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Thermal conductivity of an ultracold paramagnetic Bose gas
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We analytically derive the transport tensor of thermal conductivity in an ultracold, but not yet quantum de-
generate, gas of Bosonic lanthanide atoms using the Chapman-Enskog procedure. The tensor coefficients inherit an
anisotropy from the anisotropic collision cross section for these dipolar species, manifest in their dependence on
the dipole moment, dipole orientation, and s-wave scattering length. These functional dependences open up a
pathway for control of macroscopic gas phenomena via tuning of the microscopic atomic interactions. As an
illustrative example, we analyze the time evolution of a temperature hot spot which shows preferential heat
diffusion orthogonal to the dipole orientation, a direct consequence of anisotropic thermal conduction.
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I. INTRODUCTION

Ultracold gases of spin-polarized magnetic atoms, such
as dysprosium and erbium, have led to a wealth of novel
phenomena in the quantum degenerate regime, as reviewed
recently in Ref. [1]. Far less studied is the regime of such
gases just above the temperature of quantum degeneracy. In
this regime, a small magnetic field can ensure that the atoms
remain polarized, whereby the classical fluid equations of mo-
tion inherit anisotropy due to this polarization. In particular,
the transport coefficients—the thermal conductivity and the
viscosity—inherit an anisotropy from the microscopic colli-
sion dynamics of the scattering dipoles.

In certain cases, the results of this collisional anisotropy
are well known. They have already been shown to re-sult
in anisotropic thermalization in normal-phase ultracold gases
and can be used as a tool for measuring scattering lengths
[2-10]. These experiments have been modeled using
perturbation theory around the equilibrium Boltzmann distri-
bution of a gas, an analysis that has proven highly successful.
Following on such success, it seems worthwhile to present
the systematic derivation of the continuum fluid equations of
motion for an ultracold paramagnetic gas. The present paper
takes the first step in this program by deriving the anisotropic
thermal-conductivity tensor from the differential cross sec-
tion in dipolar lanthanide gases [11]. This is done by means of
the Chapman-Enskog formalism [12], leading to density-
independent coefficients valid in the dilute regime [13].

We focus here on Bosonic samples, which also offer a
quantum-mechanical s-wave scattering length a, [14], tun-
able via a multitude of Fano-Feshbach resonances. Thus, the
anisotropy of the heat-conduction tensor is under direct ex-
perimental control. We note that our results here are unlike
studies in which anisotropic transport tensors arise due to
internal degrees of freedom or long-range interactions [15],
such as in systems of dilute plasmas [16—19] and ferroflu-ids
[20,21].

The remainder of this paper is organized as follows:
In Secs. II and III, we analytically derive the anisotropic
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transport tensor of thermal conductivity emergent from dipo-
lar collisions. The continuum conservation equations are
introduced in Sec. IV, permitting a model for fluid dynamics
studies in ultracold gases. This model is used to study a simple
experimental scenario of thermal diffusion of a temperature
hot spot in Sec. V. Finally, a discussion and concluding
remarks are given in Sec. VL.

II. THE CHAPMAN-ENSKOG PROCEDURE

The study of transport phenomena is mature and extensive,
having applications in all fields of science and engineer-ing
[22-25]. Central to the analysis of transport are the
equations of conservation and constitution, which describe
the dynamics of state variables (e.g., mass, flow velocity, and
energy) and their response to external stimuli. If only weakly
perturbed, the response of a system is completely described
by linear constitutive relations and the associated, medium-
specific transport coefficients.

In the present context, we consider an ultracold, dilute gas
of Bosonic lanthanide atoms in their spin-stretched ground
state and in sufficient magnetic field that they remain in this
ground state in spite of collisions. The gas is then paramag-
netic, with the preferred spatial axis determined by the field
direction. Moreover, we explicitly consider only temperatures
above the critical temperature of Bose-Einstein condensa-
tion, so that the thermodynamics of the gas is governed by
Maxwell-Boltzmann statistics. While we focus on magnetic
atoms here, the results should, of course, be applicable to
ultracold gases of polar molecules.

In such a gas, local equilibrium occurs by means of dipolar
collisions parameterized by the scattering length ¢ and mag-
netic dipole length ag = Caam/(8mh?), where Caa = pop?
(po is the vacuum permeability). We take all the dipoles to be
aligned along a dipole-alignment axis £ by means of a large
external field taken to lie in the x, z plane (illustrated in Fig. 1).
We thus envision experiments conducted in a fixed frame of
reference, with the polarization orientation free to be tuned
relative to this axis.

©2022 American Physical Society
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FIG. 1. A visualization of dipoles (red) aligned with an external
field along the dipole-alignment axis E (blue) in the laboratory coor-
dinate frame.

Close to local thermal equilibrium, reequilibration pro-
cesses are encapsulated by transport coefficients (e.g., viscos-
ity, thermal conductivity, etc.) derivable from a microscopic
picture by methods established by Chapman and Enskog [12].
The development we present here closely follows that of [26].

Within length scales on the order of the atomic mean
free path, atomic interactions are dominated by collisional
processes. The local distribution of atoms in flow thus
has dynamics well described by the Boltzmann transport
equation [27,28]

n

%Jr vidi f(r,v) = CLf(r,v)], (1a)
.o dO
Clf]= LZiAOﬁ

X d3V1|V—V1|(fOf10‘ffl)z (1b)

where f(r,v) is the phase-space distribution function and
C[f] is the two-body collision integral. We adopt the con-
vention that all repeated indices are summed over unless
otherwise specified, and primes denote postcollision velocities
for pairs of atoms colliding with incoming velocities v and
vi. We also adopt the compact notation fi = f(r, vi) and
f°= f(r, v%). The gas number deznsity is given by

n(r, 1) = 3(”—”= d*vf(r,v,t), @)
m

which at thermal equilibrium is dependent on only tem-
perature no = no(6). Thermal equilibrium also imposes a
Boltzmann velocity distribution,

Ho T3 M 6 1
Jo(u, 8) = no(8)co(u, 8) = no(6) 317 exp - mz_u2 ,

(€)

where 8 = (kgT)™', u? = weuk, and u(r) = v -U(r) is the
peculiar velocity, defined as the molecular velocity v relative

to the flow velocity, .

L Bvr v, . )

n(r, t)
In close-to-equilibrium scenarios, we can consider the out-of-
equilibrium atomic distribution to take the form

S, 8)= fo(u 8)[1+ 8(r,u,6)], )

Urt) =

with a perturbation function 8 that must satisfy
z

dufo(u)8(r, u, 8)m = 0, (6a)
z
dufo(u)8(r, u, 8)mu = 0, (6b)
z 1
d>ufo(u)8(r, u, 6)2_mu2 =0 (6¢)

as a result of mass, momentum, and energy conservation,
respectively. Enskog’s prescription of successive approxi-
mations then renders the Boltzmann equation, to leading
nontrivial order, as
Ky 1

5 F Vo Jo= CLfo8]. (M
Physically, this approximation is motivated by establishing a
separation of scales between phenomena of interest. We are
concerned with the regime in which macroscopic fluid
dynamics is governed by length scales A (e.g., wavelengths)
much larger than the mean free path L of its constituent atoms
(i.e., the regime of small Knudsen number Kn = LA~! ¢ 1).
Furthermore, the period over which such dynamics occurs is
much longer than the timescales associated with collisions.
Therefore, Eq. (7) effectively makes an adiabatic approxima-
tion that separates the macro- and microscale phenomena. We
refer to the fluid dynamics as occurring on “macroscales,”
whereas collisional interactions are said to occur on
“microscales.”

Under the approximation described above, the left-hand
side of Eq. (7) equates to

o 9 1 £ o
ar T vklk fo= fo Viok(InT)+ m6WiDr,  (8)

where
H ) q
5
= "2, (9a)
1
Wii(u) = wuj - gaijuz, (9b)
1 1
D,’j(U): E(djl]l-'- d,‘[]j)— §6ijdek' (90)

The derivation of this result is detailed in Appendix A. The

collision integral on the right-hand side of Eq. (7) is then
Z Z
3 o do

Clfl=  dwlu- w|fo(w)fo(u) dA ml 8, (10)
where 18 = 8%+ 8% - 8 - 8. Since Eq. (10) is linear in
8 and Eq. (8) is linear in the quantities d; In 7" and d,U;, one
can infer an ansatz for the scalar function 8 of the form

8(u,8) = Bioi(InT)+ mBAi Dy, (11D

where B (vector) and A (two-rank tensor) are functions of u
and 8. The ansatz above allows a separation of Eq. (7) into
an equation in velocity gradients and that in temperature
gradients,

JoWiDi = C[ foAr1Dr,
o Vidk(InT) = C[foBi]0x(InT),

(12a)
(12b)
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which upon a comparison of the terms, further motivate us to
write B and A as

Aij(u, no, 8) = Wi(w)arij(u, no, 8),
Bi(u, no, 8) = Vi(u)bji(u, no, 8),

(13a)
(13b)

where u = |u| and the coefficients aimn(u, no, 8) and
bi(u, no, 8) are introduced as variational ansatze. These vari-
ational coefficients can, in general, be expressed as an infinite
linear combination of Sonine polynomials (also known as
associated Laguerre polynomials). The assumption of a low-
temperature gas, however, allows us to approximate a and b
with only the first term in the summation series, which is u
independent. Such an approximation has been shown to have
good accuracy (relative errors of @1%) in computing transport
coefficients for gases of isotropic scatterers [28—30]. We are
thus left with

8(u, 8) = V:(u)by(no, 8)0x(InT)

+ mB8W;j(u)aiji (no, 8)Dy. (14)

The coefficients a and b are determined for a particular gas by
the microscopic scattering theory of the constituents, a task to
which we now turn.

III. THERMAL CONDUCTIVITY IN DIPOLAR GASES

Thermal conduction in a dilute gas arises through a transfer
of kinetic energy by kinetic transport of the gaseous atoms, out
of a region of fluid, resulting in a heat flux [19],

z

1
Jirt)y=  dPuf(ru, t)z—muzui. (15)
For a first-order approximation, we adopt the ansatz in
Eq. (11) to compute the integral above. The A associated term
does not contribute to the heat-flux integral, leaving us with
z

Ji = % BPufo)[1 + 8(u)u’u;

z
 Fme
2

1

dPu fo(w)u?u;Vibe; 0,T, (16)

23
ag 4

2B + 2 - E) - 4(uy - Bl - E)(up - uo)'"

where the local temperature 7 (r, t) is written in terms of its
kinetic definition,
3 1
ZkgT =
2 n(r, t)
Additionally, we say that this flow of kinetic energy occurs
across a temperature gradient via Fourier’s law of heat con-
duction,

Z
d*u f(r,ut) Zlmuz.

(17

Ji= —ki0,T, (18)

where k is the thermal conductivity, a two-rank tensor. A

comparison of Egs. (16) and (18) then tells us that the thermal
conductivity is found via the integral

z
_ukBmB ﬂ

Snok,
d3uf0(u)”2uin bij= - %bﬁ,
(19)

Kij =

assuming knowledge of the coefficients by;.

The transport of kinetic energy across a temperature gra-
dient is brought about by the flow of atoms mediated by
collisions, allowing use of the Boltzmann equation to de-
rive b(u), with the first-order Chapman-Enskog expansion.
Referring back to Eq. (12b), one finds that it is formally
mathematically inconsistent but holds in an average sense over
the atomic distribution after multiplying Eq. (12b) by V' (u)
and integrating over u. This gives

uz 1
d’u fo(u)Vi(u)V;(u) 0;(InT)
uz 1
= V@] biyd(nT),  (20)
where the coefficients of d;(In T") satisfy the relation
Nixbj = 6ij, (21a)
2m8 z
Nix = = dPu VCLfoVi). (21b)
no

The integral terms above are made complicated by the highly
anisotropic differential cross section for dipolar bosons, for
which the appropriately symmetrized scattering amplitude is
provided in closed form as [11]

Pt @)= v2 3- 24 - P , 22)
. . . . [
where u,. = u - u,. This provides us the differential cross with the additional relations
section via do/dA° = | fp(@°, u;)|?, with which the Ni terms
are evaluated as N33(2) = N11(2 - 1/2), (24a)
256  256aq4[3cos(22) - 1] N12(2) = N23(2)= 0, (24b)
11
N oAy 2254 Nij(2) = Nji(2), (240)
_ 3 12“%1[34;0255(222 )+ 13] , (23a)  Where we have cast N in terms of the adimensional functions
a r
256a,45in(22)  512d%sin(22 __L m8
Nis= - 4 8in(22) + 4 81n( )’ (23b) Nij = . ?NU (25)
75a 157542 0
256  512ay 8192a§ The details of the evaluation of these integrals are provided
N2 = - 15 + 2254 472542 (23¢) in Appendix B, following the successful methods developed
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FIG. 2. The unit-free thermal-conductivity tensor elements k/ko
as a function of the dipole-alignment angle 2, as defined in Eq. (26)
for native 164Dy (a = 92ap). The tensor elements k;1/ko (solid dark
red line), k13/ko (dot-dashed red line), and k2,/ko (dashed orange
line) display a sinusoidal 2 dependence, whereas k33/ko (dotted
yellow line) is 2 independent due to the coordinate frame definition.
The parameters considered here are for '**Dy with a./a = 199/92,
taken from Ref. [6].

in [4]. It then follows that the thermal-conductivity tensor is
given as

Sk -
K(2) = - 2 N7 (2)
2a? " wmB
B B
_NL Nys
NiiN33=N 3 N3-NiiN33
B 5kp o 13 ) 13 0
= - 4/—2 2l Ny ).
2a? ntm8 N N
—3 0 — N
N3-Ni1N33 NiiN33-N 3

(26)

The structure of the tensor above and Eq. (18) imply that a
temperature gradient along x could result in a thermal flux
along z and vice versa. In the event that the dipoles are aligned
along Z, that is, 2 = 0, the Cartesian axes are the principal
axes of k. This situation leaves us with only two unique,
nontrivial thermal conductivities, Kxx = Kyy = Kzz.

We plot in Fig. 2 the coefficients in Eq. (26) with values
normalized by the isotropic coefficient k/ko [31], where

75kp

e L
7 2567 mE

@7
where 2, = 2a® + 84%/45 is an effective isotropic radius
obtained from an angular average of the dipolar differential
cross section. The coefficients are plotted with the scattering
and dipole lengths of native '**Dy (a = 92ao and as = 199ay,
where ag is the Bohr radius) [6], which showcases the func-
tional dependence on the angle 2 between the polarization
and the laboratory z axis.

IV. EQUATIONS OF MOTION

Having derived the transport tensor of thermal conduc-
tivity, macroscopic gas dynamics can now be studied under
the lens of a continuum fluid formulation. The dynamics of

fluids is characterized by spatial and temporal variations of
macroscopic quantities such as the fluid mass density p (2),
flow-velocity U (4), and temperature

z

3 L
T(rt)= a’vf(r, v,t)z—mu . (28)

3n(r, t)kp
The associated hydrodynamic phenomena are well modeled,
even in ultracold systems [32], by the continuum conservation
equations [19]

dp

T 0;(pU;) = 0, (29a)
0
E(pUi)+ 0j(pU;Ui) = dj0ij, (29b)

d 2m
5P+ 9;(pTU)) = 373(01‘1011]:‘- 9;J;),  (29¢)

where 0; denotes a derivative with respect to the coordinate r; (i
= 1,2,3) and m is the atomic mass. These equations are, in
order, referred to as the continuity, Navier-Stokes, and
energy-balance equations. As we saw in the previous section,
atom-atom collisions in the gas result in thermal transport and
viscous effects, included into Egs. (29) via the heat-flux vector
J; and pressure tensor [33]

gij = —P5ij + Tij, (308.)

Tij = uijk‘d‘Uk, (30b)

where P is the thermodynamic pressure, t;; is the viscous
stress tensor, and ;- is the viscosity tensor. For the time
being, we focus on the influence of thermal conductivity by
assuming that all second derivatives of the flow velocity are
small, effectively rendering the viscous stress terms negligible
(i.e., Tij; = 0). Consideration of the anisotropic viscosity is left
to future work.

V. DIFFUSION OF A HOT SPOT

As an example of anisotropy due to the thermal-
conductivity tensor, we consider a simple uniform-gas experi-
ment in which a localized temperature hot spot is induced, for
example, by heating the gas locally with a focused laser and
then allowed to diffuse. For simplicity, we assume that the
temperature field is excited perturbatively so that the temper-
ature dynamics is described by its deviation from the uniform
background temperature Ty, T'(r,t) = Ty[l + ?(r,¢)]. This
permits a linearization of Eq. (29¢) to first order in 2, which
gives

0 U 2 k002 31)
o 4 Ki:0;02.
ot 39/ 3noks j0i0j

At the onset of the hot spot, the flow velocity U is taken to be
negligible, thus rendering the heat equation as

d 2
57 = Dij0id;* (32)
in terms of a thermal-diffusivity tensor
D;; = 2 Kij. (33)
3nokp
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FIG. 3. Thermal relaxation timescales 7, and t. vs the reduced
dipole length aq/a. The axial timescale T is seen to be drastically
larger than the radial timescale t, for large values of the reduced
dipole length.

We model the initial hot spot as described by a Gaussian of
width o,

)
2(r,t = 0) = %pe 27, (34)

Utilizing a Fourier expansion, we obtain the time-dependent
solution to Eq. (32),

z
373
o d’K _1 (KT iK-r
()=t e MWK )
The integral above can be evaluated analytically to get
2 3 Mo 1
2(rt) = VLGX TR r , 36a
0= ¥egean P 4 (362)
1
M = 5a21+ D¢, (36b)

where | is the identity matrix. The solution above is further
simplified if we assume that the dipoles define the z axis,
which is done here without loss of generality. The diffusion
tensor is now diagonal with only two distinct elements, D11 =
D> and D33. Thus, diffusions in the radial (perpendicular to
the dipole alignment) and axial (parallel to the dipole
alignment) directions occur with the respective different char-
acteristic timescales

02 128(315a% - 42aaq + 324%)

T, = = 75, (37a
2D 787512 o ©72)
2 128(315a% + 84 + 20d?
T, = . (3154 adad ad)ro, (37b)
2033 787512

with 1o = 0%k no‘/n'W , which dictate the Gaussian hot-
spot relaxation time along the radial and axial directions,
respectively. These timescales are, of course, identical in the
limit of vanishing dipole moment aq = 0. Their difference is
quite pronounced, however, as aq increases, as illustrated in
Fig. 3. Figure 3 uses the experimental parameters in Table I
and a hot spot of initial width 0 = 5L = 0.6 (mm). It is
apparent that the diffusion occurs far more rapidly in the axial
direction when dipolar scattering is significant.

TABLE I. Experimental parameter values. Da = 1.661 x
10727 kg stands for daltons (atomic mass unit), ap = 5.292 x
107" m is the Bohr radius, and pp = 9.274 x 1072* J/T is the Bohr
magneton.

Parameter A\

Symbol alue Unit
Atomic mass number
Magnetic moment A 164 Da
Dipole length K 11909 Kz
Equilibrium number density ad 1013 o
Equilibrium gas temperature "o cm

Ty 300 nK

With the dipoles aligned along Z, the explicit time evolution
of the hot spot is given by
3

et R Cal
. 207 1+t 207 1+ 1
. g
1+ 224 £
T, T,

2 -
0 €XP

2(r,t) = (39)

Figure 4 visualizes the anisotropy of thermal relaxation by
showing the temperature field variation 2 in the x, z plane. We
plot the time evolution of 2 in Fig. 4, up to the geometr%f mean
of the two timescales in three panels (t = 0,  T,T./2, T-Tz),
where we have set a = 0 to accentuate the dipolar anisotropy.
With the parameters in Table I, the timescales take values t-
= 0.0667 s and T = 0.667 s. The Gaussian hot spot clearly
elongates along the x direction over time, demonstrating an
observable effect of anisotropic thermal conductivity dur-
ing thermal diffusion in the fluid. This could be observed in
ultracold-atom experiments with time-of-flight imaging,
which extracts the gas momentum distribution. Exciting such a
temperature hot spot would create additional peaks in the
momentum distribution that our theory predicts would ther-
malize anisotropically.

VI. DISCUSSION AND CONCLUSION

Normal-phase gases of ultracold dipolar atoms present a
vast arena for anisotropic dynamical phenomena. In large
enough samples, a continuum description of these systems is
warranted, permitting fluid dynamics studies. The fluid
equations of motion are, however, complete only upon speci-
fication of the transport tensors, which govern the finite-time
dispersive processes in the fluid. In this work, we have used
the Chapman-Enskog procedure to derive analytic expressions
for the anisotropic transport tensor of thermal conductivity,
induced by collisions between dipolar bosons. By construc-
tion, each tensor element is a function of the dipole-alignment
angle and functionally dependent on the ratio of dipole length
to scattering length.

We then analyzed the anisotropic effects of these thermal
conductivities in the thermal relaxation of a Gaussian hot
spot, where time-dependent solutions were derived from a lin-
earization of the viscosity-free fluid equations. We found that
an initially isotropic hot spot would disperse preferentially in
a direction orthogonal to the dipole orientation, opening the
possibility for controlling heat transport with the dipole-
alignment direction.
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FIG. 4. Stroboscopic evolution of the temperature-field variation ?(r, ¢) at times ¢ = 0, 0.106, 0.211 s (from left to right), visualized along
a 2D slice in the x, z plane. The initial peak temperature fluctuation amplitude is set to 2) = 0.25, and the color scale for each plot is rescaled

for visual clarity at each time instance.

A comprehensive fluid description will, of course, require
the transport tensor of viscosity to also be derived. The ana-
Iytic techniques presented here permit this derivation, which
will be a subject of future work. Another possible extension of
this work is to include quantum statistical effects in computing
the transport coefficients, as done in Refs. [32,34], but with
the dipolar cross section of Ref. [11]. These effects might
become relevant at temperatures closer to quantum degener-
acy. Finally, we note that recent experiments have realized
long-lived three-dimensional polar molecular samples by mi-
crowave shielding [35,36] or dc electric fields [37], promising
larger and tunable electric dipole moments in collisional dipo-
lar gases. These systems would serve as ideal platforms for
experimental investigations of dipolar fluid dynamics.
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APPENDIX A: THE FIRST-ORDER CHAPMAN-ENSKOG
APPROXIMATION TO THE BOLTZMANN EQUATION

This Appendix details the derivation of the left-hand side
of the Boltzmann equation under the Chapman-Enskog ex-

pansion to first order [26]. We can first write this expression
as

"o, v,-d;ﬂﬁ) - foui " vidiﬂlnﬁ)
ot . ot ’
= f Pywe mp, (Al
Dt
where we defined the material derivative
25 i+Ujdj. (A2)
Dt ot
From Eq. (3), it follows that
In fo = %m zﬂn + In(no8%2) - ”;—Buz, (A3)

SO

H 1 3 - .
9 D 8

V0 fo= fo ook ui In(n08%2) - ’"Tuz .

(A4)

At local thermal equilibrium as prescribed by fo, the equa-
tions of conservation [Eq. (29)] reduce to

gtno = -nod;Uj, (A5a)
BUi = - idiun—Oﬂ, (A5b)
Dt no mB

D 2

8= 389Us (A5c)

from which the equations of continuity and energy balance
can be combined to give the relation
D
— In(no8¥?) = 0, A6
= In(108™) (A6)

identifying the quantity In(n98%?) as an adiabatic invariant.
This simplifies the expression to
3 .

3 ,
D D 8
D s udi o= g B fo D vuiar ",
(A7)
Applying the material derivative to the term in u? gives
H 1 11 )1
D m8 2 m 2D6 Du
- —u = — W—+ 66—
Dt 2 2 Dt Dt
K 1
= m6 lMzdiUi- ui%
3 Dt
1 _ 1.
= mB —uo;U;+ ﬂdi o
3 ny, mB

1
= §m6u20iUi + u;0; In(noT); (A8)
thus, the left-hand side of the Boltzmann equation becomes
3 )

D+ 0; 1
De VO nfo

U 1
5 1
= uid; =In6- @uz - —mBu*o;U;
2 2 3 q
H 1 H
1 1
=3 g- ’”2_6u2 u0;8 + mB wuu;0;U; - 3—uzd,-Ui
hoe 511 M 1
= M2 ui0i(InT)+ mB wu; - —5,‘ju2
2 2 3
) 1
dj i+ dll]j 1
- —6;;0rUs , A9
U 2 3 jOkYUk ( )
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FIG. 5. The collision frame (black) defined in the laboratory
frame (blue) via the relative velocities between two colliding partners
(red spheres). The angle a is defined as that between vectors u,and
E.

which is the form presented in Eq. (8) of the main text.

APPENDIX B: EVALUATION OF THE COLLISION
INTEGRAL FOR THERMAL CONDUCTION

The collision integral to be computed is written as

Z
Ne= 2" puractind (B1)
Sno
2m6 z z
- 5, duViu) duwlu- w|fou)fo(ur)
< ai09% 1y, (B2)

dA°

In considering both the thermal motion of the atoms and col-
lisional processes, it is convenient to first define the velocities
in terms of center-of-mass (c.m.) and relative (r) coordinates,

u+ u
Ucm. = ”
2

Ur= uU- U,

(B3a)
(B3b)

which allows the product of equilibrium distributions to be
recast as

ﬁ)(u)fb(ul) = fC.m.(uc.m.)fr(ur), (B4a)
Woe 2 ¢
fc.m.(llc.m.) = no o exXp —mBuC%m, , (B4b)
B T M 6 1
fi(ur) = no me exp - m—uf (B4c)
4r 4

Furthermore, the anisotropy of the dipolar differential cross
section has us consider two distinct coordinate frames: (1) the

laboratory frame (LF) defined by the dipole-alignment axis E
lying along the xrr, zLr plane (Fig. 1) and (2) the collision
frame (CF) defined by aligning the Zcr axis in the direction of
relative incoming velocities u, for two colliding atoms
(visualization in Fig. 5). We perform the collision integral in
coordinates defined with respect to the laboratory frame.

To transform between coordinate frames, we construct a

frame-rotation matrix of direction cosines,
A A A A A
XLF - XcF  ALF - PcF ALF - ZCF
Rersir = BJLr-XcF JLF - JcF JLF - ZcFB,
ZLF - XcF  ZLE *JCF  ZLF - ZcF

(B3)

that takes the vector #° from the CF to the LF. The differential
scattering cross section is then also required to be expressed in
LF coordinates during integration of the collision integral. To
do so, we utilize the coordinate-independent form of the
scattering amplitude for bosons fz (22) and express that in
terms of our desired coordinates, which allows us to compute
the differential cross section do/dA°. The above coordinate
transformations are sufficient for us to now compute the colli-
sion integrals.

Expanding in terms of the c.m. and r coordinates of
Eq. (B3), the collision integral becomes

V4
2m8
Nig= —— d3uc.m.fc.m.(uc,m,)
Sno
Z Z do
x  Pucfi(u)uVtem, uy)  dA°=_1Vi. (B6)
dA0
Collisions result in the variati(;]n
MK 2 N
mBu 5 mé . 5
1 =1 - = = —1 B
Vi > 7 U > (u”uy), (B7)

where the velocity terms are written in terms of CF and LF
coordinates as

Ui = Uem,it %ur,i, (B8a)
ULi = Uem,i= Ui, (B8b)
u = uz_m_ + %ur2+ Uc.m.,jUr, j, (B8c¢)
U= U, + Jug - Uem,jlr,j, (B8d)
which gives the expansion
1(u’u;) = "l + u(FuOLi - wu; - Wi,
= Uem, * quuﬁ,i - Urlly; . (B9)

The integral over postcollision velocities is then performed as

z
0 dO m6 .0 dO
dA° —1Vi = —  dA'—1(u’w),
7 oL )
which, when plugged back into Eq. (B6) and evaluated, gives
the result in Eq. (23) and expressions thereafter.

(B10)
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