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Exploring the use of topological
data analysis to automatically
detect data quality faults

M. Eduard Tudoreanu*

Department of Information Science, University of Arkansas at Little Rock, Little Rock, AR,

United States

Data quality problems may occur in various forms in structured and

semi-structured data sources. This paper details an unsupervised method

of analyzing data quality that is agnostic to the semantics of the data, the

format of the encoding, or the internal structure of the dataset. A distance

function is used to transform each record of a dataset into an n-dimensional

vector of real numbers, which effectively transforms the original data into a

high-dimensional point cloud. The shape of the point cloud is then efficiently

examined via topological data analysis to find high-dimensional anomalies that

may signal quality issues. The specific quality faults examined in this paper

are the detection of records that, while not exactly the same, refer to the

same entity. Our algorithm, based on topological data analysis, provides similar

accuracy for both higher and lower quality data and performs better than a

baseline approach for data with poor quality.
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Introduction

Modern society is more and more dependent on data and information, and

important resources and expertise have been dedicated to managing and improving

the quality of data because high quality data can better serve the needs of enterprises,

government and people. Data cleaning often requires human expertise and supervision,

which is not sustainable in an environment in which the volume, complexity, and velocity

of data keeps increasing. The future may require techniques for data cleaning that rely

a lot more on automation than on human expertise, with some authors talking about a

data washing machine (Talburt et al., 2020) where “dirty” data is cleaned by just turning

a few buttons. An organization, such as a corporation or government entity, produces

data in many forms, from already curated databases to tables generated internally by

departments and individuals, and even through basic email communication. The same

organization may also interact with data streaming from the outside, such as news

streams, social media, and clients. In order to extract value out of all this information, the

organization must first curate the data before integrating it into its business processes. A

first step in curation is the ability to automatically identify portions of the data that due

to various data quality problems make reference to the same entities, such as persons,

parts, or events, but that appear slightly different at a first glance.
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This paper explores the use of topological data analysis

(TDA) as a means of detecting data quality faults, focusing

especially on the existence of duplicates. Topological data

analysis (Wasserman, 2018) denotes a number of approaches

that rely on examining the shape of various structures present in

a multidimensional space to either obtain a simpler view of the

shapes or to identify relationships among features of the shapes.

Persistent homology, manifold identification, and tree or graph

linking (Carlsson, 2014) of the features are all approaches that

fall under TDA. TDA has been employed as both a way to detect

important patterns in data, but also as a way of reconstructing

missing information (van Veen, 2019).

The mathematical characteristics of TDA assumes the space

in which the data exists to be a multidimensional coordinate

with real numbers, while many computer data sets are often

composed of text and numbers. Sometimes even the numbers

that appear in a database do not have an algebraic meaning, but

are rather identifiers for various entities such as postal codes or

phone numbers.

This paper introduces a method of transforming a dataset

into a multidimensional point cloud of real numbers that is

based on calculating the distance between a subset of selected

records {V1, V2, . . . , Vn} in the dataset and all other records.

The size of the subset determines the number of dimensions for

each point in the cloud, and thus the number of dimensions

of the space in which topological data analysis takes place.

The first record in the subset V1 is used to compute the first

dimension for all the records, the second V2 to compute the

second dimension, and so on (the order of the dimensions 1...n

does have an impact on the analysis). Three main advantages of

our approach are the ability to parallelize the computation of

the point cloud, the ability to adjust the dimensions (n) to fit

allotted time requirements, and the ability to work in an agnostic

manner with most types of data. Each dimension of the point

cloud can be computed at the same time with other dimensions

of the cloud because they do not require much synchronization;

the distance between the first record V1 in the subset and any

other record is independent of the distance between the second

record V2 and any other record. The number of dimensions,

n, can be adjusted on the fly based on how long it takes to

compute each dimension. Some precision can be sacrificed if

time to completion is more important. Furthermore, additional

dimensions can be added at any time due to the intrinsic

independence of dimensions.

We want to keep the assumptions about the dataset to a

minimum to decrease expert interventions in the data quality

detection system. Our solution does not depend on knowing

name-value pairs for the fields in a record, and we regard the

records almost as sentences in natural language in the sense that

each record may have a variable number of “words,” inversions,

and inconsistencies (as one would find in PDF files, emails, or

online postings). The only assumptions in this paper are that

the data is a set of records, and that each record has a variable

number of tokens. For the analysis in this report, the tokens

are all assumed to be text, and no other assumptions are made

about the data type. Although computational TDA methods are

part of artificial intelligence, the technique used here does not

rely on any supervised learning. Finally, the results in this report

do not use any precomputed dictionary of stop words, common

misspellings, or abbreviations. Note that such dictionaries could

be used as a preprocessing step with our method, and one

may assume that they could reduce the noise in the data and

lead to better results. However, because this experiment tried to

reduce assumptions about the data, the use of dictionaries was

ruled out because it would need to consider domain knowledge

(for example, “dr” may mean doctor or drive depending on

the domain).

Our approach is comparable to more traditional approaches

that rely on neural networks for word embedding and clustering

algorithms to group records. Both traditional and this approach

requires the manipulation of parameters to obtain the best

result. The advantages of our approach are (a) that it can

be better run in parallel; (b) that TDA supports “explainable

AI” because it offers better explanation of the reasons features

in the multidimensional space are grouped together: “In fact,

many TDA methods may be regarded as visualization methods”

(Wasserman, 2018); and (c) it could potentially be used to

identify the “shape” of other data faults such as inconsistent

representations ormissing data and, even further down the road,

to automatically correct faults.

Related work

In the development of a data washing machine, one

requirement that occurs in practice often is the need to identify

non-exact duplication, otherwise known as entity resolution.

Talburt et al. (2020) introduce the idea of a data washing

machine, and describe a proof of concept that uses entropy and

iterative creation of blocks to achieve this result. Our approach is

complementary to theirs in that we explore alternative solutions

based on topological features to detect, and in the future to even

correct, duplicates.

Solutions for entity resolution rely often on growing pairwise

correlations into more complete clusters that represent the

same entity. Draisbach et al. (2019) compare and contrast

many such approaches, including three new ones they propose.

Other authors experiment with various features of clustering

techniques, such as adaptive matching (Cohen and Richman,

2002), fast approximate distance measures (McCallum et al.,

2000), microclustering (Betancourt et al., 2016), similarity of

joined sets (Ribeiro et al., 2018), genetic programming (Yuvaraju

and Nivedita, 2013), incremental clustering (Vatsalan et al.,

2020), or ordinal regression (Yan et al., 2020). This paper does

not focus on clustering pairs of records, but relies on topological

features to determine areas of a multidimensional space in
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which similar records reside. As mentioned before, TDA offers

a number of advantages from a researcher’s perspective in that it

is better suited to provide an explanation of why the computer

made its decision and it could be used in future work to focus

on automatically identifying other data quality issues beyond

duplicate entries and even on automatic data curation.

Pairwise comparison of records is not practical for millions

or tens of millions of records, thus solutions involving the

breaking down of the search space into blocks (also known

as blocking) can significantly reduce the number of operations

needed. This set of techniques can be applied before our solution

to restrict the size, and thus the topological shape of each

detected block. Blocks can be refined iteratively (Papadakis et al.,

2014; O’Hare et al., 2019), recursively (Yu, 2020), progressively

through a classifier (Galhotra et al., 2021), or probabilistically

(Wang et al., 2016; Enamorado and Steorts, 2020). A technique

combining a number of blocking pipelines is JedAI (Papadakis

et al., 2020) which provides for both schema-based and

attribute-based matching, as well as a computational budget to

perform the entity resolution. Some blocking techniques are

unsupervised, but they do rely on at least a name-value pair

relationship (JedAI) if not an outright schema knowledge. The

name-value pair is a stronger requirement than our variable list

of tokens for each record. Finally, as mentioned above, TDA has

the potential for advancing beyond entity resolution.

Machine learning is becoming important in the automation

of entity resolution. Techniques span from logistic regression

(Kobayashi et al., 2018; Ye and Talburt, 2019), support

vector machines (Christen, 2008), decision trees (Warnke-

Sommer and Damann, 2019), conditional random fields

and word embeddings (Comber and Arribas-Bel, 2019),

crowdsourcing the initial learning (Chen et al., 2018),

and ensemble solutions (Chen et al., 2009). Deep neural

networks are also used with various levels of training (Loster

et al., 2021) in addition to the fine-tuning of BERT (Li

et al., 2021). Most of the approaches assume the data is

structured and require human intervention in an initial

phase of the learning process, unlike our solution which

focuses on purely unsupervised detection. One solution based

on gradual machine learning (Hou et al., 2019) replaces

training by a human expert with an iterative build-up

of annotations.

An unsupervised approach for entity resolution applied to

authors of articles is presented in Dai and Storkey (2011) and

focuses on a hierarchical model that generates agglomerative

clusters without the use of parameters. Another bibliographic-

based data set that is unsupervised and generative is described

in Bhattacharya and Getoor (2006). The type of data in these

particular cases is focused on authors and coauthors of papers

unlike the more general data sets that we want to focus on

and which are needed for a data washing machine. Another

unsupervised approach (Kirielle et al., 2022) relies on graphs

and can deal with more complex entities, but their solution runs

under the assumption that schema is known, for example that

certain records are birth information and others are marriage.

Duplicates detection algorithm

At its core, the algorithm uses Morse Theory (Forman,

2002) to efficiently find partitions of a high dimensional space

defined via a point cloud. The points in each partition have

similar features, and therefore can be considered similar. Each

point in the cloud corresponds to a record in the dataset, and

points within the same space partition have a good chance of

being duplicates.

Step 1: Preprocessing

The input to our algorithm is assumed to have little

structure, similar to either a comma-separated or tab-separated

text file. Records are assumed to be separated by new lines, and

each record can have a variable number of fields, or tokens. The

algorithm assumes missing fields, or swapping of fields from

one row to the next, and as such, if a header row exists, it

will be ignored. Tokens are separated by comma or white space

characters. All other separator characters such as period, dash,

or slash are assumed to be part of the same token, and they are

deleted, resulting in an aggregator of the content of the token.

For example, the token “555-1212” becomes “5551212”. Another

possibility in this preprocessing step would be to separate the

two sets of digits into two tokens “555” “1212”.

Parameters available to a user at this step:

1. Determine whether a header row exists or not. Possible

values are yes or no.

2. Choose aggregation or splitting of tokens when a

separating character is encountered. Possible values are

aggregate or split.

Step 2: Point cloud generation

The solution we chose relies on selecting a subset of records

to be used almost as viewpoints in the dataset space. The subset

can be chosen iteratively, that is not all at once, and can be

extended if needed.

Our solution includes a method of deriving a point cloud to

encode a set of arbitrary records in a dataset to an n-dimensional

Real-number domain. The process relies on selecting a set of

points {V1, . . . , Vn} which are used to compute each dimension

n. Technically, a distance is computed between Vi and every

other record, for all i between 1 and n. In this manner a n-

dimensional point is determined for each record, and that point

is the n distances between the record and V1 through Vn.
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Intuitively, each point Vi serves as a viewpoint from which the

rest of the records are observed; an analogy in 2D space may

be picking various people inside a meeting room and recording

each person’s perspective. The more spread out the viewpoints

are, the more hidden “details” can be viewed.

Approaches for selecting viewpoints, Vi, span from

completely random, to completely deterministic and in-

between. Selecting Vi at random has the advantage of allowing

each of the n-dimensions to be computed in a highly parallel

fashion with very little synchronization between threads. At

the other end of the spectrum, after initially selecting V1 at

random, the next record V2 can be the one that is at the furthest

distance from V1. Similarly, V3 would be selected to be the

furthest from V2, not including V1. This can be repeated for all

records all the way to Vn. This is the method implemented for

this paper. An in-between solution would be to have n = k ∗ s,

and use a random selection for the first k points, followed by a

deterministic, distance-maximizing selection of s points using

the first k randomly-picked records.

The final requirement for our approach is to be able to

determine the distance between two arbitrary records, A and

B. We adapted the Damerau–Levenshtein (Damerau, 1964)

distance to consider records of tokens. A record is viewed as a

sequence of tokens, and each token is a string of characters (or

symbols). For example, records A and B are:

• A: JOHN DOEMAIN ST

• B: JON DOE ST MIAN

where the tokens are JOHN, JON, DOE, MAIN, MIAN, and

ST. Because each token is a string, the Damerau–Levenshtein

distance is directly applicable when looking at tokens alone.

As such, the distance between MAIN and MIAN would be 1,

representing one swap operation of I with A.

An entire record is viewed as a sequence of tokens, just as a

string is a sequence of characters. We treat tokens as if they were

individual characters, and run something similar to Damerau–

Levenshtein to see if a token needs to be deleted, inserted,

replaced, or its position swapped with its neighbor. The main

difference is that the cost of deletion, insertion, and swap can

be an integer larger than 1 (in the case of strings, when dealing

with a single character, the cost of an operation is either 0 or 1).

For example, the cost to insert or delete the token JOHN is four

because of its four characters. The cost to replace DOE with JON

is two because D would need to be replaced by J and E by N.

Once tokens are viewed as characters, all possibilities

of inserting, deleting, replacing, and swapping positions are

considered, which makes the calculation of the distance between

two records proportional to the square of the maximum number

of tokens in any record.

One condition that is different when considering tokens

rather than single characters is that swapping of two tokens

should only be considered when the two tokens are relatively

close. The original Damerau–Levenshtein distance would allow

swapping of two characters, for example IA in one string and

AI in the other, only if the characters are exactly the same. We

relax that exact-match requirement, and allow for two tokens

to be considered for swapping if their Damerau–Levenshtein

distance is below a threshold. That threshold is captured by

a parameter in our algorithm, maximum swap distance, which

limits swapping calculations to tokens whose distance from each

other is no larger than maximum swap distance. A maximum

distance of zero would require an exactmatch for the tokens. The

pseudo-code to compute the distance between two records rec1

and rec2, where each record is an array or tokens (or strings),

uses recursion and is included below for reference:

//compute the distance between two records with the
following call

compute_distance(rec1, rec2, len(rec1) - 1, len(rec2)
- 1, max_swap_distance)

//definition of the function
function compute_distance(rec1, rec2, i, j,

max_swap_distance)
if i == -1 and j == -1 //no token left to process

return 0
if (i, j) in tmpMem //tokens rec1[i] and rec2[j]
have already been done

return tmpMem[(i, j)]
if i $>$ $-$1 //there are still tokens in rec1

tmp1 = compute_distance(rec1, rec2, i - 1, j,
max_swap_distance) +

len(rec1[i])
if j > -1 //there are still tokens in rec2

tmp2 $=$ compute_distance(rec1, rec2, i, j -
1, max_swap_distance) +

len(rec2[j])
tmp = min(tmp, tmp2)
if i > -1 and j > -1 //there are tokens left in
both records

tmp3 = compute_distance(rec1, rec2, i - 1, j -
1, max_swap_distance) +

damerauLevenshtein(rec1[i], rec2[j])

m = max(damerauLevenshtein(rec1[i], rec2[j -~1]),
damerauLevenshtein(rec1[i -- 1], rec2[j]))

if i > 0 and j >0 and \textit{m} <
max_swap_distance
//see if they are close enough, by distance \
textit{m}, to consider a swap

tmp4 = compute_distance(rec1, rec2, i - 2, j -
2) + \textit{m}

tmpMem[i, j] = min(tmp1, tmp2, tmp3, tmp4)
return tmpMem[i, j]

Parameters available to a user at this step:

3. Dimensions to be considered for each record. Possible

values are from 1 to M – 1, where M is the total number

of records in the data.

4. Maximum swap distance. Possible values are integers from

0 (meaning no swapping allowed), to max_length, where

max_length is the length of the longest token in the

data set (meaning the order of tokens in the records is

completely ignored).
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FIGURE 1

Comparison of point clouds obtained with our distance method

(left) and doc2vec embedding (right). The dimensionality of the

point cloud space was reduced to 2 using UMAP. The data set

presented here is the poor quality one with 1,000 records.

Word embedding vs. our distance function

Another solution available to us would have been to use

a neural network to generate an embedding for each record

(Mikolov et al., 2013), similar to doc2vec (Gensim, 2002).

We decided against that approach for three reasons: (a) the

difference between records can more easily be parallelized, (b)

the use of both neural networks and TDA, both of which are

part of artificial intelligence, would have made it difficult to

judge the performance of TDA alone, and (c) pursue more easily

explainable AI by avoiding embedding solutions, which rely on

neural networks whose decisions are not easily explainable to a

human analyst.

The shape of the point cloud created by word embedding

also appears different from the one created by our approach.

Both are high-dimensional spaces, and we examined them

visually using a number of dimension reduction techniques. As

shown in Figure 1, with UMAP (McInnes et al., 2018), also a

TDA-based solution, word embedding appears as intersecting

strands while our distance-based point cloud resembles more

evenly spaced blobs and clusters.

Step 3: Morse-Smale complex
calculations

Topological data analysis refers to a number ofmathematical

approaches (Wasserman, 2018), but for this article we relied

on Morse-Smale complexes to find records, in the form of

point clouds, that exist in the same areas of a multidimensional

space. Morse Theory studies the structures of a manifold, an

n-dimensional topological space, by considering decomposition

and homology. Homology allows complex manifolds, for

example one that may have observation noise, to be viewed as

simple equivalent ones, which in effect can ignore some of that

noise and provide relevant information about their structure.

For a simpler presentation, consider Figure 2 that shows a

1D function, and thus a 1D manifold, going through all the

FIGURE 2

Important concepts of Morse theory for a 1D function. Critical

points, local minima and maxima, A through F. Ascending

manifold BCD anchored at C. Descending manifold ABC

anchored at B. Morse-Smale complex BC, intersection of the

two manifolds.

points A through F. There are some critical points to consider,

and those include minima, maxima, and equivalents in higher

dimensional space, for example saddle shapes in 2D. There are

two types of manifolds, an ascending manifold, shown from B

to C to D under the main function. That manifold is anchored

at a minimum, C. Similarly there are descending manifolds, and

one from A to B to C is highlighted anchored at a maximum, B.

A Morse-Smale complex is the intersection of an ascending and

a descending manifold (under certain conditions), and it can be

seen in Figure 2 from B to C.

Another aspect of TDA includes persistent homology,

specifically the notion of persistence. Critical points can change

when only a subset of the function is considered. In Figure 2,

the dashed lines are used to restrict the function to those points

that exist only between the upper and lower dashed lines. As

those lines are moved up and down, some critical points are

no longer considered, or some local minima or maxima are no

longer the absolute minimum or maximum. In the figure, C

and G are critical points, and A and E are not yet critical. A

and E will become critical when the lower dashed line moves

even lower. As the dashed lines move, some critical points stay

critical longer than others, which is at the basis of persistence.

Another important feature that is used in TDA is the connection

between points that become critical or cease to be critical at

about the same “time” (“time” is controlled by movement of

the dashed lines). These connections form a graph or binary

relationships between points, and that can be used for geometry

simplification. Critical points can be connected by separatrices,

which divide n-dimensional space. Figure 3 shows the division

of 2D space formed by a point cloud of 100 records, which is

one of the datasets used later in the paper. By considering critical

points at different persistence levels, different sets of separatrices,

such as the white lines in Figure 3, can be brought into the

calculations and into the division of the space.

On the technical level, our algorithm uses the topopy

(Maljovec, 2020) package to compute the Morse-Smale

complexes. The function that computes the Morse-Smale
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FIGURE 3

An example of how 2-separatrices can provide a division of a 2-dimensional space. A dataset of points shown in 2 dimensions (left), with similar

color symbolizing similar features. The same dataset is divided by 2-separatrices (right). Notice that points with about the same color tend to be

captured inside the areas defined by separatrices, which is an illustration of Morse theory.

complex takes two arguments, the point cloud of records and

a scalar value; the value given is the constant 1 for each point.

Two parameters are important for our purposes: the point

graph beta which can be viewed as providing a measure of

the attraction of points in the graph used by topopy, and a

normalization algorithm type that has two values “zscore” and

“feature.” “Zscore” ensures that the data has a mean of zero and

a standard deviation of 1. “Feature” scales the data inside the

unit hypercube.

Parameters available to a user at this step:

5. Beta: controls how many Morse-Smale complexes are

created and how large those complexes are; fewer

complexes leads to more points/records on average

assigned to each complex. Possible values are positive, non-

zero numbers, but the relevant range would be determined

by the distance between the points in the high dimensional

range. Outside of that range, either each Morse-Smale

complex has a single point or all the points are placed inside

a single complex.

6. Normalization: either “zscore” or “feature”.

Algorithm evaluation

In this section, we compare our algorithm with the baseline

of using word embedding and a popular clustering algorithm,

dbscan (dbscan, 2022). This baseline was also used by other

authors such as Talburt et al. (2020). The more modern Hdbscan

(Campello et al., 2013) was also tried as a baseline, but it

performed slightly worse than the original. Note that Magellan

(Konda et al., 2016), a popular baseline used for example by Li

et al. (2021) and Kirielle et al. (2022), and partially by JedAI

(Papadakis et al., 2020), does not support “dirty” data and, thus

cannot be used for this evaluation.

The datasets employed in this experiment were synthetically

generated using the SOG method established by Talburt et al.

(2009) which allows control over the quality of the records

and provides uniformity throughout the dataset. SOG uses its

seed data, such as name and address, from publicly available

domicile occupancy records from several states in the U.S.,

resulting in name and address distribution close to the actual

distribution in those states. The address structure is similar to

real addresses and is intended to pass commercial verification

tools. Synthetic persons are generated, attached to addresses, and

given additional features such as birth dates, phone numbers,

and so on. SOG can be programmed to generate various levels of

data faults, and to simulate the same synthetic person moving to

a different location. This method was chosen because it provides

data that has the same structure and distribution as real-world

data, but with the additional benefit of the absolute truth already

known with 100% accuracy. Furthermore, as noted by Kirielle

et al. (2022) “in the context of databases that contain complex

entities such as person records, ground truth data are often

not available, or if available they might be limited to manually

curated, biased, and incomplete matches.”

We generated a “good” dataset of size 100 that has relatively

few quality problems, henceforth referred to as G100, and a poor
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quality data set of size 1,000 (P1000). Samples from the two

datasets are given below. The target structure of an ideal record is

listed at the top of each sample as a reference for the reader. Our

experiment ignores the information in that first row, and both

G100 and P1000 have quality faults such as misspelling, missing

field, inverted fields, and inconsistent format.

G100:

RecID,fname,lname,mname,address,city,state,zip,ssn

• A944634,IAN,AADLAND,LARS,29021 HIGH SIERRA

TRL,SANTA CLARITA,CA,91390,490-46-2048

• A755471,MYRA,AARGAARD-ESPERSEN„1224

MAGNOLIA ST,WINSTON SALEM,NC,27103,117-

15-8521

• A912696,MYRA,AAARGAARD-ESPERSEN„1224

MAGNOLIA ST,WINSTON SALEM,NC,27103,117158521

• A813025,ALLEN,AARON,IKAIKA,3830 COUNTRY

CLUB RD # J,WINSTON SALEM,NC,27104,

P1P000:

RecID,Name,Address,City,State,Zip1,City,State,Zip2,PO,

Box,POCity1,State,Zip,POCity2,State,Zip,SSN,DOB

• A912969,barbaar,myers-

christian,3536,N,BERLIN,AVE,FRESNO„CA,93722,Po,

Box,5991,fresno„ca,93755,010-52-5974,1936

• A915784,b,chavez,9247,TOBIAES,AVE,PNORAMA,CITY„

CALIFORNIA,91402,pomst,office,4601,Panorama,City„

California,91412,10525974,1936

• A933400,barby,chavez,11881,GULF,POINTE,DR,APT,E38,

HOUSTON„TX,77089„,010-55-2974,19360814,

• A968925,CHAVEZ,2943,N,COTTONWOOD,ST,WUNIT,

3,Orange„Ca,92865„„,

There are a number of parameters to consider for both the

baseline and our solution. While some of those were chosen

and kept constant during our tests, other parameters were

varied through a small number of combinations to achieve the

best result in terms of accuracy and F-value. The goal was to

determine what can be achieved quickly by just turning a few

“knobs” of the data washing machine, rather than to go through

a detailed and deliberate variation of many possible parameter

values in order to maximize some set criteria.

The baseline test implemented a two step process of

first computing a multidimensional number for each record

and, then, clustering those numbers based on how close

they are to each other in that multidimensional space.

We used doc2vec and dbscan, both available from python

repositories. The first program uses a neural network to

create an embedding, that is a sequence of numbers, for

each record. The second performs clustering on that sequence

of numbers by regarding each record as a point in a

multidimensional space. The parameters used for this test,

which are in line with other experiments (Talburt et al.,

2020), are:

• doc2vec: dimensions = 5, min_count = 2, epochs =

500, alpha = 0.25, min_alpha = 0.00025; note that we

experimented with higher dimensionality, but the results

were significantly worse than the chosen number of 5;

• dbscan: min_samples = 1, eps = 1.5, which gave the

best result for the G100 file, and 2.25, best result for the

P1000 file.

For our algorithm, the focus of this paper, we ignored

the header row, used aggregation inside a token, and

used the “zscore” normalization for Morse-Smale complexes.

The number of dimensions in the experiment followed an

exponential scale with the values 12, 25, 50, 100, and 200. The

last two values were only considered for the larger file P1000,

which has 1,000 records. As for the maximum swap distance, we

considered three values for the distance: 2, which is restrictive

in that it allows swapping of tokens that are almost identical, 7

which permits tokens that are more different from each other to

be considered for swapping, and 50 which will allow most pairs

of tokens to be considered for swapping. The sixth, and final,

parameter to consider is beta, which was varied to achieve the

best accuracy and F-value. We only considered a small subset

of beta values from 3 to 7, with an increment of 0.5. Different

beta values gave the best result for different files, dimensions, and

maximum swap distances. Figure 4 shows the results visually for

both the precisions (i.e., accuracy) and F-value.

Results

Our algorithm performs better than the baseline for data

with lower quality (P1000 in Figure 4), but it does worse than the

baseline for data with better quality. Precision for our approach

seems to be in the same range regardless of the quality of the

data. On the other hand, F-value decrease significantly when the

data quality decreases for both the baseline and our algorithm.

In most conditions from Figure 4, increasing the number

of dimensions of the point cloud space appears to reach a

saturation value after which the precision starts to drop. Too few

dimensions, 12 in this experiment, can also lead to low precision.

The maximum swap distance has an effect on the precision

of our algorithm. Allowing most tokens to be swapped, a

distance of 50, is consistently less accurate than smaller

maximum swap distances. Values in the interval 0 through 7

may be more appropriate based on the conditions tested in

our experiments. Different data quality problems may be better

suited to different values. If inconsistent abbreviations and re-

ordering of tokens is observed, then values at the higher end of

the interval are likely to work best.
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FIGURE 4

Results of our experiment showing precision (top) and F-value (bottom) for two different files, good quality (left) and poor quality (right). The

numbers on the top plots show the values of beta that yielded the best result. Note that dbscan, horizontal straight lines, are shown as a

reference for the precision and F-value, with no relation to the number of dimensions (x-axis).

As a general behavior, lower beta values tend to result in

more (not necessarily correct) duplicates being detected by our

algorithm. After reaching a peak F-value, further increase in

beta value appears to result in better precision and worse F-

values because the algorithm detects fewer pairs of records, but

those detected are more likely to be actual duplicates. Note that

dbscan, the baseline, exhibits a similar behavior with respect to

its eps parameter.

Conclusions and future work

We presented an algorithm for finding duplicates in an

arbitrary dataset that shows promise for data with poor

quality. The intention was to avoid performing significant pre-

processing and prior cleaning of data. The algorithm relies on

TDA and a distance-based point cloud calculation, without the

use of any other artificial intelligence solution, such as neural

networks. In the future, the TDA may provide the means for

unsupervised identification of data quality issues other than

duplicate entities and even for automatic reconstruction of a

dataset by analyzing the context of duplicates and correcting

their information based on the entirety of other records, similar

to van Veen (2019).
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