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Uncertainty-Aware Gaze Tracking for Assisted
Living Environments
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Abstract— Effective assisted living environments must be able
to infer how their occupants interact in a variety of scenarios.
Gaze direction provides strong indications of how a person
engages with the environment and its occupants. In this paper,
we investigate the problem of gaze tracking in multi-camera
assisted living environments. We propose a gaze tracking method
based on predictions generated by a neural network regressor
that relies only on the relative positions of facial keypoints
to estimate gaze. For each gaze prediction, our regressor also
provides an estimate of its own uncertainty, which is used to
weigh the contribution of previously estimated gazes within a
tracking framework based on an angular Kalman filter. Our gaze
estimation neural network uses confidence gated units to alleviate
keypoint prediction uncertainties in scenarios involving partial
occlusions or unfavorable views of the subjects. We evaluate
our method using videos from the MoDiPro dataset, which we
acquired in a real assisted living facility, and on the publicly
available MPIIFaceGaze, GazeFollow, and Gaze360 datasets.
Experimental results show that our gaze estimation network out-
performs sophisticated state-of-the-art methods, while addition-
ally providing uncertainty predictions that are highly correlated
with the actual angular error of the corresponding estimates.
Finally, an analysis of the temporal integration performance
of our method demonstrates that it generates accurate and
temporally stable gaze predictions.

Index Terms— Machine learning, gaze tracking, neural net-
work regressor, uncertainty, pose estimation, multi-camera
assisted living scenario.
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I. INTRODUCTION

SCIENTIFIC and technological advances have led to a con-
sistent increase in global life expectancy, which has now

surpassed 73 years [1]. As a consequence, the percentage of
the global population aged 65 or older will increase from 12%
to nearly 24% by 2050 [2]. As the global population ages, there
is an increasing demand for new and innovative healthcare
practices [3]. Such practices include advances in cost-efficient,
unobtrusive, and intelligent medical care systems. Current
methods for monitoring the health status of older individuals
include evaluation scales that assess mobility and Instrumented
Activities of Daily Living (IADL) performance (i.e., a person’s
ability to use common household tools such as a TV remote or
phone without assistance) [4]. These assessments are episodic
and subjective, generally taking place at a healthcare facility
and based on questionnaires or self-reported outcomes.

Existing technologies for automatically monitoring the
health status of older individuals consist of methods that are
obtrusive and require extensive expert supervision [5]. More-
over, these techniques provide limited information about the
patient status and can only be employed in controlled environ-
ments. Modern computer vision techniques have the potential
to play a significant role in the development of automated
health evaluation methods [6], [7]. However, the intrinsic
challenges of vision-based techniques, such as occluded views
or illumination variations, call for the development of more
sophisticated computer vision methods that can be reliably
employed in uncontrolled environments.

To address the ongoing challenge of unobtrusively moni-
toring the health status of elderly individuals over extended
periods of time, in a partnership with the Galliera Hospital
in Genoa, Italy, we have developed an instrumented patient
discharge facility for assisted living [8]. Fig. 1 shows the
layout and different views of the common areas of the facility,
which is designed to extract information on how subjects
interact with other people and their surroundings. The facility
provides a test-bed for the development of general multi-modal
assisted living technologies [9], [10]. It has been used to carry
out research on human mobility and frailty [11], multi-target
segmentation and tracking [12], and gaze estimation [13], [14].

This paper focuses specifically on the important problem of
human gaze estimation and tracking. Human gaze is directly
related to how a person interacts with their surroundings
and other people, which provides important information to
determine the well-being of that person. Human gaze predic-
tions have been applied to design human-computer interaction
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Fig. 1. Instrumented assisted living facility used for data collection. a) Apartment floorplan showing the placement of the two cameras and their fields of
view; CAM1 in red and CAM2 in blue, b) Cameras views, c) Common area of the apartment.

methods [15], to analyze social interactions among multiple
individuals [16], [17], and to estimate the cognitive load of
vehicle operators [18]. For our application, gaze direction in
conjunction with object detection [12] could define relation-
ships among objects and their users (e.g. a person is sitting
on a chair with a book on their lap vs. sitting on a chair
reading the book), and classify simple actions (e.g. mopping
the floor, getting dressed, cooking, eating/drinking, talking
with other individuals [19], [20], [21]). More generally, gaze
information can be used to determine changes in a person’s
social interactions or daily routine, preemptively detecting
anomalies in their behavior.

We have first introduced the concept of estimating gaze
direction and gaze prediction uncertainties based on facial key-
points using a regressor network in [13]. In [14], we extended
that work into the temporal domain by using simple moving
average techniques to integrate gaze predictions obtained in
sequential video frames. In this paper, we build upon those
findings to further improve the temporal consistency of the
estimated gazes. To that end, we employ an angular Kalman
filter to the gaze predictions to generate more accurate esti-
mates and track the gaze direction. We utilize the uncertainties
produced by the regressor network to adjust the predictions of
the Kalman filter and further improve the robustness of our
method. Thus, this work introduces five main contributions:

• We propose an approach that relies solely on the relative
positions of facial keypoints to estimate gaze direction.
As shown in Fig. 2, we extract these features using an
off-the-shelf human pose estimation model [22]. From the
coordinates and confidence levels of the detected facial
keypoints, our regression network estimates the apparent
gaze of the corresponding individuals. From the perspec-
tive of a general framework for IADL analysis, leveraging
facial keypoints is beneficial because a single feature
extractor module can be used for two important tasks:
pose estimation and gaze tracking. Code is available at
https://www.coviss.org/codes/.

• The complexity of gaze estimation varies according to
the context, such that the quality of predictions provided
by a gaze regressor is expected to vary on a case-by-case
basis. For this reason, our model is designed to provide
an estimate of its uncertainty for each gaze prediction.

To that end, we leverage aleatoric uncertainty estimation
techniques used in Bayesian neural networks.

• In cases involving unfavorable views or self-occlusion,
one or more facial keypoints might not be detected
with high confidence. To handle low-confidence detec-
tions, we employ the concept of Confidence Gated Units
(CGUs) [13] to induce our model to reduce the impact of
detections for which a low confidence level is provided.
We further present an ablation study on the performance
impact of the CGUs.

• We employ a Kalman filter to track the angular trajectory
of the gaze predictions using predicted gaze uncertainties
to adjust the estimations. We compare the performance
of our method with different moving average schemes
that utilize past gaze estimations to adjust current gaze
predictions.

• We extend our assisted living activities dataset [13]
to include two independent annotation sets of
∼ 24, 000 observable individual gazes and provide an
analysis of the variability between the annotations. The
dataset is available for research purposes upon request.
Our extensive experimental evaluation demonstrates that
our method substantially improves gaze estimation and
tracking accuracy in assisted living scenarios and in
publicly available benchmark datasets [23], [24].

II. RELATED WORK

Due to the rapid advance of robust computer vision tech-
niques, practical unobtrusive systems for well-being assess-
ment and human-machine interaction that can operate under
realistic conditions are now becoming a reality [25], [26].
Previous works present various methods for human behav-
ior assessment using smart environments [22], [27], [28].
However, although recent developments in computer vision
have the potential to automatically and unobtrusively quantify
human mobility parameters [5], [29], patient activity analysis
to date has been limited to simplistic scenarios. Our work in
this paper utilizes data collected from an assisted living facility
to precisely capture real-world living scenarios.

Fine-grained behavior analysis must take into considera-
tion a person’s focus of attention. Gaze direction provides
important information regarding a person’s intentions as they
interact with their surroundings [30], [31], [32]. Most works
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Fig. 2. Proposed gaze tracking approach. The facial keypoints of each person in the scene are collected using a pose estimation model [22] and provided to
a neural network regressor that estimates their apparent gazes and corresponding confidence levels σ̃ j . An uncertainty-weighed Kalman filter combines the
estimates collected in the current and previous frames, generating temporally consistent gaze estimations at each time instant.

on gaze estimation focus on monitoring eye movement [33],
[34], [35], [36], [37] or perform head pose regression using
facial appearance models [38], [39], [40], [41], [42]. These
methods use close-up head features, generally acquired from
a single static snapshot of the subject’s face in scenarios
with limited complexity that do not reflect real-world appli-
cations. Although head pose and gaze estimation are closely
related, head pose estimation only provides a coarse esti-
mate of a subject’s visual attention [43], [44], [45], [46].
In a sense, gaze estimation is a more refined version of the
head pose estimation problem. Whereas our method relies on
head pose, more specifically relative facial keypoint locations,
to determine gaze direction, the ground truth gaze directions
are not determined solely based on the head position. That
is, annotating and learning gaze direction encompasses the
subject’s apparent head position as well as contextual cues
in the image. Therefore, head pose and gaze direction may
not always align. For our method, we avoid employing esti-
mation techniques using contextual cues altogether and shift
the problem to estimating gaze based on facial keypoints,
but we inherently utilize contextual information in the gaze
direction annotation process instead of relying only on head
pose.

Most popular gaze estimation datasets are collected in lab-
oratory settings that do not contain real-world interactions and
may comprise only eye patches or cropped facial images [47].
The dataset introduced in [20] includes gaze tracking data
corresponding to multiple individuals performing common
daily activities, but it is limited to first person views. The Gaze-
Follow [23] and Gaze360 [24] datasets attempt to encourage
the development of more robust gaze estimation methods by
providing rigorously annotated gazes in a third-person view of
natural scenes in images and videos. Together with the dataset,
the authors of [23] introduce a two-pathway CNN architecture
that combines saliency maps with the position of the subjects’
head direction to generate gaze predictions. Gaze360 is a
recent 3D gaze tracking dataset that contains a variety of
indoor and outdoor activities performed by various individuals.
For temporal gaze prediction, the authors introduce a model
based on bidirectional LSTM modules that incorporate future
and past gazes to determine a single central gaze. Both of
these datasets allow the evaluation of gaze estimation in

natural settings, and the Gaze360 dataset specifically provides
gazes that are collected sequentially to be used in temporal
methods.

Gaze estimation techniques are broadly divided into two
domains: 3D and 2D approaches. Methods in the 3D domain
require complex and expensive data acquisition systems to
capture ground truth annotations [24], [48], whereas in the
2D domain annotators are able to simply use videos obtained
from off-the-shelf cameras and annotate them utilizing readily
available annotation tools. To address a specific gaze estima-
tion problem in real-world conditions, such as gaze estima-
tion for assisted living environments, it is not practical nor
efficient to obtain deployment-specific 3D gaze annotations.
Furthermore, although 3D projected gaze directions provide
more information than 2D gazes, this additional information
is not necessarily useful for the overarching task of inferring
subject-environment interactions in 2D images and videos.
When using gaze estimation to establish relationships between
subjects and their environment, a 2D line of sight should be
sufficient to establish connections between the subject and
nearby objects.

Thus, in this work we focus on developing a 2D approach
for gaze estimation, which is already a challenging task,
especially when only a static snapshot of a person is taken into
consideration. However, with the inclusion of previous frames
that show the movement of a subject’s head, we can better
estimate and track their gaze. Methods that leverage sequential
information have shown promising results, especially in low
resolution images obtained using off-the-shelf cameras [49].
The impressive gaze estimation performance shown in [24]
highlights the importance of utilizing temporal information
to estimate gazes. In addition, gaze prediction is intrinsically
more difficult for certain points of views. For instance, when
subjects are facing vertically (i.e., frontward/backward) rela-
tive to the camera, this uncertainty creates large discrepancies
in accuracy. In Bayesian neural networks [50], this corresponds
to heteroscedastic uncertainty, i.e., uncertainty that depends on
the model inputs, such that each input is associated with a
different level of noise.

As explained in [50], conventional deep learning mod-
els are unable to estimate the uncertainty of their outputs.
Classification models typically employ a softmax function in
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their last layer, such that prediction scores are normalized
but do not necessarily represent uncertainty. For regression
problems, usually no information on prediction confidence is
provided by the model. Bayesian deep learning approaches
are becoming an increasingly popular strategy to understand
and estimate uncertainty in deep learning models [51], [52],
[53]. Under this paradigm, uncertainties are formalized as
probability distributions over model parameters and/or outputs.
For the estimation of heteroscedastic uncertainty in regression
models, the outputs can be modeled as corrupted by random
noise. Then, as we discuss in Section III-B, a customized
loss function is sufficient for training a regression model that
also predicts the variance of the noise as a function of the
input [50], without the need for uncertainty labels.

III. PROPOSED APPROACH

Human gazes are highly correlated with their body poses,
particularly their facial orientation. This paper builds upon
our previous work described in [14], where a human pose
estimation algorithm [22] is used to obtain the facial keypoints
of interest shown in Fig. 2. The information extracted from the
pose estimation model includes the coordinates as well as the
confidence scores of the eyes, ears, and nose.

Let p j
k,s = [x j

k,s, y j
k,s, c j

k,s] represent the horizontal and
vertical coordinates of a keypoint and its corresponding
detection confidence value, respectively. The subscript k ∈

{n, e, a} represents the nose, eyes, and ears features, while
the subscript s ∈ {l, r,∅} encodes the side of the feature
points. For each person j in the scene, we centralize the
detected keypoints with respect to that person’s head centroid
h j

= [x j
h , y j

h ], which is computed as the mean coordinates
of that person’s head keypoints detected in the scene. These
relative coordinates are then normalized based on the distance
m j

= [x j
m, y j

m] of the farthest keypoint from the centroid. For
each detected person, we form a feature vector f j

∈ R15

by concatenating the relative vectors p̂ j
k,s = [x̂ j

k,s, ŷ j
k,s, c j

k,s],
where x̂ j

k,s =
(x j

k,s−x j
h )/x j

m and ŷ j
k,s =

(y j
k,s−y j

h )/y j
m , to obtain

f j
=

[
p̂ j

n,∅
, p̂ j

e,r , p̂ j
e,l , p̂ j

a,r , p̂ j
a,l

]
. (1)

A. Network Architecture Using Confidence Gated Units

Gaze direction is approximated by the vector g̃ j
=

[
g̃ j

x , g̃ j
y

]
,

which consists of the projection onto the image plane of the
unit vector centered at the centroid h j . That is, let ρ̃ j be
the apparent gaze angle with respect to the horizontal image
axis. Then, g̃ j

x = sin(ρ̃ j ), g̃ j
y = cos(ρ̃ j ), and ∥g̃ j

∥ = 1. Our
model has an output layer with three units: two that regress
the

[
g̃ j

x , g̃ j
y

]
vector of gaze direction, and an additional unit

that outputs the regression uncertainty σ̃ j . For that purpose,
we train a fully-connected regression neural network that
learns the function

[
g̃ j , σ̃ j ]

= g( f j ).
Oftentimes, real world scenarios contain complex scenes

involving various subjects in different positions. These sce-
narios may include subjects in poses that have occluded or
missing keypoints, and keypoints that are estimated with low
confidence. For example when a person is facing away from

Fig. 3. The proposed Confidence Gated Unit (CGU) adjusts the contribution
to gaze estimation of the i-th keypoint qi according to its confidence level ci .

the camera, the detection of the eyes and nose are missing,
or when the illumination of the room is uneven, the confidence
of the facial keypoints may be low. We use our Confidence
Gated Units (CGU), first introduced in [13], to handle these
situations. As illustrated in Fig. 3, the CGU comprises two
internal units: i) a ReLU unit acting on an input feature qi ,
in our case the x and y coordinates of facial keypoints; and
ii) a sigmoid unit without bias to emulate the behavior of a
gate according to a confidence value ci . The outputs of both
units are multiplied into an adjusted CGU output q̃i .

Following our work in [13], our network architecture
comprises a CGU-based input layer followed by two fully-
connected (FC) hidden layers with 10 units each, and the
output layer with three units. The architecture has a total of
283 learnable parameters and can be summarized as: (10 CGU,
10 FC, 10 FC, 3 FC).

B. Network Loss Function

Since our goal is to estimate gaze direction, our optimization
and evaluation metrics are based on the angular error between
the predictions and the ground truth gaze vectors. That is,
training is performed using an uncertainty-weighed loss func-
tion adapted from [50] modified to use cosine similarity.
Let T be the set of annotated orientation vectors g, while
g̃ corresponds to the estimated orientation produced by the
network and σ̃ represents the model’s uncertainty prediction.1

Our cost function is then given by

Lcos(g, g̃) =
1
|T |

∑
g∈T

e−σ̃

2
−g · g̃

||g|| · ||g̃||
+

log σ̃

2
. (2)

This loss function requires no additional labels for the model to
learn to predict its uncertainty. During training, the predicted
uncertainty is used to weigh the contribution of the corre-
sponding sample. As the prediction uncertainties increase,
so does the overall loss. As a consequence, high uncertainty
samples have little impact on the update of the model param-
eters during back-propagation. Hence, the model intrinsically
learns the prediction uncertainty in relation to the angular
error to help reduce the overall loss. More specifically, the
e−σ̃ component is a numerically stable representation of 1/σ̃ ,
which encourages the model to output a higher σ̃ when the
error is higher. On the other hand, the regularizing component
log(σ̃ ) helps to avoid unbounded uncertainty predictions. From
a Bayesian perspective, this loss function corresponds to a

1To simplify the notation, we omit the person-specific superscript j in this
section.
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von Mises distribution [54] where the Bessel function on
the normalization term is approximated using a second-order
series [55].

C. Temporal Integration

The gazes estimated by the regressor network are integrated
over time using a Kalman filter. At time t , the network
estimates the gaze of each person in the scene using the
detected keypoints for that person and their corresponding
confidence values. The Kalman filter uses a motion model to
predict the individual gazes based on the estimated gazes at
time t − 1 and combines these predictions with the observed
gazes at time t to produce a refined estimate. The Kalman
filter state vector is given by

st =

[
ρ̃t
ωt

]
, (3)

where ρ̃t = arctan(g̃y/g̃x ) is the apparent gaze orientation in
polar coordinates at time instant t and ωt is its corresponding
angular velocity. We model the dynamic behavior of our
system as a constant angular velocity motion corrupted with
normally distributed noise, i.e.,

st+1 = F · st + wt , (4)

where wt ∼ N (0, σw) is the zero-mean, normally distributed
process noise with variance σw and F is the system transition
matrix, which is given by

F =

[
1 1
0 1

]
. (5)

Since we can directly observe the value of ρ̃t based on the
output of our regressor, the observation model is given by

zt = H · st + vt , (6)

where

H =

[
1
0

]
(7)

is the observation matrix and vt ∼ N (0, σv) is the observation
noise. The observation noise variance σv is a function of the
gaze prediction uncertainty σ̃ . As explained in detail in our
experimental results, we evaluate two strategies to compute the
observation variance: σv = 1/σ̃ and σv = e−σ̃ . The value of σw

relative to σv is empirically estimated using the Expectation-
Maximization algorithm. The estimated state ŝt =

[
ρ̂t , ω̂t

]
is then obtained using the Kalman filter equations, and the
estimated gaze in Cartesian coordinates is obtained from the
estimated state according to

ĝt =

[
sin(ρ̂t )

cos(ρ̂t )

]
, (8)

where ρ̂t is the estimated apparent gaze in polar coordinates.
Fig. 4 illustrates the estimated apparent gaze in the 2D image
plane.

Fig. 4. Illustration of the apparent gaze direction, ρ, on the MoDiPro dataset
(red).

IV. EXPERIMENTS AND RESULTS

In our previous work [13], we have established the perfor-
mance improvement of our regression network on an earlier
version of the MoDiPro dataset. In this section we verify that
our gaze regression network still outperforms other static gaze
estimation methods on an extended version of the MoDiPro
dataset. We also show the correlation between our network
prediction uncertainties and angular error. Following that,
we compare our temporal integration approach with other
temporal methods such as the moving average method we
introduced in [14] and the temporal method proposed in [24]
on the extended MoDiPro and the Gaze360 datasets [24].
Lastly, we discuss the performance under keypoint occlusions,
the impact of the CGUs, and an analysis on the uncertainty
variance.

A. Datasets

We perform experiments on three publicly available gaze
estimation datasets: the MPIIFaceGaze [38] and GazeFollow
static gazes datasets [23], and the Gaze360 dataset [24], which
contains temporal gaze sequences. While the MPIIFaceGaze is
composed of relatively high-resolution, close-up facial images,
the GazeFollow dataset contains subjects and gazes in natural
settings including indoor and outdoor environments and is
not constrained to a laboratory setup. We follow the train-
ing/testing split of the datasets suggested in their original
papers for a fair comparison. We also conduct evaluations on
our own assisted living environment gaze dataset, MoDiPro.

1) MPIIFaceGaze: The MPIIFaceGaze dataset, which is an
extension of the MPIIGaze dataset [56], contains facial patch
images of 15 subjects with annotations on eye gaze direction.
The dataset consists of 213, 659 images from a laptop camera
view. This ensures variations in background, lighting, and
appearance. Eye gaze annotations are captured by a software
on the computer screen, with participants looking at focal
points on screen. Fig. 5 summarizes the 2D gaze distribution
in the image plane for the MPIIFaceGaze dataset.

2) GazeFollow: The GazeFollow dataset [23] is a publicly
available static gaze estimation dataset that contains more than
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Fig. 5. Distributions of gaze annotations on the datasets used in this work.
Left) Merged MoDiPro dataset with CAM1 (orange) and CAM2 (yellow).
Right) Gaze360 gazes projected onto a 2D plane (blue), MPIIFaceGaze in
2D (green) and GazeFollow (purple).

130k people in 122k images. These images are collected from
various well-known image datasets, such as MS COCO [57],
PASCAL [58], and ImageNet [59]. GazeFollow is one of
the first gaze estimation datasets that captures unconstrained
and real-world gazes in natural scenes and activities. The
images contain subjects performing natural activities in various
environments, and the gaze annotations are defined with two
points in the image plane: the center of the subject’s head and
the corresponding focus of attention. There are 10 annotated
gaze vectors per subject in a given image, and we use the
average endpoint location as the ground truth gaze vector,
as suggested in [23]. Since our network is trained on images
where at least two facial keypoints are detected, we retain
153, 828 training samples and 4, 677 testing samples, which
corresponds to 98% of the dataset. Fig. 5 shows the angular
gaze distribution for the gazes used in our experiments.

3) Gaze360: The Gaze360 [24] dataset is composed of
images captured with a Ladybug 360o panoramic camera
mounted on a tripod with the subjects looking at a moving tar-
get. The dataset contains gazes of 238 subjects in 80 different
recordings with a varying number of subjects in each video.
The recordings take place in a variety of natural environments
in indoor and outdoor locations, with varying illumination,
subject visibility (i.e. frontal and back views), and background.
All these features contribute to the creation of a natural dataset
of people in real-world environments and situations. For each
subject there is a ground truth gaze vector with the origin given
by the midpoint between the eyes. This dataset is composed
of 3D gaze annotations. Since our method focuses on 2D
gaze estimations, we convert these three-dimensional vectors
to two dimensions by taking the projection of the 3D gaze
vector onto the camera image plane. These 2D vectors become
our new annotations. Again, we exclude frames where the
pose estimation algorithm cannot detect at least two facial
keypoints, such that a total of 126, 812 frames are used for
training, 17, 011 frames for validation, and 25, 949 frames
for testing. Fig. 5 also shows the angular distribution of the
Gaze360 dataset.

4) MoDiPro: Our MoDiPro dataset focuses on patients in
a discharge facility whose health status must be monitored.
It allows us to evaluate our method on a real assisted living
environment. We obtain videos of volunteers in a patient

discharge facility in the Galliera Hospital. This discharge
environment contains various sensors such as localization
systems, RGB-D, and two conventional cameras. The cameras
are arranged as shown in Fig. 1 and capture 480 × 720 pixel
resolution frames at 25 frames per second. We collected videos
of 22 individuals over a period of 40 days. Recordings took
place throughout the day and the videos contain a variety of
illuminations based on the hour of the day.

We generate the ground truth gaze annotations using the
MATLAB(R2018) VideoLabeler annotation tool.2 Two annota-
tors manually label the gaze directions independently. CAM1
has 47 videos with a total of 15, 750 frames while CAM2
has 30 videos with 10, 750 frames, totaling 26, 500 frames.
The annotation process took on average 9 minutes for each
video with an average of 20 frames manually annotated and
the rest interpolated by the annotation tool and manually
verified by the annotators. Annotation set 1 has a total of
24, 509 annotated gazes with at least two keypoints, and
annotation set 2 has 24, 494. The discrepancy in the number of
gazes comes from partially occluded facial keypoints and/or
subjects near the edge of the frame where annotators may
deem there to be a gaze or not. We also average the annotated
gaze vectors in the two annotation sets to obtain a merged
annotation set for our evaluations.

One of the significant challenges in the gaze tracking
problem is its inherent uncertainty. The level of uncertainty
in estimating human gazes is a challenge even for human
annotators. Gazes are largely determined by body language,
head, and eye locations and sometimes cues from the subjects’
hands. Occluded gazes are oftentimes determined using the
best judgment with inference from previous and upcoming
frames. With that said, two annotators looking at the same
frame may estimate each gaze differently. In the MoDiPro
dataset, although the average difference in annotation was
0.08◦, the variance was significantly higher with a standard
deviation of 23.30◦. The angular differences follow a Laplace
distribution with 75% of the differences within 11.5◦. This
variability in annotations demonstrates the intrinsic uncertainty
in the problem of gaze estimation. This uncertainty is an
indicator of the expected performance levels that can be
achieved by a gaze estimation model.

Fig. 5 illustrates the gaze distributions of the merged
annotation set. The angle distributions are displayed from
the perspective of the camera image frame (see Fig. 4).
Specifically, gazes within the CAM1 dataset comprise mostly
vertical gazes while CAM2 consists of more lateral gazes.
As the camera frames shown in Fig. 1 indicate, subjects in
CAM1 tend to move vertically along the path between the
tables and the kitchen area. Subjects in CAM2 are more likely
to look toward objects of interest such as the TV on the left,
or sit on the sofa directing their gazes horizontally.

Frames used for training and evaluation are grouped by
video since frames from the same video sequence are highly
correlated. We randomly select 50% of the videos from each
camera for training, 20% for validation, and 30% for testing.

2https://www.mathworks.com/help/vision/ref/videolabeler-app.html
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Final mean angular errors are the average values obtained after
training and testing on three different random splits of the data.

B. Static Gaze Estimation Performance

In this section, we compare our regression network against
the GF model and the method introduced in [60]. This publicly
available approach represents the state of the art for the
GazeFollow dataset that is most similar to our method to
create a fair comparison. That is, in [60] predictions are
generated without the need for eye patch images [48], [61],
[62]. Methods that effectively estimate gaze without this
limitation provide practical results in tackling gaze estimation
in real-world scenarios. Additionally, we show results on the
MPIIFaceGaze eye gaze dataset with the method introduced in
the original paper. Moreover, we show that existing methods
present substantial performance differences when applied to
our MoDiPro dataset.

1) Network Implementation and Training Details: Our net-
work is implemented using TensorFlow. We train the net-
work using only samples where at least two facial keypoints
are detected. We use the Adam [63] optimizer with early
stopping based on the validation angular error. The initial-
ization and optimization of our model follow the strategy
described in [13]. Specifically, the fully-connected layers are
initialized as in [64] and the CGU units are initialized with
ones. Regarding regularization, we empirically observed better
results without regularization in the input and output layers,
while a L2 penalty of 1e−4 is applied to both FC hidden
layers.

2) Impact of the Training Dataset: First, we show the
performance of our network trained on various combinations
of the datasets described above and evaluated on the MoDiPro
dataset. The corresponding results are shown in Table I.
Training our model only on the MPIIFaceGaze dataset (NET
#0) results in the worst performance on the MoDiPro dataset
with a mean angular error of 60.64◦. When trained only
on the Gaze360 dataset (NET#1), our network has a mean
angular error of 35.79◦. However, when only the GazeFollow
dataset is used for training (NET#2), the average error is
reduced by more than 11◦. As Fig. 5 shows, the GazeFollow
data more closely represents the MoDiPro dataset than the
Gaze360 or the MPIIFaceGaze datasets, which explains this
significant difference in performance. For additional training,
we do not include MPIIFaceGaze data as it consists of close-up
facial images, unlike the natural gazes in the other datasets.
Furthermore, training our model using both the GazeFollow
and Gaze360 datasets (NET#3) and then fine-tuning it on one
of the MoDiPro camera views (NET#4 and NET#5) leads
to noticeable performance improvements in both cameras.
However, the NET#6 and NET#7 models, which are trained
only on GazeFollow and fine-tuned on the CAM1 and CAM2
views, respectively show a more pronounced improvement
in CAM2. Training our model using both the GazeFollow
and Gaze360 datasets and then fine-tuning it on the two
MoDiPro camera views (NET#8) leads to a slight performance
improvement for CAM1, but this gain is outweighed by the
degradation observed in CAM2. The NET#9 model, which is

TABLE I
MEAN ANGULAR ERROR FOR EACH CAMERA ON THE MoDiPro MERGED

ANNOTATION SET USING DIFFERENT TRAINING SETS

TABLE II
MEAN ANGULAR ERROR COMPARISONS WITH STATIC AND
TEMPORAL METHODS. FOR A FAIR COMPARISON, ALL THE

MODELS ARE TRAINED ONLY ON THE MPIIFACEGAZE,
GF, OR GAZE360 DATASET, RESPECTIVELY

trained only on the GazeFollow dataset and fine-tuned on both
views of the MoDiPro dataset has the lowest mean angular
error (21.70◦). Hence, subsequent evaluations are based on
this model.

3) Comparison With Static Gaze Estimation Methods:
The first two rows of Table II show the performance of our
method and [38] on the MPIIFaceGaze Dataset and our merged
MoDiPro dataset. The two methods are trained only on the
MPIIFaceGaze dataset for a fair evaluation. To compare with
our model, the results of the method in [38] are converted
to the 2D domain as the intended model outputs 3D gaze
predictions. In MPIIFaceGaze, [38] achieves 9.49◦ of error
compared to our method at 38.89◦. This large error in our
method comes from the nature of the dataset. The dataset
contains gazes that are more related to eye ball orientation
than natural gazes which our method is intended for. As shown
in Fig. 6, most samples are of subjects’ frontal view which
makes it difficult to pinpoint a 2D gaze direction using
facial keypoint locations. The illumination in some examples
also introduces cases where OpenPose fails to identify any
keypoints. When evaluated on the MoDiPro dataset, our model
achieves a mean angular error of 60.64◦ while [38] obtains
88.53◦. The higher error in [38] is because of the lower
quality of the facial image features along with the fact that
our dataset is geared towards natural gaze direction rather than
strictly eye gaze.

The next three rows of Table II compare the perfor-
mance of our method on the GazeFollow dataset and our
merged MoDiPro dataset with the state-of-the-art static gaze
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Fig. 6. Examples of gaze direction estimation by our method and [38] on
the MPIIFaceGaze dataset. The blue markers denote keypoints detected by
OpenPose.

Fig. 7. Left) Examples of gaze direction estimation by our method and [60]
on the MoDiPro dataset. Right) The generated prediction heatmap from [60].

estimation techniques proposed in [23] and [60]. For a fair
comparison, all the models are trained only on the GazeFollow
dataset (i.e., our model corresponds to NET#2 in Table I)
since training the methods described in [23] and [60] requires
additional ground truth information that is not available in
the MoDiPro dataset. As the results indicate, [60] is the
best-performing method on the GazeFollow data with an
average angular error of 17.60◦. However, when evaluated on
the MoDiPro data, our method achieves an average angular
error of 24.60◦, which is approximately 36◦ lower than [23]
and 56◦ than [60]. Although [60] performs well on images
that contain saliency information, its performance decreases
drastically in scenarios where the subjects are not necessarily
looking at salient image features, such as in the MoDiPro
dataset. As our method does not rely on regions of interest
of the subjects’ gaze, it is able to maintain a consistent and
reliable performance across both datasets. This is illustrated in
the examples shown in Fig. 7 where [60] maps the subjects’
gaze to objects of interest but clearly the gaze is not in that
direction.

Fig. 8. Distribution of gaze direction (ρ̃ j ) and uncertainty predictions (σ̃ j )
for cameras 1 (left) and 2 (right) on the MoDiPro dataset. The color map
represents the angular error of the predictions.

Fig. 9. Cumulative mean angular error according to the uncertainty predicted
by our model for each sample in the test set.

4) Quality of Uncertainty Estimates: Fig. 8 shows the
correlation between uncertainty predictions generated by our
network (NET#9) and the corresponding angular errors on
the MoDiPro dataset. For each sample in these plots, the
angle corresponds to the predicted gaze direction, i.e., ρ̃ j

=

arctan(g̃ j
y/g̃ j

x ) and the radial distance corresponds to its pre-
dicted uncertainty σ̃ j . The color map shows that lower errors
(dark blue) are observed for predictions with lower uncertainty
(small radial distance), with higher errors observed as the
uncertainty increases.

To determine whether our model produces well calibrated
uncertainties, we compare the uncertainties estimated by our
model with their corresponding angular errors. Fig. 9 demon-
strates the high correlation between the uncertainty predictions
and the mean angular error. The figure demonstrates that
the higher the mean angular error the higher the uncertainty
prediction. For 80% of the test set the uncertainties are lower
than 0.1, and the gaze estimations provided by our model for
this subset are on average off by only ∼ 15◦.

5) Performance Under Keypoint Occlusions: Fig. 10 illus-
trates the performance of our model according to the number
of visible keypoints. The left plot represents predictions for
CAM1 whereas the right corresponds to CAM2. For samples
with k = 2 (back-view), both uncertainty predictions and
angular errors tend to be higher, while for most cases of k =

3 and k = 4 (lateral views) the predictions are associated with
lower uncertainty and higher angular accuracy. Predictions for
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Fig. 10. Distribution of gaze direction for cameras 1 (left) and 2 (right) with
colors representing the number of keypoints, k, detected by OpenPose [22]
for the corresponding sample.

k = 5 (frontal views) are diverse, indicating that the model’s
uncertainty predictions are not just defined by the number of
available keypoints but also reflect the intrinsic uncertainty of
determining the head orientation from frontal views.

6) Impact of the Confidence Gated Units: We evaluate
the extent to which the CGUs reduce the median angular
error of our model for different average keypoint confidence
levels. We perform our analysis only for samples containing
no missing keypoints because low average confidence scores
and missing keypoints are relatively orthogonal sources of
uncertainty and must hence be assessed separately. We train
a new model that replaces the 10 CGU units in the first
layer of the network with ReLU units initialized the same
way as described in Section III-B. We then evaluate the
performance of both models as a function of the average
keypoint confidence scores. We divide the average keypoint
confidences into eight ranges and compute the median for
each bin. The box plots in Fig. 11 show that the performance
benefits of the model with the CGUs increase as the average
keypoint confidence decreases. The difference in performance
increases from 1.74◦ in the highest confidence bin to 3.12◦ in
the bin with the lowest average keypoint confidences.

C. Gaze Tracking Performance

We compare the performance of our uncertainty-weighed
angular Kalman filter described in Section III-C on the
Gaze360 and MoDiPro datasets with the temporal method
introduced in [24]. To our knowledge, that is the only tem-
poral gaze tracking method proposed to date (see also [65]).
We also demonstrate the superior performance of the proposed
approach with respect to the best moving averaging scheme we
originally presented in [14]. All temporal methods are trained
only on the Gaze360 dataset to achieve a fair comparison
because the MoDiPro dataset does not contain the 3D anno-
tations required by the method proposed in [24]. Specifically,
we train and evaluate our network using the 2D projections of
the Gaze360 gazes since our model is designed for 2D inputs.

1) Comparison With Gaze Tracking Methods: As shown
in Table II, the Gaze360 method performs slightly better
than our approach in its respective dataset. However, when
evaluated on the MoDiPro dataset, our method achieves a

TABLE III
MEAN ANGULAR ERROR COMPARISONS OF OUR OPTIMAL MODEL USING

DIFFERENT TEMPORAL INTEGRATION STRATEGIES

mean angular error of 28.21◦ compared to 66.58◦ for Gaze360.
This large error in the Gaze360 method is a limitation with
appearance-based gaze estimation techniques. These methods
require high resolution images of the individuals’ facial fea-
tures. When we downsample the Gaze360 test set to the same
dimensions as our MoDiPro facial crops, the method intro-
duced in [24] shows a significant drop in performance, with
a mean angular error of 40.35◦ compared to the 24.48◦ error
obtained in the original images. Despite the simple architecture
of our method, it performs on par with the sophisticated
model proposed in [24] on the Gaze360 dataset. Further-
more, we achieve more stable results across the Gaze360 and
MoDiPro dataset, showing that our method better generalizes
to unseen data and is not constrained by the quality of the
facial features.

Experimental results for the moving average scheme and the
Kalman filter using the optimal model NET#9 are summarized
in Table III. The moving average scheme leads to a modest
improvement over the NET#9 model. This small improvement
can be partially attributed to the fact that the moving average
strategy does not take into consideration the dynamic nature
of the gazes. As the results in Table III indicate, incorporating
a motion model through the use of an angular Kalman filter
leads to substantial performance gains. When using the inverse
of the uncertainties as the observation covariance, we observe
a reduction in angular error across both cameras with a
mean angular error improvement of 1.38◦. Using e−σ̃ as
the observation covariance further reduces the mean angular
error by 1.51◦. We suspect that using e−σ̃ to update the
observation covariance promotes a more significant increase in
performance because it better reflects the actual covariances
learned by the network. Fig. 12 illustrates the performance
of the Kalman filter on a sample video from the MoDiPro
dataset. The smoothing nature of the filter moves sporadic
noisy predictions closer to the ground truth.

2) Uncertainty Variance Analysis: In this section,
we explore the impact of the uncertainties on the temporal
integration techniques. We hypothesize that the temporal
integration methods have a higher impact on videos with
higher uncertainty variances. Over extended periods with
low uncertainty variance, meaning that the uncertainties
are relatively constant, incorporating the uncertainties is
essentially equivalent to weighing the raw predictions using a
constant factor thus providing no actual impact on the adjusted
predictions. Fig. 13 shows the distribution of uncertainty
variance over the videos in the MoDiPro dataset. As the
figure indicates, over 70% of the videos have an uncertainty
variance of 0.005 or less.

Authorized licensed use limited to: University of Wisconsin. Downloaded on June 16,2023 at 00:26:51 UTC from IEEE Xplore.  Restrictions apply. 



2344 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

Fig. 11. Median angular errors as a function of average keypoint confidences on data with no missing keypoints for the models with CGUs and without
CGU. The boxes represent the 75th and 25th percentiles of the error distribution, the horizontal red lines correspond to the median values, the whiskers
represent the maximum and minimum values, and the red crosses indicate outliers. The performance improvement of the CGUs is more pronounced at lower
confidences.

Fig. 12. Sample video from the MoDiPro dataset (CAM2) showing the smoothing effect of the Kalman filter compared to the raw predictions obtained from
the network.

Fig. 13. Frequency of uncertainty variance ranges of videos as percentages.

Fig. 14 shows the ratio of average angular error to the raw
network predictions as a function of video uncertainty variance
for each of the proposed temporal integration methods. That
is, values lower than one indicate relative performance gains,
whereas values higher than one indicate performance degra-
dation. The moving average schemes show no performance
improvements for uncertainty variances lower than 0.005.
In fact, the simple moving average (SMA) method shows
a small degradation in that range. For higher variances, the
moving average schemes show improvements of up to 5%
over the raw predictions, whereas the Kalman filter methods
show up to 16% and 19% improvements.

Fig. 14. Ratio of average angular error of temporal integration methods to
network raw predictions for different uncertainty variance ranges.

To further elucidate the impact of high uncertainty videos
on the performance of our methods, we conduct an error
analysis on a separate set of high uncertainty variance videos.
These high uncertainty videos often correspond to unfavor-
able scenarios such as those involving significant illumination
variations and occlusions among individuals. The average
uncertainty variance in these videos is 0.012. These results
are shown in Table IV. Although the performance gains
provided by the moving average schemes are higher, they
remain relatively modest. On the other hand, the strategies
based on the Kalman filter show average improvements of
9.67◦ and 11.35◦ for the two annotation sets and improvements
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TABLE IV
COMPARISON OF MEAN ANGULAR ERRORS OF THE ANGULAR KALMAN FILTER PREDICTIONS WITH THE MOVING AVERAGES

AND NETWORK PREDICTIONS FOR HIGH UNCERTAINTY VARIANCE VIDEOS

of 8.72◦ and 10.41◦ on the merged annotations for these
high uncertainty variance videos. This large improvement in
performance strongly supports the claim that high uncertainty
variance videos greatly benefit from our uncertainty-weighed
temporal integration methods.

3) Runtime Analysis: The most significant bottleneck in our
proposed method is the pose estimation module. OpenPose
processes one frame in 77 ms as reported in [22]. Our
neural network regressor and Kalman filtering together average
0.013 ms per frame in the MoDiPro dataset. All values are
obtained on a NVIDIA® GeFore® GTX-1080 Ti GPU.

V. CONCLUSION

The overarching goal of assisted living environments is to
extract information regarding the behavior of its occupants to
make inferences about their health status. Gaze direction is
a key element in the evaluation of human behavior. In this
paper, we present a gaze estimation and tracking approach
that incorporates a temporal integration strategy to track the
gaze direction of multiple individuals. Our gaze estimation
regressor relies solely on the relative positions of the subject’s
facial keypoints and also provides an estimate of its uncertainty
for each gaze prediction. We also introduce Confidence Gated
Units, which we incorporate into our network architecture to
mitigate the impact of low-confidence or occluded keypoints.
The uncertainties from our model’s predictions are used to
generate the observation covariance of an angular Kalman
filter for more robust and accurate gaze predictions. More
importantly, our method relies exclusively on information
extracted from the occupants of the environment. That is,
it does not depend on salient features in the scene, which
shift the gaze estimation problem from understanding human
intentions to analyzing the environment itself and is thus prone
to dataset biases.

Our experimental results demonstrate the importance of
taking into consideration estimation uncertainties in the gaze
tracking problem. Both our uncertainty-aware regressor and
our CGUs play significant roles in reducing gaze estimation
errors, particularly in unfavorable conditions. The high corre-
lation between the uncertainties and the network prediction
errors make it possible to use these uncertainties within
an angular Kalman filter tracking framework that further
improves the accuracy of our method. Experimental results
on the MoDiPro dataset demonstrate the effectiveness of our
method in a real assisted living environment. Furthermore,

results on publicly available gaze datasets illustrate the gener-
alization capability of our approach. These results indicate that
our method generates prediction errors that are comparable to
the variability observed in gaze directions manually estimated
by human annotators.

In the future, we plan to investigate strategies for effectively
utilizing additional keypoints for gaze estimation to better
leverage relevant body language cues in the determination of
gaze. Furthermore, we intend to continue to explore strategies
to increase the robustness and the accuracy of our gaze track-
ing method. In particular, we plan to incorporate additional
facial image features generated by a CNN to complement the
facial keypoint information. We are also investigating strate-
gies to incorporate temporal integration methods designed
specifically for problems corrupted by noise that follows a
von Mises distribution [66], [67], which would better reflect
the gaze prediction errors observed in our system. Finally,
we intend to investigate the impact of illumination on gaze
estimation performance [68], [69].
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