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Accelerating equilibration in first-principles molecular dynamics with orbital-free
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We introduce a practical hybrid approach that combines orbital-free density functional theory (DFT) with
Kohn-Sham DFT for speeding up first-principles molecular dynamics simulations. Equilibrated ionic configu-
rations are generated using orbital-free DFT for subsequent Kohn-Sham DFT molecular dynamics. This leads
to a massive reduction of the simulation time without any sacrifice in accuracy. We assess this finding across
systems of different sizes and temperature, up to the warm dense matter regime. To that end, we use the
cosine distance between the time series of radial distribution functions representing the ionic configurations.
Likewise, we show that the equilibrated ionic configurations from this hybrid approach significantly enhance
the accuracy of machine-learning models that replace Kohn-Sham DFT. Our hybrid scheme enables systematic
first-principles simulations of warm dense matter that are otherwise hampered by the large numbers of atoms and
the prevalent high temperatures. Moreover, our finding provides an additional motivation for developing kinetic
and noninteracting free-energy functionals for orbital-free DFT.
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I. INTRODUCTION

After decades of advances and methodological improve-
ments, density functional theory (DFT) [1] has become the
computational tool of choice for solving the majority of com-
putational materials science problems from first principles. It
delivers impactful predictions and insights that propel scien-
tific progress due to its balance of computational cost and
accuracy [2]. Yet, new scientific problems challenge even the
most efficient DFT implementations. Over the last decades,
understanding materials under extreme conditions, i.e., at high
temperatures and large pressures, has become an emerging
field of research. Most notably, studying warm dense matter
(WDM) is currently in the spotlight [3–5]. In WDM both
the Wigner-Seitz radius rs and the reduced temperature θ =
τ/τF are close to unity, where τF denotes the Fermi temper-
ature. This poses a challenge, because Coulomb correlations,
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fermionic exchange, and thermal excitations are all equally
relevant. While modeling WDM using classical approaches is
thus inaccurate, the use of quantum mechanical methods, such
as DFT, is computationally expensive.

Besides theoretical hurdles in applying Kohn-Sham DFT
(KS-DFT) [6] to matter under extreme conditions, one is
quickly confronted with seemingly insurmountable scaling
limitations. KS-DFT scales unfavorably with growing tem-
peratures τ , as illustrated in Fig. 1. For small temperatures, we
observe a linear growth of computation time with temperature,
most likely due to efficient algorithms used in the employed
DFT code. As we move to larger temperatures, the expected
cubic scaling of DFT with growing temperature can be ob-
served, which makes simulations in the WDM regime, i.e.,
at θ � 1, often impractical. Approaches to circumvent this
shortcoming and achieve DFT calculations that scale linearly
with temperature are an area of active research [7–9].

Likewise, modeling WDM requires extended length scales,
i.e., large simulation cells, to alleviate potential finite-size
problems. While there exist approaches that permit DFT cal-
culations to scale linearly with system size [10–14], usually
based on density matrix approaches [15], standard DFT codes
are capable of retaining only a quadratic scaling behavior
with respect to the number of particles (see Fig. 1). This
quadratic scaling becomes intractable quickly, when pushing
calculations towards thousands of atoms.

Overcoming these limitations has been the subject of ac-
tive research. One option is orbital-free DFT (OF-DFT) [16],
which scales more favorably than KS-DFT both with tem-
perature and with system size [17], but suffers from reduced
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FIG. 1. The scaling behavior of KS-DFT as a function of system
size for beryllium at room temperature (a) and as a function of
temperature for hydrogen (b). The computational parameters of the
KS-DFT-MD calculations are provided in Sec. II F. Please note that
the apparent decrease in performance when going from 4096 to 8192
atoms is caused by the necessity to move from one compute node
to two for simulations of this size. Thus the simulation of 8192
beryllium atoms is the only one affected by an additional commu-
nication penalty.

accuracy due to approximating the kinetic energy functional.
The quest for increasingly accurate kinetic energy functionals
is ongoing [18–21]. Due to these developments, structural
properties of certain elements of interest for WDM can now be
computed rather accurately with orbital-free DFT molecular
dynamics (OF-DFT-MD) both at ambient [17] and at extreme
conditions [22].

Another emerging research area is the use of machine-
learning (ML) models [23] in electronic structure theory. They
are capable of massively reducing the computational cost for
computing properties at KS-DFT accuracy but can often suffer
from generalization errors. In order to achieve high fidelity,
these models need to be initialized with ionic configurations
close to those trained on.

When standard KS-DFT molecular dynamics (KS-DFT-
MD) simulations are carried out at finite temperatures, a
significant amount of compute time goes into the equili-
bration of the ionic configuration, creating an unnecessary
computational overhead. We show that this overhead can be
avoided by optimizing the initial ionic configuration. This
can be achieved in practice in terms of a hybrid approach
that combines OF-DFT-MD with KS-DFT-MD. By using
OF-DFT-MD to carefully initialize KS-DFT-MD trajectories,
we significantly reduce the computational overhead, both for
large simulation cells and for high temperatures.

The paper is organized as follows. In Sec. II, we provide
the theoretical background and describe our computational
and analysis methods. In Sec. III, we present the central re-
sults of our hybrid approach. These include initializing MD
trajectories for ML methods, achieving rapid equilibration in
MD simulations with large atom counts, and enabling effi-
cient KS-DFT-MD simulations at high temperatures. We have
chosen three different systems to represent these fields of
application. For the application to ML methods we show re-

sults for aluminum at room temperature (drawing on findings
presented in Ref. [24]), for the simulation of extended length
scales we chose beryllium at room temperature, and for the
treatment of large temperatures we consider hydrogen, which
is a highly relevant material in the WDM regime. In Sec. IV,
we summarize our findings and conclude with an outlook on
future research.

II. METHODS

A. Density functional theory

In this paper we deal with two flavors of DFT, namely,
KS-DFT and OF-DFT. Both are computational methods for
treating a system of Ni ions at collective positions R and Ne

electrons at collective positions r, governed by a many-body
Schrödinger equation

Ĥ (r; R)�(r; R) = E�(r; R) (1)

with the Hamiltonian

Ĥ (r; R) = T̂e(r) + T̂i(R)

+ V̂ee(r) + V̂ei(r; R) + V̂ii(R) (2)

and the electron-ion wave function �(r; R). In Eq. (2), T̂e and
T̂i denote the kinetic energy of electrons and ions, respectively,
while V̂ee(r), V̂ei(r; R), and V̂ii(R) denote the electron-electron,
electron-ion, and ion-ion interaction, respectively. The nature
of these interactions leads to Eq. (1) being computationally
intractable. In both KS-DFT and OF-DFT, two important con-
cepts are employed to make the coupled electron-ion problem
manageable. Firstly, the Born-Oppenheimer approximation
[25] is employed, which separates Eq. (1) into an ionic and an
electronic problem. This is feasible since the ions are much
heavier than the electrons, resulting in a much larger time
scale for ionic motion compared with electronic. The ions are
therefore treated as classical point particles; see Sec. II B. This
leads to a Born-Oppenheimer Hamiltonian for the electronic
problem,

ĤBO(r; R) = T̂ e(r) + V̂ ee(r)

+ V̂ ei(r; R) + Eii(R) (3)

that now depends only parametrically on R. Secondly, both
flavors of DFT rely on the Hohenberg-Kohn theorems [1]
which provide a one-to-one correspondence between the
ground-state electronic density n0(r) and the external potential
generated by the ions Vei(r). Therefore all properties of the
system defined by the Born-Oppenheimer Hamiltonian can be
determined by knowledge of the ground-state density.

The total energy functional in both OF-DFT and KS-DFT
is expressed as

Etot[n] = TS[n] + U [n] + EXC[n] + Vei[n] + Eii, (4)

where TS denotes the single-particle kinetic energy, U denotes
the Hartree energy, i.e., the electrostatic interaction of the den-
sity with itself, EXC denotes the exchange-correlation energy
that captures energetic contributions of the electron-electron
interaction not included in U , Vei[n] denotes the electron-ion
interaction energy, and Eii denotes the ion-ion interaction en-
ergy, which amounts to a constant shift in energy.
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In practice, EXC[n] has to be approximated, and the ac-
curacy of DFT calculations depends primarily on the choice
of approximation. A plethora of suitable functionals exists.
They either depend solely on the electronic density such as
the local density approximation (LDA) [6,26]), incorporate
further quantities such as the density gradient in the gener-
alized gradient approximation (GGA) functionals [27–29], or
also depend on the kinetic energy density in meta-GGAs such
as the strongly constrained and appropriately normed (SCAN)
functional [30].

The challenge in DFT is to identify n0. This is achieved
by minimizing the total energy functional with respect to
variations in the density n. However, a central problem is the
lack of an exact expression for TS[n] as an explicit density
functional, although such an expression does exist in terms
of a potential functional for the density [31]. The manner
in which TS[n] is expressed is the key difference between
OF-DFT and KS-DFT. In KS-DFT, TS[n] is not approximated.
Instead, the minimization of the total energy functional is per-
formed with respect to single-particle orbitals φ j (r) yielding
the KS equations [6][− 1

2∇2 + vS(r)
]
φ j (r) = ε jφ j (r), (5)

where ε j denote the single-particle eigenvalues and vS denotes
the Kohn-Sham potential. This auxiliary system is restricted to
reproduce the density of the interacting system via

n(r) =
Ne∑
j=0

f j |φ j (r)|2, (6)

with the occupation numbers f j . By determining the KS po-
tential vS self-consistently, it is ensured that Eq. (6) recovers
the density of the interacting system. The KS kinetic energy
is determined exactly in terms of the KS orbitals φ j (r) as

TS =
Ne∑
j=0

∫
dr φ∗

j (r)

(
−1

2
∇2

)
φ j (r). (7)

OF-DFT [16,32,33] follows a different route by approxi-
mating the kinetic energy functional directly as a functional of
the density. Similar to EXC[n], various approximations do exist
and are being developed. Commonly used kinetic energy func-
tionals are built using a combination of the Thomas-Fermi
functional T TF [34,35], the von Weizsäcker functional T vW

[36], and a nonlocal term T NL, i.e.,

TS[n] ≈ TTF[n] + TvW[n] + TNL[n], (8)

with

TTF[n] = 3

10
(3π2)

2/3
∫

dr n5/3(r), (9)

TvW[n] = 1

2

∫
dr ∇n1/2(r) · ∇n1/2(r). (10)

A number of approximations exist for T NL, e.g.,
the Wang-Teter [37], Mi-Genova-Pavanello [38], and
Wang-Govind-Carter [39] functionals.

The difference in how the kinetic energy is treated results
in contrasting differences for KS-DFT and OF-DFT in terms
of accuracy and computational cost. KS-DFT scales formally

as ∼Ne
3, although in practice efficient codes scale with ∼Ne

2,
due to the need to solve the KS equations self-consistently.
On the other hand, OF-DFT scales linearly with Ne. Generally,
KS-DFT outperforms OF-DFT in terms of accuracy.

Finally, often temperature has to be taken into account
in DFT calculations. Finite-temperature DFT for τ > 0 K
[22,40–42] follows the equations outlined above. One signif-
icant change is that the role of the total energy in Eq. (4) is
replaced by the total free energy

Atot[n] = TS[n] − kBτSS[n] + U [n]

+ E τ
XC[n] + Vei[n] + Eii, (11)

which includes the single-particle entropy SS[n]. In finite-
temperature DFT calculations, one seeks to find n such that
Atot is minimal. OF-DFT and KS-DFT vary in their evaluation
of SS. In OF-DFT, an explicit density functional is employed
to evaluate this term. It is constructed following the same
principles as for TS[n] [43,44], while in KS-DFT this term is
evaluated exactly as

SS = −
Ne∑
j=0

[
f τ

(
ετ

j

)
ln

(
f τ

(
ετ

j

))

+ (
1 − f τ

(
ετ

j

))
ln

(
1 − f τ

(
ετ

j

))]
(12)

with the now temperature-dependent occupation number
f τ (ε) and the KS energy eigenvalues ετ

j . Also the exchange-
correlation (XC) energy becomes explicitly temperature
dependent. That dependence is, however, often neglected.

The computational cost of KS-DFT increases significantly
with increasing temperature, because a larger number of KS
orbitals need to be included in the evaluation of the density,
which is done via Eq. (6), with the occupation numbers given
by the Fermi-Dirac distribution f τ (ετ

j ). Temperature enters
this evaluation both through the temperature dependence of
f τ as and through the Kohn-Sham eigenvalues ετ

j . Contrarily,
in OF-DFT the temperature has virtually no effect on the
computational cost.

B. Molecular dynamics

In most MD simulations, the ions are considered as
classical point particles. In first-principles MD simulations,
the electrons are treated on the quantum level using DFT.
ML-trained interatomic potentials [45–47] are also gaining
traction. They encode the potential energy surface obtained
from DFT in an efficient manner and thus enable accurate
MD simulations at DFT accuracy at large scales. In each time
step t , each ion α = 1 · · · Ni with mass mα is time evolved on
the potential energy surface Atot in terms of the Newtonian
equations of motion

mα

d2Rα

dt2
= −∂Atot

∂Rα

. (13)

The right-hand side of Eq. (13) represents the atomic forces
that are determined from either OF-DFT or KS-DFT. After
the ionic positions have been updated, a subsequent DFT
calculation determines new atomic forces and uses these to
update the ionic positions; such a loop is continued until the
desired number of time steps has been performed.
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In practice, such MD simulations are realized via ther-
mostats, which ensure sampling according to a proper
thermodynamic ensemble, by conserving certain physical
quantities. In this paper, we perform DFT-MD simulations in
the canonical (NV T ) ensemble, i.e., the number of particles,
volume of the simulation cell, and temperature are fixed.
In practice, this is realized via the Nosé-Hoover algorithm
[48,49]. Here, one utilizes a heat bath coupled to the system
to ensure constant particle number, volume, and temperature.
The coupling is realized in terms of additional terms that are
added to the (classical) Hamiltonian of the system, i.e.,

HNH = H0(R, p/s) + Ndf kBτ ln s + ps
2

2Q
, (14)

where H0 is the Hamiltonian of the classical system of ions
with collective momenta p, Ndf is the number of degrees
of freedom coupled to the thermostat, and s is an artificial
variable that represents the heat bath with momentum ps.
Introducing s in Eq. (14) implies a coordinate transformation,
i.e., a scaling of the momenta in the system. This frame-
work gives rise to updated equations of motions [50,51] for
the αth ion

Ṙ = pα

mαs2
, (15)

ṗα = −∂Atot

∂Rα

, (16)

ṡ = ps

Q
, (17)

ṗs =
Ni∑

α=1

(
pα

2

mαs3

)
− Ndf kBτ

s
, (18)

where the generalized coordinates q are set to R for the sake of
simplicity. This system of equations shows that the strength of
the coupling of the heat bath to the system is governed by Q,
which represents an imaginary mass. Q is the principal tuning
parameter of the thermostat and has to be carefully chosen
to ensure proper sampling. The larger Q is, the less strongly
coupled the heat bath and simulated system become, and the
DFT-MD simulation eventually generates a microcanonical
ensemble. Conversely, too small values of Q introduce un-
physical, periodical temperature oscillations [52].

C. Equilibration analysis

We now explain how OF-DFT can be used to reduce the
computational cost of KS-DFT-MD simulations. At the center
of attention is the process of equilibration, i.e., the period of
a KS-DFT-MD trajectory during which a system is brought
to the desired temperature. As we aim to specifically shorten
this period of the simulation, we need a systematic approach to
determine its length. Equilibration is often done heuristically,
i.e., if a trajectory has been propagated for a sufficient time,
or if configurations appear reasonably equilibrated, one can
start sampling thermodynamic observables. Here, we need to
make sure that we systematically capture the first time step
that can be considered equilibrated. We do so in a transfer-
able fashion, so as to make assertions on the usefulness of
OF-DFT-MD trajectories for KS-DFT-MD simulations. We
thus introduce an analysis based on the ionic radial distribu-

tion function (RDF), which is defined as the average number
of ions 
(r) contained in a hollow shell of radius r + dr and
volume Vshell, for a cell with Ni ions, normalized by the ionic
density ρ = Ni/Vcell [53–55], i.e.,

g(r) = 
(r)

ρNiVshell
, (19)

which can be shown to be equivalent to

g(r) = 
(r)

4ρπdr
(
r2 + dr2

12

) . (20)

Generally, the RDF is useful to distinguish between different
phases or structures. Here, we follow the assumption that if
two structures have reasonably close RDFs, they belong to a
similar phase of a material, i.e., if one of them can be consid-
ered equilibrated, so can the other. Our analysis thus centers
on calculating and comparing RDFs across the trajectory. This
poses the problem of choosing an appropriate reference point.
One possible approach is averaging the RDF over the end of
the trajectory. However, this would necessitate the comparison
of such an averaged RDF with noisier RDFs at the beginning
of the trajectory, requiring additional averaging.

We therefore follow a slightly different approach and as-
sign the very last ionic configuration of the trajectory as the
reference point. Thereafter, the cosine distance between the
RDFs of all ionic configurations ga = g(r)[Ra] (where a de-
notes the number of the time step) within this trajectory and
the reference RDF gref = g(r)[Rref ] is calculated in terms of

d̃a
C (gref , ga) = 1 − gref · ga

‖gref‖‖ga‖ . (21)

Here, gref · ga is the dot product of two RDFs expressed as
vectors with dimensionality rmax, where r is discretized as r =
0, dr, 2dr, . . . , rmax. Cosine distances (or conversely, cosine
similarities) of data points are a standard analysis technique
in data science [56]. The cosine distance is a measure of how
different two vectors are. It becomes 0 for identical vectors
and 1 for entirely dissimilar vectors.

The resulting signal da
C is noisy, as raw RDFs are compared

with one another. We thus smoothen da
C using a running aver-

age of width σ . Each data point is reassigned as an arithmetic
average of the σ − 1 preceding data points and itself, i.e.,

da
C =

∑σ−1
i=0 d̃a−i

C

σ
(22)

for each time step a of the trajectory. This necessitates pruning
the trajectory. The first σ and last σ time steps have to be
included in the average but cannot be included in the analysis
itself, since they cannot be properly averaged. As such, larger
σ lead to slightly smaller trajectories being analyzed.

This smooth signal now allows for analyzing the equili-
bration behavior using these distances, with da

C decreasing
as more and more time steps are performed. Naturally, this
analysis is built on the assumption that Rref can be considered
equilibrated, but this can easily be confirmed by inspect-
ing gref . Furthermore, clear equilibration patterns become
apparent when visualizing da

C , which helps in identifying un-
equilibrated trajectories.

The next step in determining the first equilibrated configu-
ration is to calculate a threshold for da

C . To do so, we assume
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FIG. 2. Convergence analysis employed throughout this paper,
shown for a trajectory of 512 beryllium atoms at room temperature.

a certain portion toward the end of the (pruned) trajectory
to be equilibrated, as a fraction of the entire trajectory. Av-
eraging da

C across this portion pequi = 0 · · · 1 of the distance
metric, with usually pequi around 0.1–0.2, yields an equilibra-
tion threshold dT. Once the distance metric falls below this
threshold after NT time steps, we assume the trajectory to be
equilibrated henceforth.

Calculating dT from an averaged distance metric implies
that a trajectory may be equilibrated slightly earlier than the
algorithm will detect, since da

C regularly exceeds dT when
fluctuating around the equilibrated average. Alternatively, one
may set dT according to the upper limit of such fluctuations
(i.e., via the standard deviation), but this is problematic, as
not fully equilibrated systems could be interpreted as such. We
thus employ the average across the equilibrated configurations
rather than the upper limit, to ensure that no unequilibrated
system is misidentified. The first equilibrated configuration
determined can therefore be interpreted as the point where
a trajectory is equilibrated beyond doubt. The algorithm dis-
cussed here is further visualized in Fig. 2.

Please note that in its current form this technique is limited
to analyzing fully equilibration patterns for trajectories which
are fully equilibrated. Dynamical application of this method,
i.e., determining whether a trajectory is equilibrated during the
runtime, should be possible in principle but requires further
development, exceeding the scope of this work.

D. DFT surrogate models

ML and data-driven methodologies are becoming increas-
ingly important for DFT applications [23]. Such approaches
encompass interatomic potentials, which replace DFT as a
means to evaluate the potential energy surface Atot and force
−∂Atot/∂Rα in MD simulations, as well as property map-
pings, which learn specific physical and chemical properties
from large DFT databases. We have recently [24] introduced
an ML-based workflow to reproduce DFT calculations in
terms of both energy and electronic structure predictions, the

FIG. 3. Ideal crystal structure (a) and equilibrated ionic config-
uration (b) of hydrogen at τ = 6.26 eV, including an isosurface of
the electronic density, created using Visual Molecular Dynamics
(VMD) [60,61].

Materials Learning Algorithms package (MALA) [57]. MALA

predicts the electronic structure of an ionic configuration via a
local mapping that predicts the local density of states (LDOS)
d based on descriptors encoding the local ionic configura-
tion around points in real space. As such it is in principle
capable of predicting the electronic structure of extended sys-
tems [58]. This prediction is realized by feed-forward neural
networks (NNs).

Our current research is focused on applying such surrogate
models to dynamical simulations or using them to perform
thermodynamic sampling via Monte Carlo methods. However,
it is well known that NNs perform poorly in extrapolation [59]
and should mostly be used for interpolation tasks. Therefore
optimal results require initialization of such calculations with
configurations for which the model predictions will constitute
an interpolation. This can be challenging when predicting the
electronic structure of systems of extended size, for which no
KS-DFT-MD data can be acquired, yet model predictions may
be interpolatory, given that physically sound ionic configura-
tions are used.

E. Hybrid MD workflow

As the central methodological development, we present
a hybrid OF-DFT-MD and KS-DFT-MD workflow for dy-
namical materials modeling. Usually, one has to rely on
ideal crystal structures to initialize KS-DFT-MD trajectories
or DFT surrogate model sampling routines. As we show in
Sec. III, OF-DFT-MD trajectories, which can be calculated
at almost negligible computational cost and with favorable
scaling behavior, serve as an alternative that improves per-
formance in either case. Especially at larger temperatures,
the actual ionic configurations and electronic densities differ
greatly from ideal crystal structures, as shown in Fig. 3.

The task of OF-DFT-MD in our hybrid workflow is thus not
to replace KS-DFT-MD fully, as KS-DFT-MD trajectories are
always built on top of the OF-DFT-MD-generated structures.
Rather, by providing reliable approximations of the actual
ionic configurations, OF-DFT-MD (1) reduces the equilibra-
tion period for KS-DFT-MD trajectories and (2) improves
surrogate model prediction accuracy. There is still some
“equilibration” required to transition from slightly differing
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FIG. 4. Sketch of hybrid workflow based on the data for 128 beryllium atoms. The data depicted here are the same as analyzed in
Sec. III B. (a) Distance metrics for KS-DFT-MD and OF-DFT-MD, both starting from an ideal crystal structure. In either case, distance metrics
are given relative to the equilibrated KS-DFT-MD configuration. (b) Full visualization of the hybrid workflow approach. Blue background,
equilibration from the ideal crystal structure using OF-DFT-MD; green background, OF-DFT-MD propagation of equilibrated configuration;
red background, short “equilibration” phase in going from OF-DFT-MD to KS-DFT-MD; orange background, KS-DFT-MD sampling of
configurations or thermodynamic observables.

equilibrated configurations, but the associated number of time
steps and computational cost are vastly reduced. In practice,
we simply choose the last configuration of the OF-DFT-MD
trajectory as the initial configuration for KS-DFT-MD or DFT
surrogate model evaluation.

This workflow is further illustrated in Fig. 4. There,
Fig. 4(a) details the equilibration process in both
KS-DFT-MD and OF-DFT-MD starting from the ideal
crystal structure; both methods equilibrate to slightly
different averages. However, the difference between the
equilibrated ionic configurations is drastically smaller than
the difference between equilibrated configuration and ideal
crystal structure in either case, leading to the aforementioned
speedup. In Fig. 4(b), which visualizes the entirety of the
hybrid workflow, this short “equilibration” phase in going
from OF-DFT-MD to KS-DFT-MD is shown with a red
background color. In our calculations, we have kept the
number of OF-DFT-MD time steps purposefully high to
ensure that no unequilibrated structure enters the analysis.
As a result, the OF-DFT-MD propagation of the equilibrated
configurations shown with a green background is longer
than necessary. In practice, it can be shortened significantly,
because only the initial equilibration of the system (shown
with a blue background) is relevant for the hybrid workflow.

F. Computational details

All KS-DFT-MD simulations were performed using
the highly efficient GPU implementation of the Vienna
ab initio simulation package (VASP) [62–66] at the 
 point.
In all cases, a plane-wave basis set with a projector aug-
mented wave (PAW) pseudopotential [67,68] and the PBE
exchange-correlation functional [27–29] were employed. As
cutoff energies for the plane-wave basis set, values of 440,
248, and 350 eV were used for aluminum, beryllium, and
hydrogen, respectively. For the single-point KS-DFT calcula-

tions in Sec. III A, we employ QUANTUM ESPRESSO [69–71]
with parameters that are consistent with those described in
Ref. [24]. Likewise, the same ML model is used. All beryllium
and aluminum calculations have been carried out at room tem-
perature and ambient mass density, 1.896 and 2.699 g/cm3,
respectively, while the hydrogen simulations have been per-
formed at θ = [0.007, 0.25, 0.5, 0.75], which equals τ =
[0.977, 3.132, 6.264, 9.390] eV, and a mass density corre-
sponding to rs = 2. In the initialization of these calculations
for aluminum, beryllium, and hydrogen, an fcc, hcp, and fcc
structure has been used, respectively. The number of orbitals
in KS-DFT simulations are adjusted with the change in tem-
perature to ensure that the smallest occupation number is not
higher than 10−6.

If not otherwise noted, KS-DFT-MD simulations have been
performed for 10 000 time steps with either a time step of
1 fs (aluminum and beryllium) or a time step of 0.01 fs
(hydrogen). For beryllium, different values of Q have been
tested to confirm our findings across different thermostat set-
tings, while for hydrogen, Q has been kept fixed at 0.5. For
aluminum, Q = 0.001 has been used. Beryllium trajectories
have been analyzed with the aforementioned method and an
assumed equilibrated portion of the trajectory pequi = 0.2, a
running average width σ = 100, and required number of time
steps below the distance threshold for equilibration NT = 50.
As the higher temperature in the hydrogen simulations leads
to noisier signals, NT and σ were both increased to 200. We
provide full equilibration graphs in Appendixes B and C to
further verify the choice of these parameters.

For aluminum and beryllium, the Wang-Teter kinetic
energy functional [37] with PBE as exchange-correlation
functional was used. Optimized effective potentials [72]
were used as local pseudopotentials. Given the emphasis
on higher temperatures, for hydrogen we used the finite-
temperature Thomas-Fermi (TF) free-energy functional with
the von Weizsäcker gradient correction in combination with
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FIG. 5. (a) Accuracy of ML surrogate model predictions on KS-DFT-MD trajectories that are initialized with the ideal crystal geometry
and OF-DFT-MD. (b) Comparison of the RDF of equilibrated ionic configurations for 256 aluminum atoms obtained from OF-DFT-MD and
from KS-DFT-MD starting from the ideal crystal structure (RDF calculated for one configuration per method).

the LDA XC functional. In order to perform finite-temperature
OF-DFT-MD simulations, we implemented the finite-
temperature TF functional in the OF-DFT code DFTPY, which
was previously introduced for the ground-state calculations
[17]. The version of DFTPY with the newly added option
for the finite-temperature TF free-energy functional is now
available with the most recent open-source version of DFTPY.
The underlying theoretical details of our implementation
are outlined in Appendix A. In all OF-DFT-MD runs, the
MD time step was 2 fs, and all other simulation parameters
were kept consistent with those used for the KS-DFT-MD
calculations.

All ML experiments and equilibration analysis have been
carried out with the MALA code, version 1.1.0 [57].

III. RESULTS

The results are divided into three parts, reflecting three
areas of materials modeling for which our workflow is highly
useful: (1) the application of ML methods trained on DFT
data, (2) simulations with large numbers of atoms with
KS-DFT-MD, and (3) simulations of systems at high tem-
peratures using KS-DFT-MD. The utility of the latter two
applications is twofold, as improved KS-DFT-MD perfor-
mance not only alleviates the cost of direct sampling of
thermodynamic observables, but also further helps with data
generation for future ML applications.

A. ML-DFT trajectory initialization

As mentioned above, one potential pitfall of transferable
ML surrogate models for DFT calculations is their application
to ionic configurations that are too dissimilar from observed
training data for the model to perform well. Quantifying un-
certainties in model predictions is naturally a crucial tool for
detecting such behavior, but it does not solve the problem of
providing initial configurations on which the model can be
expected to perform reasonably well. One may incorporate
ideal crystal structure data as well as data from equilibra-
tion phases into the training set to alleviate this problem;
however, ultimately the interest lies with equilibrated con-
figurations, and as such, one would unnecessarily complicate
model training. Any such model would have to perform well

on ideal crystals, slowly equilibrating systems as well as the
actually equilibrated system. While such models are by no
means unachievable (in fact, interatomic potentials often fol-
low this approach), the amount of additional training data can
become challenging if the actual electronic structure has to
be learned rather than the potential energy surface. We thus
propose to circumvent the need to do so by employing ionic
configurations from OF-DFT-MD as initial configurations
for extended DFT-surrogate-model-driven simulations. Given
that OF-DFT-MD captures the KS-DFT geometries on which
the ML model has been trained, one can rely on ML predic-
tions to equilibrate the system fully. We have investigated this
behavior for aluminum at room temperature. The results are
shown in Fig. 5, where we have used our MALA framework
introduced above as a representative ML surrogate model.
Two different KS-DFT-MD trajectories, each for ten time
steps, are investigated. One is initialized by OF-DFT-MD, and
the other is initialized by the ideal crystal structure. For each
configuration in these trajectories, a full KS-DFT calculation
is performed alongside a MALA inference (using the 298-K
model from Ref. [24]) to determine the total free energies. Ad-
ditional KS-DFT calculations are necessary, since the model
was trained on data generated with QUANTUM ESPRESSO, while
we perform the MD simulation with VASP to be consistent with
the other results throughout this investigation.

As shown in Fig. 5, within the first ten time steps, the
configurations (and therefore prediction accuracies) per tra-
jectory change only slightly. This means that for the ideal
crystal, we have configurations consistent with 0 K, while for
the OF-DFT-MD trajectory, we have configurations consistent
with 298 K, with the model having only been trained on 298-K
data. It can be seen that this temperature difference amounts
to an error of around 35 meV/atom in the total free energy for
the ideal crystal trajectory, as the configurations at 0 K repre-
sent an out-of-distribution sampling for the ML model, while
the OF-DFT-MD-initialized trajectory leads to in-distribution
sampling. It is well known that NN-based approaches excel
at the latter task, while performing poorly at the former. In
either case, the error reduces as the KS-DFT-MD trajectory
equilibrates. When OF-DFT-MD is used to initialize the ionic
configuration, the error is below 5 meV/atom from the begin-
ning, which is consistent with the errors reported in Ref. [24]
for a full KS-DFT-MD trajectory.
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FIG. 6. (a) and (b) Equilibration of beryllium simulation cells of increasing size according to our distance metric analysis.

Naturally, the merit of this workflow mainly depends on
the ability of OF-DFT-MD to converge to useful and com-
parable geometries. One way to visually confirm this is in
terms of the RDF. As shown in Fig. 5, both KS-DFT-MD and
OF-DFT-MD generally agree quite well. While the amplitude
of certain peaks is under- or overestimated by the latter, the
overall positions match, which is the basis for the performance
observed in Fig. 5. As shown in the following sections, this
behavior can be supported for increasingly larger systems and
temperatures, two important dimensions in which one seeks
to build transferable ML models.

Overall, using OF-DFT-MD allows us to create models
based solely on equilibrated data and apply them on extended
scales using approximately correct initial configurations, thus
saving model-training time while maintaining high prediction
accuracy.

B. Large length scales

Numerical calculations with KS-DFT-MD are prone to
finite-size errors [73], if small simulation cells are used. Due
to the aforementioned scaling behavior of DFT, increasingly
larger simulations are computationally challenging. This is
especially problematic given the fact that for large simulation
cells a larger number of time steps is usually required to
properly equilibrate the system, yet each time step is more
costly by itself. Decreasing the time to equilibration would
therefore drastically improve the performance of such simu-
lations, and can be achieved with OF-DFT-MD. To test our
workflow in this setting, we equilibrate beryllium simulation
cells of increasing size at room temperature and ambient
mass density starting from the ideal crystal structure and
OF-DFT-MD trajectories. For each trajectory we deter-
mine the time required to equilibration using the algo-
rithm outlined in Sec. II C. The results of this analy-
sis are given in Fig. 6. Generally, OF-DFT-MD yields
an almost perfectly equilibrated geometry. Equilibration
is detected after a number of time steps almost of the
same magnitude as NT, i.e., the minimum resolution
our analysis can provide. Our analysis thus unveils no
significant overall equilibration to be necessary for the
OF-DFT-MD-initialized trajectories, as is exemplified by the

full equilibration curves provided in Appendix B. Further-
more, while a clear increase in initialization time can be
seen for trajectories initialized with ideal crystal structure, no
such trend is observed for those initialized with OF-DFT-MD.
As DFT calculations become increasingly costly with system
size, this grows to large amounts of computational time being
saved. In the case of 1024 beryllium atoms, we are able to
save more than 100 GPU hours, which corresponds to approx-
imately 20% of the entire simulation time. The increase in
time steps required for equilibration is linear with the number
of particles in the case of ideal crystal initialization.

Equilibration depends on the thermostat used during the
DFT-MD run. As we use the Nosé-Hoover thermostat, the
equilibration time is chiefly influenced by the choice of
the Nosé mass Q. We have verified that our findings are
not impacted by the choice of this technical parameter; see
Appendix D.

These speedups are offset by the time needed to perform
OF-DFT-MD simulations. These simulations, however, ac-
crue to only a small computational overhead compared with
KS-DFT-MD simulations. For example, a single time step
costs t � 3.8 s (t � 13 s) for 128 (1024) beryllium atoms
using a single CPU, or about 11 (36) h using one CPU without
parallelization for the entire trajectory of 10 000 time steps.
While these times may seem excessive by themselves, they
are easily explained by two important considerations. Firstly,
as can be seen above for the case of KS-DFT-MD, 10 000 time
steps are not required for equilibrated configurations under
these conditions; we have chosen such a number to ensure
that our investigations are not distorted by unequilibrated
trajectories. Furthermore, we have obtained all OF-DFT-MD
results using a single CPU; such timings do not compare with
GPU hours reported for KS-DFT-MD trajectories, even when
reporting core hours rather than wall-time hours. We thus omit
OF-DFT-MD timings from Fig. 6.

C. High temperatures

As discussed above, KS-DFT is known to scale unfavor-
ably with temperature. To investigate our hybrid workflow for
increasingly larger temperatures, we thus choose a computa-
tionally more tractable system than beryllium, namely, 108
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FIG. 7. (a) and (b) Equilibration of hydrogen simulations for increasing temperature according to our distance metric analysis.

hydrogen atoms under a range of temperatures up to θ = 0.75,
i.e., τ = 9.39 eV. We then undertake a similar investigation
to that in the preceding section, by performing KS-DFT-MD
simulations at increasing temperatures, initialized either by
the ideal crystal structure or OF-DFT-MD ionic configura-
tions, and analyzing the equilibration patterns. The results are
illustrated in Fig. 7.

The temperature dependence of the increase in time steps
required to equilibrate a system is not as straightforward as
the dependence on the number of particles reported in Fig. 6.
Larger temperature fluctuations lead to noisier trajectories,
making equilibration, and the determination of achieving it,
more difficult. The necessity to use smaller simulation cells
at the large temperatures investigated further leads to ad-
ditional noise. This noise is witnessed in the equilibration
curves in Appendix C. Figure 7 shows a slight temperature
dependence of the number of time steps required to equi-
librate a trajectory from an ideal crystal structure. For the
OF-DFT-MD-initialized trajectory, such a dependence cannot
be clearly deduced. Rather, we observe that as temperature
increases, the number of time steps saved by utilizing an
OF-DFT-MD-initialized trajectory appears to be roughly con-
stant (with the exception of the result for τ = 6.264 eV, which
seems to be an outlier). As the computational cost per in-
dividual time step increases with temperature, OF-DFT-MD
initialization leads to sizable savings in computation time. As
the influence of different thermostat parameters has amply
been investigated in Appendix D, we restrict ourselves to only
one thermostat parameter here.

In the case of hydrogen, one OF-DFT-MD step for 108 par-
ticles requires about t � 2.5 s regardless of the temperature
value. This results in approximately 7 h on a single CPU for
10 000 time steps. Apart from this, the same considerations as
discussed in Sec. III B hold true, i.e., fewer time steps might
be necessary in actuality.

Since OF-DFT-MD calculation times do not increase with
temperature, while KS-DFT scales so unfavorably due to
the increase in the number of recurred bands (orbitals),
OF-DFT-MD initializations can be crucial when attempting
to investigate larger temperature ranges, i.e., in the WDM
regime. We see already from the results in Fig. 7 that the

saved computational time increases massively for moving to
τ = 9.39 eV, for which the main cause is the drastically in-
creased cost per time step as temperature increases.

IV. CONCLUSION AND OUTLOOK

We have shown that initializing ionic configurations based
on OF-DFT-MD greatly reduces the computational cost for
equilibrating KS-DFT-MD trajectories. Given that OF-DFT
is in principle able to capture the physics of the systems at
hand, KS-DFT-MD thereafter requires only very little compu-
tational overhead to reach equilibration. We have verified our
results on different systems and have shown that our findings
hold true as both the system size and temperature increase.
Our hybrid workflow is thus widely applicable to simulations
of matter under extreme conditions, especially given the fa-
vorable scaling properties of OF-DFT-MD with temperature
and system size.

OF-DFT-MD is an especially crucial addition to the toolkit
of first-principles simulations when it comes to ML-DFT
applications. Not only does it improve performance of data
acquisition, as outlined in Secs. III B and III C, but also it

FIG. 8. Chemical potential inversion according to the numerical
solution of the inverse problem in Eq. (A5) (red) and obtained from
the approximation in Eq. (A6) (green).

043033-9



LENZ FIEDLER et al. PHYSICAL REVIEW RESEARCH 4, 043033 (2022)

FIG. 9. (a)–(d) Equilibration curves for beryllium, starting from the ideal crystal structure.

directly helps with ensuring that models are used in an inter-
polative manner, by providing initial configurations on which
surrogate model inference yields accurate predictions.

Yet, there is some work to be done. OF-DFT-MD work-
flows have to be integrated into larger frameworks, such as
MALA. It is further well known that OF-DFT is not universal in
the types of systems that can be treated. While metals can gen-
erally be treated to high accuracy [17], other systems evade
accurate treatment. Theoretical development and the advent
of ML-based kinetic energy functionals may alleviate these
problems. Our presented hybrid approach, where accuracy
of the OF-DFT part is essential for the acceleration of the
simulations (but not for the accuracy of the final KS-DFT

results), represents another motivation for further developing
kinetic energy and entropy functionals for OF-DFT applicable
to various materials.

All DFT-MD data, example input scripts, and processing
scripts are available [74].
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FIG. 10. (a)–(d) Equilibration curves for beryllium, starting from the OF-DFT-MD structure.

APPENDIX A: FINITE-TEMPERATURE THOMAS-FERMI
FREE ENERGY

The TF approximation is particularly useful at high tem-
perature. We therefore provide the theoretical basis of the
finite-temperature TF free-energy functional, which we have
implemented in the OF-DFT code DFTPY [17].

In general, the noninteracting free energy and the free-
energy density are defined as

Fs[n] ≡ TS[n] − kBτSS[n] =
∫

dr fs[n; τ ](r). (A1)

In TF theory, we have fs ≡ fTF, where fTF is the
Thomas-Fermi free-energy density [75,76] defined as

fTF([n], θ ) =
√

2m3/2

h̄3π2β5/2

(
ηI1/2(η) − 2

3
I3/2(η)

)
, (A2)

where Iν is the Fermi integral of order ν and η = μβ is
a constant following from the normalization N = ∫

n(
r)d
r
and β = 1/(kBτ ). The Fermi-Dirac integral of order ν is
defined as

Iν =
∫ ∞

0
dx

xν

(1 + exp(x − η))
. (A3)
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FIG. 11. (a)–(d) Equilibration curves for beryllium, with the OF-DFT-MD-initialized trajectories superimposed over those starting from
the ideal crystal structure. Please note that to be consistent, both distance metrics were calculated with the reference configuration of the ideal
crystal structure trajectory, and thus the OF-DFT-MD initialized metrics differ slightly from those shown in Fig. 10.

The functional derivative of the free energy with respect to the
electron density yields [77]

vs[n(
r); τ ] = δFTF

δn
= μ[n(
r); τ ]. (A4)

In order to evaluate the effective potential in Eq. (A4), we
need to find the chemical potential of the free, noninteracting
electron gas at finite temperature which is formally given by

the inverse of [78]

2

3
(θ [n(
r)])−3/2 =

∫ ∞

0
dx

√
x

(1 + exp(x − η))
. (A5)

From Eq. (A5), we see that η[n] = βμ[n] is defined by the
degeneracy parameter given by θ [n] = kBτ/TTF[n]. To com-
pute μ[n(
r); τ ], one can use the following expression (in the
Hartree atomic units) as the solution of the inverse problem
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FIG. 12. (a)–(d) Equilibration curves for hydrogen, starting from the ideal crystal structure.

equation (A5) [79]:

μ[n(
r); τ ] =

⎧⎪⎪⎨
⎪⎪⎩

αn(
r)2/3

(
1 + ∑4

i ai × (
τ

αn(
r)2/3

)i
)

if θ = τ
αn(
r)2/3 < 1.36

τ ln
(

C
(

τ
αn(
r)2/3

)−3/2
)

+ τ ln
(

1 + C
(
2 τ

αn(
r)2/3

)−3/2
)

if θ = τ
αn(
r)2/3 � 1.36,

(A6)

where α = (3π2 )2/3

2 , a1 = 0.016, a2 = −0.957, a3 = −0.293,
a4 = 0.209, and C = 2

3
(3/2) = 0.752 252 778 063 675.

Note that the the dimensionless potential vs/(αn(
r)2/3) =
μ/(αn(
r)2/3) depends only on the parameter θ [n(
r); τ ] =

τ
αn(
r)2/3 , the local degeneracy parameter. This dependence is
shown in Fig. 8, where we compare the exact solution of the
inverse problem equation (A5) for μ with the approximation
in Eq. (A6). This comparison demonstrates the high accuracy
of the approximation in Eq. (A6).
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FIG. 13. (a)–(d) Equilibration curves for hydrogen, starting from the OF-DFT-MD structure.

We also observe in Fig. 8 that in the limit of low tempera-
tures θ = τ

αn(
r)2/3 � 1, Eq. (A6) follows the TF model

vs = μ[n(
r)] = TTF[n] = αn(
r)2/3. (A7)

At high temperatures, θ > 1, the TF potential yields nega-
tive values. This can lead to numerical instabilities in the
OF-DFT scheme, where the total free energy is minimized.
This problem is solved by introducing a gradient correction
which is strictly positive and blocks the emergence of large
density gradients.

For the simulation of hydrogen at high temperatures, we
used the von Weizsäcker functional defined in Eq. (10) as
a gradient correction. One can use different versions of a
functional representing first-order gradient correction to the
local density approximation (e.g., see Refs. [76,77,80–82]).
However, at the considered high temperatures, both the ion-
electron and ion-ion coupling are weak, and the ion-ion
interaction is not so sensitive to the corrections beyond the
LDA [83–86]. In this case, the role of a gradient correction
with OF-DFT merely amounts to a numerical trick for stabi-
lizing the numerics.
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FIG. 14. (a)–(d) Equilibration curves for hydrogen, with the OF-DFT-MD-initialized trajectories superimposed over those starting from
the ideal crystal structure. Please note that to be consistent, both distance metrics were calculated with the reference configuration of the ideal
crystal structure trajectory, and thus the OF-DFT-MD-initialized metrics differ slightly from those shown in Fig. 13.

In the simulations involving nonzero temperatures the von
Weizsäcker and nonlocal terms are borrowed from the corre-
sponding zero-temperature expressions.

APPENDIX B: EQUILIBRATION CURVES FOR
BERYLLIUM

In the following, we provide the full equilibration curves
for the beryllium-based experiments presented above, to con-
firm the correct application of the algorithm outlined in
Sec. II C and Fig. 2. These curves follow Fig. 2 in their
general outline, i.e., the smoothed cosine distance between
configurations and reference configurations is shown, along
with equilibration thresholds and first equilibrated configu-

ration. The equilibration behavior for beryllium is shown in
Fig. 9 for DFT-MD simulations starting from the ideal crystal
structure and in Fig. 10 for those started from OF-DFT-MD
configurations. In Fig. 9 the gradual equilibration process is
neatly pronounced; it can be seen how the system is slowly
thermalized and how thermalization requires more and more
time as one moves to larger temperatures. Please note that raw
numeric values of da

C should not be compared between indi-
vidual systems, as they are relative quantities. Absolute values
of these metrics differ across system sizes since the small
deviations in the RDFs become increasingly small relative
to the overall RDF. This, however, does not negatively affect
performance, as only relative values are compared. Equilibra-
tion trends are notably less pronounced in Fig. 9 as the initial
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FIG. 15. Comparison of MD runs with different Q. In contrast
to Fig. 6, all MD trajectories were run for 5000 time steps of
1 fs for computational feasibility. Please note that the less systematic
behavior of the Q = 0.1 and Q = 0.005 trajectories can be explained
by the trajectories not being fully converged after 5000 time steps,
and that the results for Q = 0.01 vary slightly compared with Fig. 6,
since in Fig. 6 all 10 000 time steps were analyzed. Here, only 5000
time steps are analyzed, in order to be consistent with the other
trajectories.

configurations are already very close to the equilibrated ones.
A slight equilibration can be seen for 1024 atoms, where the
first few hundred time steps are mostly above the equilibration
threshold. Generally, however, the OF-DFT-MD trajectories
are very close to equilibrium to begin with, which is reflected
in the similar (and rather small) number of time steps required
for equilibration throughout. The distance metrics essentially
fluctuate around the average almost from the beginning of
the simulation. Figure 11 corroborates that both methods of
initialization lead to equilibrated trajectories that fluctuate
around the same average.

APPENDIX C: EQUILIBRATION CURVES FOR
HYDROGEN

Similar to Appendix B, here we provide the full equili-
bration curves for the hydrogen-based experiments presented
in Sec. III C. The equilibration behavior for hydrogen is
shown in Fig. 12 for DFT-MD simulations starting from the
ideal crystal structure and in Fig. 13 for those starting from
OF-DFT-MD simulations. The overall equilibration behavior
is similar to that observed in the preceding section. In contrast
to the results for beryllium, it is noticeable that the trajec-
tories appear to be noisier, even with additional smoothing,
obfuscating the equilibration process to a degree, especially
visible in Fig. 13. While this in principle can lead to a
slight overestimation of the overall equilibration phase, it
does not infringe on our analysis, as the same parameters are
employed to analyze both the ideal crystal and the OF-DFT-
MD-initialized trajectories. Furthermore, we minimize such
effects by increasing NT and σ for larger τ . Generally, the
hydrogen trajectories equilibrate faster, which is mostly due
to the smaller number of atoms. Figure 14 shows that either
method of initialization converges to the same fluctuating
average.

APPENDIX D: INFLUENCE OF NOSÉ MASS

As the performance of DFT-MD simulations that employ
the Nosé-Hoover thermostat depends on Q, we have to ver-
ify the applicability of the results presented in Fig. 6 across
the range of applicable Q. More precisely, for beryllium, we
determine the outer boundaries of values for Q for which
the KS-DFT-MD trajectories do not diverge (i.e., do not find
equilibrium in the NV T ensemble or produce temperature os-
cillations) as Q = [0.1, 0.005]. Compared with the boundaries
of this interval, Q = 0.01, which has been used for the simu-
lations shown in Fig. 6, gives reasonably good performance
for the equilibration. This comparison is shown in Fig. 15
and illustrates that our choice of Q = 0.01 reflects standard
production quality. It further shows that OF-DFT-MD reduces
the computational time needed to equilibrate a system across
different values of Q. This trend can be expected to hold true
for other thermostats as well.
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