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Abstract—We consider a multi-process remote estimation sys-
tem observing K independent Ornstein-Uhlenbeck processes.
In this system, a shared sensor samples the K processes in
such a way that the long-term average sum mean square
error (MSE) is minimized. The sensor operates under a total
sampling frequency constraint f..x and samples the processes
according to a Maximum-Age-First (MAF) schedule. The samples
from all processes consume random processing delays, and then
are transmitted over an erasure channel with probability e.
Aided by optimal structural results, we show that the optimal
sampling policy, under some conditions, is a threshold policy. We
characterize the optimal threshold and the corresponding optimal
long-term average sum MSE as a function of K, fnax, €, and
the statistical properties of the observed processes.

I. INTRODUCTION

We study the problem of timely tracking of multiple random
processes using shared resources. This setting arises in many
practical situations of remote estimation applications. Recent
works have drawn connections between the quality of the
estimates at the destination, measured through mean square
error (MSE), and the age of information (Aol) metric that
assesses timeliness and freshness of the received data, see,
e.g., the survey in [1, Section VI]. We extend these results to
multi-process estimation settings in this work.

Aol is defined as the time elapsed since the latest received
message has been generated at its source. It has been studied
extensively in the past few years in various contexts, see, e.g.,
[2]-[8]. Relevant to this work is the fact that Aol can be
closely tied to MSE in random processes tracking applica-
tions. The works in [9]-[11] characterize implicit and explicit
relationships between MSE and Aol under different estimation
contexts. References [12], [13], however, consider the notion
of the value of information (mainly through MSE) and show
that optimizing it can be different from optimizing Aol. Lossy
source coding and distorted updates for Aol minimization is
considered in [14]-[16]. The notion of age of incorrect infor-
mation (Aoll) is introduced in in [17], adding more context
to Aol by capturing erroneous updates. The works in [18],
[19] consider sampling of Wiener and Ornstein-Uhlenbeck
(OU) processes for the purpose of remote estimation, and
draw connections between MSE and Aol. Our recent work in
[20] also focuses on characterizing the relationship of MSE
and Aol, yet with the additional presence of coding and
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quantization. Reference [21] shows the optimality of threshold
policies for tracking OU processes under rate constraints.
Reference [19] is closely related to our setting, in which
optimal sampling methods to minimize the long-term average
MSE for an OU process is derived. It is shown that if
sampling times are independent of the instantaneous values
of the process (signal-independent sampling) the minimum
MSE (MMSE) reduces to an increasing function of Aol (age
penalty). Then, threshold policies are shown optimal in this
case, in which a new sample is acquired only if the expected
age-penalty surpasses a certain value. This paper extends [19]
(and the related studies in [20], [21]) to multiple OU processes.
In this paper, we study a remote sensing problem consisting
of a shared controlled sensor, a shared queue, and a receiver
(see Fig. 1) to track K independent, but not necessarily
identical, OU processes.! The sensor transmits the collected
samples over an erasure channel with probability € after being
processed for a random delay with service rate p. The sensor
generates the samples at will, subject to a total sampling
frequency constraint fy,.x. The goal is to minimize the long-
term average sum MSE of the K processes. We focus on
maximum-age-first (MAF) scheduling, where the scheduler
chooses the process with the largest Aol to be sampled.
MATF scheduling results in obtaining a fresh sample from the
same process until an unerased sample from that process is
conveyed to the receiver. We show that the optimal stationary
deterministic policy is a threshold policy. We characterize
the optimal threshold 7* (K, fiax, €, 8, o) and the correspond-
ing long-term average sum MSE in terms of the processes
statistical properties (8,0), €, and fax. The threshold is a
maximum of two threshold values: one due to a nonbinding
sampling frequency constraint scenario, and another due to
a binding scenario. Our numerical results show that 1) the
optimal threshold 7* is an increasing function in the erasure
probability €, and 2) the optimal threshold is an increasing
function in the number of the observed processes K.

'The OU process is the continuous-time analogue of the first-order autore-
gressive process [22], [23], and is used to model various physical phenomena,
and has relevant applications in control and finance.
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II. SYSTEM MODEL

We consider a sensing system in which K independent, OU
processes are remotely monitored using a shared sensor that
transmits samples from the processes over an erasure channel
to a receiver. Denote the kth process value at time s by X s[k].
Given Xs[k], the kth process evolves, for ¢ > s, as [22], [23]

[kl g—0n(t—s) 1 _Tk_
’ V20)
where W; denotes a Wiener process, while 6, > 0 and o}, > 0
are fixed parameters that control how fast the process evolves.
The processes are initiated as X1 ~ A (0,02 /26y).

To estimate the kth process at the receiver, the sensor
observes the kth process at time instants {Si[k]
the samples to the receiver. Samples are generated-at-will. We
focus on signal-independent sampling policies, where optimal
sampling instants depend on the processes’ statistics and not
on exact processes’ values. The sensor must obey a fotal
sampling frequency constraint fu.x. Let £; denote the ith
sampling instance regardless of the identity of the process
being sampled. We write the sampling constraint as,

1
Z&H 1 25— )

Samples go through a shared processing queue, whose service
model follows a Poisson process with service rate p. Served
samples are prune to erasures with probability e independently
across samples. Immediate erasure status feedback is available.

Samples are time-stamped prior to transmissions. The age-
of-information (Aol) of the kth process, denoted AoTl¥l(¢),
is defined as the time elapsed since the latest successfully
received sample’s time stamp. We focus on Maximum-Age-
First (MAF) scheduling, in which the sampling priority given
to the process with highest Aol. Hence, at time ¢, process

ng] - X efek’(tfs)Wezsk(t—s),p 1

} and sends

lim inf — ]E

n—oo N

r(t) £ arg max no1M (1) 3)

is sampled. The value of x(t) will not change unless a
successful transmission occurs. Therefore, in case of erasure
events, a fresh sample is generated from the same process
being served. Under MAF scheduling, each process is sampled
at a rate of fi,.x/K, and the constraint in (2) becomes

S,

=1

lim inf — ]E

n—oco n max

s}k]]zK, Ve @)

Let S’Z[k] denote the sampling instance of the ¢th success-
fully received sample from the kth process. Let Si[k} (m)
be the sampling instance of the mth attempt to convey
the ith sample of the kth process, m = 1,...,Mi[k], with
Mi[k] ~ geometric(1 — ¢), denoting the number of trials. Each
attempt incurs an i.i.d. service time, Y;[k] (m) ~ exp(u). The

successfully received sample arrives at the receiver at D",

The Aol of the kth OU process is as follows:

pothl(=1-51,  pf<i<Dll. ©

The receiver constructs minimum mean square error
(MMSE) estimates using the collected samples. Since the
processes are independent, and by the strong Markov property
of the OU process, the MMSE estimate for the kth process,
Xik], is based solely on the latest received sample from that
process. Thus, for Dl[k] <t< Dl[lﬂl, we have [19], [20]

XM —E[xf

[k] X g } €] Xs[k]e—ek(t—ézl’“]). 7

Hence, the instantaneous mean square error (MSE) in estimat-
ing the kth process at time ¢ € f

DM, Dz[’_ﬂl) is [19], [20]

~ 2
msel! (LSZW) = 207]“
k

(1—6—%k@—@H)>a (®)

which is an increasing function of the Aol in (6). Next, we
define the long-term time average MSE of the kth process as

ST E [f 1 mseld (1 S[k)dt}

Zz 1E[ z+]1 Dz[k]}

Our goal is to choose the sampling instants to minimize a

mselk £1lim sup
T—o0

(€))

penalty function g(-) of {mse[k] } More specifically, to solve

min

g (mselll ...
{5t (m)} (

,mse[K])

s.t. lim inf lI['Z

n—oo N

- K
> st — SE’”] > 5, V. (10)

i=1

IIT. STATIONARY POLICIES: PROBLEM RE-FORMULATION

We re-formulate problem (10) in terms of a waiting policy.
We define Wi[k] (m) as the mth waiting time before taking the
mth sample towards conveying the ith sample from the kth
process, 1 < m < Mi[k]. Without loss of generality, let the
MAF schedule be in the order 1,2,..., K. Thus,

S (m) = DI~ 1]+ZY +ZW[“ ),

j=1
with Dl[o] £ Dz[l—{]l We define the ith epoch of the kth process,
T'*], as the inter-reception time in between its ith and (i+1)th
unerased samples, i.e., ng] = Dl[i]l — Dl[k].

We focus on stationary waiting policies in which the waiting
policy {Wim (m)} has the same distribution across all pro-
cesses’ epochs. Under MAF scheduling, each process epoch
entails a successful transmission of every other process. This
induces a stationary distribution across all processes’ epochs
given that the service times and erasures are i.i.d. Therefore,
dropping the indices ¢ and k, we have ng] ~ T, Vi, k, where

(11

K MW
o gy oyl (M}’“]) . ) L= whHm)+y¥(m). (12)
k=1m=1
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By stationarity, one can write (9) for a typical epoch as

S T mselt (1,51) i

E { DIF
E L]

mselkl = (13)
where DZUC] ~ DI* and S’z[k] ~ S[¥1 i In the sequel, we treat
the Kth (last) process’s epoch as the typical epoch.

In the next lemma, we show that one can achieve the same
long-term average MSE penalty by grouping all the waiting
times at the beginning of the (typical) epoch.

Lemma 1 Under signal-independent sampling with MAF
scheduling and stationary waiting policies, problem (10) is
equivalent to the following optimization problem:

min g (msem, . ,mse[K]>
W>0
s K
st.  El1-—oW+> vH .4
k;::l max

(]
where W 2 Z,If:l Zn]\fjl W(m) and the waiting is only
performed at the beginning of the epoch.

Proof: Observing the average MSE function in (13), the
waiting times appear in the numerator and denominator as
the sum S5, fog Wk (m). Thus, for the optimal wait-
ing times {W/"(m)} that solve (10), the waiting time

= YK ZMEC]l W™ (m) achieves the same mselkl.,
Conversely, starting with W* in (14) and breakmg it arbitrarily

[%]
to any waiting times such that W* = S EM W (m)
gives the same objective function in (10).
For the sampling constraint, we have that for process k,

> st - st -

i=1
Define e(n) to be the index of the epoch corresponding to the
nth sample. Hence, we can write the sampling constraint as

e(n) E[SH]

= liminf E [SH.] as)

.1
liminf —E
n—oo N n—o0

lim inf
n—oo M e(n)
1 1 e(n)—1 K Mi[k]
= liminf — E W (m)
et g 2 2|22

where (16) follows from the strong law of large num-
bers and the fact that the time spent in the e(n)th epoch,

k— MUF [k E " k
A = 5 S W m) + ¥, m) + 5, W m) +
Yi[k] (m), is o(e(n)) and hence lim inf,, o % =0, and (17)
follows from Wald’s identity. W

Remark 1 The sampling constraint in problem (14) is not
active if fmax > p. This is due to that, in this case, the
inter-sampling time, on average, is larger than the minimum
allowable sampling time dictated by the sampling constraint.
If the sampling constraint is binding (fmax < ), the
average waiting time monotonically increases with the erasure
probability. This is true because no waiting is allowed in
between unsuccessful transmissions. To account for the ex-
pected large number of back-to-back sample transmissions in
the epoch, sampler waits for a relatively larger amount of time
at its beginning so that the sampling constraint is satisfied.

IV. OPTIMAL THRESHOLD WAITING AND MINIMUM SUM
MSE CHARACTERIZATION

We provide the optimal solution of problem (14) for a
= Yy msel,
together with a stationary deterministic waiting policy, in
which the waiting value at the beginning of an epoch is
given by a deterministic function w(-) of the previous epoch’s
total service time, denoted ¥ ~ Zszl Zi\fg Yl (m). Such
choice of waiting policies emerges naturally since the MSE is
an increasing function of the Aol, whose value at the start of
the epoch is, in turn, an increasing function of Y. Stationary
deterministic policies have been used in similar contexts in the
literature [18]-[20] and shown to perform optimally.

sum MSE penalty g (mse[l], - mselK]

Formally, substituting the above into problem (14), we now
aim at solving the following functional optimization problem:

Klr i
i PO { Dl Er[n;]e[k] (t,S[k]) dt]

s.t. E[w(f/)}zlic(fix—[;)

Theorem 1 provides the solution of problem (19). A proof
sketch is given due to space limits. We use the compact vector

notation @ £ [0 0, --- O] and o = [0? 03 --- 0%].

19)

Theorem 1 The optimal waiting policy w*(-) that solves
problem (19) is given by the threshold policy

w*(2) = [7*(K, fmax, 6,0, 0) — 2], (20)

K
+E (MM E S v 17
[ E ] ; ¢ (an where the optimal threshold 7*(K, fmax, €, 60, 0) is given by
1 K K1t
=E|[1-eW+) YH (18) 7 =max{GylL (8*),H " { —] » 2D
,;1 0eT) N\ TG [Fome 0
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where Gg o (T) = Zf . 29k (1 —E [e2%Y] e72%7), and
B* corresponds to the optimal long-term average sum MSE
in this case, and is given by the unique solution of

= o} . K 1 1 .
o (0 gy w-Re)

* * K _
- (H(T )+M(1_€)) =0, (22)
with H(-), and Fy(-) defined in (23), and (24), respectively.

Proof: [Sketch.] We apply Dinkelbach’s approach [24] to
transform the fractional objective function of (19) into a
parameterized difference between the numerator and the de-
nominator. This produces the auxiliary optimization problem

D+T
/s

.. E[w(Y)}zlie<fix—f), (25)

from which the optimal solution of problem (19) is given by
[£* that uniquely solves p(8*) = 0 [24].

Now for a fixed /3, one can follow a Lagrangian approach
to show that the optimal solution of problem (25) satisfies

msel® (¢, SNt | — BE 1)

K 2
Z O (1 _E [e—zeky] 6—29k(1z)*(z)+z)>
— 20,

— Bt c(1—o+ 1Y

fy(2)

with n(y) and ¢ being Lagrange multipliers corresponding to
the dual problem, and fy (-) is the probability density function
of the total service time in the epoch. We define the left hand
side of the above as Gg o (w*(2) + z) given in the theorem,
which is an increasing function. Thus, one can uniquely solve
for w*(z) in terms of the Lagrange multipliers.

We then make use of the complementary slackness con-
ditions and some involved mathematical manipulations to
characterize the effect of the Lagrange multipliers on the
optimal solution. Specifically, we define the function H(-)
to denote the average waiting time and characterize it using
the sampling constraint (when binding). The function H(-)
depends on the distribution of Y, given by a convolution of
a random number (that is geometrically distributed) of the
exp(p) distribution. This gives rise to the incomplete Gamma
function used in (23) and (24).

Finally, everything is combined by solving p(5*) = 0. &

Theorem 1 shows that the sensor only takes a new sample
in the epoch only if the previous epoch’s fotal service time
~ Y (of all processes) surpasses a certain threshold. It is
emphasized in (20) that such threshold depends on the system
parameters. This is highlighted in the next section.

(33)

V. NUMERICAL RESULTS

We present our numerical results concerning Theorem 1.
Fig. 2 studies a 2-process system with 8 = [0.1 0.5],

and o = [1 2|, and service rate © = 1. We show the
optimal threshold 7* versus the erasure probability e for
Sfmax = 0.5, 0.95, , 1.5. Our results show that for all sampling
frequency constraints, the optimal threshold increases as the
erasure probability increases. This is because that G ;1,(), and
H~1(-) are increasing functions in €. We have three different
cases. First, when fnax = 0.5, the sampling frequency
constraint is binding even at € = 0. The optimal threshold

o= H' (L ffax—ﬁ])zﬂl( . Thus, the
optimal threshold is higher than the remaining cases and much
steeper. Second, when fi.x = 1.5, the sampling frequency
constraint is inactive as fuax > p, and 7 = G;L(ﬁ*) for
all e. Finally, when f,,x = 0.95, we observe an interesting
behavior. When € < €* = 0.7, the threshold corresponding to

G;yl (8*) is (slightly) higher than the threshold corresponding

to H—1
in Fig. 2), wh1 e for e > €* = 0.7, the sampling frequency con-
straint becomes binding and therefore, the optimal threshold
is characterized by H~!(-) and becomes more steeper.

In Fig. 3, we consider a symmetric system with K pro-
cesses, each having ai =1, and 6, = 0.5 with service rate
© = 1. We study the optimal threshold versus the number of
processes K. Fig. 3 shows that as K increases, the optimal
threshold increases. The slope of the curve depends on fyax.
When fnax = 0.5, the sampling frequency constraint is
binding, and 7* linearly increases with K with a steeper slope.
When f,,q = 1.5 > p =1 (unconstrained problem), the op-
timal threshold is slowly increasing with K. For f,.x = 0.95,
the optimal threshold matches the unconstrained solution for
K = 1,2. However, when K > 2, the sampling frequency
constraint becomes binding and the linear-like profile prevails.

In Fig. 4, we consider a 2-process system with o = 2,
02 =1,0; =0.5and u = 1. We vary 05 € [0.1, 1] and observe
the optimal threshold and the MMSE. When the sampling
frequency constraint is binding, e.g., when fpax = 0.5, the
optimal threshold is independent of 65 as the argument of
H~1(-) is independent of f3. The optimal threshold monoton-
ically decreases as 6, increases for fiax = 1.5 as the system
needs to wait less to track the variations in faster processes.
In both cases, the long-term average MMSE is decreasing in
5 since the sum of the processes’ variances decreases.

[ de — ;D (which is shown as a dotted curve
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