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Abstract—The impact of local averaging on the performance
of federated learning (FL) systems is studied in the presence
of communication delay between the clients and the parameter
server. We focus on a hierarchical FL (HFL) setting where
clients are assigned into different groups, each having its own
local parameter server (LPS). The number of local and global
communication rounds in our work is randomly determined
by the (different) delays experienced by each group of clients.
Specifically, the number of local averaging rounds are tied to a
wall-clock time period coined the sync time S, after which the
LPSs synchronize their models by sharing them with a global
parameter server (GPS). Such sync time S is then reapplied
until a global wall-clock time is exhausted. First, an upper bound
on the deviation between the updated model at each LPS with
respect to that available at the GPS is derived. This is then
used to derive the convergence bounds of our proposed HFL
setting, at each LPS and at the GPS. The bounds showcase the
effects of the whole system’s parameters, including the number
of groups, the number of clients per group, and the value of
S. Our results show that optimizing S is especially crucial in
heterogeneous systems in which the number of clients per group
and their delay statistics are different. In addition to showing
the necessary need of collaboration for under-performing groups,
optimizing the value of S promotes fairness among groups, and
allows one to deal with delay-sensitive FL applications in which
the training time is restricted.

I. INTRODUCTION

Federated Learning (FL) is a distributed machine learning
training system in which edge devices (clients) collaboratively
train a model of interest based on their locally stored datasets.
A central node (parameter server) orchestrates the learning
process by collecting the clients’ parameters for aggregation
[1]. Due to its data privacy preserving and bandwidth saving
nature, FL has attracted a lot of attention and has been used in
diverse applications including healthcare and mobile services.

Challenges. In order to successfully deploy FL in com-
munication networks, lots of challenges should be addressed.
These include: the computing capabilities of the clients; the
communication overhead between the clients and the parame-
ter server; and the system heterogeneity, whether in the clients’
communication channels or their data statistics.

Among all challenges, communication remains to be the
bottleneck issue, and various solutions have been proposed
in the literature to mitigate it. One of these solutions is
to introduce intermediate parameter servers, denoted local
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parameter servers (LPSs), between the clients and the (now)
global parameter server (GPS). Such setting of FL is known
in the literature as the hierarchical FL (HFL) setting [2]. The
main advantage of having LPSs close to the clients is to reduce
the latency and required energy to communicate with the GPS
[3]. In [4], a joint resource allocation and client association
problem is formulated in an HFL setting, and then solved by
an iterative algorithm. Reference [5] shows that HFL settings
can also enhance data privacy.

Contributions. To cope with the very low latency service
requirements in 6G (and beyond), in this paper we focus on
HFL for delay-sensitive communication networks. We study
FL settings that have an additional requirement of conducting
training within a predefined deadline. Such scenario is relevant
for, e.g., energy-limited clients whose availability for long
times is not always guaranteed. To enforce the system to abide
by this constraint, the number of local training updates will
be determined by a wall-clock time. Specifically, we define a
sync time S within which the LPSs are allowed to aggregate
the parameters they receive from their groups’ clients. Each
local iteration consumes a random group-specific delay, and
hence the total number of local updates within S will also be
random, and could possibly be different across groups. This
dissimilarity in the delay statistics is introduced to capture,
e.g., the effects of wireless channels and different computa-
tional resources among different group clients. Following the
deadline S, the LPSs forward their models to the GPS.

We set another time constraint at the GPS and denote it
the total system time T . This is the total allowed time for
the overall HFL system to perform the training and get its
final model parameter. Different values of S and T will lead
to a different number of local and global updates. Thus, by
controlling S, we also control how many times the clients will
communicate with the GPS, i.e., more local iterations would
lead to less global ones. This is is different from the existing
works that assume that the global communication rounds are
constant and unaffected by the number of local updates.

We present a thorough theoretical convergence analysis for
the proposed HFL setting for non-convex loss functions. Our
results show how the different system parameters affect the
accuracy, namely, the wall-clock times S, T , the number
of groups, and the number of clients per group. Various
experiments are then performed to show how to optimize the
sync time S based on the other system parameters.
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II. SYSTEM MODEL

We consider an HFL system with a global PS (GPS) and a
set of local PSs (LPSs), Ng , that serve a number of clients.
Clients are distributed across different LPSs to form clusters
(groups), in which a client can only belong to one group, and
may only communicate with one specific LPS. Denoting by
Ni the set of clients in group i, the total number of clients in
the system is

∑
i∈Ng

|Ni|, with | · | denoting cardinality. Each
client has its own dataset, and the data is independently and
identically distributed (i.i.d.) among clients. The empirical loss
function at the LPS of group i ∈ Ng is defined as follows:

fi(x) ≜
1

|Ni|
∑
k∈Ni

Fi,k(x), i ∈ Ng, (1)

where Fi,k(x) is the loss function at client k in group i. The
goal of the HFL system is to minimize a global loss function:

f(x) ≜
1∑

i∈Ng
|Ni|

∑
i∈Ng

|Ni|fi(x)

=
1∑

i∈Ng
|Ni|

∑
i∈Ng

∑
k∈Ni

Fi,k(x). (2)

The global loss function is minimized over a number of
global communication rounds between the GPS and the LPSs.
At the beginning of the uth global round, the GPS broadcasts
the global model, xu ∈ Rd, with d representing the model
dimension, to the LPSs. The LPSs then forward xu to their
associated clients, which is used to run a number of SGD steps
based on their own local datasets. After each SGD step, the
clients share their models with their LPS, which aggregates
them and broadcasts them back locally to its clients. We call
this local round trip a local iteration. We further illustrate how
the global rounds and local iterations interact as follows. Let
xu,l
i denote the model available at LPS i after local iteration l

during global round u, and let xu,l
i,k denote the corresponding

local model of client k of group i. We now have the following
equations that build up the models:

xu,0
i = xu, ∀i ∈ Ng, (3)

xu,0
i,k = xu,0

i , xu,l
i,k = xu,l−1

i − α g̃i,k

(
xu,l−1
i

)
, ∀k ∈ Ni,

(4)

where α is the learning rate, and g̃i,k is an unbiased stochastic
gradient evaluated at xu,l−1

i . After the lth SGD step, LPS i

collects
{
xu,l
i,k

}
from its associated clients and aggregates them

to get the lth local model,

xu,l
i =

1

|Ni|
∑
k∈Ni

xu,l
i,k, (5)

which is shared with its clients to initialize SGD step l + 1.
Each local iteration takes a random time to be completed.

This includes the time for broadcasting the local model by
the LPS to its clients, the SGD computation time, and the
aggregation time. Let τui,l denote the wall-clock time elapsed
during local iteration l for group i in global round u. We

assume that τui,l’s are i.i.d. across local iterations l and global
rounds u, but may not be identical across groups i. This
is motivated by the different channel delay statistics that
each group may experience when communicating with its
LPS. In addition to that, each group may have clients with
heterogeneous computational capabilities. These two factors
together hinder one group to (statistically) do an identical
number of local updates like other groups. We define a sync
time, S, that represents the allowed local training time for
all groups. After the sync time, the LPSs need to report their
local models to the GPS, and thereby ending the current global
round. During global round u, and within the sync time S,
group i will therefore conduct a random number of local
iterations given by

tui ≜ min

{
n :

n∑
l=1

τui,l ≥ S

}
, i ∈ Ng. (6)

Observe that the statistics of tui ’s are not identical across
groups, see Fig. 1 for an example sample path during global
round u. After the tui local iterations are finished, and using
(3)–(5), LPS i will have acquired the following model:

x
u,tui
i = xu,0

i − α

|Ni|

tui −1∑
l=0

∑
k∈Ni

g̃i,k

(
xu,l
i

)
. (7)

We consider a synchronous setting in which the GPS
waits for all the LPSs to finish their local iterations before
a global aggregation. Since LPSs incur different wall-clock
times to collect their models, some of them may need to
stay idle waiting for others to finish. The GPS therefore starts
aggregating the models after

max
i∈Ng

{
n∑

l=1

τui,l

}
(8)

time units from the start of the local iterations in global round
u. We denote this period the syncing period (see Fig. 1). When
updating the GPS, LPS i sends the difference between its final
and initial models, divided by the number of its local iterations
performed, i.e., it sends

1

tui

(
x
u,tui
i −xu,0

i

)
= − α

|Ni|
1

tui

tui −1∑
l=0

∑
k∈Ni

g̃i,k

(
xu,l
i

)
, i ∈ Ng.

(9)

We note that the purpose of diving by tui is to avoid biasing
the global model. To see this, observe that (cf. Assumption 2)

E|tui
1

tui

(
x
u,tui
i − xu,0

i

)
= − α

|Ni|
1

tui

tui −1∑
l=0

∑
k∈Ni

∇Fi,k

(
xu,l
i

)

= − α

tui

tui −1∑
l=0

∇fi

(
xu,l
i

)
, (10)

where E|tui denotes conditional expectation given the vector

ti
u ≜

{
tu

′

i

}u

u′=1
.
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τu1,1 τu1,2 τu1,3 τu1,4

Group 1

S

τug

tu1 = 4

τu2,1 τu2,2

Group 2

τug

tu2 = 2

. . .

. . .

. . .

. . .

global round u+ 1

syncing period

global round u

Fig. 1: Example sample path of global rounds and local
iterations of 2 groups with wall-clock times considerations.

The GPS then updates its global model as

xu+1 = xu +
∑
i∈Ng

|Ni|∑
i∈Ng

|Ni|
1

tui

(
x
u,tui
i − xu,0

i

)

= xu − α∑
i∈Ng

|Ni|
∑
i∈Ng

1

tui

tui −1∑
l=0

∑
k∈Ni

g̃i,k

(
xu,l
i

)
,

(11)

and broadcasts xu+1 to the LPSs to begin global round u +
1. We assume that the global aggregation and broadcasting
processes consume i.i.d. τug ’s wall-clock times. An example
of the HFL setting considered is depicted in Fig. 1.

The overall HFL training process stops after a total system
time T . The value of T represents the allowed time budget
for training in delay-sensitive applications. Within T , the total
number of global rounds will be given by

U ≜ min

{
m :

m∑
u=1

max
i∈Ng

{
n∑

l=1

τui,l

}
+ τug ≥ T

}
. (12)

We coin the proposed algorithm delay sensitive HFL. In the
sequel, we analyze its performance in terms of the wall-clock
times, number of clients, and other system parameters. We
then discuss how to optimize the choice of the sync time S to
guarantee better learning outcomes.

III. MAIN RESULTS

In this section, we present the convergence analysis for
the proposed HFL setting. We have the following typical
assumptions about the loss function and SGD [3]:
Assumption 1. (Smoothness). Loss functions are L-smooth:
∀x, y ∈ Rd, there exists L > 0 such that

Fi,k(y) ≤ Fi,k(x) + ⟨∇Fi,k(x), y − x⟩+ L

2
∥y − x∥2 . (13)

Assumption 2. (Unbiased Gradient). The gradient estimate at
each client satisfies

Eg̃i,k(x) = ∇Fi,k (x) . (14)

Assumption 3. (Bounded Gradient). There exists a constant
G > 0 such that the stochastic gradient’s second moment is
bounded as

E ∥g̃i,k(x)∥2 ≤ G2. (15)

Assumption 4. (Bounded Variance). There exists a constant
σ > 0, such that the variance of the stochastic gradient is
bounded as

E ∥g̃i,k(x)−∇Fi,k(x)∥2 ≤ σ2. (16)

It is worth noting that we conduct our analysis without
relying on the convexity of the loss function at any entity in
the system. According to our proposed algorithm, after each
global round, the group clients will resume their local training
from the aggregated global model instead of the their latest
local one. Hence, we need to quantify the deviation between
the two parameter models through the following lemma1:

Lemma 1 For 0 ≤ α ≤ 1
L , the delay sensitive HFL algorithm

satisfies the following ∀u, i:

E|tui

∥∥∥xu+1,0 − x
u,tui
i

∥∥∥2
≤ 2α2

(tui )
2
+

|Ng|
(
∑

i∈Ng
|Ni|)2

∑
j∈Ng\{i}

(|Nj |)2
G2.

(17)

Remark 1 The first term in the bound in Lemma 1 represents
the contribution of group i while the second one reflects the
impact of all groups in the deviation between the parameter
models. It is obvious that more local iterations lead to more
deviation between the local and the global models. Note that
local iterations are the sole determinant of the deviation
in case of having one group only (e.g., when there is no
hierarchy); having two or more groups carries an additive
effect on the deviation as seen in the second term.

Remark 2 In case of having only one group in the system,
one gets a better bound than that in [6], which is given by
4α2 (tui )

2
G2 (two times the bound in (17) for |Ng| = 1).

Lemma 1 serves as a building block for our main conver-
gence theorems of the proposed delay sensitive HFL. These
are mentioned next.

Theorem 1 (Convergence Analysis per Group) For 0 ≤
α ≤ 1

L , the delay sensitive HFL algorithm achieves the
following group i bound for a given U :

1∑U
u=1 t

u
i

U∑
u=1

tui∑
l=1

E|tui

∥∥∥∇fi(x
u,l−1
i )

∥∥∥2
≤ 2

α
∑U

u=1 t
u
i

(
E|tui fi

(
x1,0
i

)
− E|tui fi

(
x
U,tUi
i

))
1Due to space limits, we omit the proofs in this paper.
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(a) Performance over the training time budget.
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(b) Performance during the early training phase.

Fig. 2: HFL system with 10 clients per group with c1 = c2 = 1, cg = 5 and S = 5.

+ αL
1

|Ni|
σ2
i + 2

(
1 + (L+ 2)kα2

α
∑U

u=1 t
u
i

)
UG2

+
2(L+ 2)α∑U

u=1 t
u
i

U∑
u=1

(tui )
2
G2. (18)

Theorem 2 (Global Convergence Analysis ) For 0 ≤ α ≤
1
L , the delay sensitive HFL algorithm achieves the following
global bound for a given U :

1

U

U∑
u=1

E|tui ∥∇f (xu)∥2≤ 2

α

1

U
(
E|tui f

(
x1
)
−E|tui f

(
xU+1

))
+

αL|Ng|
∑

i∈Ng
|Ni|σ2

i(∑
i∈Ng

|Ni|
)2

+
1

U

U∑
u=1

4L2(∑
i∈Ng

|Ni|
)2 |Ng|

∑
i∈Ng

|Ni|23α2
(
tu−1
i

)2

+
1

U

U∑
u=1

4L2(∑
i∈Ng

|Ni|
)2 |Ng|

∑
i∈Ng

|Ni|2
1

tui

tui −1∑
l=0

α2l2G2

+
12α2L2G2(∑
i∈Ng

|Ni|
)4 |Ng|2

∑
i∈Ng

|Ni|2
∑

j∈Ng\{i}

|Nj |2. (19)

Observe that the sync time S controls the upper bounds in
the theorems above by statistically controlling the number of
local iterations. Now let us assume that there exists a minimum
local iteration time for group i, i.e., a lower bound:

τui,l ≥ ci, a.s., ∀l, u. (20)

Then, one gets a maximum number of local iterations

tui ≤ tmax
i ≜

⌈
S

ci

⌉
, a.s., ∀u. (21)

0 200 400 600 800 1000 1200
Time
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0.3

0.4

0.5
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coopertaive, S= 5 , cg = 3
clients=5, c1 = 3
clients=25, c2 = 3

Fig. 3: Significance of group cooperation under non-i.i.d data.

Based on the above bound, one can get the following global
convergence guarantee.

Corollary 1 (Global Convergence Guarantee) For a given
{tmax

i }, setting α = min{ 1√
U ,

1
L}, the delay sensitive HFL

algorithm achieves 1
U
∑U

u=1 E ∥∇f (xu)∥2 = O( 1√
U ).

Therefore, for a finite sync time S, as the training time
T increases, the number of the global communication rounds
U also increases, and hence Corollary 1 shows that gradient
converges to 0 sublinearly.

IV. EXPERIMENTS

In this section, we present some simulation results for the
proposed delay sensitive HFL algorithm to verify the findings
from the theoretical analysis.
Datasets and Model. We consider an image classification
supervised learning task on the CIFAR-10 dataset [7].A con-
volution neural network (CNN) is adopted with two 5x5
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Fig. 4: Impact of the global shift parameter cg on choosing the sync time S.

convolution layers, two 2x2 max pooling layers, two fully
connected layers with 120 and 84 units, respectively, ReLu
activation, a final softmax output layer and cross entropy loss.
Federated Learning Setting. Unless otherwise stated, we
have 30 clients randomly distributed across 2 groups. The
groups have similar data statistics. We consider shifted ex-
ponential delays [8]: τui,l ∼ exp(ci, 10) and τug ∼ exp(cg, 10).
Discussion. In Fig. 2, we show the evolution of both groups’
accuracies and the global accuracy across time. The zoomed-
in version in Fig. 2b shows the high (SGD) variance in the
performance of the two groups especially during the earlier
phase of training. Then, with more averaging with the GPS,
the variance is reduced.

In Fig. 3, the significance of collaborative learning is
emphasized. We run three experiments, one for each group in
an isolated fashion, and one under the HFL setting. First, while
we do not conduct our theoretical analysis under heteroge-
neous data distribution, we consider a non-iid data distribution
among the two groups in this setting, and we see that our
proposed algorithm still converges. Second, it is clear that
the performances of the group with less number of clients
under heterogeneous data distribution and isolated learning
will be deteriorated. However, aided by HFL, its performance
improves while the other group’s performance is not severely
decreased, which promotes fairness among the groups.

In Fig. 4, we show impact of the sync time S on the
performance, by varying the GPS shift parameter cg . We see
that for cg = 10, S = 0 outperforms S = 20. Note that
S = 0 corresponds to a centralized system (non-hierarchical).
Increasing the shift parameter to Cg = 30, however, the
situation is different. Although in both figures S = 5 is the
optimum choice, but in case the system has an additional
constraint on communicating with the GPS, S = 20 will
be a better choice, especially that the accuracy gain will
not be sacrificed much. It is also worth noticing that the
training time budget T plays a significant role in choosing
S; in Fig. 4b, S = 0 (always communicate with the GPS)

outperforms S = 20 as long as T ≤ 500, and the opposite
is true afterwards. This means that in some scenarios, the
hierarchical setting may not be the optimal setting (which is
different from the findings in [3]); for instance, if the system
has a hard time constraint in learning, it may prefer to make
use of communicating with GPS more frequently to get the
advantage of learning the resulting models from different data.

V. CONCLUSION

A delay sensitive HFL algorithm has been proposed, in
which the effects of wall-clock times and delays on the overall
accuracy of FL is investigated. A sync time S governs how
many local iterations are allowed at LPSs before forwarding to
the GPS, and a system time T constrains the overall training
period. Our theoretical and simulation findings reveal that the
optimal S depends on different factors such as the delays at
the LPSs and the GPS, the number of clients per group, and
the value of T . Multiple insights are drawn on the performance
of HFL in time-restricted settings.

REFERENCES

[1] B. McMahan et al. Communication-Efficient Learning of Deep Networks
from Decentralized Data. In Proc. International Conf. Artificial Intelli-
gence Statistics, April 2017.

[2] J. Wang, S. Wang, R.-R. Chen, and M. Ji. Demystifying why local
aggregation helps: Convergence analysis of hierarchical SGD. In Proc.
AAAI, June 2022.

[3] L. Liu, J. Zhang, S. H. Song, and K. B. Letaief. Client-edge-cloud
hierarchical federated learning. In Proc. IEEE ICC, June 2020.

[4] S. Luo, X. Chen, Q. Wu, Z. Zhou, and S. Yu. HFEL: Joint edge
association and resource allocation for cost-efficient hierarchical federated
edge learning. IEEE Trans. Wireless Commun., 19(10):6535–6548,
October 2020.

[5] A. Wainakh, A. S. Guinea, T. Grube, and M. Mühlhäuser. Enhancing
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