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Abstract—We consider a multi-process remote estimation sys-
tem observing K independent Ornstein-Uhlenbeck processes.
In this system, a shared sensor samples the K processes in
such a way that the long-term average sum mean square
error (MSE) is minimized. The sensor operates under a total
sampling frequency constraint fmax and samples the processes
according to a Maximum-Age-First (MAF) schedule. The samples
from all processes consume random processing delays, and then
are transmitted over an erasure channel with probability ϵ.
Aided by optimal structural results, we show that the optimal
sampling policy, under some conditions, is a threshold policy. We
characterize the optimal threshold and the corresponding optimal
long-term average sum MSE as a function of K, fmax, ϵ, and
the statistical properties of the observed processes.

I. INTRODUCTION

We study the problem of timely tracking of multiple random
processes using shared resources. This setting arises in many
practical situations of remote estimation applications. Recent
works have drawn connections between the quality of the
estimates at the destination, measured through mean square
error (MSE), and the age of information (AoI) metric that
assesses timeliness and freshness of the received data, see,
e.g., the survey in [1, Section VI]. We extend these results to
multi-process estimation settings in this work.

AoI is defined as the time elapsed since the latest received
message has been generated at its source. It has been studied
extensively in the past few years in various contexts, see, e.g.,
[2]–[8]. Relevant to this work is the fact that AoI can be
closely tied to MSE in random processes tracking applica-
tions. The works in [9]–[11] characterize implicit and explicit
relationships between MSE and AoI under different estimation
contexts. References [12], [13], however, consider the notion
of the value of information (mainly through MSE) and show
that optimizing it can be different from optimizing AoI. Lossy
source coding and distorted updates for AoI minimization is
considered in [14]–[16]. The notion of age of incorrect infor-
mation (AoII) is introduced in in [17], adding more context
to AoI by capturing erroneous updates. The works in [18],
[19] consider sampling of Wiener and Ornstein-Uhlenbeck
(OU) processes for the purpose of remote estimation, and
draw connections between MSE and AoI. Our recent work in
[20] also focuses on characterizing the relationship of MSE
and AoI, yet with the additional presence of coding and
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Fig. 1. System model.

quantization. Reference [21] shows the optimality of threshold
policies for tracking OU processes under rate constraints.

Reference [19] is closely related to our setting, in which
optimal sampling methods to minimize the long-term average
MSE for an OU process is derived. It is shown that if
sampling times are independent of the instantaneous values
of the process (signal-independent sampling) the minimum
MSE (MMSE) reduces to an increasing function of AoI (age
penalty). Then, threshold policies are shown optimal in this
case, in which a new sample is acquired only if the expected
age-penalty surpasses a certain value. This paper extends [19]
(and the related studies in [20], [21]) to multiple OU processes.

In this paper, we study a remote sensing problem consisting
of a shared controlled sensor, a shared queue, and a receiver
(see Fig. 1) to track K independent, but not necessarily
identical, OU processes.1 The sensor transmits the collected
samples over an erasure channel with probability ϵ after being
processed for a random delay with service rate µ. The sensor
generates the samples at will, subject to a total sampling
frequency constraint fmax. The goal is to minimize the long-
term average sum MSE of the K processes. We focus on
maximum-age-first (MAF) scheduling, where the scheduler
chooses the process with the largest AoI to be sampled.
MAF scheduling results in obtaining a fresh sample from the
same process until an unerased sample from that process is
conveyed to the receiver. We show that the optimal stationary
deterministic policy is a threshold policy. We characterize
the optimal threshold τ∗(K, fmax, ϵ, θ,σ) and the correspond-
ing long-term average sum MSE in terms of the processes
statistical properties (θ,σ), ϵ, and fmax. The threshold is a
maximum of two threshold values: one due to a nonbinding
sampling frequency constraint scenario, and another due to
a binding scenario. Our numerical results show that 1) the
optimal threshold τ∗ is an increasing function in the erasure
probability ϵ, and 2) the optimal threshold is an increasing
function in the number of the observed processes K.

1The OU process is the continuous-time analogue of the first-order autore-
gressive process [22], [23], and is used to model various physical phenomena,
and has relevant applications in control and finance.
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II. SYSTEM MODEL

We consider a sensing system in which K independent, OU
processes are remotely monitored using a shared sensor that
transmits samples from the processes over an erasure channel
to a receiver. Denote the kth process value at time s by X

[k]
s .

Given X
[k]
s , the kth process evolves, for t ≥ s, as [22], [23]

X
[k]
t = X [k]

s e−θk(t−s) +
σk√
2θk

e−θk(t−s)We2θk(t−s)−1, (1)

where Wt denotes a Wiener process, while θk > 0 and σk > 0
are fixed parameters that control how fast the process evolves.
The processes are initiated as X

[k]
0 ∼ N

(
0, σ2

k/2θk
)
.

To estimate the kth process at the receiver, the sensor
observes the kth process at time instants

{
S
[k]
i

}
and sends

the samples to the receiver. Samples are generated-at-will. We
focus on signal-independent sampling policies, where optimal
sampling instants depend on the processes’ statistics and not
on exact processes’ values. The sensor must obey a total
sampling frequency constraint fmax. Let ℓi denote the ith
sampling instance regardless of the identity of the process
being sampled. We write the sampling constraint as,

lim inf
n→∞

1

n
E

[
n∑

i=1

ℓi+1 − ℓi

]
≥ 1

fmax
, (2)

Samples go through a shared processing queue, whose service
model follows a Poisson process with service rate µ. Served
samples are prune to erasures with probability ϵ independently
across samples. Immediate erasure status feedback is available.

Samples are time-stamped prior to transmissions. The age-
of-information (AoI) of the kth process, denoted AoI[k](t),
is defined as the time elapsed since the latest successfully
received sample’s time stamp. We focus on Maximum-Age-
First (MAF) scheduling, in which the sampling priority given
to the process with highest AoI. Hence, at time t, process

κ(t) ≜ argmax
k

AoI[k](t) (3)

is sampled. The value of κ(t) will not change unless a
successful transmission occurs. Therefore, in case of erasure
events, a fresh sample is generated from the same process
being served. Under MAF scheduling, each process is sampled
at a rate of fmax/K, and the constraint in (2) becomes

lim inf
n→∞

1

n
E

[
n∑

i=1

S
[k]
i+1 − S

[k]
i

]
≥ K

fmax
, ∀k. (4)

Let S̃
[k]
i denote the sampling instance of the ith success-

fully received sample from the kth process. Let S
[k]
i (m)

be the sampling instance of the mth attempt to convey
the ith sample of the kth process, m = 1, . . . ,M

[k]
i , with

M
[k]
i ∼ geometric(1− ϵ), denoting the number of trials. Each

attempt incurs an i.i.d. service time, Y [k]
i (m) ∼ exp(µ). The

successfully received sample arrives at the receiver at D[k]
i ,

D
[k]
i = S̃

[k]
i + Y

[k]
i

(
M

[k]
i

)
. (5)

The AoI of the kth OU process is as follows:

AoI[k](t) = t− S̃
[k]
i , D

[k]
i ≤ t < D

[k]
i+1. (6)

The receiver constructs minimum mean square error
(MMSE) estimates using the collected samples. Since the
processes are independent, and by the strong Markov property
of the OU process, the MMSE estimate for the kth process,
X̂

[k]
t , is based solely on the latest received sample from that

process. Thus, for D[k]
i ≤ t < D

[k]
i+1, we have [19], [20]

X̂
[k]
t = E

[
X

[k]
t

∣∣∣S̃[k]
i , X

S̃
[k]
i

]
(1)
= X

S̃
[k]
i
e−θk(t−S̃

[k]
i ). (7)

Hence, the instantaneous mean square error (MSE) in estimat-
ing the kth process at time t ∈

[
D

[k]
i , D

[k]
i+1

)
is [19], [20]

mse[k]
(
t, S̃

[k]
i

)
=

σ2
k

2θk

(
1− e

−2θk

(
t−S̃

[k]
i

))
, (8)

which is an increasing function of the AoI in (6). Next, we
define the long-term time average MSE of the kth process as

mse[k]≜ lim sup
T→∞

∑T
i=1 E

[∫D
[k]
i+1

D
[k]
i

mse[k]
(
t, S̃

[k]
i

)
dt

]
∑T

i=1 E
[
D

[k]
i+1 −D

[k]
i

] . (9)

Our goal is to choose the sampling instants to minimize a
penalty function g(·) of

{
mse[k]

}
. More specifically, to solve

min
{S[k]

i (m)}
g
(
mse[1], · · · ,mse[K]

)
s.t. lim inf

n→∞

1

n
E

[
n∑

i=1

S
[k]
i+1 − S

[k]
i

]
≥ K

fmax
, ∀k. (10)

III. STATIONARY POLICIES: PROBLEM RE-FORMULATION

We re-formulate problem (10) in terms of a waiting policy.
We define W

[k]
i (m) as the mth waiting time before taking the

mth sample towards conveying the ith sample from the kth
process, 1 ≤ m ≤ M

[k]
i . Without loss of generality, let the

MAF schedule be in the order 1, 2, . . . ,K . Thus,

S
[k]
i (m) = D

[k−1]
i +

m−1∑
j=1

Y
[k]
i (j) +

m∑
j=1

W
[k]
i (j), (11)

with D
[0]
i ≜ D

[K]
i−1. We define the ith epoch of the kth process,

Γ
[k]
i , as the inter-reception time in between its ith and (i+1)th

unerased samples, i.e., Γ[k]
i = D

[k]
i+1 −D

[k]
i .

We focus on stationary waiting policies in which the waiting
policy

{
W

[k]
i (m)

}
has the same distribution across all pro-

cesses’ epochs. Under MAF scheduling, each process epoch
entails a successful transmission of every other process. This
induces a stationary distribution across all processes’ epochs
given that the service times and erasures are i.i.d. Therefore,
dropping the indices i and k, we have Γ

[k]
i ∼ Γ, ∀i, k, where

Γ =
K∑

k=1

M [k]∑
m=1

W [k](m) + Y [k](m). (12)
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By stationarity, one can write (9) for a typical epoch as

mse[k] =
E
[∫D[k]+Γ

D[k] mse[k]
(
t, S̃[k]

)
dt
]

E [Γ]
. (13)

where D
[k]
i ∼ D[k] and S̃

[k]
i ∼ S̃[k], ∀i. In the sequel, we treat

the Kth (last) process’s epoch as the typical epoch.
In the next lemma, we show that one can achieve the same

long-term average MSE penalty by grouping all the waiting
times at the beginning of the (typical) epoch.

Lemma 1 Under signal-independent sampling with MAF
scheduling and stationary waiting policies, problem (10) is
equivalent to the following optimization problem:

min
W≥0

g
(
mse[1], · · · ,mse[K]

)
s.t. E

[
(1− ϵ)W +

K∑
k=1

Y [k]

]
≥ K

fmax
, (14)

where W ≜
∑K

k=1

∑M [k]

m=1 W
[k](m) and the waiting is only

performed at the beginning of the epoch.

Proof: Observing the average MSE function in (13), the
waiting times appear in the numerator and denominator as
the sum

∑K
k=1

∑M [k]

m=1 W
[k](m). Thus, for the optimal wait-

ing times
{
W [k]∗(m)

}
that solve (10), the waiting time

W ∗ =
∑K

k=1

∑M [k]

m=1 W
[k]∗(m) achieves the same mse[k].

Conversely, starting with W ∗ in (14) and breaking it arbitrarily
to any waiting times such that W ∗ =

∑K
k=1

∑M [k]

m=1 W
[k]∗(m)

gives the same objective function in (10).
For the sampling constraint, we have that for process k,

lim inf
n→∞

1

n
E

[
n∑

i=1

S
[k]
i+1 − S

[k]
i

]
= lim inf

n→∞

1

n
E
[
S
[k]
n+1

]
. (15)

Define e(n) to be the index of the epoch corresponding to the
nth sample. Hence, we can write the sampling constraint as

lim inf
n→∞

e(n)

n
·
E[S[k]

n+1]

e(n)

=
1

E[M [k]]
· lim inf

n→∞

1

e(n)

(
e(n)−1∑
i=1

E

[
K∑

k=1

M
[k]
i∑

m=1

W
[k]
i (m)

+ Y
[k]
i (m)

]
+ o (e(n))

)
(16)

=
1

E[M [k]]
· lim inf

n→∞

1

e(n)

e(n)−1∑
i=1

(
E[W ]

+E
[
M

[k]
i

]
· E

[
K∑

k=1

Y
[k]
i

])
(17)

=E

[
(1− ϵ)W +

K∑
k=1

Y [k]

]
, (18)

where (16) follows from the strong law of large num-
bers and the fact that the time spent in the e(n)th epoch,

∆ =
∑k−1

k̃=1

∑M [k̃]

m=1 W
[k̃]
i (m) + Y

[k̃]
i (m) +

∑m̃
m=1 W

[k]
i (m) +

Y
[k]
i (m), is o(e(n)) and hence lim infn→∞

∆
e(n) = 0, and (17)

follows from Wald’s identity. ■

Remark 1 The sampling constraint in problem (14) is not
active if fmax > µ. This is due to that, in this case, the
inter-sampling time, on average, is larger than the minimum
allowable sampling time dictated by the sampling constraint.

If the sampling constraint is binding (fmax < µ), the
average waiting time monotonically increases with the erasure
probability. This is true because no waiting is allowed in
between unsuccessful transmissions. To account for the ex-
pected large number of back-to-back sample transmissions in
the epoch, sampler waits for a relatively larger amount of time
at its beginning so that the sampling constraint is satisfied.

IV. OPTIMAL THRESHOLD WAITING AND MINIMUM SUM
MSE CHARACTERIZATION

We provide the optimal solution of problem (14) for a
sum MSE penalty g

(
mse[1], · · · ,mse[K]

)
=
∑K

k=1 mse
[k],

together with a stationary deterministic waiting policy, in
which the waiting value at the beginning of an epoch is
given by a deterministic function w(·) of the previous epoch’s
total service time, denoted Ỹ ∼

∑K
k=1

∑M [k]

m=1 Y
[k](m). Such

choice of waiting policies emerges naturally since the MSE is
an increasing function of the AoI, whose value at the start of
the epoch is, in turn, an increasing function of Ỹ . Stationary
deterministic policies have been used in similar contexts in the
literature [18]–[20] and shown to perform optimally.

Formally, substituting the above into problem (14), we now
aim at solving the following functional optimization problem:

min
w(·)≥0

∑K
k=1 E

[∫D[k]+Γ

D[k] mse[k]
(
t, S̃[k]

)
dt
]

E [Γ]

s.t. E
[
w
(
Ỹ
)]

≥ 1

1− ϵ

(
K

fmax
− K

µ

)
. (19)

Theorem 1 provides the solution of problem (19). A proof
sketch is given due to space limits. We use the compact vector
notation θ ≜ [θ1 θ2 · · · θK ] and σ ≜ [σ2

1 σ2
2 · · · σ2

K ].

Theorem 1 The optimal waiting policy w∗(·) that solves
problem (19) is given by the threshold policy

w∗(z) = [τ∗(K, fmax, ϵ, θ,σ)− z]
+
, (20)

where the optimal threshold τ∗(K, fmax, ϵ, θ,σ) is given by

τ∗=max

{
G−1

θ,σ(β
∗), H−1

(
1

(1−ϵ)

[
K

fmax
−K

µ

]+)}
, (21)
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where Gθ,σ(τ) ≜
∑K

k=1
σ2
k

2θk

(
1− E

[
e−2θkY

]
e−2θkτ

)
, and

β∗ corresponds to the optimal long-term average sum MSE
in this case, and is given by the unique solution of

K∑
k=1

σ2
k

2θk

(
H(τ∗)+

K

µ(1−ϵ)
− 1

2θk
· µ

2θk+µ
(1−Fk(τ

∗))

)
−β∗

(
H(τ∗)+

K

µ(1−ϵ)

)
= 0, (22)

with H(·), and Fk(·) defined in (23), and (24), respectively.

Proof: [Sketch.] We apply Dinkelbach’s approach [24] to
transform the fractional objective function of (19) into a
parameterized difference between the numerator and the de-
nominator. This produces the auxiliary optimization problem

p(β) ≜ min
w(·)≥0

K∑
k=1

E

[∫ D+Γ

D

mse[k](t, S̃[k])dt

]
− βE [Γ]

s.t. E
[
w
(
Ỹ
)]

≥ 1

1− ϵ

(
K

fmax
− K

µ

)
, (25)

from which the optimal solution of problem (19) is given by
β∗ that uniquely solves p(β∗) = 0 [24].

Now for a fixed β, one can follow a Lagrangian approach
to show that the optimal solution of problem (25) satisfies

K∑
k=1

σ2
k

2θk

(
1− E

[
e−2θkY

]
e−2θk(w

∗(z)+z)
)

= β + ζ(1− ϵ) +
η(y)

fỸ (z)
, (33)

with η(y) and ζ being Lagrange multipliers corresponding to
the dual problem, and fỸ (·) is the probability density function
of the total service time in the epoch. We define the left hand
side of the above as Gθ,σ(w

∗(z) + z) given in the theorem,
which is an increasing function. Thus, one can uniquely solve
for w∗(z) in terms of the Lagrange multipliers.

We then make use of the complementary slackness con-
ditions and some involved mathematical manipulations to
characterize the effect of the Lagrange multipliers on the
optimal solution. Specifically, we define the function H(·)
to denote the average waiting time and characterize it using
the sampling constraint (when binding). The function H(·)
depends on the distribution of Ỹ , given by a convolution of
a random number (that is geometrically distributed) of the
exp(µ) distribution. This gives rise to the incomplete Gamma
function used in (23) and (24).

Finally, everything is combined by solving p(β∗) = 0. ■
Theorem 1 shows that the sensor only takes a new sample

in the epoch only if the previous epoch’s total service time
∼ Ỹ (of all processes) surpasses a certain threshold. It is
emphasized in (20) that such threshold depends on the system
parameters. This is highlighted in the next section.

V. NUMERICAL RESULTS

We present our numerical results concerning Theorem 1.
Fig. 2 studies a 2-process system with θ = [0.1 0.5],

and σ = [1 2], and service rate µ = 1. We show the
optimal threshold τ∗ versus the erasure probability ϵ for
fmax = 0.5, 0.95, , 1.5. Our results show that for all sampling
frequency constraints, the optimal threshold increases as the
erasure probability increases. This is because that G−1

θ,σ(·), and
H−1(·) are increasing functions in ϵ. We have three different
cases. First, when fmax = 0.5, the sampling frequency
constraint is binding even at ϵ = 0. The optimal threshold
τ∗ = H−1

(
1

1−ϵ

[
K

fmax
− K

µ

])
= H−1

(
2

1−ϵ

)
. Thus, the

optimal threshold is higher than the remaining cases and much
steeper. Second, when fmax = 1.5, the sampling frequency
constraint is inactive as fmax > µ, and τ∗ = G−1

θ,σ(β
∗) for

all ϵ. Finally, when fmax = 0.95, we observe an interesting
behavior. When ϵ < ϵ∗ = 0.7, the threshold corresponding to
G−1

θ,σ(β
∗) is (slightly) higher than the threshold corresponding

to H−1
(

1
1−ϵ

[
K

fmax
− K

µ

])
(which is shown as a dotted curve

in Fig. 2), while for ϵ > ϵ∗ = 0.7, the sampling frequency con-
straint becomes binding and therefore, the optimal threshold
is characterized by H−1(·) and becomes more steeper.

In Fig. 3, we consider a symmetric system with K pro-
cesses, each having σ2

k = 1, and θk = 0.5 with service rate
µ = 1. We study the optimal threshold versus the number of
processes K. Fig. 3 shows that as K increases, the optimal
threshold increases. The slope of the curve depends on fmax.
When fmax = 0.5, the sampling frequency constraint is
binding, and τ∗ linearly increases with K with a steeper slope.
When fmax = 1.5 > µ = 1 (unconstrained problem), the op-
timal threshold is slowly increasing with K. For fmax = 0.95,
the optimal threshold matches the unconstrained solution for
K = 1, 2. However, when K > 2, the sampling frequency
constraint becomes binding and the linear-like profile prevails.

In Fig. 4, we consider a 2-process system with σ2
1 = 2,

σ2
2 = 1, θ1 = 0.5 and µ = 1. We vary θ2 ∈ [0.1, 1] and observe

the optimal threshold and the MMSE. When the sampling
frequency constraint is binding, e.g., when fmax = 0.5, the
optimal threshold is independent of θ2 as the argument of
H−1(·) is independent of θ2. The optimal threshold monoton-
ically decreases as θ2 increases for fmax = 1.5 as the system
needs to wait less to track the variations in faster processes.
In both cases, the long-term average MMSE is decreasing in
θ2 since the sum of the processes’ variances decreases.
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H(τ) =
∞∑

ρ=K

(
ρ− 1

K − 1

)
ϵρ−K(1− ϵ)K

[
τγ(µτ, ρ)− ρ

µ
γ(µτ, ρ+ 1)

]
, (23)

Fk(τ) =
∞∑

ρ=K

(
ρ− 1

K − 1

)
ϵρ−K(1− ϵ)K

[
e−2θkτγ(µτ, ρ)+

(
µ

2θk + µ

)ρ

(1−γ((2θk+µ)τ, ρ)

]
, (24)

where γ(x, y) is the normalized incomplete Gamma function defined as γ(x, y) = 1
(y−1)!
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Fig. 2. The optimal threshold (τ∗) versus the erasure probability (ϵ) for
different sampling frequency constraints (fmax).
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