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ABSTRACT

Self-training crowd counting has not been attentively explored
though it is one of the important challenges in computer vi-
sion. In practice, the fully supervised methods usually require
an intensive resource of manual annotation. In order to ad-
dress this challenge, this work introduces a new approach to
utilize existing datasets with ground truth to produce more
robust predictions on unlabeled datasets, named domain adap-
tation, in crowd counting. While the network is trained with
labeled data, samples without labels from the target domain
are also added to the training process. In this process, the
entropy map is computed and minimized in addition to the ad-
versarial training process designed in parallel. Experiments on
Shanghaitech, UCF_CC_50, and UCF-QNRF datasets prove a
more generalized improvement of our method over the other
state-of-the-arts in the cross-domain setting.

Index Terms— Crowd Counting, Domain Adaptation,
Entropy Minimization, Adversarial Learning.

1. INTRODUCTION

Crowd counting has recently been one of the popular tasks
in computer vision. Recent developed methods [1, 2, 3] and
datasets [4, 5, 6] have been introduced to tackle the counting
task with thousands of targets. However, in real-world scenar-
ios, these supervised methods usually learn to count through
a training process that requires an extensive annotation of
densely populated points in thousands of images. Directly
employing models that are trained on existing datasets to a
new dataset suffers from a significant performance decrease
due to the domain gap.

Therefore, in addition to semantic scene understanding
[7] and video temporal modeling [8, 9, 10, 11], some self-
training methods appear to utilize existing datasets with labels,
i.e. source domain, and perform counting on more open-set
scenarios, i.e. target domain, [12, 13] by transfer learning and
domain adaptation techniques. Liu et al. [13] enable knowl-
edge distillation between both regression-based and detection-
based models by formulating the mutual transformation of
outputs. Xu et al. [14] enhance the generalization over density
variance by categorizing image patches into several density

levels. While general self learning methods improve the gener-
alization capability by attempting to estimate pseudo ground-
truths or distillation learning from a teacher network, a few
approaches investigate a new direction to narrow the domain
shift from entropy feedback of the target domain, especially in
the semantic segmentation task [15].

In this paper, we introduce a new training approach to
the crowd counting task toward a domain adaptation setting
where the crowd counter utilizes the entropy minimization and
adversarial learning to alleviate the distributional discrepancy
between the source domain and the target domain. Particularly,
our contributions can be summarized as follows:

• Reformulate the crowd counting problem from nor-
mally estimating density map to directly predicting tar-
get points in images, inspired by anchor-based and
offset-based approaches.

• Utilize the Shannon entropy formula as a loss objective
function to maximize the prediction certainty.

• Design an adversarial learning scheme to motivate the
network to produce similar distributional predictions
over the source domain and the target domain.

• Evaluate the proposed method with cross-domain set-
tings to demonstrate its substantial generalization com-
pared against the previous crowd counting methods and
further perform estimating on a new chicken counting
dataset.

2. DOMAIN ADAPTATION FOR CROWD COUNTING

2.1. Point Proposal Network

Far apart from prior approaches that normally learn to predict
a density map [2, 16], this work designs a network to estimate
head points directly. Given an RGB image x ∈ X , the training
source domain, the deep feature extracted from the backbone
network F can be denoted as F(x) and its output size is
W ×H ×D. F(x) involves a hyper-parameter s that is the
backbone’s downscale stride. In particular, each cell on the
feature map F(x) basically is correspondence to a window size
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Fig. 1. Our overall framework: Given an image sample, the deep network first extracts F(x) feature, then estimates location
offset map and classification map (p̂loc, p̂cls). With source domain sample x ∈ X , since label is available, supervised L2 Distance
LX
loc loss and Cross Entropy LX

cls loss can be effortlessly calculated and they are used to guide the network. On the other hand,
since sample on target domain y ∈ Y does not have label, LX

ent,LY
ent,LY

adv loss functions are emloyed to additionally teach
the domain adaptation learning process. Blue arrows indicate source sample’s learning flow, while orange arrows indicate the
learning flow of target sample.

s× s on the original input x. The maximum number of points
that can exist in the window is D (point’s index is denoted
as k, k ∈ [0, D − 1]). Then, given the processed feature
map F(x), two network branches are adopted to predict the
point coordinate (denoted as p̂loc) and background-foreground
classification (denoted as p̂cls). From the location (i, j) where
the pixel is located in the feature map F(x), the regression
branch learns to estimate 2 × k offset values (δik, δjk) in
the range [−1, 1]. The point location p̂loci,j,k = (x̂k, ŷk) is
computed as follows:

x̂k = s(i+ δik)

ŷk = s(j + δjk)
(1)

In the classification task, two predicted scores belong to posi-
tive class posk (object’s point) and negative class negk (back-
ground). The Softmax function is employed to normalize
two confident scores p̂clsi,j,k = (ĉls

pos

k , ĉls
neg

k ) that follow a
probability distribution whose total sums up to one:

ĉls
pos

k =
eposk

eposk + enegk

ĉls
neg

k =
enegk

eposk + enegk

(2)

Supervised Training Losses. On the source domain X where
labels are provided, the supervised training losses on both
branches are formulated as the standard ones. The ℓ2 dis-
tance and Cross Entropy losses are adopted for the regression
branch and the classification branch, respectively. Denoting

ploci , clsposi , clsnegi as corresponding ground-truth values of
p̂loci , ĉls

pos

i , ĉls
neg

i , those loss functions are defined as follows:

Lloc(x) =
1

|N |

|N |∑
i=1

||p̂loci − ploci ||2 (3)

Lcls(x) = − 1

|M |

|M |∑
i=1

(clsposi log ĉls
pos

i + clsnegi log ĉls
neg

i )

(4)
where N is the set of points of the ground truth and M is the set
of proposals containing both negative and positive pixel points.
M can be obtained from a one-to-one matching strategy (i.e.
Hungarian algorithm [17, 18, 3]). Finally, the fully supervised
training loss can be obtained as follows:

LX
loc + LX

cls (5)

where LX denotes a particular loss calculated on all samples
from the source domain X .

2.2. Entropy Minimization on Target Domain

On the target domain Y , where labels are not available, while
some approaches utilize output from a teacher model as a
pseudo-label with lower confidence to guide the learning pro-
cess [19, 20, 21], entropy minimization is a more preferable
principle in self-training semantic segmentation demonstrated
through a number of research works [15, 22, 23]. By formu-
lating the point’s head classification similar to the semantic
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segmentation problem, the Shannon entropy formulation [24]
can be adopted to be a loss function in order to encourage the
deep network to produce a higher confidence score. Given an
RGB image y ∈ Y on the target domain, the classification per
pixel entropy can be formulated as follows:

E(y)i,j,k =
−1

log 2
(ĉls

pos

k log ĉls
pos

k + ĉls
neg

k log ĉls
neg

k ) (6)

And the self-training entropy loss can be defined as:

Lent(y) =
1

W ×H ×D

W∑
i

H∑
j

D∑
k

E(y)i,j,k (7)

2.3. Distribution Discrepancy Minimization by Adversar-
ial Learning

To further narrow the domain gap, we utilize a discriminator
D, which is a fully convolutional neural network classifier, to
motivate the network to extract similar distribution output over
both domains. This discriminator tries to determine which
domain the input belongs to by learning domain classification
(DX ,DY), while the main network tries to make the discrim-
inator produce fault predictions. Given the concatenation of
offset and category maps from the network (p̂loc||p̂cls), the
loss function of the discriminator can be formulated as follows,

Ldis(p̂
loc||p̂cls) = −

W∑
i

H∑
j

[(1− z) logDX (p̂loc||p̂cls)+

z logDY(p̂
loc||p̂cls)]

(8)

where z = 0 if p̂ ≡ F(x) or z = 1 if p̂ ≡ F(y), which
x ∈ X ,y ∈ Y , and (.||.) is the tensor concatenation operation.

Additionally, to narrow the produced distributions of
source domain and the target domain, we add an adversarial
loss in the main network’s training process:

Ladv(y) = −
W∑
i

H∑
j

[logDX (p̂locy ||p̂clsy )] (9)

More specifically, the adversarial loss is designed to max-
imize the probability of the discriminator predicting source
domain class given target domain samples y ∈ Y .

To summarize, the learning process of the main point pro-
posal network involves Eqn. 3, 4, 7 and 9 loss functions:

λlocLX
loc + λclsLX

cls + λent(LX
ent +LY

ent) + λadvLY
adv (10)

whereλloc, λcls, λent, λadv are weighted parameters to bal-
ance corresponding objective functions, LX and LY denote
particular losses calculated on all samples from domain X and

Table 1. Error rates comparison among loss components.
Numbers in italic indicate error rates on source domain, while
underlined numbers are results on adapted domain.

Components SHTechA SHTechB
MAE MSE MAE MSE

LX
ent

54.32 90.39 25.36 39.14
162.78 289.47 7.92 11.53

LY
ent

60.76 95.34 22.03 34.27
105.48 164.36 10.43 15.60

LX
ent + LY

ent
54.04 89.37 21.58 30.84
87.76 126.53 8.03 11.98

LY
adv

62.83 107.42 28.39 47.58
174.59 302.87 15.57 27.38

LX
ent + LY

ent + LY
adv

57.67 93.71 18.29 26.21
69.21 95.36 8.72 12.53

Table 2. Error rates comparison between our approach with
other domain adaptation (DA) and supervised methods. Num-
bers in italic indicate error rates on source domain, while
underlined numbers are results on adapted domain.

Method DA SHTechA SHTechB
MAE MSE MAE MSE

DM-Count [1] ✗
60.04 96.01 22.91 34.69

142.00 241.02 7.33 11.87

UEPNet [2] ✗
55.26 91.94 24.36 37.22

- - 6.38 10.88

P2P [3] ✗
53.02 88.48 21.91 33.86

158.30 267.51 6.55 9.50

ConvNets [12] ✓
73.5 112.3 49.1 99.2
140.4 226.1 18.7 26.0

SPN+L2SM [14] ✓
64.2 98.4 21.2 38.7
126.8 203.9 7.2 11.1

RDBT [13] ✓
- - 13.38 29.25

112.24 218.18 - -

Ours ✓
57.67 93.71 18.29 26.21
69.21 95.36 8.72 12.53

Y , respectively. In parallel, the discriminator D learns with
the guidance of Eqn. 8:

LX
dis + LY

dis (11)

The entire training procedure is depicted as in Fig. 1.

3. EXPERIMENTAL RESULTS

3.1. Ablation Study

To illustrate the effectiveness of each proposed objective loss
in our method, we conduct the ablative experiments as shown
in Tab. 1. We slightly add and remove our training strategies
on top of the original supervised approach. The experimental
results have shown that our proposed losses have achieved
significant improvement.

3.2. Comparison against SOTA Methods on Public
Datasets

Shanghaitech Dataset [4] consists of two parts: Part-A and
Part-B and it contains totally 1,198 images of 330,165 peo-
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Table 3. Error rates comparison between our approach with
other domain adaptation (DA) and supervised methods.

Method DA UCF_CC_50 UCF-QNRF
MAE MSE MAE MSE

DM-Count [1] ✗ 427.16 638.92 315.94 542.23
ConvNets [12] ✓ 364.0 545.8 - -

SPN+L2SM [14] ✓ 332.4 425.0 227.2 405.2
RDBT [13] ✓ 368.01 518.92 175.02 294.76

Ours ✓ 305.57 400.62 154.73 237.84

ple. We use these two parts to take turns as source and target
domains as shown in Tab. 2. In each method, the first row is
using SHTechA for the source domain, SHTechB for the target
domain, and the second row is trained in reversed order. The
results show that, with domain adaptation learning, our method
can be aware of the target’s distribution, and yields better quan-
titative results on its samples (69.21/95.36 vs 112.24/218.18
of RDBT [13] on SHTechA), while the performance on source
domain is not hurt very much (57.67/93.71 vs 53.02/88.48 on
SHTechA and 8.72/12.53 vs 6.55/9.50 on SHTechB of P2P
[3]).
UCF_CC_50 dataset [5] and UCF-QNRF dataset [6] have a
large variant number of head counts. While the former only
contains 50 images but the number of head points varies from
94 to 4,543, the latter consists of 1,535 images with 1,251,642
point heads in total. We use Shanghaitech Part-A for the source
domain to adapt on these two datasets. The results also prove
our method with domain adaptation perform superior quantita-
tive results on target domain as shown in Tab. 3 (305.57/400.62
vs 332.4/425.0 of SPN+L2SM [14] on UCF_CC_50) and
(154.73/237.84 vs 227.2/405.2 of SPN+L2SM [14] on UCF-
QNRF).

3.3. Qualitative Result on Chicken Counting

We want to evaluate the proposed training method on our
chicken dataset collected in farm scenes which have not been
annotated as shown in Fig. 2. The dataset will be annotated
and soon publicly release a test set for quantitative evaluation.
We train the SHTech dataset as the source domain and try
different domain adaptation training strategies on this dataset.

The first row is the training process with entropy mini-
mization on the target domain. Since the network is mainly
guided to learn the localization and classification tasks from
the human dataset, the network finds it difficult to recognize
chickens as positive class and the result mostly returns false
negatives. The second row is the training process with adver-
sarial loss. While the distribution gap is more narrow resulting
in more densely populated prediction, the network produces
more false positives by trying to map the dense distribution of
the source domain. The final training process balances those
loss functions with weighted parameters and refines better
results. However, it still does not yield optimal predictions
and there are some missing counts caused by different light-

Fig. 2. Our qualitative result on our chicken dataset with
different domain adaptation training strategies (from top to
bottom: entropy minimization loss; adversarial loss; both the
losses). Best viewed in color and zoom in.

ing conditions (i.e. darker and brighter areas in top-left and
bottom-left corners).

4. CONCLUSION

In this paper, we have proposed a domain adaptation training
scheme for the crowd counting task. Our method is designed
to minimize the domain gap between the source domain and
the target domain through the entropy loss and the adversarial
loss. The entropy minimization is computed on both domains
while the adversarial objective minimizes the distribution dis-
crepancy on target samples. As a result, our proposed method
shows better results on the target domain than recent self-
training learning methods, while maintaining nearly the same
error rates on the source domain. Furthermore, we show quali-
tative estimation on our chicken dataset which is used as the
target domain. However, there are still some false negative
counts on chickens, due to the lighting condition problem
which is not fully addressed in this work. The dataset will be
released and the limitation will be studied more in future work.
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