
An Examination of the Stiffness Terms Needed to Model the Dynamics 

of an Eddy Current based Maglev Vehicle  
 

Colton Bruce, Jonathan Z. Bird  
 

Laboratory for Magnetomechanical Energy Conversion and Control 

              Portland State University, Department of Electrical and Computer Engineering, Portland, OR, USA, bird@pdx.edu 

 

This paper re-examines the basis for each eddy current stiffness term computed from prior published steady-state eddy current models. 

The paper corrects prior analysis work by confirming, through the use of 2-D and 3-D dynamic finite element analysis modelling, that 

when a magnetic source is moving over an infinite-wide and infinite-long conductive sheet guideway the steady-state lateral and 

translational stiffness terms will be zero and only the vertical coupled stiffness terms need to be modelled. Using these observations, a 

much simplified 6 degrees-of-freedom (DoF) linearized eddy current dynamic force model can be used to compute the steady-state force 

changes in eddy current based maglev vehicles when operating over a wide uniform conductive track.  
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I. INTRODUCTION 

HE rotation of a permanent magnet rotor above a 

conductive, non-magnetic, flat track induces large eddy 

currents in the track that creates an opposing lift and thrust force. 

Both radial [1-4]  and axial [4, 5] rotor configurations have 

recently been studied. An example of a one pole-pair radial rotor, 

also called an electrodynamic wheel (EDW), is illustrated in 

Fig. 1. Magnetic levitation (maglev) vehicles using a six 

wheeled [1] and four wheeled [2-4] radial EDWs have recently 

been tested. The EDW–Maglev allows the track to be fully 

passive which greatly lowers the cost of the maglev 

infrastructure, and the vehicle can be constructed using 

relatively low-cost components.  

To provide good vehicle control the EDW forces as a 

function of position (stiffness) and velocity (damping) need to 

be accurately modelled and controlled. The lift, thrust and 

lateral forces are highly coupled and depend on the angular 

speed ω, velocity (vx,vy,vz) and airgap height yg. The 

computation of the forces as a function of these variables using 

a numerical approach, such as 3-D time changing finite element 

analysis (FEA), is computationally expensive. It is challenging 

to numerically model both the simultaneous high-speed rotation 

and translation velocity along a long finite-thickness conductive 

track. For this reason, 3-D analytic based steady-state 

modelling methods have been developed [3, 6-8].  

The use of the second-order vector potential (SOVP) analytic 

method has been shown to be effective at simplifying the 

number of unknowns to solve for in certain 3-D eddy current 

problems. For instance, Theodoulidis and Bowler pioneered the 

use of the SOVP method to compute the field distribution in a 

right-angle conductive wedge [9]. Musolino et al. used a 

cylindrical SOVP formulation to study the currents induced by 

moving coils over a tubular conductive cylinder [10]. And Chen 

et al. [11] and Paul et al. [3, 6-8] have utilized the Cartesian  

SOVP formulation to compute the forces created by translating 

and rotating magnets over a finite thickness conductive plate.  

When the conductive plate is thin and very wide, then the field 

decays before reaching the edges of the plate, in such cases, the 

SOVP unknowns can be reduced to only one, further reducing 

the modeling complexity [6, 7].  

   Prior papers have used analytic-based fictitious magnetic 

charge methods to compute the force and derive stiffness and 

damping terms for an EDW [3, 8]. However, these prior papers 

incorrectly indicated that certain lateral and translational 

stiffness terms are non-zero for infinitely wide and long tracks. 

The purpose of this paper is to correct this misinterpretation and 

confirm through the analytic force formulation and FEA 

computational analysis that when the track edge-effects can be 

neglected then the lateral and translational stiffness terms are 

zero. Consequently, the 3-D stiffness equations needed to model 

the dynamics of a 6-degree-of-freedom (6-DoF) EDW–Maglev 

are greatly simplified.  

II. FORCE AND ENERGY 

  The derivation of the magnetostatic force from the system 

energy can be completed by using the same approach as for 

electrostatic charges [12, 13]. For example, the fields emanating 

from two diametrically magnetized cylinder magnets can be 

accurately modelled by utilizing a fictious magnetic charge 

distribution whose magnitude varies sinusoidally [14]. A 2-D 

sketch of two charge sheet cylinders is illustrated in Fig 2(a). 

The sinusoidal distributed surface magnetic charge distribution 

functions are ρs, and ρr. Assume that the charge functions ρs and 

ρr are immutable, and therefore the self-energy of the charge dis- 
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Fig. 1. A single P = 1 pole-pair radial EDW, the induced current density in the 

conductive track along with the geometric definitions are also shown.  
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tribution will not change. The total mutual energy U between 

the charge distributions is then [12] 

 [ ]r s s r

V

U dv   = +  (1) 

where s and r are the respective scalar potential fields created 

by the top and bottom magnetic charge cylinder distributions. 
The integral is evaluated around a sufficiently large volume 

region such that at the volume edges the field approaches zero. 

A mechanical energy W keeps the charge cylinders in place. 

Given the principle of conservation of energy, the following is 

true 

 ( ) 0
d

U W
dt

+ =  (2) 

or 

 0dU dW+ =  (3) 

Now suppose that the charge distribution ρr undergoes a small 

virtual displacement dl, due to a magnetostatic force F.  Due to 

the virtual displacement, the magnetostatic field’s mutual 

energy between the charge distributions must change. The 

change in magnetostatic mutual energy, due to the change in 

position, can be expressed as 

 
, constants r

dU U d
  =

=  l . (4) 

This incremental change in mechanical energy is then equal to 

the work done by the force 

 dW d= F l . (5) 

Combining (3) and (5) gives 

           
, constants r

d dU
  =

 = −F l . (6) 

and substituting (4) into (6) gives 

       
, constants r

d U d
  =

 = − F l l . (7) 

Since the relationship is independent of the direction of dl, it 

can be concluded that 

 
, constants r

U
  =

= −F . (8) 

In Cartesian coordinates the incremental change vector and 

force vectors can be described by  

 
x y zd   = + +l x y z  (9) 

                                  
x y zF F F= + +F x y z                             (10) 

where the circumflex denotes unit vectors. The force between 

the two magnets can be computed by evaluating across a surface 

between the magnets such that [12] 
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where the integrals are evalated over a length l and width w that 

is sufficiently long and wide that the fields are assumed to be 

zero at the edges. Since [12]  

  r o r = − B  (12) 

where 

                                   
r x y zB B B= + +B x y z                                (13) 

Substituting (12) into (11), the force can be evaluated using [13] 
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Fig. 2. (a) Sketch of two diametrically magnetized cylinder magnets that are 

approximated by magnetic charge functions, ρr and ρs. (b) shows a top source 

charge function, ρs and a bottom charge sheet distributed function, ρr(x,z), 

located at y=0 axis. The bottom charge distribution is defined so that it creates 

an equivalent field representation of the induced eddy currents.  

                                              
As both charge functions are assumed to not change the 

stiffness matrix defined as  

/ / /

[ ] / / /

/ / /

xx xy xz x x x

yx yy yz y y y

zx zy zz z z z

k k k F x F y F z

k k k F x F y F z

k k k F x F y F z
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k  (15) 

can be evaluated directly between the magnets. For example, 

the first three stiffness terms can be evaluated by computing: 
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Consider now the case in which this force and stiffness 

evaluation method is extended to the evaluation of steady-state 

eddy current forces created through the induction of eddy 

currents in a conductive sheets [3, 6-8]. For example, consider 

the case shown in Fig 2(b), in  which the bottom source field is 

now a flat magnetic charge sheet. This flat charge sheet  can be 

used to reproduce the reflected field created by a circulated 

steady-state eddy current distribution. The eddy currents 

induced by the angular rotation ω and velocity (vx, vy, vz) of the 

top source field relative to the stationary track. The electrical 

angular rotational can be modeled in steady-state by using 

complex functions. The 3-D steady-state eddy current forces for 

this system has been shown to be accurately computed by [6]  
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where the star superscript denotes conjugation and unlike when 

using real terms [13] the magnetic charge force equation 

contains a half term due to the presence of the complex 

functions [6]. In this case the source field created by ρs is 

immutable, but the eddy current reflected field Br must be 

dependent on ρs and not independent of it, like in the case when 

the two field sources are both from magnets. As a consequence 

of the reflected field’s self-energy is not source independendent. 

The value of the source field will change with the virtual 

displacement dl and therefore the stiffness terms cannot be 

evaluated using the method shown in (16) because of the 

dependence of Br on ρs. As such, the partial derivative of the 

full force equation, must be evaluated.  All terms in the force 

equation, (17), then need to be evaluated and the gradient 

cannot be evaluated only on the individual Br terms. For the 

case of the EDW the steady-state force component terms were 

previously derived and they are [6] 
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For readability the definitions of the terms shown in (18) - (20) 

are stated in the Appendix. The forces are a function of velocity  

(vx,vy,vz) and angular speed ω as well  airgap, yg. For clarify 

these force dependent terms are not shown in (18) - (20). Due 

to the assumption that the axial and translational track length is 

infinitely long and wide the force is not dependent on the x- or 

z-axis position. Consequently, the stiffness terms in these 

directions are zero: 

 0xx yx zx xz yz zzk k k k k k= = = = = =  (21) 

In contrast, if the method shown in (16) is used to compute the 

stiffness then a non-zero stiffness will be incorrectly shown to 

exist along the x-z axis planes [3, 8]. Given (21) the stiffness 

matrix then considerably simplifies down to  
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The height stiffness terms can be determined by substituting the 

appropriate force term into (22) this yields 
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A. Linearized Force Model  

Utilizing the stiffness definition given by (22) a linearized 

description of the thrust force Fx lift force Fy and lateral force 

Fz on one EDW rotor can be described by: 
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where [ ]d  is the damping matrix [8], and the steady-state force 

terms are given in (18) - (20). The delta terms in (26) define a 

small deviation from an equilibrium point. For example:       

                                       y eyy = −                                       (27) 

                                    ,y y y ev v v = −                                      (28) 

is an the incremental height change and heave velocity change 

respectively from equilibrium. The equilibrium value is 

denoted with the subscript e. It should be noted that the stiffness 

and damping terms are function of velocity, angular speed and 

airgap height. But for equation clarity their dependence on these 

changes are not shown in the coefficient terms. The damping 

terms are unchanged from what was previously reported in [8] 

for a conductive sheet flat track. 

B. Stiffness Analysis  

Using the parameter shown in Table I a surface plot of the 

calculated lift force as a function of slip s and translational 

velocity vx is shown in Fig. 3 for the case when (vy,vz ) = (0,0). 

The slip is defined as s = ωro – vx. Fig. 3 shows that the lift force 

is less dependent on slip at high velocity. The slip provides a 

means of controlling the thrust/braking magnitude [6]. Using 

the Table I parameters, the computed stiffness change with slip 

and velocity is shown in Fig. 4 for the kxy and kyy stiffness terms, 

respectively. Note that the kxz term is zero when vz =0 as Fz =0.   
If a lateral velocity is created through a disturbance, for 

example if (vy, vz ) = (0, 5) m/s, then the lateral force Fz will no 

longer be zero. For this example case, the lateral force Fz and 

stiffness kzy will have the values as illustrated in Fig. 5. Fig. 5 

shows that when the lateral velocity became non-zero, then the 

EDW will experience lateral instabilty, causing the EDW to 

drift sideways.   
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Fig. 3. Lift force vs. slip and translational speed for the case when yg = 10 mm 

and (vy, vz ) = (0,0) 
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Fig. 4. (a) Stiffness surface plot as a function of slip and translational velocity 

for kxy and (b) kyy when (vy, vz) = (0,0) m/s.  

III. MODEL CONFIRMATION 

To confirm the model assumptions, two example FEA 

simulations were performed. In the first a COMSOL 2-D 

transient FEA simulation was completed  in which a single rotor 

EDW was oscillated back-and-forth in the translational x-axis 



whilst maintaining a constant average velocity of vx= 50m/s. 

The 2-D model neglects the axial rotor edge-effects but does 

not change the conclusions with respect to the lateral motion. In 

the second, a JMAG 3-D FEA model was simulated in which 

there was an oscillating x-axis position centered at vx = 0 m/s.  
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Fig. 5. (a) Lateral force Fz and (b) lateral heave stiffness kzy as a function of slip 

and translational speed for the case when yg = 10 mm and (vy, vz ) = (0,5) 

 

TABLE I. SIMULATION PARAMETERS 

Parameter Value Units 

Rotor 

Pole-pairs, P 1 - 

Outer radius, ro 100 mm 

Inner radius, ri 25 mm 

Width, 2×ro 200 mm 

Residual flux density 1.42 T 

Magnet relative permeability 1.055 - 

Air-gap, yg 10 mm 

Mechanical angular speed, ω 6000 r/min 

Track 
Thickness, h 12.7 mm 

Conductivity, σ (Cu) 5.69×107   S/m 

Numerical 

Track length, l 20 m 

Track width, w 0.4 m 

Summation indices (M, N) (2048,128) - 

A. Oscillation Around a Constant Velocity  

The 2-D COMSOL model used to simulate a lateral oscillating 

position is shown in Fig. 1 and the model simulation parameters 

are shown in Table I. The EDW motion was modelled by:  

                                 ( ) 50 10sin( )x ov t t= +  (29) 

and (vx,vy) = 0. The lateral oscillation frequency was choosen to 

be ωo = 32π rad/s which is significantly smaller than the rotor 

angular frequency, which is ω = 6000 rad/s. Fig. 5 shows the 

simulation comparison. The oscillations  using (29) were started 

at time t = 0.125 s.  The forces were analytically computed by  

 ,( ) ( ) ( )y x y s x yx x x yxF v F v d v v k x  + +  (30) 

 ,( ) ( ) ( )x x x s x xx x x xxF v F v d v v k x  + +  (31) 

where δx and δvx were computed from the change in value 

between each time-step in the corresponding FEA simulation. 

The force and damping terms in (30) and (31) are shown as 

functions of translational velocity. The airgap was assumed 

fixed. 

The normalized lift and thrust forces were evaluated when 

the stiffness terms kyx = 0 and kxx = 0. Since the 2-D COMSOL 

FEA model neglected the source field edge-effects and 

circulating current the force values for both models were 

divided by the average of the force. The normalized lift force 

matched very well, and the thrust force change had a 10% error. 

The models demonstrate good agreement showing that the kyx   

and kxx stiffness terms were not needed. 
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Fig. 6(a) Normalized lift force, and (b) normalized thrust force as a function of 

velocity and time.   

B. Oscillation Around Zero Velocity  

The 3-D transient magnetic vector potential FEA eddy current 

solver by JMAG was used to further study the forces created by 

the rotating EDW that was also translationally oscillating. The 

JMAG solver cannot model both constant velocity and EDW 

rotation. Therefore, the velocity oscillation used: 

                                    ( ) 10sin( )x ov t t=                         (32) 

where there is no average velocity. The model simulation 

parameters as shown in Table I were used, except that the rotor 

radii were reduced to (ro, ri) = (40,10) mm so that the simulation 

size would be lowered. Fig. 7(a) and Fig. 7(b) show the lift and 

thrust force comparsion between the analytic and FEA model. 

The analytic force results are shown for the case when (30) and 

(31) are used with all stiffness terms non-zero, and also for the 

case when kyx = 0 and kxx = 0 are zero. The large error caused by 

the inclusion of the added stiffness terms is self-evident.  

CONCLUSION  

This paper has demonstrated through an equation derivation 

and through transient FEA simulations that the translational and 

lateral stiffness terms, such as kxx, kzz and cross coupling terms 

such as kyx , kyz , kzx , kxz for an infinitely wide uniform conductive 

track are zero. This analysis corrects prior work that derived 

incorrect non-zero stiffness terms in these axes. The paper also 



highlights how the cross-coupling stiffness term kzy creates lat-

eral instability even with an infinite-wide track assumption.  
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Fig. 7.(a) Translational velocity and translational position, (b) lift force and (c) 

Thrust force as a function of time. When including the incorrect stiffness terms 

the thrust force is a factor of ~10× higher than it should be, indicating the 

magnitude of error if including the incorrect translational stiffness terms.   
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APPENDIX  

The force terms defined in (18)- (20) were derived in [6]. The 

reflection term, Rmn, is defined by:  

 0

2 2 2 coth( )

mn

mn

mn mn mn mn mn

R
h

 

    
=

+ +
 (33) 

 2 2 2

mn m nk = +  (34) 

 2 /m m l =  (35) 

 2 /nk n w=  (36) 

 
2 2 2

mn mn  = +  (37) 

 
00.5 yv  = −  (38) 

 ( )2 2

0mn mn m x n zj P v k v     = − + +  (39) 

 ( )mn mn y m x n zv j P v k v   = + + +  (40) 

Table I defines the variables. The source field term in (18)- (20)

is determined by evaluating  [7, 8] 
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where the source field term in (41) is modeled by evaluating: 
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where  
 

2 2 2 1/2[( cos ) ( sin ) ( ) ]c o o c o o c oR x x r y y r z z z = − − + − − + − −  (43) 
 

The Halbach rotor origin is located at (xc, yc, zc) = (0, ro+yg, 0).  

With P=1, the radial flux density magnitude term is   

     
2 2

2 2 2 2

(1 )( )

[(1 ) (1 ) ]

r i o

r res

r i r o

r r
B B

r r


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where Bres = residual flux density, µr = magnet relative 

permeability. The integration of (42) with respect to zo was 

performed analytically whereas the integration with respect to 

θo was numerically evaluated.  
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