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We report analytical and numerical investigations of subion-scale turbulence in
low-beta plasmas using a rigorous reduced kinetic model. We show that efficient
electron heating occurs and is primarily due to Landau damping of kinetic Alfvén
waves, as opposed to Ohmic dissipation. This collisionless damping is facilitated by
the local weakening of advective nonlinearities and the ensuing unimpeded phase
mixing near intermittent current sheets, where free energy concentrates. The linearly
damped energy of electromagnetic fluctuations at each scale explains the steepening of
their energy spectrum with respect to a fluid model where such damping is excluded
(i.e., a model that imposes an isothermal electron closure). The use of a Hermite
polynomial representation to express the velocity-space dependence of the electron
distribution function enables us to obtain an analytical, lowest-order solution for the
Hermite moments of the distribution, which is borne out by numerical simulations.
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Plasma turbulence is ubiquitous in space and astrophysical systems as diverse as the Earth’s
magnetosphere (1), the solar wind (2, 3), the solar corona (4), accretion disks (5), and
the interstellar and intracluster media (6). Many of these environments are sufficiently
dilute that particle collisions are rare on the dynamical timescales of interest. As such,
kinetic plasma descriptions are needed to understand turbulence in those environments.
Despite decades of intensive research, formulating a predictive theoretical framework
for the dynamics of turbulence in the phase space of positions and velocities has been
a notoriously difficult problem, especially in the subion-scale range (the kinetic range),
where various microphysical plasma processes are dynamically important.

Recent high-resolution, in situ measurements of electromagnetic fluctuations and
plasma distribution functions from satellites such as the Magnetospheric Multiscale
mission, Cluster, and the Parker Solar Probe have provided unprecedented opportunities
to study the rich plasma dynamics in the subion range of the turbulence (7-11). One of
the ultimate goals of these studies is to understand how energy is dissipated in weakly
collisional plasmas and how the electrons and ions are energized (12). Answering these
questions requires a comprehensive understanding of the phase-space dynamics of kinetic
plasma turbulence.

In a collisional plasma, energy can only be thermalized through the “fluid channel,”
in which energy cascades to small spatial scales through nonlinear advection and finally
dissipates by viscosity and resistivity (13—17), while the particle distribution remains close
to local thermodynamic equilibrium (18). In a weakly collisional plasma, however, both
particle free streaming along magnetic field lines and drifting with different gyroaveraged
E x B velocities drive the “phase-mixing” process (e.g., refs. 19-21), which smooths out
the electromagnetic fluctuations and develops complex structures in velocity space. This
kinetic effect enables an additional “kinetic channel” for dissipation, in which energy
transfers to small scales in velocity space (i.e., high velocity moments of the distribution
function) and dissipates through collisions (21-25). Energy dissipation in kinetic
turbulence occurs via a combination of these two channels—their relative importance
being determined by the complex phase-space dynamics of kinetic turbulence (26-29),
elucidating which is the main focus of this paper.

The kinetic dissipation channel is, in principle, susceptible to the plasma echo effect
(30, 31), whereby free energy inverse cascades in velocity space, returning from the high
to the low moments of the distribution function (i.e., phase unmixing). The occurrence
of a collection of stochastic plasma echoes can cause kinetic turbulence to resemble fluid
turbulence, in the sense that the only allowed energy-cascade channel in that case is the
fluid-type cascade toward smaller spatial scales (26, 27). The significance of this effect
has been confirmed by numerical simulations of collisionless plasma turbulence at scales
above the ion Larmor radius (p;) with isothermal electrons focusing on compressive
fluctuations (32) and below p; with an electrostatic drift-kinetic model (33). However,
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how the possible occurrence of plasma echoes can be reconciled
with observations of efficient electron and ion heating (e.g., refs.
11 and 25) at kinetic scales is an open question.

In this work, we address the critical question of how electron
heating occurs in sub-p; turbulence in the limit where the plasma
pressure is small compared to the magnetic pressure (i.e., low
plasma B). In the following sections, we describe the theoretical
framework adopted in this work and derive a (nonlinear) lowest-
order solution of the electron distribution function in velocity
space, which we then show is supported by our numerical
simulations. Our study shows that a self-consistent answer to
the question of electron heating lies in the entwined nature of
turbulent plasma dynamics in position and velocity space.

Theoretical Framework

We adopt the simplest analytical framework that includes the key
physical processes involved in this problem, known as the Kinetic
Reduced Electron Heating Model (KREHM) (34). KREHM is a
rigorous asymptotic reduction of gyrokinetics valid in the limit of
low electron plasma-beta, 8, ~ m,/m;, with B, = 8w ny, TOE/B(z),
where By is the background magnetic (guide) field strength
(assumed constant and directed along 2), and 79, and Ty, are
the background electron density and temperature, respectively;
m, and m; denote the electron and ion masses. Within this limit,
the parallel streaming and electromagnetic effects are ordered
out in the ion gyrokinetic equation. It follows that the ion flow
velocity parallel to the background field is #,; = 0, and ions
become isothermal and electrostatic. Ion finite Larmor radius
(FLR) effects are retained in the gyrokinetic Poisson’s law,

8 1.
=~ —(Fo—1)2
0e T TOe

(1]

where ¢ is the electrostatic potential, §7,/n9, is the electron
density perturbation normalized to its background value, T =

Toi/ Toe is the background temperature ratio, and Iy is a
gyroaveraging operator that has the closed-form expression
Co(e) = Ip(e)e ™ in Fourier space; here, I is the zeroth-order
modified Bessel function of the first kind and & = /ef_,ol-2 /2,

where p; = v,;/€2; is the ion Larmor radius, vy, = /2 70;/mi
is the ion thermal velocity, and Q; = eBy/m;c is the ion Larmor
frequency (we consider single charge ions in this work, Z = 1).
The electrons are described by a perturbed distribution
function which, to order \/m, / m; ~ /B in the gyrokinetic ex-

pansion, can be written as §f; = g, + (87, /n9. + szuzg/vthe)Fog,
where Fo.(|v]) = no./(v/ 27TVthe) exp(—|v]?/203 ) is the equi-

librium Maxwellian defined with the mean electron temperature
Toe and its corresponding thermal speed v, = /2 70,/ ., and
8n, and u, (electron flow parallel to the guide field) are the
zeroth and first moments of §f;, respectively. Since u,; = 0,
the parallel component of Ampere’s law, /, = —(c/47) V3 A,
where A; is the parallel component of the vector potential, leads
10 Uz = (f/cmg)dEZViAz, where d, = ¢/w,. is the electron skin
depth. Information about the second and higher moments of 8f;
is contained in the (reduced) distribution function g,.

The dynamics of this system are described by fluid equations
for the first two moments, coupled to a drift-kinetic equation
for g,:

1 dén, n e
— =—b-V—d’Vi A4, 2
noe dr eom, ¢t 21
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In these equations, d/dt = 9/9t + ¢/Bo{e, ...} denotes the
convective time derivative, with the Poisson bracket defined as

(P, Q} = 9.P9,Q —Aa},PZ)xQ. The parallel (to the total field)
gradient operator is b - VP = 9,P — {A,, P}/By. The last

term in the generalized Ohm’s law features the (normalized)
parallel electron temperature perturbation, defined in terms of
the reduced electron distribution function as

5T, 1 202
- L / Fog ) 5]
TOe Qe Vihe

the isothermal limit of these equations corresponds to § 7, = 0,
thatis, g, = 0. Last, C[g,] represents the collision operator. Since
Eq. 4 has no explicit dependence on v, this coordinate can be
integrated out of the problem if a collision operator is chosen
that bears no such dependence, such as the (modified) Lenard—
Bernstein collision operator (34). In that case, the reduced dis-
tribution function becomes four-dimensional, g, = g.(7, v, £).
In the absence of collisions, Eqs. 2—4 conserve a quadratic
invariant that is usually referred to as the total free energy

Ar & V1 A,)?
W = / 0) ”0e<.0 + V14|
270, 81
A e ﬂog(p d2|V2A |2 /3 Toeg
—(1=T9)2 d <1,
+ .[2( 0) ZT()E + ZF()g
(6]

where the different terms on the right-hand side, in the order
in which they appear, correspond to the ion perturbed entropy,
the magnetic energy, the electron density variance, the kinetic
energy of the parallel electron flow, and the electron free energy,
respectively. For completeness, we note that the isothermal
(g¢ = 0) limit of these equations admits another ideal
invariant—the generalized helicity,

1—r
H= / 0)¢

which reduces to H f 8n,AzdV in the range p; > k|
and to the cross-helicity at MHD scales (£] p; < 1).

To better describe the velocity-space dynamics, we follow
ref. 34 and expand g, in Hermite polynomials:

¢— Z <vthe)g’"(’ OFo(v.), 18]

— d;V1)AdV, 7]

'> 4,

(7 vz 1)

where

b1 /ood H, (”) 9]
m:_— v m I e
& 10e A/ 27"m! Joo ? Uthe &

Since g, only contains moments higher than 87, and u,,, it follows
that go = g1 = 0. Using the Hermite expansion, Eq. 4 can be
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decomposed into a series of coupled equations for the Hermite
coefhicients g, (for m > 2):

dgn /
%_ z/theb V( —gm+1+\/7gm 1— m1g2>

— 25, sz

292 4, — Clg,).
[10]

At large m, free energy is converted to electron entropy and thence
to heat via the collision operator C|gy,].

In summary, the KREHM framework captures ion FLR effects
and electron (drift) kinetic dynamics, including linear Landau
damping. It is accurate at all scales above the electron Larmor
radius, under the low-beta constraint 8, ~ m,/m;. The only
linear mode captured by these equations is the kinetic Alfvén wave
(KAW); as such, it provides the simplest-possible fully kinetic
platform to study turbulence below the ion scales. In the long-
wavelength limit ) p; < 1, the KREHM equations reduce to the
reduced magnetohydrodynamic (RMHD) equations (35-38).

Theoretical Models of Kinetic-Alfvén-Wave
Turbulence

Electromagnetic Fluctuations. We first study the spectral prop-
erties of the electromagnetic fluctuations in the limit of isothermal
electrons (i.e., g,=0). In the framework that we adopt here (i.e.,
that provided by the KREHM equations), turbulent fluctuations
at sub-p; scales are composed of nonlinearly interacting, strongly
anisotropic KAWs. While we are formally restricted by the
KREHM model to low B, we note that the KAW nature of
sub-p; turbulence in more general contexts is widely supported
[though not universally; see (e.g., refs. 39 and 40)] by numerical
work (e.g., refs. 41-45) and observations (e.g., refs. 46-48).
The total magnetic field is B = Byz + 8B, where the
perpendicular (fluctuating) magnetic field is B = —z x VA4,
and 8B | /By < 1. The wave numbers of the fluctuations can be
decomposed into parallel and perpendicular components (with
respect to B), k| and £, corresponding to the correlation length
of the fluctuations in the parallel direction and the perpendicular
plane, £ ~ 1/kj and A ~ 1/k), respectively. In the rest of
the paper, we use the subscript A to refer to the amplitude of
fluctuating quantities at scale A ~ /ej_l.
At ki p; > 1, the GK Poisson’s law (Eq. 1) reduces to

(Snek/”Oe ~ —fﬁﬂk/(f TOe)- [11]

The scale-by-scale equipartition between the density and mag-
netic energy fluctuations (i.e., between the third and second terms
in Eq. 6), (87./n0¢)*n0.To. ~ |V.LA|?/87, combined with
Eq. 11, leads to the relation

or ~ (piVa/c)8B1x, [12]

with Vy = By//4mpg the Alfvén speed pertaining to the guide
field, where pg = ngm; is the background mass density.

Dynamically, the parallel component of fluctuations at scale
e~ k!
KAWs, and so the characteristic (parallel) time scale is set by the
(linear) frequency of those waves:

is assumed to be determined by the propagation of

Vi~ OkAw X k1 pk Ve ~ pVa/ (LX), [13]
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where p, = p;/~/27 is the ion sound Larmor radius. The
perpendicular fluctuations at scale A ~ £7' undergo nonlinear
interactions which lead to a cascade of constant energy flux
toward smaller scales. Dimensionally, this inverse nonlinear time
scale, usually referred to as the “eddy turnover rate,” is

Yt ~ €/(pov3,/2) ~ €/ (8B, /87), [14]

where ¢ is the constant energy fluxand vg), = 8B //4mwpo. The
critical balance (2) conjecture declares that these two frequencies
should be comparable at each scale, y; ~ ¥, setting the
energy cascade rate of the turbulence. We denote by Ep(k))
the spectrum of magnetic energy and by E, () ) the spectrum of
the ion perturbed entropy Kj (the first term on the 7.4.s. of the
total free energy invariant Eq. 6). For £ p; >> 1, K; reduces to the
energy of density fluctuations, and for £] p; < 1 (in RMHD),
K; reduces to the kinetic energy of the E x B flow. For scales
above 4, K; is expected to be in equipartition with the magnetic
energy, while for scales below 4, K; is expected to balance the
kinetic energy of the parallel electron flows (the fourth term on
the 7.4.s. of Eq. 6).

Different models for the nonlinear physics of the fluctuations
lead to different predictions for the energy spectrum. A conven-

tional Kolmogorov-like energy cascade yields a o ki7/ 3 energy
spectrum for magnetic and density fluctuations (22, 38, 49).
This is significantly shallower than the approximate —2.8 power-
law index (e.g., refs. 8, 50, and 51) that is widely found in
solar-wind observations (7, 46—48, 52) and numerical simula-
tions (28, 42, 53-57), implying that physics beyond standard
Kolmogorov-like phenomenology is required to reconcile theory
with observations. Noteworthy attempts in this direction include
intermittency corrections (58) and tearing mediation (59), which

both lead to the prediction of a /elg/s spectrum, despite the
fact that the underlying physics is entirely different. In Zhou
et al. (60), a detailed numerical study is performed and reaches
the conclusion that in the isothermal limit (i.e., gz = 0) of
the KREHM framework, the magnetic and density fluctuations

exhibit a /els/ 3 spectrum and that it is intermittency effects (58)
that are responsible for the spectral steepening.

Rich as the physics is that underlies the above discussion, it
is completely oblivious to electron kinetic effects (i.e., velocity-
space dynamics triggered by allowing g, # 0 in the KREHM
equations), which introduce qualitatively different—and poten-
tially just as important—physical phenomena. That is exactly the
focus of our work, where we investigate the modifications to sub-
p; turbulence due to electron kinetic physics. As we will show,
velocity-space dynamics is as relevant to the understanding of
KAW turbulence as real-space dynamics—and, indeed, we will
demonstrate that the two are tightly connected.

Phase-Space Cascade and Electron Heating. The kinetic physics
of electrons leads to complex dynamics in velocity space, relevant
to energy dissipation and electron heating. In velocity space, the
phase-mixing rate can be estimated through terms on the .4.s. of
Eq. 10 which represent the transfer of free energy from the m-th
to (m + 1)-th moment. In the large-7 limit, these terms can be
written approximately as the derivative with respect to m, from
which follows that the phase-mixing rate can be approximated
as |k|| |7/the/\/_ ~ (Vthe/BO){Az’ }/ﬁ (26, 34). In
position space, on the other hand, free energy cascades to
smaller spatial scales at the nonlinear-advection rate d/dr ~
(c¢/Bo){@, ...} (Lh.s. of Eq. 10). These rates are not, in gen-
eral, the same. At each scale A, there is a critical Hermite
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mode number, denoted as s, at which these two rates

balance:
Uthe

By

resulting in the relation /7 ~ (vthe/c)Azn/@x. At scales
ki1 p; > 1, combined with the GK Poisson’s law (Eq. 11) and
the equipartition relation (Eq. 12), we obtain the spatial scale
dependence of the critical Hermite order™:

Bio{w, Gnd ~ DA g} e [15]

mer(A) ~ (A/d,)?/(27). [16]

Thatis, for \/mk) d, >> 1, the nonlinear advection is expected to
dominate, and the rapid coupling between modes with different
k| can result in a new mode with negative 4 and with a
returning free-energy flux to lower Hermite moments. This
classic phenomenon is known as the “plasma echo” (26, 30, 31).

In many astrophysical environments, collisions are so infre-
quent that the collisional cutoff in velocity space will only occur
atasymptotically large 72 (3> mc,). Therefore, one may expect the
free energy to reach m, and return to the low Hermite moments
due to the restoring stochastic plasma echo. Kinetic turbulence
would thus share the same dissipation route (real-space cascade)
as fluid turbulence. However, this argument is seemingly at odds
with measurements of strong electron heating in the near-Earth
solar wind (11) and in kinetic simulations (61-63). Consistently,
in the numerical results reported later in this paper, we observe no
evidence for plasma echoes. We argue that this paradox is resolved
by the presence of spontaneously formed current sheets in kinetic
turbulent systems. On the one hand, efficient phase mixing is
expected (as a result of the local suppression of nonlinearity)
around current sheets (64, 65). On the other hand, it is at the
sites with large gradient of current density (around the edge of
current sheets) that most of the energy in fluid quantities is
pumped into Hermite moments because the coupling between
them is through o &- V (e/cm,)d2V? A, o b- V], (last term in
Egs. 4 and 10). The combination of these two effects of current
sheets locally regulates the kinetic turbulence so that the free
energy can freely transfer to large Hermite moments, unimpeded
by echo, and collisionally dissipate, leading to electron heating.
Therefore, the phase-mixing-dominated regime in phase space
can be much wider than the estimation (Eq. 16) based on the
simple time-scale comparison (Eq. 15).

A Lowest-Order Solution for the Hermite-Expansion Coeffi-
cients of ge. Based on the time-scale comparison discussed in
the previous section, we present a lowest-order solution for the
perturbed electron distribution function g, in velocity space, valid
in the absence of plasma echo. In Eq. 10, each term can be ordered
based on its inherent frequency. In the phase-mixing-dominated
regime, the /. A.s. (proportional to the nonlinear-advection rate) of
Eq. 10 is much smaller than its .4.s. (proportional to the phase-
mixing rate). To lowest order, the two terms on the 7.4.5. should
therefore balance, and each Hermite moment should satisfy the

relation’

Int1 = — m/(m+ l)gm—l for m > 3, and

= —2/\/3 e/(fmevthe)dfvjz_/lz.

(17]

*In critically balanced turbulence, the same result for m¢r is obtained if estimating d/dt as
wgaw and balancing the two rates as wgaw ~ K| Vihe//Mcr-

TStrictly speaking, this argumentonly implies that the parallel gradients of the two Hermite
moments on the r.h.s. of Eq. 10 should balance. Eq. 17 is a more stringent solution, and
the fact that it is confirmed by our numerical results (see Fig. 4) is a nontrivial observation.
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That is, to the lowest order, all the odd Hermite moments share
the same spatial configuration as the current, and all the even
ones that of the temperature fluctuations, g».

The Hermite spectrum of g,, E, = (|gin|?)/2, where {...)
represents the volume average, can be derived from Eq. 17.
With the approximation E,, ~ (|gnllgn—11)/2 at large m, and

using the relation |g,+1/gn—11 = /m/(m+ 1), we obtain
Ent1/Em—1 = gut1gm/(gn-1gn—2) = /(m—1)/(m+1).
This recursive relation leads to the solution E,, o m~1/2—the
same as the expected spectrum in a linear system with a Landau-
damped kinetic field, corresponding to a constant flux of free
energy transferring from small to large velocity moments (34, 66).

Turbulence at Scales below the Electron Skin Depth, 1 < de.
Last, one may also use the KREHM formalism to investigate
the turbulent cascade at scales below d,, i.e., in the range
A & d, < pi, where fluctuations become predominantly
electrostatic. In this range, equipartition between the den-
sity fluctuations and kinetic energy of the parallel electron
flows (i.e., between the third and fourth terms in Eq. 6),
(810/m0¢)* noe Toe ~ dZ|ViAz|2/8n, is expected, leading to
the relation @) ~ (p;Va/c)d,8B1) /X (invoking Eq. 11). As
before, the critical Hermite moment, m,.;, where the rate of free
energy transfer between consecutive Hermite moments through
linear phase mixing balances the nonlinear-advection rate, is
estimated following Eq. 15. Combined with the equipartition
relation, we obtain m. ~ (A/d,)*/(21%). That is, at scales
kid, > 1, the nonlinear advection of free energy is always
faster than its channeling to larger Hermite moments. Linear
phase mixing should therefore be subdominant as an energy
dissipation channel, and the isothermal closure should be a good
approximation to the dynamics at these scales.

Since neither the electron kinetic effects nor the electro-
magnetic effects [e.g., tearing mediation (59) or intermittency
corrections (58)] are significant in this scale range, one might
thus expect a standard Kolmogorov-type cascade model to be a
reasonable description of turbulence at these scales. The energy
flux of the cascade is & ~ Yeno.9?/ Toe, where the eddy
turnover rate is ¥ ~ @3 /A%, Together with the equipartition
relation, we obtain the kinetic and magnetic spectra

Ep(ky) oc k17, Ep(ky) oc k] [18]

Imposing critical balance of these fluctuations, that is, wgaw ~

vul (at kid, > 1, wkaw ~ k| Vaps/d,), we obtain kj o /ei/s.

Numerical Setup

We perform direct numerical simulations of the KREHM
equations using the pseudospectral code Viriato (67). In what
follows, quantities are given in dimensionless form. The domain
is a triply periodic cubic box with sides of length L = 2.

Hyperdiffusion terms of the form VHVﬁ_ are included in the
r.h.s. of Eq. 2 (electron hyperviscosity), Eq. 3 (hyperresistivity),
and Eq. 10, with vy dynamically adjusted to absorb energy
at the grid scale (67). A hypercollision operator of the form
—veo® is added to the r.h.s. of Eq. 10 for m > 2, with
Veoll likewise set to remove energy at the smallest velocity scale,
determined by M, the order of the highest Hermite polynomial
kept in simulations. The simulations are driven with a white-
noise forcing term added to Eq. 2, which injects energy into the
largest scales in the simulation box (perpendicular and parallel

pnas.org
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Table1. Summary of the key parameters of the simula-
tions. kK | max is the maximum value of the perpendicular
wavenumber, representing the spatial resolution in the
perpendicular plane.

Runs pi/L pi/de kimaxde M N3

K1 0.1 20 0.9 30 2563
K2a 2 40 9 30 2563
K2b 2 20 9 60 1283
K2c 2 66 5.4 30 2563
Iso 2 66 5.4 0 2563
K3 2 1 180 30 1283
Kda-e 3,2,1,0.3,0.1 30,20,10,3,1 9 30 1283

wavenumbers ranging from 1 to 2). Once a steady state is reached,
the energy injection is balanced by its dissipation either through
hypercollisions at large 7 or through hyperdiffusion at large £ ,
self-consistently determined by the nature of kinetic turbulence.
As mentioned in the Introduction, it is one of the goals of this
study to identify which of these dissipation channels is privileged
by the turbulence.

The key simulation parameters are summarized in Table 1.
We investigate three dynamical ranges of interest: 1) the inertial
range L > /eIl > p;, 2) the subion range p; > /eIl > d,,
and 3) the electrostatic range 4, > /ej_l. In run K1, we include
both the inertial and sub-p; ranges, enabling us to study the
transition across the p; scale. However, the resolution of the 4,
scale is sacrificed, and the effect of electron inertia on turbulence
is not properly taken into account. This is compensated by runs
K2(a,b) where the whole domain is in the subion range and 4, is
well resolved. Run K3 is designed to focus on the sub-4, range
only. Runs K4(a-¢) consist of a scan of the parameter p;/d, with
fixed d, and varying p; and are used to study the dependence of
the energy dissipation on the scale separation between ion and
electron scales.

Numerical Results

In Fig. 1, we present results from the three main runs (K1, K2a,
and K3, corresponding to the Left, Middle, and Right panels,
respectively) that together cover the spatial scales ranging from
MHD to sub-d,. Run K1 captures the transition at p;, and run
K2 captures that at 4,. For each run, the results are plotted
at an arbitrarily chosen time during the saturated stage of the
turbulence.

Visuals. The top row shows the current densities normalized to
their rms values on arbitrarily chosen xy planes. The visualization
of run K1 (Left panel) is dominated by the features of long-
wavelength MHD turbulence, with indications of plasmoid
instability (68) in some of the large-scale current sheets. At
scales below p; (Middle panel), the current still exhibits sheet-type
structures, but there are no visual signs of plasmoid generation.
At scales below d, (Right panel), the current profile becomes less
sharp and fewer finer structures appear in the system, consistent
with the predicted steep magnetic spectrum (Eq. 18) and with
the fact that turbulence at these scales should be predominantly
electrostatic.

Energy Spectra. The middle row shows the normalized per-
pendicular energy spectra of the magnetic and ion-entropy

fluctuations, Ep(k, ) and lAf(p(k 1 ). The main purpose of run K1

PNAS 2023 Vol. 120 No. 23 e2220927120

(Left panel) is to study the transition at around £ p; ~ 1, and so
both the MHD range £ p; < 1 and the kinetic range £ p; > 1
are included in the simulation, with the compromise that neither
of these two ranges is sufficiently wide to form a clear inertial
range. In spite of this limitation, there is a clear steepening of the

spectra at k) p; ~ 1. We observe IAEB(kL) ~ Ep (k1) in the sub-
p; range, confirming the assumption of equipartition between
magnetic and density fluctuations (Eq. 12).

The sub-p; range is explored in run K2a (Middle panel)

where the transition at 41 d, ~ 1 is well resolved. Both Eg(k_ )
and E, (k1) closely follow a £7° scaling until they deviate at

scales below d,. This is a steeper spectrum than the /els/ 3
spectrum in the isothermal limit, which is predicted (58) and
numerically confirmed under the KREHM framework (58, 60).
We attribute this steepening of the spectra to electron Landau
damping, which enables the dissipation of a nonnegligible energy
fraction via its cascade to high-order Hermite moments through
phase mixing. This argument will be elaborated and tested
below (around Fig. 2). At scales below 4, (run K3, Right

panel), Eg(k1) o kIIS/s and E, (k1) k17/3 are measured,
confirming the predictions for the electrostatic limit (Eq. 18).

Energy Dissipation. The Borrom row of Fig. 1 shows contour
maps of the normalized (to its maximum value) dissipation rate
of the total free energy (defined in Eq. 6) in the 7-£, phase space.
Here, the m = 0 and m = 1 moments correspond to §7,/no,
and A, respectively (and we remind the reader that all fields
can be damped in real space by hyperdiffusion and that Hermite
moments 7 > 2 can also access velocity-space dissipation via
hypercollisions, as described in Numerical Setup). These results
directly address one of the main questions in this paper—the
competition between the kinetic and fluid channels for energy
dissipation. In run K1 (Left panel), we focus on the MHD range
and the transition to sub-p; scales. The strong energy dissipation
at large (m > 1) Hermite moments turns on at around the p;
scale and extends toward smaller scales (larger £ ), suggesting
the domination of phase mixing over nonlinear advection at
those scales. Because 4, is unresolved in this run, the energy
flux in position space reaches the (hyper)viscous scale without
going through the full kinetic range. This truncation of electron
kinetic effects at large £ causes an artificially strong dissipation
by the hyperviscosity (and resistivity), preventing us from making
a direct comparison of dissipation at large 72 and large 4 in this
run. This issue is resolved in run K2a (Middle panel). With the
understanding that the large- dissipation turns on at &1 p; ~ 1,
we can study the sub-p; range scale and focus on the range
between p; and 4,, with 4, properly resolved. With electron
kinetic physics fully accounted for, we find that most of the energy
is dissipated at large 72 and at around p; scales. This result is direct
evidence of the absence of plasma echo in the range between
pi and d, and clearly demonstrates that the kinetic channel is
dominant for energy dissipation: the free energy transfers to small
scales in velocity space through phase mixing, where it dissipates
via collisions and heats the electrons. The strong electron heating
at k| p; 2 1 is consistent with earlier gyrokinetic studies (23, 55).
Although the damping rate of KAWs is relatively small at £; p; &
1 (8] Appendix, Fig. S1), the steep (~ /eI3) energy spectra ensure a
much larger amount of electromagnetic energy subject to Landau
damping at around p; than that at around 4.

*The large-m dissipation at the system scale is artificial, caused by the forcing.
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Fig. 1. Runs K1 (Left column), K2a (Middle column), and K3 (Right column). Top: visualization of /; (color map). The magenta lines are the contours of the electron
heating rate that is twice its volume-averaged value. Middle: Magnetic energy and density spectra. Bottom: Energy dissipation spectra in m-k, p; phase space.

The vertical dotted lines indicate the de scale.

The large-m dissipation starting at the lowest £ turns off at
around the d, scale. To explore the sub-d, range, we analyze run
K3 (Right panel), and find that the energy dissipation at large
k1 is clearly dominant. This is consistent with our prediction
that although the Landau damping rate of linear KAWs is large
in the sub-d, range, the nonlinear advection is faster than the
phase-mixing process, causing the energy flux to mainly cascade
to, and dissipate at, large £ rather than large .

Landau Damping of KAWs. In order to confirm that the strong
energy dissipation at high m is indeed caused by the Landau
damping of KAWs, we test the following argument with our
numerical results. Let us assume that at each scale /eJ__l, the elec-
tromagnetic fluctuations are damped at the KAW linear damping
rate pertaining to that scale, ykaw (%4 ). Then, within a nonlinear
cascade time 1/y,;—which, by assumption of critical balance,
is comparable to the linear time scale, 1/y,; ~ 1/oxaw—a
fraction of ~ 2ygaw/wkaw of the magnetic energy is damped
and becomes the free energy in g,. All the mentioned quantities

6 of 10 https://doi.org/10.1073/pnas.2220927120

are scale-dependent. With this assumption, if we consider a
magnetic spectrum from a simulation with isothermal electrons,
Ejigso (£1), and subtract from it the energy that would be Landau-
damped within a cascade time, it should match the spectrum

EE from the corresponding kinetic simulation (i.e., a simulation
that differs from the isothermal one only in allowing for kinetic
electrons, g, # 0):

EX (k1) ~ EB°(k1)(1 = 2ykaw/oxaw)- [19]

This conjecture is confirmed in the comparison of spectra from
run K2a and its corresponding isothermal run (Iso), shown in
Fig. 2, where the scale-dependent ygaw and wxaw are calculated
from the linear dispersion relation of KAWs (see SI Appendix
for more details). This agreement suggests that the magnetic
spectra from kinetic runs, shown in this figure and in Fig. 1,
which we tentatively fitted with a /el3 scaling, are, in fact, not a
simple power law, but rather a more complicated function well
approximated by [19]. Incidentally, we note that it should not be
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Fig. 2. Comparison between the magnetic spectrum from run K2c (EBK)

and that from run Iso (EEO) multiplied by a scale-dependent factor (1 —
2ykaw/@wkaw ) that represents the subtraction of the Landau-damped energy
within a cascade time.

an artifact of numerical simulations that the sub- p; spectra do not
exhibit power-law scalings, since the scale separation between p;
and d, in our simulation is not far-off from that in realistic systems
such as the solar wind. This result is consistent with the weakened
cascade model originally proposed by Howes et al. (69, 70) and
numerically tested by TenBarge and coworkers (71, 72). In the
next sections of this paper, we provide the physical explanation
for Landau damping to be the dominant heating mechanism.
In a broader context, the result presented in Fig. 2 provides a
justification for a model (73-76) that is widely used in studies of
turbulent astrophysical systems, which is based on the assumption
that we just confirmed: that the effect of phase mixing is merely to
damp the turbulent cascade of the electromagnetic fluctuations
at a scale-dependent rate set by linear electron Landau damping.

Hermite Moments of ge.Strong energy dissipation at high
Hermite mode numbers 7 3> 1 requires a significant energy
cascade toward small scales in the velocity space and should thus
correspond to a shallow Hermite spectrum. This is consistent
with our numerical results shown in the top panel of Fig. 3. For
runs K1 and K2a with strong large-m dissipation, we measure a
shallow 77 1/2 spectrum. In contrast, for run K3 where large-m
dissipation is weak and large-£ dissipation dominates, a much
steeper Hermite spectrum is measured. The m~1/2 spectrum in
run K1 is consistent with our earlier explanation that although
the dissipation at large-£] is significant in this case, it is due
to the truncation of electron kinetic physics at the hyperviscous
scale, and a significant phase-mixing-dominated energy cascade
in velocity space does exist at spatial scales larger than the
hyperviscous scale.

In the bottom panel of Fig. 3, we show the Hermite spectra
from runs with different values of p;/d,. In these runs, 4, is fixed
at small scales (but resolved). A large value of p;/d, corresponds
to a wider electromagnetic sub-p; range where KAWs exist and
are subject to Landau damping, whereas runs with small p;/d,
are mostly in the MHD range. As shown, decreasing values
of p;/d,, i.e., a narrower dynamical range for Landau-damped
KAWs, results in a progressively steeper Hermite spectrum. This
result further confirms the significant contribution of the Landau
damping of KAWs to velocity-space dissipation.

The m~1/? scaling is predicted by our analytical model based
on the timescale ordering between the KAW frequency (which
is also the cascade rate) and the phase mixing rate: wgaw <
k| vihe/+/ms this leads to a lowest-order solution relating different

PNAS 2023 Vol. 120 No. 23 e2220927120

E m

1 Of=mm— e __ _
s m1/2
g
Bl (U e pi/d. =30 = ———
—— pi/d. =20 pi/de = iy
—— pi/d, =10 m
1072 - r Y Y
2 5 10 20 30 40
m

Fig.3. Normalized Hermite spectra from simulations K1-K3 (Top) and K4a-e
(Bottom).

Hermite moments, Eq. 17. To further test our theory, we measure
the correlation between Hermite moments g,,,—1 and g, 41, a few
examples of which are shown in Fig. 4, Top and Middle panels.
The measured correlations between /, and g3, g5 and g3, g4 and
22, and between g and g4 exhibit remarkable agreement with our

lowest-order solution g3 = 2/+/3(d,/p;)/. (in code units) and
gmt1 = —y/m/(m+ 1)gu—1 for m > 3 (Eq. 17).

Absence of Plasma Echoes. The unimpeded Hermite cascade of
energy that we observe implies that the stochastic echo effect that
we discussed earlier is negligible in our simulations. It is revealing
to understand why that should be so. The time-scaling ordering
leads to a critical Hermite mode number m¢ ~ (A/d,)?/(27?)
(Eq. 16), below which the phase mixing is faster than the
nonlinear advection, and above which the advection can in
principle dominate the phase mixing to establish the plasma
echo. That seems to indicate that for a system with asymptotically
large cutoff M, the plasma echo should always occur, causing a
returning energy flux to low Hermite moments and thus strong
energy dissipation at large 4, . Even for a system with limited M

. ~\
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Fig. 4. Scatter plots from simulation K1 showing the correlation between J,
and g3 (Top left), g5 and g3 (Top right), g4 and g, (Bottom left), and between gg
and g4 (Bottom right).
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(as that in our simulations), at sufficiently small scale A, 7, will
be resolved (7., < M), and phase mixing should be suppressed at
those scales. However, these arguments are contradictory to our
numerical results of the 7~'/2 Hermite spectrum and efficient
electron heating.

To further confirm the absence of echo, we perform two
additional runs, K2b and K4b, between which the only difference
is the number of Hermite moments (M = 30 for K4b and
M = 60 for K2b). The Hermite spectrum of K2b also exhibits
am /2 scaling (Fig. 3, Top panel). In Fig. 5, we compare the
dissipation rate of total free energy between the K2b (M = 60)
and K4b (M = 30) runs (dashed and solid blue curves). The
good overlap indicates that the features of energy dissipation
remain unchanged when including more Hermite moments and
thus extending the range of spatial scales over which a potential
plasma echo could arise. In the same figure, we follow Eq. 16 and
plot the dependence of the critical Hermite mode number 7, on
ki p; (red curve). Based on the comparison between advection
and phase-mixing rates (Eq. 15), the plasma echo is allowed in
the region above the red curve and below the cutoff M, which is
a wide region for both runs. Therefore, the plasma echo is absent
not because it is excluded in our simulations due to limited
resolution in position or velocity space; instead, its absence must
be due to the turbulent dynamics.

We proposed in the theory section that the absence of echo is
due to the local reduction of the advective nonlinearity around
current sheets. The visuals of /, (Fig. 1, 70p panels) show that
indeed, at scales larger than 4, the regions with strong current
density are elongated “sheet” structures. In Fig. 6, we show the
ratio of the nonlinear-advection rate to the phase-mixing rate of
g7 versus the normalized current density (the results using other
Hermite moments are qualitatively similar); the color map of
the data points represents the local energy density of g7. This
plot clearly shows that nonlinear advection is subdominant with
respect to phase mixing at positions with large current density.
We conjecture that it is the specific configuration of A, ¢,
and g, around the sheet-like structure of current that leads
to the local suppression of echo effects; this interpretation is
inspired by observations of strong phase mixing in supposedly
similar geometries that arise in reconnection studies (64, 65, 77)
[Note that simply invoking the quasi-1D (in the perpendicular
plane) morphology of current sheets is not sufficient to explain

100 : 10t
My i-—- M =30
kid,.=1 — M =60

_101

60

g

301

10 _
1075

10° 10! 10?
k1 pi

Fig. 5. Comparison between normalized total energy dissipation spectra
(integrated over m) between run K2b (with M = 60; blue solid curve) and run
K4b (with M = 30; blue dashed line). Also in the figure is the dependence of
the critical Hermite moment order, m¢r (Eq. 16), as a function of k; p;. The
horizontal lines indicate the cutoff of m at 30 and 60. For both M = 30 and
M = 60 runs, a wide range of wavenumbers exists that in principle allows
plasma echo to occur.
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Fig. 6. The ratio of the nonlinear-advection rate to phase-mixing rate of g7
as a function of normalized current density |/z//rms|. The color corresponds
to the local energy density of g5.

the weakening of the advection-to-phase-mixing rates because
such weakening would affect equally the advective nonlinearity
and the parallel streaming]. As a result of enhanced phase
mixing, current sheets are also where the g, fluctuations are
concentrated (Eq. 17), as shown by the correlation between |g7|*
and |/;//ims| in Fig. 6. Therefore, current sheets are energetically
important for dissipation. The overlap in position space between
the suppression of plasma echo and the concentration of free
energy in g, results in the efficient energy transfer to small scales
in velocity space and, eventually, strong electron heating at the
kinetic range.

To further visualize this correlation between the current
density and electron heating, in the color map of current
density (Fig. 1, Top panels), we show the regions with strong
electron heating using the contour (magenta lines) of the
electron heating rate (measured by the energy dissipation through
hypercollisions at small scales in velocity space) that is twice its
volume-averaged value. Indeed, we find that for scales such that
0 kIl > d, (Left and Middle panels), significant electron
heating mostly occurs around current sheets, consistent with the
above arguments. Such correlation between heating and current
sheets has been reported in numerical simulations of kinetic
turbulence (23, 72) and observations (78). Here, we add to the
previous body of work by showing how such heating is possible:
the reduction of the advective nonlinearity around current sheets
enables phase-mixing to proceed unimpeded in those locations.

Conclusions

In this work, we conduct an analytical and numerical study of
subion-gyroscale (sub-p;) turbulence in the low-8 limit using
an analytical formalism known as the KREHM (34). We study
the phase-space dynamics and channels for energy dissipation
to understand the physical mechanism for electron heating.
In the m-k phase space, where m is the velocity-space mode
number, the energy dissipation is found to mostly occur at high
m through collisions, implying that phase mixing dominates
nonlinear advection of the free energy and, thus, that the “kinetic
channel” (as opposed to the “fluid channel”) is the main route
for energy dissipation and electron heating. We verify that this
argument is quantitatively supported, as follows: if we subtract
from the magnetic spectrum pertaining to an isothermal run the
energy that would be linearly Landau-damped within one eddy
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turnover time, scale by scale, we obtain a spectrum that agrees
remarkably well with that from a corresponding run with kinetic
electrons (see also refs. 69-72). A direct consequence of this
result is that the application of a Landau-fluid-type closure (79)
to KAW turbulence in the low-f limit is justified.

We derive a lowest-order solution for the coefficients of
the Hermite expansion of the electron distribution function,
Zm> under the assumption that phase mixing dominates over
nonlinear advection: gj,+1 = —v/m/(m + 1)gu—1, and g3 /.
This solution, as well as the corresponding 7~ '/2 Hermite
spectrum, is confirmed by our numerical results. Last, we find
that the absence of stochastic plasma echo, which would impede
phase mixing, is due to the ubiquitous current sheets that develop
self-consistently in our system. The fluctuations of the Hermite
moments are concentrated in the vicinity of current sheets, while
at these specific positions, the advective nonlinearity is weakened
because of the specific configurations of the magnetic field and
the flow around the sheets. This observed anticorrelation between
advective nonlinearity and current density (and thus the density
of free energy) undermines plasma echo and allows the free energy
to transfer to higher 7 by phase mixing.

There are several astrophysical environments of interest where
B is sufficiently small that the KREHM model should apply,
such as ionospheric plasmas (80, 81), regions of solar wind
and corona (82-84), and Earth’s magnetosheath (85). However,
further research is required to generalize the results obtained in
the KREHM framework to a broader context. Based on existing
numerical studies (24, 65), the KREHM model agrees well with
full gyrokinetics at values of 8 that are quite outside its region of
asymptotic validity. Pertinently, in Groselj etal. (24), it was found
that KREHM agrees rather well not only with gyrokinetics, but
also with a fully kinetic particle-in-cell approach in a simulation
of decaying two-dimensional (86) turbulence at 8 = 0.1. These
studies suggest that the results reported in this paper should
be relevant to astrophysical environments beyond the low-8
limit—a speculation further supported by the many previous
studies (performed at a range of values of B) that highlight
the critical role of current sheets as dissipative structures in
collisionless turbulence (e.g., refs. 54, 71, 72, 87). The efficient
electron heating we found in the low-8 limit is qualitatively
consistent with previous numerical studies on electron versus
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ion energization in kinetic turbulence, in which the electron to
ion heating rate ratio is a decreasing function of plasma 8 (e.g.,
refs. 74, 88-90). In a gyrokinetic study of reconnection (65), it
is found that ion heating (via nonlinear phase mixing) becomes
progressively more important as 8 increases. Extrapolating these
ideas to kinetic turbulence suggests that as 8 increases (but still
below unity), current sheets remain critical as energy dissipation
sites, with the balance shifting from heating electrons at low beta
(via linear phase mixing) to ions (via nonlinear phase mixing).
Further studies are required to test this hypothesis.

In addition to critical plasma parameters such as the plasma
and temperature ratio, the effects of the “large-scale” conditions
of the turbulence on the energy dissipation are also to be
investigated. For example, the imbalance of turbulence relevant
to the fast-wind streams has recently been found to have profound
effects on the heating mechanisms for ions and electrons (91, 92),
while the electron kinetic effects are omitted. Kinetic studies
taking into account both electron and ion physics with relevant
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