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Abstract 16 

  Microbial rewilding, whereby exposure to naturalistic environments can modulate or 17 

augment gut microbiomes and improve host-microbe symbiosis, is being harnessed as part of 18 

innovative approaches to human health, one that has significant value to animal care and 19 

conservation. To test for microbial rewilding in animal microbiomes, we used a unique 20 

population of wild-born ring-tailed lemurs (Lemur catta) that were initially held as illegal pets in 21 

unnatural settings and, subsequently, relocated to a rescue center in Madagascar where they live 22 

in naturalistic environments. Using amplicon and shotgun metagenomic sequencing of lemur and 23 

environmental microbiomes, we found multiple lines of evidence for microbial rewilding in 24 

lemurs that were transitioned from unnatural to naturalistic environments: A lemur’s duration of 25 

exposure to naturalistic settings significantly correlated with (a) increased compositional 26 

similarly to the gut communities of wild lemurs, (b) decreased proportions of antibiotic 27 

resistance genes that were likely acquired via human contact during pethood, and (c) greater 28 

covariation with soil microbiomes from natural habitats. Beyond the inherent psycho-social 29 

value of naturalistic environments, we find that actions, such as providing appropriate diets, 30 

minimizing contact with humans, and increasing exposure to natural environmental consortia, 31 

may assist in maximizing host-microbe symbiosis in animals under human care.  32 

 33 
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Introduction 38 

 39 

Gut microbiomes (GMBs), critical to animal health1, are shaped by various environmental 40 

factors, such that altered or unnatural ecosystems (e.g., degraded habitats) have perturbative 41 

effects on host-associated communities, with negative health implications for hosts2,3. Exposure 42 

to key environmental factors has the potential to augment or restore native host-associated 43 

micro-fauna4 via an understudied, presumably gradual process known as microbial ‘rewilding.’ 44 

The Microbiome Rewilding Hypothesis posits that the restoration of ‘green’ habitats and 45 

promotion of diverse environmental microbiomes in urban settings can improve human GMBs 46 

and health5. If the exposure to or introduction of certain microbial inhabitants can improve host-47 

microbe symbiosis and the host’s ability to adapt to new environments, then rewilding could 48 

benefit captive animals transitioning between settings or ecosystems, such as during transfers 49 

between captivity facilities, translocations, or reintroductions6. Here, we expand the hypothesis 50 

to nonhuman primates and test for microbial rewilding in wild-born, captive ring-tailed lemurs 51 

(Lemur catta) transitioning from highly unnatural settings during illegal pethood to a more 52 

natural setting after their surrender to the Lemur Rescue Center (LRC) in Madagascar (Table 1). 53 

We ask if, with exposure to naturalistic environments, the GMBs of LRC lemurs better resemble 54 

those of pet lemurs or their wild counterparts. 55 

Belying traditional dichotomization, both wild and captive settings represent a range of 56 

variation known to influence animal GMB structure and function7. The GMBs of ring-tailed 57 

lemurs, for instance, vary within and between captive and wild settings, such that there is not a 58 

universal signal of captivity nor is there a specific, core microbiome that is representative of all 59 

of the wild animals8 (Supplementary Figure S1). Here, we focus on three factors known to 60 



impact GMB structure and variation across settings: diet, human contact, and exposure to natural 61 

environments (Table 1). Notably, the degree of evolutionary mismatch between the diets of wild 62 

and captive counterparts is thought to underlie significant variation in GMB diversity and 63 

composition9,10. In addition, contact with humans can facilitate transmission of microbes and 64 

antibiotic resistance genes (ARGs) between humans and other animals11. Lastly, exposure to 65 

natural environments can mediate the acquisition of environmental microbes and ARGs that can 66 

impact host-associated communities and animal health8,12. Transitions between settings with 67 

different types or degrees of these factors could precipitate changes in multiple aspects of the 68 

microbiome, whether via a detrimental perturbation or a beneficial microbial rewilding.  69 

The wild-born lemurs at the LRC have experienced at least two drastic environmental 70 

transitions within their lifetime, the first a perturbative transition when removed from the wild to 71 

be kept as pets13, the second a potentially rewilding transition from pethood to life at the LRC. 72 

We use cross-sectional data to first address if time in residency at the LRC correlates with the (a) 73 

diversity, (b) phylogenetic composition, and (c) abundance of bacterial taxa in lemur GMBs. We 74 

focus on the genera Bacteroides, Prevotella, and Ruminococcus, as these may serve as 75 

biomarkers of host diet type and gut health14. Notably, despite the absence of a diverse core 76 

GMB among wild and captive ring-tailed lemurs, these microbes are shared and abundant across 77 

populations8, are also present in the GMBs of other wild and captive primates, and are linked to 78 

distinct enterotypes in human GMBs. Investigating variation in these ubiquitous microbes, in 79 

combination with broader attributes of microbial communities (e.g., diversity and composition), 80 

affords a holistic view of lemur GMB structure, as well as potential insights into changes in 81 

functional potential. Next, we also ask if residency at the LRC influences ARG abundance and 82 

covariation between lemur GMBs and soil microbiomes from natural habitats. Microbial 83 



rewilding in LRC lemurs predicts (i) greater compositional similarity to the GMBs of wild 84 

lemurs, (ii) decreased ARG abundance, and (iii) greater covariation with soil microbiomes. 85 

 86 

Methods  87 

 88 

Subjects and samples  89 

The subjects included ring-tailed lemurs living (a) in the wild (n = 139), (b) as pets in 90 

Malagasy households (n = 8), and (c) at the LRC in Mangily, Madagascar (n = 25)8. Their diets 91 

and exposure to humans and environmental microbiomes are summarized in Table 1. Wild 92 

lemurs inhabited protected areas (e.g., national parks, community-managed reserves) that varied 93 

in habitat type from dry spiny forest to riverine forest. They relied entirely on naturally foraged 94 

diets and were constantly exposed to natural environmental microbiomes. Pet lemurs lived in 95 

human dwellings in townships located around Toliara, Madagascar. Two of the pet lemurs had 96 

limited access to outdoor areas. Their diets were ‘humanized,’ consisting of commercial grains 97 

and produce, and they had limited exposure to natural environmental microbiomes. The LRC 98 

lemurs were wild-born and had known dates of surrender to the LRC, where they were socially 99 

housed in outdoor enclosures, with access to shelter. They thus could forage freely, obtaining a 100 

partial natural diet, supplemented with seasonally available produce, and were exposed to natural 101 

environmental microbiomes. Exposure to humans and to ARGs (from combined environmental 102 

exposure and/or direct antibiotic administration) was least in the natural populations, maximal in 103 

pets, and relatively limited in LRC animals.  104 

We opportunistically collected fresh fecal samples upon observing lemur defecation. To 105 

avoid soil contamination of the fecal samples, we removed the outer layer of each fecal pellet. 106 



We also collected samples of topsoil (n = 22) from the wild lemurs’ natural habitats, including 107 

spiny, dry, and riverine forests in southern Madagascar. When collecting soil, we avoided high-108 

defecation areas (e.g., under sleeping trees) and areas with significant organic matter (e.g., dead 109 

vegetation), focusing instead on areas with bare soil, where the lemurs most commonly spent 110 

time on the ground. Within these areas, we demarcated a 2-3 m2 area and collected topsoil (the 111 

top 2-3 cm of soil) from each of five evenly spaced locations. For each area, we pooled the five 112 

aliquots of topsoil in a single tube to create a representative soil sample. All fecal and soil 113 

samples were preserved in Omnigene.Gut tubes (DNAgenotek, Ontario, Canada)15 and, within 8 114 

weeks of collection, were transported to the U.S. and stored at -80 °C until analysis.  115 

 116 

Microbial DNA extraction and sequencing  117 

Following the manufacturer’s protocols for the DNeasy Powersoil kit (QIAGAN, Frederick, 118 

MD), we extracted bacterial genomic DNA from fecal and soil samples. We sent aliquots of 119 

extracted DNA to Argonne National Laboratory’s Environmental Sequencing facility (Lemont, 120 

IL) for library preparation and amplicon sequencing of the V4 region of the 16S rRNA gene. 121 

Amplicons were sequenced on a 151 x 151 base pair Illumina MiSeq run16.  122 

We sent a subset of the extracted DNA aliquots (wild lemurs, n = 7; pet lemurs, n = 7; LRC 123 

lemurs, n = 9) to CosmosID Inc. (Rockville, MD) for shotgun metagenomic sequencing to 124 

identify antibiotic resistance genes. DNA libraries were prepared using the Illumina Nextera XT 125 

library preparation kit, with a modified protocol17. Libraries were then sequenced on an Illumina 126 

HiSeq platform 2 x 150 bp. On average, the sequencing yielded approximately 17 million total 127 

sequence reads per sample, with an average of 18 million and 10 million reads for fecal and soil 128 



samples, respectively. Samples with fewer than 5 million reads (n = 2 samples) were omitted 129 

from downstream analyses. 130 

 131 

Bioinformatics and statistical analyses  132 

We processed the 16S rRNA sequence data using a bioinformatics pipeline generated in 133 

QIIME218,19. We used the pipeline to join forward and reverse reads, demultiplex, quality filter 134 

joined reads and remove chimeras (DADA2 plugin; PHRED scores indicated no quality 135 

trimming was needed)20, omit non-bacterial sequences (Mitochondria, but not chloroplasts as 136 

they can serve as a valuable proxy for diet and environmental exposure18,21,22), and generate a 137 

phylogenetic tree (mafft program 23 and fasttree2 24). To assign taxonomy to our sequence 138 

features and generate amplicon sequence variants (ASVs), we de novo trained the Naive Bayes 139 

classifier using the SILVA database (ver. 138.1) at 99% sequence similarity25,26 and tested the 140 

classifier using our representative sequences. After quality filtering, all samples had > 10,000 141 

reads and were retained for downstream analysis. Using QIIME2, we calculated metrics of alpha 142 

diversity (Shannon and Faith’s Phylogenetic diversity metric) and beta diversity (weighted and 143 

unweighted UniFrac distances) on a rarefied ASV feature table subsampled to 15,000 reads per 144 

sample (Supplementary Figure S2). To examine variation in the abundance of specific microbial 145 

taxa, we used R Studio (ver. 4.2.0) to perform a center log-ratio (CLR) transformation on the 146 

unrarefied ASV feature table (package ‘compositions’)27,28. CLR abundances reflect log-147 

transformed ratios of the raw sequence counts of each taxon over the geometric mean of all other 148 

taxa in the sample29. 149 

For shotgun metagenomic data, unassembled sequencing reads were directly analyzed using 150 

CosmosID’s bioinformatics platform for identifying and profiling ARGs17,30,31. The system uses 151 



multiple genome databases and a high-performance, data-mining algorithm that disambiguates 152 

metagenomic sequence reads. To identify ARGs, we queried the unassembled sequence reads 153 

against the CosmosID curated ARG gene database, which was compiled through assimilation of 154 

ARG sequences collected from the published literature, as well as from different open-source 155 

databases, including the following: NCBI, CARD, ResFinder, ARDB, ARG-ANNOT, and 156 

SEEC. If annotation of a gene conferring resistance was not included in their database, the 157 

CosmosID team performed literature searches to determine the class or relevant mechanisms of 158 

resistance.  159 

Briefly, and without revealing proprietary information, the CosmosID system uses a high-160 

performance, data-mining k-mer algorithm and highly curated dynamic comparator databases 161 

(GenBook®) that rapidly disambiguate millions of short reads into the discrete genomes or genes 162 

engendering the particular sequences. The pipeline has two separable comparators: the first 163 

consists of a pre-computation phase for reference database and a per-sample computation. The 164 

input to the pre-computation phase is a reference microbial genome or antibiotic resistance and 165 

virulence gene database, and its output is phylogeny trees, together with sets of variable length k-166 

mer fingerprints (biomarkers) that are uniquely identified with distinct nodes, branches and 167 

leaves of the tree. The second per-sample, computational phase searches the hundreds of millions 168 

of short sequence reads or contigs from draft assembly against the fingerprint sets. The resulting 169 

statistics are analyzed to give fine-grain composition and relative abundance estimates. The 170 

second comparator uses edit distance-scoring techniques to compare a target genome or gene 171 

with a reference set. The algorithm provides similar functionality to BLAST, but sacrifices some 172 

recall precision for a one- or two-order-of-magnitude processing gain. Overall classification 173 

precision is maintained through aggregation statistics. Enhanced detection specificity is achieved 174 



by running the comparators in sequence. The first comparator finds reads in which there is an 175 

exact match with a k-mer uniquely identified with an ARG; the second comparator then 176 

statistically scores the entire read against the reference to verify that the read is indeed uniquely 177 

identified with that reference. For each sample, the reads from a species are assigned to the strain 178 

with the highest aggregation statistics. Outputs include the identity and family, percent gene 179 

Figure 1. Compositional patterns in the gut microbiomes (GMBs) of three categories of 
ring-tailed lemurs (Lemur catta) in Madagascar. (a) ‘Population signatures’ as revealed by 
principal coordinate plots of unweighted UniFrac distances for wild lemurs (blue), pet 
lemurs (yellow), and lemurs in semi-natural conditions at the Lemur Rescue Center (LRC; 
color-graded in relation to duration in residency). (b) Rewilding, as revealed by pairwise 
comparisons, using unweighted UniFrac distance, between the GMBs of pet vs. wild 
lemurs, LRC vs. wild lemurs, and within wild lemurs. (c, d, e) Center log-ratio (CLR) 
transformed abundances of Bacteroides, Prevotella, and Ruminococcus in the GMBs of 
LRC lemurs. Shown are linear trend lines and 95% confidence intervals. Statistical results 
from linear mixed model results; See Table 2 for full results. 



coverage, and frequency counts of ARGs within each sample. To calculate the proportion of 180 

ARGs within a fecal sample, we divided the frequency count of all ARGs or specific gene 181 

families by the sample’s total read count.  182 

To calculate covariation between lemur GMBs and soil microbiomes, we used FEAST32, a 183 

tool that uses fast expectation-maximization, multinomial distributions, and machine-learning 184 

classification to model microbial source tracking. FEAST provides “source proportions” of the 185 

scaled proportion of each LRC lemur’s GMB community that could be attributed to soil 186 

communities from natural habitats or to a default ‘unknown source’ that accounts for microbes 187 

not relevant to soil microbiota32.  188 

For all LRC lemurs, we calculated time in residency at the LRC as the number of days 189 

between surrender date and the date of sample collection (range = 248-2,537 days, standard 190 

deviation = 617.7, median = 1,736). Using linear models in R Studio (package ‘stats’),  191 

we tested for effects of time in residency at the LRC on lemur GMB diversity, composition, 192 

membership, ARGs, and covariation with soil microbiomes. The model included the duration of 193 

residency at the LRC as a fixed effect.  194 

 195 

Results 196 

We observed a negative trend in alpha diversity with time in residence at the LRC; 197 

nevertheless, the patterns did not reach statistical significance for any metric. In contrast, both 198 

compositional measures (or beta diversity) of lemur GMBs significantly correlated with time in 199 

residence (Table 2). Specifically, the longer animals resided at the LRC, the more similar their 200 

GMB composition was to that of their wild counterparts (Figure 1a,b; Table 2), consistent with 201 

rewilding.  202 



The center log-ratio (CLR)-transformed abundance of the Bacteroides genus increased 203 

significantly with increasing time at the LRC (Figure 1c). In contrast, the CLR abundances of 204 

both the genera Prevotella and Ruminococcus decreased significantly with increasing time at the 205 

LRC (Figure 1d, e; Table 2). 206 

The total relative abundance of ARGs in the GMBs of LRC lemurs ranged from 0.16%-207 

0.59% (mean = 0.29%  ±  0.14%). As predicted by rewilding, the relative abundance of total 208 

Figure 2. Environmental influences on the gut microbiomes (GMBs) of three categories of 
ring-tailed lemurs (Lemur catta) in Madagascar. Relative abundances of (a) total antibiotic 
resistance genes (ARGs) in wild lemurs (blue), pet lemurs (yellow), and lemurs in semi-
natural conditions at the Lemur Rescue Center (LRC; color-graded in relation to duration in 
residency) and (b) tetracycline ARGs in the GMBs of LRC lemurs. (c) Total source 
proportion of soil microbes from natural habitats in the GMBs of LRC lemurs. Shown are 
linear trend lines and 95% confidence intervals. Statistical results from linear mixed model 
results; See Table 2 for full results. 



ARGs and of tetracycline ARGs (i.e., the most abundant class of ARGs) decreased significantly 209 

with time spent at the LRC (Figure 2a,b; Table 2).  210 

The source proportion of soil microbes from natural habitats in the GMBs of LRC lemurs – a 211 

proxy for covariation between lemur fecal and soil microbiomes – was also significantly and 212 

positively correlated with longer residency at the LRC (Figure 2c; Table 2), again consistent with 213 

rewilding. 214 

 215 

Discussion 216 

 217 

The present study provides multiple lines of evidence that the Microbiome Rewilding 218 

Hypothesis applies not only to humans, but also to wildlife, suggesting that rewilding can serve 219 

as a tool to promote animal wellbeing in captivity or during transitional periods, including to 220 

ease the microbial reintegration of reintroduced or translocated endangered species. Notably, for 221 

animals that fell victim to the illegal pet trade, but were then relinquished to the LRC, longer 222 

periods of exposure to naturalistic environments were strongly linked to more ‘native’ or ‘wild-223 

type’ GMBs, as revealed by microbial community structure, resistance genes, and their 224 

covariation with environmental microbiomes. Despite clear patterns in the composition of lemur 225 

GMBs, alpha diversity was not significantly correlated with the host’s time spent in naturalistic 226 

environments; however, there was a non-significant trend for all alpha diversity metrics to  227 

decrease with residency at the LRC. Alpha diversity, alone, is increasingly proving to be an 228 

inconsistent metric for assessing the influences of environmental factors on host-associated 229 

microbiomes and relevant health outcomes8,33–35. Although data on animal health would further 230 



solidify the relevance of microbial rewilding to animal wellbeing, these results emphasize the 231 

importance of incorporating multifaceted microbiome science into animal care and conservation. 232 

Metrics of community composition (i.e., beta diversity) well reflected the predicted and 233 

nuanced patterns of environmentally mediated microbial variation8. Specifically, longer 234 

residency at the LRC was associated with a GMB composition that was more similar to the gut 235 

communities of wild lemurs than to those of pet lemurs. The increased similarity was evidenced 236 

in both the presence-absence and the abundance-weighted metrics of phylogenetic compositions 237 

(i.e., unweighted and weighted UniFrac), indicating that both rare and abundant microbes were 238 

driving the pattern of rewilding. We thus explored specific patterns in Bacteroides, Prevotella, 239 

and Ruminococcus – three dominant members of primate GMBs36–39.  240 

Bacteroides is a ubiquitous, diverse, and functionally relevant genus in lemur GMBs35,40, 241 

linked to polysaccharide breakdown and decreased intestinal disease in humans and animal 242 

models41,42. It is negatively influenced by the common food additives, monosaccharide fructose 243 

and glucose43. Our evidence of increased Bacteroides in the GMBs of LRC lemurs, relative to 244 

pet lemurs, could reflect the more appropriate diet provided at the LRC and, in turn, entail 245 

decreased disease risk relative to the disease-prone, pet lemurs44. Although Prevotella has 246 

saccharolytic function45 similar to Bacteroides,  Prevotella was significantly decreased in LRC 247 

lemurs that had longer residency at the LRC. Both genera rely on similar nutritional resources in 248 

the gut, leading to competitive inhibition and contrasting patterns of abundance between the two 249 

genera46. This competitive relationship has led many to consider abundances of Prevotella and 250 

Bacteroides to be mutually exclusive (i.e., for these genera to be distinct enterotypes), such that 251 

the ratio of the two genera may be a proxy for microbial function, host metabolism, and gut 252 

health47,48. In humans, a lower Prevotella to Bacteroides ratio – as we see with increased 253 



residency at the LRC – has been linked to maintaining or gaining weight when consuming a 254 

high-fiber diet49. This pattern suggests that the ‘terminal’ microbiomes of LRC lemurs may 255 

facilitate or reflect a metabolic shift from malnourishment to improving body condition, 256 

achieved by allowing the animals to forage on natural vegetation while being supplemented with 257 

the produce-rich LRC diet.  258 

The genus Ruminococcus, which was negatively correlated with longer residency at the LRC, 259 

is linked to the degradation of resistant dietary starches50, including those found in grains, such 260 

as rice51. Rice is the most widely consumed food in Madagascar and the food most commonly 261 

fed to pet lemurs. By contrast, the diets of LRC lemurs do not include rice and are not rich in 262 

starch. Importantly, the diets of LRC lemurs include natural forage, which has been shown to 263 

dramatically impact GMB diversity and function in folivorous lemurs52. Together, the changes in 264 

these three dominant taxa – Bacteroides, Prevotella, and Ruminococcus – suggest that the 265 

transition from diets associated with pethood to more natural diets at the LRC can facilitate the 266 

microbial rewilding process. 267 

Regarding antibiotic resistance, recent studies show that ARG enrichment and propagation 268 

can occur in wildlife in the absence of direct clinical treatment with antibiotics35,53, namely 269 

through the transmission of ARGs between hosts and their social or physical environment53. 270 

Although pet lemurs in Madagascar almost never receive antibiotics, they have markedly high 271 

proportions of ARGs in their GMBs. LRC lemurs, however, are treated with antibiotics in cases 272 

of injury or disease. Despite the increased likelihood of LRC lemurs, relative to pets, receiving 273 

antibiotic treatment during veterinary care, we found that residency at the LRC, under 274 

diminished human contact, significantly correlated with lower proportions of total and 275 

tetracycline ARGs. These results suggest a potent role for human contact (or exposure to 276 



domesticated animals and their excreta) in ARG transmission to animals, such that minimizing 277 

human contact and anthropogenic disturbance would be an important step in the rewilding 278 

process. 279 

In terms of the physical environment, beyond acquisition of environmental pathogens54, 280 

acquisition of commensal or symbiotic microbes is gaining recognition as a component of GMB 281 

assembly55. The functional relevance of these environmental microbes remains to be seen; yet, 282 

there is clear and longstanding evidence that exposure to environmental microbes, or lack 283 

thereof, plays a role in shaping animal (including human) immune responses and determining 284 

overall health outcomes5,56–58. In support of our previous finding that exposure to natural 285 

environments dictates environmental acquisition in lemur GMBs8, longer residency at the LRC, 286 

which equated to greater exposure to naturalistic environments, correlated with greater 287 

covariation between lemur GMBs and soil microbiomes from natural habitats. In addition to the 288 

inherent psychological and behavioral value of providing naturalistic environments for wildlife 289 

under human care, we find that exposure to rich, natural microbial landscapes has the potential to 290 

augment host-associated communities. 291 

Together, our results suggest that microbial rewilding is a multi-faceted process that includes 292 

host-associated and environmental microbial communities. Moreover, we suggest that providing 293 

appropriate diets, minimizing contact with humans, and increasing exposure to natural 294 

environmental consortia are actionable steps that can promote microbial rewilding in captive 295 

animals. These actions may be particularly valuable for animals slated to undergo environmental 296 

transitions or reintroduction6,59. By rewilding host GMBs prior to the transition, we may be able 297 

to prime animals for success in their new environments. Going forward, the collection of 298 

longitudinal data on the GMBs and overall health of animals undergoing environmental 299 



transitions will be essential for understanding the microbial dynamics that drive microbial 300 

rewilding and their ultimate relevance to the animal host.  301 

 302 
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527 



Figure Legends 528 
 529 
Figure 3. Compositional patterns in the gut microbiomes (GMBs) of three categories of ring-530 
tailed lemurs (Lemur catta) in Madagascar. (a) ‘Population signatures’ as revealed by principal 531 
coordinate plots of unweighted UniFrac distances for wild lemurs (blue), pet lemurs (yellow), 532 
and lemurs in semi-natural conditions at the Lemur Rescue Center (LRC; color-graded in 533 
relation to duration in residency). (b) Rewilding, as revealed by pairwise comparisons, using 534 
unweighted UniFrac distance, between the GMBs of pet vs. wild lemurs, LRC vs. wild lemurs, 535 
and within wild lemurs. (c, d, e) Center log-ratio (CLR) transformed abundances of Bacteroides, 536 
Prevotella, and Ruminococcus in the GMBs of LRC lemurs. Shown are linear trend lines and 537 
95% confidence intervals. Statistical results from linear mixed model results; See Table 2 for full 538 
results. 539 
 540 
Figure 2. Environmental influences on the gut microbiomes (GMBs) of three categories of ring-541 
tailed lemurs (Lemur catta) in Madagascar. Relative abundances of (a) total antibiotic resistance 542 
genes (ARGs) in wild lemurs (blue), pet lemurs (yellow), and lemurs in semi-natural conditions 543 
at the Lemur Rescue Center (LRC; color-graded in relation to duration in residency) and (b) 544 
tetracycline ARGs in the GMBs of LRC lemurs. (c) Total source proportion of soil microbes 545 
from natural habitats in the GMBs of LRC lemurs. Shown are linear trend lines and 95% 546 
confidence intervals. Statistical results from linear mixed model results; See Table 2 for full 547 
results. 548 
 549 
Tables 550 
 551 
Table 1. Study subjects, their habitats, and three factors influencing their gut microbiomes. 552 

Relevant variables Ring-tailed lemur groups (in chronological order of transitions) 
Wild Pet LRC 

Habitat/environment Natural  Unnatural (townships) Naturalistic  
1. Diet Native (e.g., wild 

plants, invertebrates). 
Commercial, for 
humans (e.g., rice, 
bread, cultivated fruits) 

Native forage, 
supplemented with 
varied, seasonally 
available, cultivated 
fruits and vegetables 

2. Direct human contact None Constant  
 

Minimal (veterinary 
and care staff)  

3. Environmental 
exposure 

Native microbial 
communities  

Indoor, confined areas 
in human dwellings  

Sheltered, outdoor 
enclosures with access 
to natural habitat 

 553 
 554 
 555 
 556 
 557 
 558 
 559 
 560 
 561 



 562 
 563 

Table 2. Results of linear mixed modeling for measures of lemur gut microbiome (a-c) diversity, 564 
(d,e) composition, (f-h) center log-ratio (CLR) transformed abundance of bacterial taxa, (i,j) 565 
antibiotic resistance genes, and (k) covariation between lemur and soil microbiomes. The model 566 
included the duration of residency at the Lemur Rescue Center (LRC) as a fixed effect. 567 
Significant results are bolded. 568 

 569 
 570 
 571 
 572 

 
LRC residency  

t-value R-squared p-value 
a. Shannon diversity -1.932 0.102 0.065 
b. Faith's phylogenetic diversity -1.299 0.027 0.207 
c. Observed features -2.018 0.113 0.055 
d. Pairwise unweighted Unifrac distances -64.183 0.542 <0.0001 
e. Pairwise weighted Unifrac distances -6.734 0.012 <0.0001 
f. Bacteroides CLR abundance 3.526 0.322 0.001 
g. Prevotella CLR abundance -2.313 0.153 0.030 
h. Ruminococcus CLR abundance -2.309 0.152 0.030 
i. Total ARG relative abundance -4.169 0.671 0.004 
j. Tetracycline ARG relative abundance -5.330 0.774 0.001 
k. Source proportion from soil microbiomes 2.893 0.234 0.008 


