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Exploring the use of topological
data analysis to automatically
detect data quality faults
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Data quality problems may occur in various forms in structured and
semi-structured data sources. This paper details an unsupervised method
of analyzing data quality that is agnostic to the semantics of the data, the
format of the encoding, or the internal structure of the dataset. A distance
function is used to transform each record of a dataset into an n-dimensional
vector of real numbers, which effectively transforms the original data into a
high-dimensional point cloud. The shape of the point cloud is then efficiently
examined via topological data analysis to find high-dimensional anomalies that
may signal quality issues. The specific quality faults examined in this paper
are the detection of records that, while not exactly the same, refer to the
same entity. Our algorithm, based on topological data analysis, provides similar
accuracy for both higher and lower quality data and performs better than a
baseline approach for data with poor quality.

topological data analysis, Morse-Smale complex, entity resolution, unsupervised,
distance-based point cloud

Introduction

Modern society is more and more dependent on data and information, and
important resources and expertise have been dedicated to managing and improving
the quality of data because high quality data can better serve the needs of enterprises,
government and people. Data cleaning often requires human expertise and supervision,
which is not sustainable in an environment in which the volume, complexity, and velocity
of data keeps increasing. The future may require techniques for data cleaning that rely
a lot more on automation than on human expertise, with some authors talking about a
data washing machine (Talburt et al., 2020) where “dirty” data is cleaned by just turning
a few buttons. An organization, such as a corporation or government entity, produces
data in many forms, from already curated databases to tables generated internally by
departments and individuals, and even through basic email communication. The same
organization may also interact with data streaming from the outside, such as news
streams, social media, and clients. In order to extract value out of all this information, the
organization must first curate the data before integrating it into its business processes. A
first step in curation is the ability to automatically identify portions of the data that due
to various data quality problems make reference to the same entities, such as persons,
parts, or events, but that appear slightly different at a first glance.

01 frontiersin.org


https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2022.931398
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2022.931398&domain=pdf&date_stamp=2022-12-05
mailto:metudoreanu@ualr.edu
https://doi.org/10.3389/fdata.2022.931398
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2022.931398/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Tudoreanu

This paper explores the use of topological data analysis
(TDA) as a means of detecting data quality faults, focusing
especially on the existence of duplicates. Topological data
analysis (Wasserman, 2018) denotes a number of approaches
that rely on examining the shape of various structures present in
a multidimensional space to either obtain a simpler view of the
shapes or to identify relationships among features of the shapes.
Persistent homology, manifold identification, and tree or graph
linking (Carlsson, 2014) of the features are all approaches that
fall under TDA. TDA has been employed as both a way to detect
important patterns in data, but also as a way of reconstructing
missing information (van Veen, 2019).

The mathematical characteristics of TDA assumes the space
in which the data exists to be a multidimensional coordinate
with real numbers, while many computer data sets are often
composed of text and numbers. Sometimes even the numbers
that appear in a database do not have an algebraic meaning, but
are rather identifiers for various entities such as postal codes or
phone numbers.

This paper introduces a method of transforming a dataset
into a multidimensional point cloud of real numbers that is
based on calculating the distance between a subset of selected
records {Vy, Vo, ..
The size of the subset determines the number of dimensions for

., Vu} in the dataset and all other records.

each point in the cloud, and thus the number of dimensions
of the space in which topological data analysis takes place.
The first record in the subset V] is used to compute the first
dimension for all the records, the second V, to compute the
second dimension, and so on (the order of the dimensions 1...n
does have an impact on the analysis). Three main advantages of
our approach are the ability to parallelize the computation of
the point cloud, the ability to adjust the dimensions (n) to fit
allotted time requirements, and the ability to work in an agnostic
manner with most types of data. Each dimension of the point
cloud can be computed at the same time with other dimensions
of the cloud because they do not require much synchronization;
the distance between the first record V; in the subset and any
other record is independent of the distance between the second
record V, and any other record. The number of dimensions,
n, can be adjusted on the fly based on how long it takes to
compute each dimension. Some precision can be sacrificed if
time to completion is more important. Furthermore, additional
dimensions can be added at any time due to the intrinsic
independence of dimensions.

We want to keep the assumptions about the dataset to a
minimum to decrease expert interventions in the data quality
detection system. Our solution does not depend on knowing
name-value pairs for the fields in a record, and we regard the
records almost as sentences in natural language in the sense that
each record may have a variable number of “words,” inversions,
and inconsistencies (as one would find in PDF files, emails, or
online postings). The only assumptions in this paper are that
the data is a set of records, and that each record has a variable
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number of tokens. For the analysis in this report, the tokens
are all assumed to be text, and no other assumptions are made
about the data type. Although computational TDA methods are
part of artificial intelligence, the technique used here does not
rely on any supervised learning. Finally, the results in this report
do not use any precomputed dictionary of stop words, common
misspellings, or abbreviations. Note that such dictionaries could
be used as a preprocessing step with our method, and one
may assume that they could reduce the noise in the data and
lead to better results. However, because this experiment tried to
reduce assumptions about the data, the use of dictionaries was
ruled out because it would need to consider domain knowledge
(for example, “dr” may mean doctor or drive depending on
the domain).

Our approach is comparable to more traditional approaches
that rely on neural networks for word embedding and clustering
algorithms to group records. Both traditional and this approach
requires the manipulation of parameters to obtain the best
result. The advantages of our approach are (a) that it can
be better run in parallel; (b) that TDA supports “explainable
AT” because it offers better explanation of the reasons features
in the multidimensional space are grouped together: “In fact,
many TDA methods may be regarded as visualization methods”
(Wasserman, 2018); and (c) it could potentially be used to
identify the “shape” of other data faults such as inconsistent
representations or missing data and, even further down the road,
to automatically correct faults.

Related work

In the development of a data washing machine, one
requirement that occurs in practice often is the need to identify
non-exact duplication, otherwise known as entity resolution.
Talburt et al. (2020) introduce the idea of a data washing
machine, and describe a proof of concept that uses entropy and
iterative creation of blocks to achieve this result. Our approach is
complementary to theirs in that we explore alternative solutions
based on topological features to detect, and in the future to even
correct, duplicates.

Solutions for entity resolution rely often on growing pairwise
correlations into more complete clusters that represent the
same entity. Draisbach et al. (2019) compare and contrast
many such approaches, including three new ones they propose.
Other authors experiment with various features of clustering
techniques, such as adaptive matching (Cohen and Richman,
2002), fast approximate distance measures (McCallum et al.,
2000), microclustering (Betancourt et al.,, 2016), similarity of
joined sets (Ribeiro et al., 2018), genetic programming (Yuvaraju
and Nivedita, 2013), incremental clustering (Vatsalan et al.,
2020), or ordinal regression (Yan et al., 2020). This paper does
not focus on clustering pairs of records, but relies on topological
features to determine areas of a multidimensional space in
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which similar records reside. As mentioned before, TDA offers
a number of advantages from a researcher’s perspective in that it
is better suited to provide an explanation of why the computer
made its decision and it could be used in future work to focus
on automatically identifying other data quality issues beyond
duplicate entries and even on automatic data curation.

Pairwise comparison of records is not practical for millions
or tens of millions of records, thus solutions involving the
breaking down of the search space into blocks (also known
as blocking) can significantly reduce the number of operations
needed. This set of techniques can be applied before our solution
to restrict the size, and thus the topological shape of each
detected block. Blocks can be refined iteratively (Papadakis et al.,
2014; O’Hare et al., 2019), recursively (Yu, 2020), progressively
through a classifier (Galhotra et al., 2021), or probabilistically
(Wang et al., 2016; Enamorado and Steorts, 2020). A technique
combining a number of blocking pipelines is JedAI (Papadakis
et al, 2020) which provides for both schema-based and
attribute-based matching, as well as a computational budget to
perform the entity resolution. Some blocking techniques are
unsupervised, but they do rely on at least a name-value pair
relationship (JedAl) if not an outright schema knowledge. The
name-value pair is a stronger requirement than our variable list
of tokens for each record. Finally, as mentioned above, TDA has
the potential for advancing beyond entity resolution.

Machine learning is becoming important in the automation
of entity resolution. Techniques span from logistic regression
(Kobayashi et al., 2018; Ye and Talburt, 2019), support
vector machines (Christen, 2008), decision trees (Warnke-
Sommer and Damann, 2019), conditional random fields
and word embeddings (Comber and Arribas-Bel, 2019),
crowdsourcing the initial learning (Chen et al, 2018),
and ensemble solutions (Chen et al., 2009). Deep neural
networks are also used with various levels of training (Loster
et al, 2021) in addition to the fine-tuning of BERT (Li
et al, 2021). Most of the approaches assume the data is
structured and require human intervention in an initial
phase of the learning process, unlike our solution which
focuses on purely unsupervised detection. One solution based
on gradual machine learning (Hou et al, 2019) replaces
training by a human expert with an iterative build-up
of annotations.

An unsupervised approach for entity resolution applied to
authors of articles is presented in Dai and Storkey (2011) and
focuses on a hierarchical model that generates agglomerative
clusters without the use of parameters. Another bibliographic-
based data set that is unsupervised and generative is described
in Bhattacharya and Getoor (2006). The type of data in these
particular cases is focused on authors and coauthors of papers
unlike the more general data sets that we want to focus on
and which are needed for a data washing machine. Another
unsupervised approach (Kirielle et al., 2022) relies on graphs
and can deal with more complex entities, but their solution runs
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under the assumption that schema is known, for example that
certain records are birth information and others are marriage.

Duplicates detection algorithm

At its core, the algorithm uses Morse Theory (Forman,
2002) to efficiently find partitions of a high dimensional space
defined via a point cloud. The points in each partition have
similar features, and therefore can be considered similar. Each
point in the cloud corresponds to a record in the dataset, and
points within the same space partition have a good chance of
being duplicates.

Step 1: Preprocessing

The input to our algorithm is assumed to have little
structure, similar to either a comma-separated or tab-separated
text file. Records are assumed to be separated by new lines, and
each record can have a variable number of fields, or tokens. The
algorithm assumes missing fields, or swapping of fields from
one row to the next, and as such, if a header row exists, it
will be ignored. Tokens are separated by comma or white space
characters. All other separator characters such as period, dash,
or slash are assumed to be part of the same token, and they are
deleted, resulting in an aggregator of the content of the token.
For example, the token “555-1212” becomes “5551212”. Another
possibility in this preprocessing step would be to separate the
two sets of digits into two tokens “555” “1212”.

Parameters available to a user at this step:

1. Determine whether a header row exists or not. Possible
values are yes or no.

2. Choose aggregation or splitting of tokens when a
separating character is encountered. Possible values are
aggregate or split.

Step 2: Point cloud generation

The solution we chose relies on selecting a subset of records
to be used almost as viewpoints in the dataset space. The subset
can be chosen iteratively, that is not all at once, and can be
extended if needed.

Our solution includes a method of deriving a point cloud to
encode a set of arbitrary records in a dataset to an n-dimensional
Real-number domain. The process relies on selecting a set of
points {V, ..., V,,} which are used to compute each dimension
n. Technically, a distance is computed between V; and every
other record, for all i between 1 and n. In this manner a n-
dimensional point is determined for each record, and that point
is the n distances between the record and Vi through V.
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Intuitively, each point V; serves as a viewpoint from which the
rest of the records are observed; an analogy in 2D space may
be picking various people inside a meeting room and recording
each person’s perspective. The more spread out the viewpoints
are, the more hidden “details” can be viewed.

Approaches for selecting viewpoints, V;j, span from
completely random, to completely deterministic and in-
between. Selecting V; at random has the advantage of allowing
each of the n-dimensions to be computed in a highly parallel
fashion with very little synchronization between threads. At
the other end of the spectrum, after initially selecting V; at
random, the next record V', can be the one that is at the furthest
distance from V7. Similarly, V3 would be selected to be the
furthest from V3, not including V1. This can be repeated for all
records all the way to V},. This is the method implemented for
this paper. An in-between solution would be to have n = k * s,
and use a random selection for the first k points, followed by a
deterministic, distance-maximizing selection of s points using
the first k randomly-picked records.

The final requirement for our approach is to be able to
determine the distance between two arbitrary records, A and
B. We adapted the Damerau-Levenshtein (Damerau, 1964)
distance to consider records of tokens. A record is viewed as a
sequence of tokens, and each token is a string of characters (or
symbols). For example, records A and B are:

e A:JOHN DOE MAIN ST
e B:JON DOE ST MIAN

where the tokens are JOHN, JON, DOE, MAIN, MIAN, and
ST. Because each token is a string, the Damerau-Levenshtein
distance is directly applicable when looking at tokens alone.
As such, the distance between MAIN and MIAN would be 1,
representing one swap operation of I with A.

An entire record is viewed as a sequence of tokens, just as a
string is a sequence of characters. We treat tokens as if they were
individual characters, and run something similar to Damerau-
Levenshtein to see if a token needs to be deleted, inserted,
replaced, or its position swapped with its neighbor. The main
difference is that the cost of deletion, insertion, and swap can
be an integer larger than 1 (in the case of strings, when dealing
with a single character, the cost of an operation is either 0 or 1).
For example, the cost to insert or delete the token JOHN is four
because of its four characters. The cost to replace DOE with JON
is two because D would need to be replaced by J and E by N.

Once tokens are viewed as characters, all possibilities
of inserting, deleting, replacing, and swapping positions are
considered, which makes the calculation of the distance between
two records proportional to the square of the maximum number
of tokens in any record.

One condition that is different when considering tokens
rather than single characters is that swapping of two tokens
should only be considered when the two tokens are relatively
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close. The original Damerau-Levenshtein distance would allow
swapping of two characters, for example IA in one string and
Al in the other, only if the characters are exactly the same. We
relax that exact-match requirement, and allow for two tokens
to be considered for swapping if their Damerau-Levenshtein
distance is below a threshold. That threshold is captured by
a parameter in our algorithm, maximum swap distance, which
limits swapping calculations to tokens whose distance from each
other is no larger than maximum swap distance. A maximum
distance of zero would require an exact match for the tokens. The
pseudo-code to compute the distance between two records recl
and rec2, where each record is an array or tokens (or strings),
uses recursion and is included below for reference:

//compute the distance between two records with the
following call

compute_distance (recl, rec2, len(recl) - 1, len(rec2)
- 1, max_swap_distance)
//definition of the function
function compute distance(recl, rec2, i, jJ,
max_swap_ distance)
if i == -1 and j == -1 //no token left to process

return 0
if (i, j) in tmpMem //tokens recl[i]
have already been done
return tmpMem[ (i, 7)]
if 1 $>$ $-81 //there are still tokens in recl
tmpl = compute_distance(recl, rec2, i - 1, jJ,
max_ swap_distance) +
len(recl[1i]
if 7 > -1 //there are still tokens in rec2
tmp2 $=$ compute distance(recl, rec2,
1, max_swap_distance) +
len(rec2[3j])
tmp = tmp2)
if i > -1 and j > -1 //there are tokens left in
both records

and rec2([j]

i, 3 -

min (tmp,

tmp3 = compute distance(recl, rec2, i - 1, j -
1, max_swap_distance) +
dameraulevenshtein(recl[i], rec2[j])
m = max (dameraulLevenshtein (recl[i], rec2[j -~11),
dameraulevenshtein(recl[i -- 1], rec2[j]))

if i > 0 and j >0 and \textit{m} <
max_swap_distance

//see if they are close enough, by distance \
textit{m}, to consider a swap

tmp4 = compute_distance(recl, rec2, i - 2, j -
2) + \textit{m}
tmpMem[i, j] = min(tmpl, tmp2, tmp3, tmp4)

return tmpMem[i, 7]

Parameters available to a user at this step:

3. Dimensions to be considered for each record. Possible
values are from 1 to M - 1, where M is the total number
of records in the data.

4. Maximum swap distance. Possible values are integers from
0 (meaning no swapping allowed), to max_length, where
max_length is the length of the longest token in the
data set (meaning the order of tokens in the records is
completely ignored).
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FIGURE 1

Comparison of point clouds obtained with our distance method
(left) and doc2vec embedding (right). The dimensionality of the
point cloud space was reduced to 2 using UMAP. The data set
presented here is the poor quality one with 1,000 records.

Word embedding vs. our distance function

Another solution available to us would have been to use
a neural network to generate an embedding for each record
(Mikolov et al., 2013), similar to doc2vec (Gensim, 2002).
We decided against that approach for three reasons: (a) the
difference between records can more easily be parallelized, (b)
the use of both neural networks and TDA, both of which are
part of artificial intelligence, would have made it difficult to
judge the performance of TDA alone, and (c) pursue more easily
explainable AI by avoiding embedding solutions, which rely on
neural networks whose decisions are not easily explainable to a
human analyst.

The shape of the point cloud created by word embedding
also appears different from the one created by our approach.
Both are high-dimensional spaces, and we examined them
visually using a number of dimension reduction techniques. As
shown in Figure 1, with UMAP (McInnes et al., 2018), also a
TDA-based solution, word embedding appears as intersecting
strands while our distance-based point cloud resembles more
evenly spaced blobs and clusters.

Step 3: Morse-Smale complex
calculations

Topological data analysis refers to a number of mathematical
approaches (Wasserman, 2018), but for this article we relied
on Morse-Smale complexes to find records, in the form of
point clouds, that exist in the same areas of a multidimensional
space. Morse Theory studies the structures of a manifold, an
n-dimensional topological space, by considering decomposition
and homology. Homology allows complex manifolds, for
example one that may have observation noise, to be viewed as
simple equivalent ones, which in effect can ignore some of that
noise and provide relevant information about their structure.

For a simpler presentation, consider Figure 2 that shows a
1D function, and thus a 1D manifold, going through all the
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FIGURE 2

Important concepts of Morse theory for a 1D function. Critical
points, local minima and maxima, A through F. Ascending
manifold BCD anchored at C. Descending manifold ABC
anchored at B. Morse-Smale complex BC, intersection of the
two manifolds.

points A through F. There are some critical points to consider,
and those include minima, maxima, and equivalents in higher
dimensional space, for example saddle shapes in 2D. There are
two types of manifolds, an ascending manifold, shown from B
to C to D under the main function. That manifold is anchored
at a minimum, C. Similarly there are descending manifolds, and
one from A to B to C is highlighted anchored at a maximum, B.
A Morse-Smale complex is the intersection of an ascending and
a descending manifold (under certain conditions), and it can be
seen in Figure 2 from B to C.

Another aspect of TDA includes persistent homology,
specifically the notion of persistence. Critical points can change
when only a subset of the function is considered. In Figure 2,
the dashed lines are used to restrict the function to those points
that exist only between the upper and lower dashed lines. As
those lines are moved up and down, some critical points are
no longer considered, or some local minima or maxima are no
longer the absolute minimum or maximum. In the figure, C
and G are critical points, and A and E are not yet critical. A
and E will become critical when the lower dashed line moves
even lower. As the dashed lines move, some critical points stay
critical longer than others, which is at the basis of persistence.
Another important feature that is used in TDA is the connection
between points that become critical or cease to be critical at
about the same “time” (“time” is controlled by movement of
the dashed lines). These connections form a graph or binary
relationships between points, and that can be used for geometry
simplification. Critical points can be connected by separatrices,
which divide n-dimensional space. Figure 3 shows the division
of 2D space formed by a point cloud of 100 records, which is
one of the datasets used later in the paper. By considering critical
points at different persistence levels, different sets of separatrices,
such as the white lines in Figure 3, can be brought into the
calculations and into the division of the space.

On the technical level, our algorithm uses the topopy
(Maljovec, 2020) package to compute the Morse-Smale
complexes. The function that computes the Morse-Smale
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FIGURE 3

An example of how 2-separatrices can provide a division of a 2-dimensional space. A dataset of points shown in 2 dimensions (left), with similar
color symbolizing similar features. The same dataset is divided by 2-separatrices (right). Notice that points with about the same color tend to be
captured inside the areas defined by separatrices, which is an illustration of Morse theory.

complex takes two arguments, the point cloud of records and
a scalar value; the value given is the constant 1 for each point.
Two parameters are important for our purposes: the point
graph beta which can be viewed as providing a measure of
the attraction of points in the graph used by topopy, and a
normalization algorithm type that has two values “zscore” and

»

“feature.” “Zscore” ensures that the data has a mean of zero and
a standard deviation of 1. “Feature” scales the data inside the
unit hypercube.

Parameters available to a user at this step:

5. Beta: controls how many Morse-Smale complexes are
created and how large those complexes are; fewer
complexes leads to more points/records on average
assigned to each complex. Possible values are positive, non-
zero numbers, but the relevant range would be determined
by the distance between the points in the high dimensional
range. Outside of that range, either each Morse-Smale
complex has a single point or all the points are placed inside
a single complex.

6. Normalization: either “zscore” or “feature”.

Algorithm evaluation

In this section, we compare our algorithm with the baseline
of using word embedding and a popular clustering algorithm,
dbscan (dbscan, 2022). This baseline was also used by other
authors such as Talburt et al. (2020). The more modern Hdbscan
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(Campello et al., 2013) was also tried as a baseline, but it
performed slightly worse than the original. Note that Magellan
(Konda et al., 2016), a popular baseline used for example by Li
et al. (2021) and Kirielle et al. (2022), and partially by JedAI
(Papadakis et al., 2020), does not support “dirty” data and, thus
cannot be used for this evaluation.

The datasets employed in this experiment were synthetically
generated using the SOG method established by Talburt et al.
(2009) which allows control over the quality of the records
and provides uniformity throughout the dataset. SOG uses its
seed data, such as name and address, from publicly available
domicile occupancy records from several states in the U.S,
resulting in name and address distribution close to the actual
distribution in those states. The address structure is similar to
real addresses and is intended to pass commercial verification
tools. Synthetic persons are generated, attached to addresses, and
given additional features such as birth dates, phone numbers,
and so on. SOG can be programmed to generate various levels of
data faults, and to simulate the same synthetic person moving to
a different location. This method was chosen because it provides
data that has the same structure and distribution as real-world
data, but with the additional benefit of the absolute truth already
known with 100% accuracy. Furthermore, as noted by Kirielle
et al. (2022) “in the context of databases that contain complex
entities such as person records, ground truth data are often
not available, or if available they might be limited to manually
curated, biased, and incomplete matches.”

We generated a “good” dataset of size 100 that has relatively
few quality problems, henceforth referred to as G100, and a poor
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quality data set of size 1,000 (P1000). Samples from the two
datasets are given below. The target structure of an ideal record is
listed at the top of each sample as a reference for the reader. Our
experiment ignores the information in that first row, and both
G100 and P1000 have quality faults such as misspelling, missing
field, inverted fields, and inconsistent format.

G100:

RecID,fname,lname,mname,address,city,state,zip,ssn

e A944634,IAN,AADLAND,LARS,29021 HIGH SIERRA
TRL,SANTA CLARITA,CA,91390,490-46-2048

e A755471, MYRA,AARGAARD-ESPERSEN, 1224
MAGNOLIA  ST,WINSTON  SALEM,NC,27103,117-
15-8521

o A912696,MYRA,AAARGAARD-ESPERSEN,, 1224
MAGNOLIA STWINSTON SALEM,NC,27103,117158521

e A813025,ALLEN,AARON,IKAIKA,3830 COUNTRY
CLUB RD # J,WINSTON SALEM,NC,27104,

P1P000:

RecID,Name,Address,City,State,Zip1,City,State,Zip2,PO,
Box,POCityl,State,Zip,POCity2,State,Zip,SSN,DOB

e A912969,barbaar,myers-
christian,3536,N,BERLIN,AVE,FRESNO,,CA,93722,Po,
Box,5991,fresno,,ca,93755,010-52-5974,1936

o A915784,b,chavez,9247, TOBIAES,AVE,PNORAMA,CITY,,
CALIFORNIA,91402,pomst,office,4601,Panorama,City,,
California,91412,10525974,1936

e A933400,barby,chavez,11881,GULEPOINTE,DR,APT,E38,
HOUSTON,,TX,77089,,,010-55-2974,19360814,

e A968925,CHAVEZ,2943,N,COTTONWOOD,ST,WUNIT,
3,0range,,Ca,92865,,,,

There are a number of parameters to consider for both the
baseline and our solution. While some of those were chosen
and kept constant during our tests, other parameters were
varied through a small number of combinations to achieve the
best result in terms of accuracy and F-value. The goal was to
determine what can be achieved quickly by just turning a few
“knobs” of the data washing machine, rather than to go through
a detailed and deliberate variation of many possible parameter
values in order to maximize some set criteria.

The baseline test implemented a two step process of
first computing a multidimensional number for each record
and, then, clustering those numbers based on how close
they are to each other in that multidimensional space.
We used doc2vec and dbscan, both available from python
repositories. The first program uses a neural network to
create an embedding, that is a sequence of numbers, for
each record. The second performs clustering on that sequence
of numbers by regarding each record as a point in a
multidimensional space. The parameters used for this test,
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which are in line with other experiments (Talburt et al,
2020), are:

e doc2vec: dimensions = 5, min_count = 2, epochs =
500, alpha = 0.25, min_alpha = 0.00025; note that we
experimented with higher dimensionality, but the results
were significantly worse than the chosen number of 5;

e dbscan: min_samples = 1, eps = 1.5, which gave the
best result for the G100 file, and 2.25, best result for the
P1000 file.

For our algorithm, the focus of this paper, we ignored
the header row, used aggregation inside a token, and
used the “zscore” normalization for Morse-Smale complexes.
The number of dimensions in the experiment followed an
exponential scale with the values 12, 25, 50, 100, and 200. The
last two values were only considered for the larger file P1000,
which has 1,000 records. As for the maximum swap distance, we
considered three values for the distance: 2, which is restrictive
in that it allows swapping of tokens that are almost identical, 7
which permits tokens that are more different from each other to
be considered for swapping, and 50 which will allow most pairs
of tokens to be considered for swapping. The sixth, and final,
parameter to consider is beta, which was varied to achieve the
best accuracy and F-value. We only considered a small subset
of beta values from 3 to 7, with an increment of 0.5. Different
beta values gave the best result for different files, dimensions, and
maximum swap distances. Figure 4 shows the results visually for
both the precisions (i.e., accuracy) and F-value.

Results

Our algorithm performs better than the baseline for data
with lower quality (P1000 in Figure 4), but it does worse than the
baseline for data with better quality. Precision for our approach
seems to be in the same range regardless of the quality of the
data. On the other hand, F-value decrease significantly when the
data quality decreases for both the baseline and our algorithm.

In most conditions from Figure 4, increasing the number
of dimensions of the point cloud space appears to reach a
saturation value after which the precision starts to drop. Too few
dimensions, 12 in this experiment, can also lead to low precision.

The maximum swap distance has an effect on the precision
of our algorithm. Allowing most tokens to be swapped, a
distance of 50, is consistently less accurate than smaller
maximum swap distances. Values in the interval 0 through 7
may be more appropriate based on the conditions tested in
our experiments. Different data quality problems may be better
suited to different values. If inconsistent abbreviations and re-
ordering of tokens is observed, then values at the higher end of
the interval are likely to work best.
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FIGURE 4
Results of our experiment showing precision (top) and F-value (bottom) for two different files, good quality (left) and poor quality (right). The
numbers on the top plots show the values of beta that yielded the best result. Note that dbscan, horizontal straight lines, are shown as a
reference for the precision and F-value, with no relation to the number of dimensions (x-axis).

As a general behavior, lower beta values tend to result in
more (not necessarily correct) duplicates being detected by our
algorithm. After reaching a peak F-value, further increase in
beta value appears to result in better precision and worse F-
values because the algorithm detects fewer pairs of records, but
those detected are more likely to be actual duplicates. Note that
dbscan, the baseline, exhibits a similar behavior with respect to
its eps parameter.

Conclusions and future work

We presented an algorithm for finding duplicates in an
arbitrary dataset that shows promise for data with poor
quality. The intention was to avoid performing significant pre-
processing and prior cleaning of data. The algorithm relies on
TDA and a distance-based point cloud calculation, without the
use of any other artificial intelligence solution, such as neural
networks. In the future, the TDA may provide the means for
unsupervised identification of data quality issues other than
duplicate entities and even for automatic reconstruction of a
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dataset by analyzing the context of duplicates and correcting
their information based on the entirety of other records, similar
to van Veen (2019).
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