch between the diets of wild
and captive counterparts is thought to underlie significant variation in GMB diversity and
composition®!?. In addition, contact with humans can facilitate transmission of microbes and
antibiotic resistance genes (ARGs) between humans and other animals'!. Lastly, exposure to
natural environments can mediate the acquisition of environmental microbes and ARGs that can
impact host-associated communities and animal health®'. Transitions between settings with
different types or degrees of these factors could precipitate changes in multiple aspects of the
microbiome, whether via a detrimental perturbation or a beneficial microbial rewilding.

The wild-born lemurs at the LRC have experienced at least two drastic environmental
transitions within their lifetime, the first a perturbative transition when removed from the wild to
be kept as pets'?, the second a potentially rewilding transition from pethood to life at the LRC.
We use cross-sectional data to first address if time in residency at the LRC correlates with the (a)
diversity, (b) phylogenetic composition, and (¢) abundance of bacterial taxa in lemur GMBs. We
focus on the genera Bacteroides, Prevotella, and Ruminococcus, as these may serve as
biomarkers of host diet type and gut health'*. Notably, despite the absence of a diverse core
GMB among wild and captive ring-tailed lemurs, these microbes are shared and abundant across
populations®, are also present in the GMBs of other wild and captive primates, and are linked to
distinct enterotypes in human GMBs. Investigating variation in these ubiquitous microbes, in
combination with broader attributes of microbial communities (e.g., diversity and composition),
affords a holistic view of lemur GMB structure, as well as potential insights into changes in
functional potential. Next, we also ask if residency at the LRC influences ARG abundance and

covariation between lemur GMBs and soil microbiomes from natural habitats. Microbial
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rewilding in LRC lemurs predicts (i) greater compositional similarity to the GMBs of wild

lemurs, (i) decreased ARG abundance, and (iii) greater covariation with soil microbiomes.

Methods

Subjects and samples

The subjects included ring-tailed lemurs living (a) in the wild (n = 139), (b) as pets in
Malagasy households (n = 8), and (¢) at the LRC in Mangily, Madagascar (n = 25)%. Their diets
and exposure to humans and environmental microbiomes are summarized in Table 1. Wild
lemurs inhabited protected areas (e.g., national parks, community-managed reserves) that varied
in habitat type from dry spiny forest to riverine forest. They relied entirely on naturally foraged
diets and were constantly exposed to natural environmental microbiomes. Pet lemurs lived in
human dwellings in townships located around Toliara, Madagascar. Two of the pet lemurs had
limited access to outdoor areas. Their diets were ‘humanized,’ consisting of commercial grains
and produce, and they had limited exposure to natural environmental microbiomes. The LRC
lemurs were wild-born and had known dates of surrender to the LRC, where they were socially
housed in outdoor enclosures, with access to shelter. They thus could forage freely, obtaining a
partial natural diet, supplemented with seasonally available produce, and were exposed to natural
environmental microbiomes. Exposure to humans and to ARGs (from combined environmental
exposure and/or direct antibiotic administration) was least in the natural populations, maximal in
pets, and relatively limited in LRC animals.

We opportunistically collected fresh fecal samples upon observing lemur defecation. To

avoid soil contamination of the fecal samples, we removed the outer layer of each fecal pellet.
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We also collected samples of topsoil (n = 22) from the wild lemurs’ natural habitats, including
spiny, dry, and riverine forests in southern Madagascar. When collecting soil, we avoided high-
defecation areas (e.g., under sleeping trees) and areas with significant organic matter (e.g., dead
vegetation), focusing instead on areas with bare soil, where the lemurs most commonly spent
time on the ground. Within these areas, we demarcated a 2-3 m? area and collected topsoil (the
top 2-3 cm of soil) from each of five evenly spaced locations. For each area, we pooled the five
aliquots of topsoil in a single tube to create a representative soil sample. All fecal and soil
samples were preserved in Omnigene.Gut tubes (DNAgenotek, Ontario, Canada)'> and, within 8

weeks of collection, were transported to the U.S. and stored at -80 °C until analysis.

Microbial DNA extraction and sequencing

Following the manufacturer’s protocols for the DNeasy Powersoil kit (QIAGAN, Frederick,
MD), we extracted bacterial genomic DNA from fecal and soil samples. We sent aliquots of
extracted DNA to Argonne National Laboratory’s Environmental Sequencing facility (Lemont,
IL) for library preparation and amplicon sequencing of the V4 region of the 16S rRNA gene.
Amplicons were sequenced on a 151 x 151 base pair Illumina MiSeq run'®.

We sent a subset of the extracted DNA aliquots (wild lemurs, n = 7; pet lemurs, n = 7; LRC
lemurs, n = 9) to CosmosID Inc. (Rockville, MD) for shotgun metagenomic sequencing to
identify antibiotic resistance genes. DNA libraries were prepared using the [llumina Nextera XT
library preparation kit, with a modified protocol'’. Libraries were then sequenced on an Illumina
HiSeq platform 2 x 150 bp. On average, the sequencing yielded approximately 17 million total

sequence reads per sample, with an average of 18 million and 10 million reads for fecal and soil
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samples, respectively. Samples with fewer than 5 million reads (n = 2 samples) were omitted

from downstream analyses.

Bioinformatics and statistical analyses

We processed the 16S rRNA sequence data using a bioinformatics pipeline generated in
QIIME2'31° We used the pipeline to join forward and reverse reads, demultiplex, quality filter
joined reads and remove chimeras (DADA?2 plugin; PHRED scores indicated no quality
trimming was needed)?°, omit non-bacterial sequences (Mitochondria, but not chloroplasts as
they can serve as a valuable proxy for diet and environmental exposure'®2'2?), and generate a
phylogenetic tree (mafft program 2* and fasttree2 2#). To assign taxonomy to our sequence
features and generate amplicon sequence variants (ASVs), we de novo trained the Naive Bayes
classifier using the SILVA database (ver. 138.1) at 99% sequence similarity>>?® and tested the
classifier using our representative sequences. After quality filtering, all samples had > 10,000
reads and were retained for downstream analysis. Using QIIME2, we calculated metrics of alpha
diversity (Shannon and Faith’s Phylogenetic diversity metric) and beta diversity (weighted and
unweighted UniFrac distances) on a rarefied ASV feature table subsampled to 15,000 reads per
sample (Supplementary Figure S2). To examine variation in the abundance of specific microbial
taxa, we used R Studio (ver. 4.2.0) to perform a center log-ratio (CLR) transformation on the
unrarefied ASV feature table (package ‘compositions’)?’?8, CLR abundances reflect log-
transformed ratios of the raw sequence counts of each taxon over the geometric mean of all other
taxa in the sample®.

For shotgun metagenomic data, unassembled sequencing reads were directly analyzed using

CosmosID’s bioinformatics platform for identifying and profiling ARGs!73%3!, The system uses
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multiple genome databases and a high-performance, data-mining algorithm that disambiguates
metagenomic sequence reads. To identify ARGs, we queried the unassembled sequence reads
against the CosmosID curated ARG gene database, which was compiled through assimilation of
ARG sequences collected from the published literature, as well as from different open-source
databases, including the following: NCBI, CARD, ResFinder, ARDB, ARG-ANNOT, and
SEEC. If annotation of a gene conferring resistance was not included in their database, the
CosmosID team performed literature searches to determine the class or relevant mechanisms of
resistance.

Briefly, and without revealing proprietary information, the CosmosID system uses a high-
performance, data-mining k-mer algorithm and highly curated dynamic comparator databases
(GenBook®) that rapidly disambiguate millions of short reads into the discrete genomes or genes
engendering the particular sequences. The pipeline has two separable comparators: the first
consists of a pre-computation phase for reference database and a per-sample computation. The
input to the pre-computation phase is a reference microbial genome or antibiotic resistance and
virulence gene database, and its output is phylogeny trees, together with sets of variable length k-
mer fingerprints (biomarkers) that are uniquely identified with distinct nodes, branches and
leaves of the tree. The second per-sample, computational phase searches the hundreds of millions
of short sequence reads or contigs from draft assembly against the fingerprint sets. The resulting
statistics are analyzed to give fine-grain composition and relative abundance estimates. The
second comparator uses edit distance-scoring techniques to compare a target genome or gene
with a reference set. The algorithm provides similar functionality to BLAST, but sacrifices some
recall precision for a one- or two-order-of-magnitude processing gain. Overall classification

precision is maintained through aggregation statistics. Enhanced detection specificity is achieved
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177  statistically scores the entire read against the reference to verify that the read is indeed uniquely
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Figure 1. Compositional patterns in the gut microbiomes (GMBs) of three categories of
ring-tailed lemurs (Lemur catta) in Madagascar. (a) ‘Population signatures’ as revealed by
principal coordinate plots of unweighted UniFrac distances for wild lemurs (blue), pet
lemurs (yellow), and lemurs in semi-natural conditions at the Lemur Rescue Center (LRC;
color-graded in relation to duration in residency). (b) Rewilding, as revealed by pairwise
comparisons, using unweighted UniFrac distance, between the GMBs of pet vs. wild
lemurs, LRC vs. wild lemurs, and within wild lemurs. (c, d, €) Center log-ratio (CLR)
transformed abundances of Bacteroides, Prevotella, and Ruminococcus in the GMBs of
LRC lemurs. Shown are linear trend lines and 95% confidence intervals. Statistical results
from linear mixed model results; See Table 2 for full results.
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coverage, and frequency counts of ARGs within each sample. To calculate the proportion of
ARGs within a fecal sample, we divided the frequency count of all ARGs or specific gene
families by the sample’s total read count.

To calculate covariation between lemur GMBs and soil microbiomes, we used FEAST?2, a
tool that uses fast expectation-maximization, multinomial distributions, and machine-learning
classification to model microbial source tracking. FEAST provides “source proportions” of the
scaled proportion of each LRC lemur’s GMB community that could be attributed to soil
communities from natural habitats or to a default ‘unknown source’ that accounts for microbes
not relevant to soil microbiota’?,

For all LRC lemurs, we calculated time in residency at the LRC as the number of days
between surrender date and the date of sample collection (range = 248-2,537 days, standard
deviation = 617.7, median = 1,736). Using linear models in R Studio (package ‘stats’),
we tested for effects of time in residency at the LRC on lemur GMB diversity, composition,
membership, ARGs, and covariation with soil microbiomes. The model included the duration of

residency at the LRC as a fixed effect.

Results

We observed a negative trend in alpha diversity with time in residence at the LRC;
nevertheless, the patterns did not reach statistical significance for any metric. In contrast, both
compositional measures (or beta diversity) of lemur GMBs significantly correlated with time in
residence (Table 2). Specifically, the longer animals resided at the LRC, the more similar their
GMB composition was to that of their wild counterparts (Figure 1a,b; Table 2), consistent with

rewilding.
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Figure 2. Environmental influences on the gut microbiomes (GMBs) of three categories of
ring-tailed lemurs (Lemur catta) in Madagascar. Relative abundances of (a) total antibiotic
resistance genes (ARGs) in wild lemurs (blue), pet lemurs (yellow), and lemurs in semi-
natural conditions at the Lemur Rescue Center (LRC; color-graded in relation to duration in
residency) and (b) tetracycline ARGs in the GMBs of LRC lemurs. (¢) Total source
proportion of soil microbes from natural habitats in the GMBs of LRC lemurs. Shown are
linear trend lines and 95% confidence intervals. Statistical results from linear mixed model
results; See Table 2 for full results.

The center log-ratio (CLR)-transformed abundance of the Bacteroides genus increased
significantly with increasing time at the LRC (Figure Ic). In contrast, the CLR abundances of
both the genera Prevotella and Ruminococcus decreased significantly with increasing time at the
LRC (Figure 1d, e; Table 2).

The total relative abundance of ARGs in the GMBs of LRC lemurs ranged from 0.16%-

0.59% (mean = 0.29% =+ 0.14%). As predicted by rewilding, the relative abundance of total
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ARGs and of tetracycline ARGs (i.e., the most abundant class of ARGs) decreased significantly
with time spent at the LRC (Figure 2a,b; Table 2).

The source proportion of soil microbes from natural habitats in the GMBs of LRC lemurs — a
proxy for covariation between lemur fecal and soil microbiomes — was also significantly and
positively correlated with longer residency at the LRC (Figure 2¢; Table 2), again consistent with

rewilding.

Discussion

The present study provides multiple lines of evidence that the Microbiome Rewilding
Hypothesis applies not only to humans, but also to wildlife, suggesting that rewilding can serve
as a tool to promote animal wellbeing in captivity or during transitional periods, including to
ease the microbial reintegration of reintroduced or translocated endangered species. Notably, for
animals that fell victim to the illegal pet trade, but were then relinquished to the LRC, longer
periods of exposure to naturalistic environments were strongly linked to more ‘native’ or ‘wild-
type’ GMBs, as revealed by microbial community structure, resistance genes, and their
covariation with environmental microbiomes. Despite clear patterns in the composition of lemur
GMBs, alpha diversity was not significantly correlated with the host’s time spent in naturalistic
environments; however, there was a non-significant trend for all alpha diversity metrics to
decrease with residency at the LRC. Alpha diversity, alone, is increasingly proving to be an
inconsistent metric for assessing the influences of environmental factors on host-associated

microbiomes and relevant health outcomes®>333. Although data on animal health would further
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solidify the relevance of microbial rewilding to animal wellbeing, these results emphasize the
importance of incorporating multifaceted microbiome science into animal care and conservation.

Metrics of community composition (i.e., beta diversity) well reflected the predicted and
nuanced patterns of environmentally mediated microbial variation®. Specifically, longer
residency at the LRC was associated with a GMB composition that was more similar to the gut
communities of wild lemurs than to those of pet lemurs. The increased similarity was evidenced
in both the presence-absence and the abundance-weighted metrics of phylogenetic compositions
(i.e., unweighted and weighted UniFrac), indicating that both rare and abundant microbes were
driving the pattern of rewilding. We thus explored specific patterns in Bacteroides, Prevotella,
and Ruminococcus — three dominant members of primate GMBs3¢°,

Bacteroides is a ubiquitous, diverse, and functionally relevant genus in lemur GMBs3>40,
linked to polysaccharide breakdown and decreased intestinal disease in humans and animal
models*'*2, It is negatively influenced by the common food additives, monosaccharide fructose
and glucose®. Our evidence of increased Bacteroides in the GMBs of LRC lemurs, relative to
pet lemurs, could reflect the more appropriate diet provided at the LRC and, in turn, entail
decreased disease risk relative to the disease-prone, pet lemurs*. Although Prevotella has
saccharolytic function®® similar to Bacteroides, Prevotella was significantly decreased in LRC
lemurs that had longer residency at the LRC. Both genera rely on similar nutritional resources in
the gut, leading to competitive inhibition and contrasting patterns of abundance between the two
genera*®. This competitive relationship has led many to consider abundances of Prevotella and
Bacteroides to be mutually exclusive (i.e., for these genera to be distinct enterotypes), such that
the ratio of the two genera may be a proxy for microbial function, host metabolism, and gut

health*’*®. In humans, a lower Prevotella to Bacteroides ratio — as we see with increased
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residency at the LRC — has been linked to maintaining or gaining weight when consuming a
high-fiber diet*’. This pattern suggests that the ‘terminal’ microbiomes of LRC lemurs may
facilitate or reflect a metabolic shift from malnourishment to improving body condition,
achieved by allowing the animals to forage on natural vegetation while being supplemented with
the produce-rich LRC diet.

The genus Ruminococcus, which was negatively correlated with longer residency at the LRC,
is linked to the degradation of resistant dietary starches®®, including those found in grains, such
as rice’!. Rice is the most widely consumed food in Madagascar and the food most commonly
fed to pet lemurs. By contrast, the diets of LRC lemurs do not include rice and are not rich in
starch. Importantly, the diets of LRC lemurs include natural forage, which has been shown to
dramatically impact GMB diversity and function in folivorous lemurs®2. Together, the changes in
these three dominant taxa — Bacteroides, Prevotella, and Ruminococcus — suggest that the
transition from diets associated with pethood to more natural diets at the LRC can facilitate the
microbial rewilding process.

Regarding antibiotic resistance, recent studies show that ARG enrichment and propagation
can occur in wildlife in the absence of direct clinical treatment with antibiotics*>-3, namely
through the transmission of ARGs between hosts and their social or physical environment?>.
Although pet lemurs in Madagascar almost never receive antibiotics, they have markedly high
proportions of ARGs in their GMBs. LRC lemurs, however, are treated with antibiotics in cases
of injury or disease. Despite the increased likelihood of LRC lemurs, relative to pets, receiving
antibiotic treatment during veterinary care, we found that residency at the LRC, under
diminished human contact, significantly correlated with lower proportions of total and

tetracycline ARGs. These results suggest a potent role for human contact (or exposure to
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domesticated animals and their excreta) in ARG transmission to animals, such that minimizing
human contact and anthropogenic disturbance would be an important step in the rewilding
process.

In terms of the physical environment, beyond acquisition of environmental pathogens™*,
acquisition of commensal or symbiotic microbes is gaining recognition as a component of GMB
assembly®. The functional relevance of these environmental microbes remains to be seen; yet,
there is clear and longstanding evidence that exposure to environmental microbes, or lack
thereof, plays a role in shaping animal (including human) immune responses and determining
overall health outcomes®*%%. In support of our previous finding that exposure to natural
environments dictates environmental acquisition in lemur GMBs®, longer residency at the LRC,
which equated to greater exposure to naturalistic environments, correlated with greater
covariation between lemur GMBs and soil microbiomes from natural habitats. In addition to the
inherent psychological and behavioral value of providing naturalistic environments for wildlife
under human care, we find that exposure to rich, natural microbial landscapes has the potential to
augment host-associated communities.

Together, our results suggest that microbial rewilding is a multi-faceted process that includes
host-associated and environmental microbial communities. Moreover, we suggest that providing
appropriate diets, minimizing contact with humans, and increasing exposure to natural
environmental consortia are actionable steps that can promote microbial rewilding in captive
animals. These actions may be particularly valuable for animals slated to undergo environmental
transitions or reintroduction®>°. By rewilding host GMBs prior to the transition, we may be able
to prime animals for success in their new environments. Going forward, the collection of

longitudinal data on the GMBs and overall health of animals undergoing environmental
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transitions will be essential for understanding the microbial dynamics that drive microbial

rewilding and their ultimate relevance to the animal host.
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Figure Legends

Figure 3. Compositional patterns in the gut microbiomes (GMBs) of three categories of ring-
tailed lemurs (Lemur catta) in Madagascar. (a) ‘Population signatures’ as revealed by principal
coordinate plots of unweighted UniFrac distances for wild lemurs (blue), pet lemurs (yellow),
and lemurs in semi-natural conditions at the Lemur Rescue Center (LRC; color-graded in
relation to duration in residency). (b) Rewilding, as revealed by pairwise comparisons, using
unweighted UniFrac distance, between the GMBs of pet vs. wild lemurs, LRC vs. wild lemurs,
and within wild lemurs. (c, d, ) Center log-ratio (CLR) transformed abundances of Bacteroides,
Prevotella, and Ruminococcus in the GMBs of LRC lemurs. Shown are linear trend lines and
95% confidence intervals. Statistical results from linear mixed model results; See Table 2 for full
results.

Figure 2. Environmental influences on the gut microbiomes (GMBs) of three categories of ring-
tailed lemurs (Lemur catta) in Madagascar. Relative abundances of (a) total antibiotic resistance
genes (ARGs) in wild lemurs (blue), pet lemurs (yellow), and lemurs in semi-natural conditions
at the Lemur Rescue Center (LRC; color-graded in relation to duration in residency) and (b)
tetracycline ARGs in the GMBs of LRC lemurs. (c¢) Total source proportion of soil microbes
from natural habitats in the GMBs of LRC lemurs. Shown are linear trend lines and 95%
confidence intervals. Statistical results from linear mixed model results; See Table 2 for full
results.

Tables

Table 1. Study subjects, their habitats, and three factors influencing their gut microbiomes.

Ring-tailed lemur groups (in chronological order of transitions)

Relevant variables

Wild Pet LRC
Habitat/environment Natural Unnatural (townships)  Naturalistic
1. Diet Native (e.g., wild Commercial, for Native forage,
plants, invertebrates). humans (e.g., rice, supplemented with

bread, cultivated fruits) varied, seasonally
available, cultivated
fruits and vegetables

2. Direct human contact None Constant Minimal (veterinary
and care staff)
3. Environmental Native microbial Indoor, confined areas Sheltered, outdoor
exposure communities in human dwellings enclosures with access

to natural habitat
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564  Table 2. Results of linear mixed modeling for measures of lemur gut microbiome (a-c) diversity,
565  (d,e) composition, (f-h) center log-ratio (CLR) transformed abundance of bacterial taxa, (i,j)
566 antibiotic resistance genes, and (k) covariation between lemur and soil microbiomes. The model
567 included the duration of residency at the Lemur Rescue Center (LRC) as a fixed effect.

568  Significant results are bolded.

LRC residency
t-value R-squared p-value
a. Shannon diversity -1.932 0.102 0.065
b. Faith's phylogenetic diversity -1.299 0.027 0.207
c. Observed features -2.018 0.113 0.055
d. Pairwise unweighted Unifrac distances -64.183 0.542 <0.0001
e. Pairwise weighted Unifrac distances -6.734 0.012 <0.0001
f. Bacteroides CLR abundance 3.526 0.322 0.001
g. Prevotella CLR abundance -2.313 0.153 0.030
h. Ruminococcus CLR abundance -2.309 0.152 0.030
i. Total ARG relative abundance -4.169 0.671 0.004
j. Tetracycline ARG relative abundance -5.330 0.774 0.001
k. Source proportion from soil microbiomes 2.893 0.234 0.008
569
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